1
|
Lalchhuanawmi S, Kumar Malik C, Kumar R, Verma S, Garg P, Singh S. Leishmania donovani homoserine dehydrogenase: Biochemical and structural characterization of a novel parasite specific enzyme of aspartate pathway. Gene 2025; 947:149335. [PMID: 39961538 DOI: 10.1016/j.gene.2025.149335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/17/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Visceral leishmaniasis is a neglected tropical disease. Drug resistance and toxicity are the critical issues with the currently available antileishmanial drugs. Therefore, research efforts are underway to identify and validate new drug targets specific to Leishmania parasite. The enzyme homoserine dehydrogenase (HSD) functions in the third step of aspartate pathway. The present study focuses on the biophysical and biochemical characterization of HSD enzyme from Leishmania donovani (LdHSD) which is unique to the parasite with no homologous enzyme in the host. LdHSD gene was cloned in pET28c(+) vector and transformed in E. coli BL21 (DE3) strain. LdHSD recombinant enzyme of molecular weight 46.6 kDa with 6X-His tag at the C-terminal end was expressed, purified by nickel affinity chromatography and confirmed by western blot analysis using anti-His antibody. Effect of pH, temperature, salts, metal ions and amino acids on the recombinant enzyme were evaluated. Kinetic parameters of LdHSD were evaluated for substrates L-homoserine and NADP+. Biophysical analysis revealed that the enzyme is rich in β-sheets. Thermal denaturation study revealed that the protein is stable up to 45 °C. Furthermore, comprehensive comparative sequence analysis and structural modeling revealed the structural and functionally important residues, which are involved in the catalytic mechanisms. The putative binding mode of the natural substrate L-homoserine into the active site of LdHSD was also elucidated. These findings provide a foundation for the development of selective, target-based inhibitors against the HSD enzyme of the parasite.
Collapse
Affiliation(s)
- Sandra Lalchhuanawmi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Mohali 160062 Punjab, India
| | - Chandan Kumar Malik
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Mohali 160062 Punjab, India
| | - Rajender Kumar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Swati Verma
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Mohali 160062 Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, SAS Nagar, Mohali 160062 Punjab, India.
| |
Collapse
|
2
|
Hu T, Meng Y, Zhao C, Sheng D, Yang S, Dai J, Wei T, Zhang Y, Zhao G, Liu Y, Wang Q, Zhang L. Genome-scale metabolic modeling reveals specific vaginal Lactobacillus strains and their metabolites as key inhibitors of Candida albicans. Microbiol Spectr 2025:e0298424. [PMID: 40237492 DOI: 10.1128/spectrum.02984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
As the predominant constituents of the vaginal microbiome in healthy women, Lactobacillus species are considered essential in maintaining a homeostatic vaginal microbiome. Specific Lactobacillus species can produce beneficial metabolites to support their persistence within the host environment and inhibit Candida albicans colonization. Due to the extensive diversity of Lactobacillus species and their metabolites, comprehensively investigating all possible interactions remains challenging. This study employed an integrative approach combining genome-scale metabolic modeling, metagenomic sequencing, and in vitro validation to explore Lactobacillus and C. albicans interactions. Pairwise simulations of 159 Lactobacillus strains with C. albicans revealed that most strains exhibit inhibitory effects, altering fungal amino acid and carbohydrate metabolism. Key inhibitory metabolites identified included formate, L-lactate, and L-malate. Metagenomic analysis of vaginal swabs from 20 vulvovaginal candidiasis (VVC) patients and 20 healthy women showed a correlation between Lactobacillus species abundance and reduced C. albicans colonization. In vitro experiments confirmed the inhibitory effects of these metabolites and the selected Lactobacillus strains on C. albicans growth, thereby validating our computational predictions. These findings provide insights into the metabolic interactions within the vaginal microbiome and pave the way for targeted microbial or metabolite-based therapeutic strategies to manage VVC.IMPORTANCEVulvovaginal candidiasis is a prevalent fungal infection with significant implications for women's health, caused primarily by Candida albicans. Although the protective role of a Lactobacillus-dominated vaginal microbiome is well established, the metabolic mechanisms underlying the interactions between Lactobacillus species and C. albicans remain inadequately understood. Specifically, the Lactobacillus species that effectively inhibit C. albicans and the metabolic pathways involved warrant further investigation. This study offers novel insights into the metabolic mechanisms underlying Lactobacillus antagonism against C. albicans. By identifying critical metabolic pathways and inhibitory metabolites, this study enhances our understanding of vaginal microbiome dynamics and host-microbe interactions. The findings suggest that key Lactobacillus strains and their metabolites could significantly reduce harmful levels of C. albicans, paving the way for future therapeutic strategies that leverage these microbial characteristics to promote vaginal health.
Collapse
Affiliation(s)
- Tianqi Hu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ya Meng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changying Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dashuang Sheng
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sijie Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Junhui Dai
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tiantian Wei
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yiming Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanan Liu
- Jinan Institute of Child Health Care, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Qinghua Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Bindu B, Manikandan A, Jeevitha S, Kunju JJ, Vijayalakshmi S. Imidazolidine-Based Aspartate Inhibitors for Candida Infections. Drug Dev Res 2025; 86:e70074. [PMID: 40159997 DOI: 10.1002/ddr.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
The fungal infection gradually poses a life threat to mankind, candidiasis caused by Candida sp. is one among them. We describe the aspartate protease inhibition potentials of 12 sulfonyl-containing imidazolidines (5a-l) anti-candidal agents. Candida Albicans secretes aspartic proteases (Saps), one of its most important virulent agents. These hydrolytic enzymes are critical for both fungal physiological processes and host-fungus interactions. Compounds 5a-l were examined for their fungal aspartate protease inhibition apart from their anti-candida activity. These findings were equipped and validated in silico using molecular docking and in vitro enzyme inhibition assays. The study found that imidazolidine derivatives inhibited aspartic protease and exhibited anti-candida action. Conclusively, imidazolidines 5g, 5h, and 5j were perceived as the most potent anti-candida compounds and are presently being evaluated for their preclinical studies.
Collapse
Affiliation(s)
- B Bindu
- Department of Chemistry, Government Arts College, Coimbatore, India
| | - A Manikandan
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - S Jeevitha
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - Joe Jacob Kunju
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Medical College and Hospital, Chennai, India
| | - S Vijayalakshmi
- Department of Chemistry, Government Arts College, Coimbatore, India
| |
Collapse
|
4
|
Molaeitabari A, Dahms TES. Blocking the shikimate pathway amplifies the impact of carvacrol on biofilm formation in Candida albicans. Microbiol Spectr 2025; 13:e0275424. [PMID: 39918333 PMCID: PMC11878086 DOI: 10.1128/spectrum.02754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/14/2024] [Indexed: 03/05/2025] Open
Abstract
Candida albicans typically thrives in a commensal relationship with humans but is also an opportunistic fungal pathogen. As an opportunistic pathogen, C. albicans relies heavily on its ability to assimilate nutrients, for which it must compete with the host and other microorganisms. Amino acid biosynthesis, sensing, and uptake play pivotal roles in C. albicans growth and pathogenicity. C. albicans biosynthesizes aromatic amino acids and co-enzyme Q de novo through the shikimate pathway, including the Aro1, Aro2, and Aro7 enzymes, but also has amino acid transporters for uptake from the environment. Thus, antifungal approaches targeting aromatic amino acid biosynthesis must simultaneously inhibit amino acid biosynthesis and uptake. Herein, we investigate the plant-based antifungal, carvacrol, in conjunction with aromatic amino acid biosynthetic mutants, as a potential anti-candidal strategy. Growth of the WT, ARO2, and ARO7 strains were inhibited by 150 µg/mL carvacrol, whereas the ARO1 mutant was slightly more sensitive (with MIC 125 µg/mL). All repressed mutants exposed to carvacrol are partially rescued in the presence of para-aminobenzoic acid (PABA) (CoQ precursor), indicating that blocking the shikimate pathway impacts both aromatic amino acid and CoQ biosynthesis. Moreover, carvacrol at sublethal concentrations significantly inhibits ARO1 adhesion and hyphal formation, along with pre-attached and pre-formed hyphae, ultimately impacting biofilm metabolic activity and biomass accumulation and significantly reducing biofilm growth. In summary, carvacrol increases the sensitivity of C. albicans to ARO1 repression, with attenuated adhesion, hyphal formation, mycelial growth and biofilm formation, likely by blocking aromatic amino acid uptake.IMPORTANCEThe opportunistic pathogen Candida albicans remains the leading cause of candidemia and invasive candidiasis (IC), causing significant morbidity and mortality in immunocompromised patients. Our current arsenal of effective antifungal drugs is limited in number, mechanistic diversity, and efficacy, are cytotoxic and associated with antifungal resistance, necessitating the development of novel antifungals and combination therapies. Here, we show how simultaneously blocking the shikimate pathway, through ARO1 repression, and disrupting aromatic amino acid uptake by carvacrol prevent C. albicans biofilm formation. Thus, inhibitors of the Aro1 enzyme in combination with carvacrol are expected to shut down C. albicans biofilm formation and virulence.
Collapse
Affiliation(s)
- Ali Molaeitabari
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Tanya E. S. Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
5
|
Rząd K, Kuplińska A, Gabriel I. Fungal L-Methionine Biosynthesis Pathway Enzymes and Their Applications in Various Scientific and Commercial Fields. Biomolecules 2024; 14:1315. [PMID: 39456248 PMCID: PMC11506715 DOI: 10.3390/biom14101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
L-methionine (L-Met) is one of the nine proteinogenic amino acids essential for humans since, in human cells, there are no complete pathways for its biosynthesis from simple precursors. L-Met plays a crucial role in cellular function as it is required for proper protein synthesis, acting as an initiator. Additionally, this amino acid participates in various metabolic processes and serves as a precursor for the synthesis of S-adenosylmethionine (AdoMet), which is involved in the methylation of DNA molecules and phospholipids, as well as in maintaining genome stability. Due to its importance, fungal L-methionine biosynthesis pathway enzymes are being intensively studied. This review presents the current state of the art in terms of their cellular function, usefulness as molecular markers, antifungal targets, or industrial approaches.
Collapse
Affiliation(s)
| | | | - Iwona Gabriel
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (K.R.); (A.K.)
| |
Collapse
|
6
|
Folorunso OS, Sebolai OM. A Limited Number of Amino Acid Permeases Are Crucial for Cryptococcus neoformans Survival and Virulence. Int J Microbiol 2024; 2024:5566438. [PMID: 39148675 PMCID: PMC11326883 DOI: 10.1155/2024/5566438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
One unique attribute of Cryptococcus neoformans is its ability to procure essential monomers from its surroundings to survive in diverse environments. Preferentially, sugars are the energy sources for this opportunistic pathogenic fungus under the carbon catabolite repression (CCR); however, sugar restriction induces alternative use of low molecular weight alcohol, organic acids, and amino acids. The expression of transmembrane amino acid permeases (Aaps) allows C. neoformans to utilize different amino acids and their conjugates, notwithstanding under the nitrogen catabolite repression (NCR). Being referred to as global permeases, there is a notion that all cryptococcal Aaps are important to survival and virulence. This functional divergence makes alternative drug targeting against Cryptococcus a challenge. We examine the functions and regulations of C. neoformans Aap variants with the aim of rationalizing their relevance to cryptococcal cell survival and virulence. Based on nutrient bioavailability, we linked the Cac1 pathway to Ras1 activation for thermotolerance that provides a temperature cushion for Aap activity under physiological conditions. Lastly, mutants of Aaps are examined for significant phenotypic deficiencies/advantages, which buttress the specific importance of limited numbers of Aaps involved in cryptococcal infections.
Collapse
Affiliation(s)
- Olufemi S Folorunso
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| | - Olihile M Sebolai
- Department of Microbiology and Biochemistry University of the Free State, 205 Nelson Mandela Drive, Park West, Bloemfontein 9301, South Africa
| |
Collapse
|
7
|
Parihar R, Singh U, Das A, Baishya B, Singh V, Ahirwar SC, Islahi S, Sen M, Mittal V. Identification of primary metabolites in fungal species of Trichophyton mentagrophyte and Trichophyton rubrum by NMR spectroscopy. Mycoses 2024; 67:e13699. [PMID: 38366288 DOI: 10.1111/myc.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Superficial mycoses are fungal infections limited to the outermost layers of the skin and its appendages. The chief causative agents of these mycoses are dermatophytes and yeasts. The diagnosis of dermatophytosis can be made by direct mycological examination with potassium hydroxide (10%-30%) of biological material obtained from patients with suspected mycosis, providing results more rapid than fungal cultures, which may take days or weeks. This information, together with clinical history and laboratory diagnosis, ensures that the appropriate treatment is initiated promptly. However, false negative results are obtained in 5%-15%, by conventional methods of diagnosis of dermatophytosis. OBJECTIVES To study the metabolic profiles of the commonly occurring dermatophytes by NMR spectroscopy. PATIENTS/MATERIALS We have used 1D and 2D Nuclear Magnetic Resonance (NMR) experiments along with Human Metabolome Database (HMDB) and Chenomx database search for identification of primary metabolites in the methanol extract of two fungal species: Trichophyton mentagrophyte (T. mentagrophyte) and Trichophyton rubrum (T. rubrum). Both standard strains and representative number of clinical isolates of these two species were investigated. Further, metabolic profiles obtained were analysed using multivariate analysis. RESULTS We have identified 23 metabolites in the T. mentagrophyte and another 23 metabolites in T. rubrum. Many important metabolites like trehalose, proline, mannitol, acetate, GABA and several other amino acids were detected, which provide the necessary components for fungal growth and metabolism. Altered metabolites were defined between Trichophyton mentagrophyte and T. rubrum strains. CONCLUSION We have detected many metabolites in the two fungal species T. mentagrophyte and T. rubrum by using NMR spectroscopy. NMR spectroscopy provides a holistic snapshot of the metabolome of an organism. Key metabolic differences were identified between the two fungal strains. We need to perform more studies on metabolite profiling of the samples from these species for their rapid diagnosis and prompt treatment.
Collapse
Affiliation(s)
- Rashmi Parihar
- Centre of Biomedical Research, Lucknow, Uttar Pradesh, India
- Department of Bioinformatics, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Upendra Singh
- Centre of Biomedical Research, Lucknow, Uttar Pradesh, India
| | - Anupam Das
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Bikash Baishya
- Centre of Biomedical Research, Lucknow, Uttar Pradesh, India
| | - Vikramjeet Singh
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - S C Ahirwar
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sana Islahi
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Manodeep Sen
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vineeta Mittal
- Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Duke SO, Pan Z, Bajsa-Hirschel J, Tamang P, Hammerschmidt R, Lorsbach BA, Sparks TC. Molecular Targets of Herbicides and Fungicides─Are There Useful Overlaps for Fungicide Discovery? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20532-20548. [PMID: 38100716 PMCID: PMC10755756 DOI: 10.1021/acs.jafc.3c07166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
New fungicide modes of action are needed for fungicide resistance management strategies. Several commercial herbicide targets found in fungi that are not utilized by commercial fungicides are discussed as possible fungicide molecular targets. These are acetyl CoA carboxylase, acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthase, phytoene desaturase, protoporphyrinogen oxidase, long-chain fatty acid synthase, dihydropteroate synthase, hydroxyphenyl pyruvate dioxygenase, and Ser/Thr protein phosphatase. Some of the inhibitors of these herbicide targets appear to be either good fungicides or good leads for new fungicides. For example, some acetolactate synthase and dihydropteroate inhibitors are excellent fungicides. There is evidence that some herbicides have indirect benefits to certain crops due to their effects on fungal crop pathogens. Using a pesticide with both herbicide and fungicide activities based on the same molecular target could reduce the total amount of pesticide used. The limitations of such a product are discussed.
Collapse
Affiliation(s)
- Stephen O. Duke
- National
Center for Natural Products Research, School of Pharmacy, University of Mississippi, University 38667, United States
| | - Zhiqiang Pan
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Joanna Bajsa-Hirschel
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Prabin Tamang
- Natural
Products Utilization Research Unit, United
States Department of Agriculture, University 38667, United States
| | - Raymond Hammerschmidt
- Department
of Plant, Soil and Microbial Sciences, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Beth A. Lorsbach
- Nufarm, 4020 Aerial Center Parkway, Morrisville, North Carolina 27560, United States
| | | |
Collapse
|
9
|
Scott J, Amich J. The role of methionine synthases in fungal metabolism and virulence. Essays Biochem 2023; 67:853-863. [PMID: 37449444 DOI: 10.1042/ebc20230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Methionine synthases (MetH) catalyse the methylation of homocysteine (Hcy) with 5-methyl-tetrahydrofolate (5, methyl-THF) acting as methyl donor, to form methionine (Met) and tetrahydrofolate (THF). This function is performed by two unrelated classes of enzymes that differ significantly in both their structures and mechanisms of action. The genomes of plants and many fungi exclusively encode cobalamin-independent enzymes (EC.2.1.1.14), while some fungi also possess proteins from the cobalamin-dependent (EC.2.1.1.13) family utilised by humans. Methionine synthase's function connects the methionine and folate cycles, making it a crucial node in primary metabolism, with impacts on important cellular processes such as anabolism, growth and synthesis of proteins, polyamines, nucleotides and lipids. As a result, MetHs are vital for the viability or virulence of numerous prominent human and plant pathogenic fungi and have been proposed as promising broad-spectrum antifungal drug targets. This review provides a summary of the relevance of methionine synthases to fungal metabolism, their potential as antifungal drug targets and insights into the structures of both classes of MetH.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
10
|
de Oliveira AA, Carmo Silva LD, Neves BJ, Fiaia Costa VA, Muratov EN, Andrade CH, de Almeida Soares CM, Alves VM, Pereira M. Cheminformatics-driven discovery of hit compounds against Paracoccidioides spp. Future Med Chem 2023; 15:1553-1567. [PMID: 37727967 DOI: 10.4155/fmc-2022-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Aims: The development of safe and effective therapies for treating paracoccidioidomycosis using computational strategies were employed to discover anti-Paracoccidioides compounds. Materials & methods: We 1) collected, curated and integrated the largest library of compounds tested against Paracoccidioides spp.; 2) employed a similarity search to virtually screen the ChemBridge database and select nine compounds for experimental evaluation; 3) performed an experimental evaluation to determine the minimum inhibitory concentration and minimum fungicidal concentration as well as cytotoxicity; and 4) employed computational tools to identify potential targets for the most active compounds. Seven compounds presented activity against Paracoccidioides spp. Conclusion: These compounds are new hits with a predicted mechanisms of action, making them potentially attractive to develop new compounds.
Collapse
Affiliation(s)
- Amanda Alves de Oliveira
- Institute of Tropical Pathology & Public Health, Federal University of Goiás, Goiânia, 74690-900, Brazil
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| | - Lívia do Carmo Silva
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | | | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology & Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
- Department of Pharmaceutical Sciences, Federal University of Paraiba, Joao Pessoa, 58051-900, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling & Design, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | | | - Vinicius M Alves
- Laboratory for Molecular Modeling, Division of Chemical Biology & Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
- Laboratory for Molecular Modeling & Design, Faculty of Pharmacy, Federal University of Goiás, 74690-900, Brazil
| | - Maristela Pereira
- Laboratory for Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, 74690-900, Brazil
| |
Collapse
|
11
|
Lin CL, Petersen MA, Gottlieb A. Increasing Higher Alcohols and Acetates in Low-Alcohol Beer by Proteases. Molecules 2023; 28:molecules28114419. [PMID: 37298894 DOI: 10.3390/molecules28114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
The market of non-alcoholic and low-alcohol beer has grown continuously thanks to the advocacy for healthy and responsible drinking. Non-alcoholic and low-alcohol products usually possess less higher alcohols and acetates and more aldehyde off-flavors due to the manufacturing processes. The employment of non-conventional yeasts partially mitigates this problem. In this study, we used proteases to optimize the wort amino acid profile for better aroma production during yeast fermentation. The design of experiments was applied to increase the leucine molar fraction, aiming to boost 3-methylbutan-1-ol and 3-methylbutyl acetate (banana-like aromas). This led to an increase from 7% to 11% leucine in wort after protease treatment. The aroma output in the subsequent fermentation, however, was yeast-dependent. An 87% increase of 3-methylbutan-1-ol and a 64% increase of 3-methylbutyl acetate were observed when Saccharomycodes ludwigii was used. When Pichia kluyveri was employed, higher alcohols and esters from valine and isoleucine were increased: 58% more of 2-methylpropyl acetate, 67% more of 2-methylbutan-1-ol, and 24% more of 2-methylbutyl acetate were observed. Conversely, 3-methylbutan-1-ol decreased by 58% and 3-methylbutyl acetate largely remained the same. Apart from these, the amounts of aldehyde intermediates were increased to a varying extent. The impact of such increases in aromas and off-flavors on the perception of low-alcohol beer remains to be evaluated by sensory analysis in future studies.
Collapse
Affiliation(s)
- Claire Lin Lin
- Brewing AR 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens Lyngby, Denmark
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Mikael Agerlin Petersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Andrea Gottlieb
- Brewing AR 345, Novozymes A/S, Biologiensvej 2, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Silva LDC, Silva KSFE, Rocha OB, Barbosa KLB, Rozada AMF, Gauze GDF, Soares CMDA, Pereira M. Proteomic Response of Paracoccidioides brasiliensis Exposed to the Antifungal 4-Methoxynaphthalene-N-acylhydrazone Reveals Alteration in Metabolism. J Fungi (Basel) 2022; 9:jof9010066. [PMID: 36675887 PMCID: PMC9865261 DOI: 10.3390/jof9010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Background: Paracoccidioidomycosis is a neglected mycosis with a high socioeconomic impact that requires long-term treatment with antifungals that have limitations in their use. The development of antifungals targeting essential proteins that are present exclusively in the fungus points to a potentially promising treatment. Methods: The inhibitor of the enzyme homoserine dehydrogenase drove the synthesis of N'-(2-hydroxybenzylidene)-4-methoxy-1-naphthohydrazide (AOS). This compound was evaluated for its antifungal activity in different species of Paracoccidioides and the consequent alteration in the proteomic profile of Paracoccidioides brasiliensis. Results: The compound showed a minimal inhibitory concentration ranging from 0.75 to 6.9 μM with a fungicidal effect on Paracoccidioides spp. and high selectivity index. AOS differentially regulated proteins related to glycolysis, TCA, the glyoxylate cycle, the urea cycle and amino acid metabolism, including homoserine dehydrogenase. In addition, P. brasiliensis inhibited protein synthesis and stimulated reactive oxygen species in the presence of AOS. Conclusions: AOS is a promising antifungal agent for the treatment of PCM, targeting important metabolic processes of the fungus.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
| | | | | | | | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiás 74690-900, Brazil
- Correspondence: (L.d.C.S.); (M.P.); (K.S.F.e.S.); Tel.: +55-6235211110 (K.S.F.e.S.)
| |
Collapse
|
13
|
da Cruz EC, Silva MJA, Gama GCB, Pinheiro AHG, Gonçalves EC, Siqueira AS. Virtual screening and repurposing of approved drugs targeting homoserine dehydrogenase from Paracoccidioides brasiliensis. J Mol Model 2022; 28:374. [PMID: 36323986 DOI: 10.1007/s00894-022-05335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Paracoccidioidomycosis is a systemic mycosis endemic in Latin America, and one of the etiological agents of the disease is Paracoccidioides brasiliensis. Currently, available treatments present adversities, such as duration, side effects, and drug interactions. In search of new therapy possibilities, this study evaluates drugs approved for use against the homoserine dehydrogenase enzyme, by an in silico approach, which performs an important biosynthesis phase for the fungus and is not present in the human body. The three-dimensional structure of the homoserine dehydrogenase enzyme from Paracoccidioides brasiliensis was obtained by homology modeling. The model was validated, and simulations were performed for virtual screening of molecules of drugs approved from the Drugs-libs database by the MTiOpenScreen web server. Molecular dynamics in three replicas were used for four drugs with better results, and in two more molecules as a control, the HS9 with inhibition against enzyme and HON which shows inhibition against mold structure. Based on the results of molecular dynamics and the comparison of binding free energy, the drug that obtained the best result was Bemcentinib. In comparison with the controls, it presented a highly relevant affinity with - 44.63 kcal/mol, in addition to good structural stability and occupation of the active site. Therefore, Bemcentinib is a promising molecule for the inhibition of PbHSD protein (homoserine dehydrogenase of Paracoccidioides brasiliensis) and a therapeutic option to be investigated.
Collapse
Affiliation(s)
- Eliete Costa da Cruz
- Laboratório de Tecnologia Biomolecular (LTB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Pará (UFPA), Belém, Brazil.
| | - Marcos Jessé Abrahão Silva
- Laboratório de Biologia Molecular (LABIMOL), Seção de Bacteriologia E Micologia (SABMI), Instituto Evandro Chagas (IEC), Ananindeua, Brazil
| | | | - Andrey Henrique Gama Pinheiro
- Laboratório de Tecnologia Biomolecular (LTB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Pará (UFPA), Belém, Brazil
| | - Evonnildo Costa Gonçalves
- Laboratório de Tecnologia Biomolecular (LTB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Pará (UFPA), Belém, Brazil
| | - Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular (LTB), Instituto de Ciências Biológicas (ICB), Universidade Federal Do Pará (UFPA), Belém, Brazil
| |
Collapse
|
14
|
Begum N, Lee S, Portlock TJ, Pellon A, Nasab SDS, Nielsen J, Uhlen M, Moyes DL, Shoaie S. Integrative functional analysis uncovers metabolic differences between Candida species. Commun Biol 2022; 5:1013. [PMID: 36163459 PMCID: PMC9512779 DOI: 10.1038/s42003-022-03955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species—C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease. Metabolic differences between Candida species are uncovered using the BioFung database alongside genomic and metabolic analysis.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Theo John Portlock
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK.
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK. .,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden.
| |
Collapse
|
15
|
Nguyen PT, Nguyen NH, Kang YQ, Shimizu K. Cryptococcus neoformans MET5 Gene is not Essential for Virulence in the Silkworm Infection Model. Med Mycol J 2022; 63:77-80. [PMID: 36047186 DOI: 10.3314/mmj.21-00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The involvement of the MET5 gene in virulence of Cryptococcus neoformans was examined using the silkworm Bombyx mori infection model. In the virulence assay, the met5Δ mutant showed virulence not significantly different from the wild-type strain, suggesting that the MET5 gene is not essential for full virulence of C. neoformans. The effect of silkworm hemolymph on the survival of the met5Δ mutant was also tested. The C. neoformans met5Δ strain incubated in the silkworm hemolymph for five days remained viable, suggesting that silkworm hemolymph supports survival of the met5Δ strain.
Collapse
Affiliation(s)
- Phuong-Thao Nguyen
- Department of Biological Science and Technology, Tokyo University of Science
| | - Ngoc-Hung Nguyen
- Department of Biological Science and Technology, Tokyo University of Science
| | - Ying-Qian Kang
- School of Basic Medical Sciences, Guizhou Medical University
| | - Kiminori Shimizu
- Department of Biological Science and Technology, Tokyo University of Science.,Medical Mycology Research Center, Chiba University
| |
Collapse
|
16
|
Ozone reduces the fruit decay of postharvest winter jujube by altering the microbial community structure on fruit surface. Microbiol Res 2022; 262:127110. [DOI: 10.1016/j.micres.2022.127110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/19/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
|
17
|
Piatek M, O'Beirne C, Beato Z, Tacke M, Kavanagh K. Exposure of Candida parapsilosis to the silver(I) compound SBC3 induces alterations in the proteome and reduced virulence. Metallomics 2022; 14:mfac046. [PMID: 35751649 PMCID: PMC9348618 DOI: 10.1093/mtomcs/mfac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022]
Abstract
The antimicrobial properties of silver have been exploited for many centuries and continue to gain interest in the fight against antimicrobial drug resistance. The broad-spectrum activity and low toxicity of silver have led to its incorporation into a wide range of novel antimicrobial agents, including N-heterocyclic carbene (NHC) complexes. The antimicrobial activity and in vivo efficacy of the NHC silver(I) acetate complex SBC3, derived from 1,3-dibenzyl-4,5-diphenylimidazol-2-ylidene (NHC*), have previously been demonstrated, although the mode(s) of action of SBC3 remains to be fully elucidated. Label-free quantitative proteomics was applied to analyse changes in protein abundance in the pathogenic yeast Candida parapsilosis in response to SBC3 treatment. An increased abundance of proteins associated with detoxification and drug efflux were indicative of a cell stress response, whilst significant decreases in proteins required for protein and amino acid biosynthesis offer potential insight into the growth-inhibitory mechanisms of SBC3. Guided by the proteomic findings and the prolific biofilm and adherence capabilities of C. parapsilosis, our studies have shown the potential of SBC3 in reducing adherence to epithelial cells and biofilm formation and hence decrease fungal virulence.
Collapse
Affiliation(s)
- Magdalena Piatek
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Cillian O'Beirne
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Zoe Beato
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Matthias Tacke
- School of School of Chemistry, University College Dublin, Belfield, Stillorgan, Dublin 4, Ireland
| | - Kevin Kavanagh
- Department of Biology, SSPC Pharma Research Centre, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
18
|
Borrego-Muñoz P, Becerra LD, Ospina F, Coy-Barrera E, Quiroga D. Synthesis ( Z) vs ( E) Selectivity, Antifungal Activity against Fusarium oxysporum, and Structure-Based Virtual Screening of Novel Schiff Bases Derived from l-Tryptophan. ACS OMEGA 2022; 7:24714-24726. [PMID: 35874194 PMCID: PMC9301946 DOI: 10.1021/acsomega.2c02614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Schiff bases are widely used molecules due to their potential biological activity. In this manuscript, we presented the synthesis and NMR study of new enamine Schiff bases derived from l-tryptophan, showing that the Z-form of the enamine is the main tautomeric form for aliphatic precursors. The DFT-B3LYP methodology at the 6-311+G**(d,p) level suggested that the tautomeric imine forms are less stable than the corresponding enamine forms. Their isomerism depends on the formation of intramolecular hydrogen bonds and steric factors associated with the starting carbonyl precursors. The in vitro biological activity tests against Fusarium oxysporum revealed that acetylacetone derivatives are the most active agents (IC50 < 0.9 mM); however, the antifungal activity could be disfavored by bulky groups on ester and enamine moieties. Finally, the structure-based virtual screening through molecular docking and MM-GBSA rescoring revealed that Schiff bases 3e, 3g, and 3j behave putatively as binders for target proteins involved in the life processes of F. oxysporum. In this sense, molecular dynamics analysis showed that the ligand-protein complexes have good stability with root-mean-square deviation (RMSD) values within the allowed range. Therefore, the present study paves the way for designing new antifungal compounds based on l-tryptophan-derived Schiff bases.
Collapse
|
19
|
A Proteomic Landscape of Candida albicans in the Stepwise Evolution to Fluconazole Resistance. Antimicrob Agents Chemother 2022; 66:e0210521. [PMID: 35343782 DOI: 10.1128/aac.02105-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
As an opportunistic fungal pathogen, Candida albicans is a major cause of superficial and systemic infections in immunocompromised patients. The increasing rate of azole resistance in C. albicans has brought further challenges to clinical therapy. In this study, we collected five isogenic C. albicans strains recovered over discrete intervals from an HIV-infected patient who suffered 2-year recurrent oropharyngeal candidiasis. Azole resistance was known from the clinical history to have developed gradually in this patient, and this was confirmed by MIC assays of each strain. Proteomic techniques can be used to investigate more comprehensively how resistance develops in pathogenic fungi over time. Our study is the first to use tandem mass tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology to investigate the acquired resistance mechanisms of serial C. albicans isolates at the proteomic level. A total of 4,029 proteins have been identified, of which 3,766 have been quantified. Compared with Ca1, bioinformatics analysis showed that differentially expressed proteins were mainly associated with aspects such as the downregulation of glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degradation, and oxidative stress response proteins in all four subsequent strains but, remarkably, the activation of amino acid metabolism in Ca8 and Ca14 and increased protection against osmotic stress or excessive copper toxicity, upregulation of respiratory chain activity, and suppression of iron transport in Ca17. By tracing proteomic alterations in this set of isogenic resistance isolates, we acquire mechanistic insight into the steps involved in the acquisition of azole resistance in C. albicans.
Collapse
|
20
|
Balabanova L, Seitkalieva A, Yugay Y, Rusapetova T, Slepchenko L, Podvolotskaya A, Yatsunskaya M, Vasyutkina E, Son O, Tekutyeva L, Shkryl Y. Engineered Fungus Thermothelomyces thermophilus Producing Plant Storage Proteins. J Fungi (Basel) 2022; 8:jof8020119. [PMID: 35205873 PMCID: PMC8877005 DOI: 10.3390/jof8020119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
An efficient Agrobacterium-mediated genetic transformation based on the plant binary vector pPZP-RCS2 was carried out for the multiple heterologous protein production in filamentous fungus Thermothelomyces thermophilus F-859 (formerly Myceliophthora thermophila F-859). The engineered fungus Th. thermophilus was able to produce plant storage proteins of Zea mays (α-zein Z19) and Amaranthus hypochondriacus (albumin A1) to enrich fungal biomass by valuable nutritional proteins and improved amino acid content. The mRNA levels of z19 and a1 genes were significantly dependent on their driving promoters: the promoter of tryptophan synthase (PtrpC) was more efficient to express a1, while the promoter of translation elongation factor (Ptef) provided much higher levels of z19 transcript abundance. In general, the total recombinant proteins and amino acid contents were higher in the Ptef-containing clones. This work describes a new strategy to improve mycoprotein nutritive value by overexpression of plant storage proteins.
Collapse
Affiliation(s)
- Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (L.B.); (A.S.); (L.S.)
| | - Aleksandra Seitkalieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (L.B.); (A.S.); (L.S.)
| | - Yulia Yugay
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
| | - Tatiana Rusapetova
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
| | - Lubov Slepchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (L.B.); (A.S.); (L.S.)
| | - Anna Podvolotskaya
- Department of Bioeconomy and Food Security, Far Eastern Federal University, B417 Office, Bldg. 20, Ajax St., Russky Island, 690950 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnay St. 42, 692481 Volno-Nadezhdinskoye, Primorsky Krai, Russia
| | - Margarita Yatsunskaya
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
| | - Elena Vasyutkina
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
| | - Oksana Son
- Department of Bioeconomy and Food Security, Far Eastern Federal University, B417 Office, Bldg. 20, Ajax St., Russky Island, 690950 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnay St. 42, 692481 Volno-Nadezhdinskoye, Primorsky Krai, Russia
| | - Liudmila Tekutyeva
- Department of Bioeconomy and Food Security, Far Eastern Federal University, B417 Office, Bldg. 20, Ajax St., Russky Island, 690950 Vladivostok, Russia; (A.P.); (O.S.); (L.T.)
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnay St. 42, 692481 Volno-Nadezhdinskoye, Primorsky Krai, Russia
| | - Yury Shkryl
- Federal Scientific Centre of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-letya Vladivostoka 159, 690022 Vladivostok, Russia; (Y.Y.); (T.R.); (M.Y.); (E.V.)
- Correspondence: ; Tel.: +7-4232-312-129; Fax: +7-4232-310-193
| |
Collapse
|
21
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
22
|
Lin J, Zhao L, Yan H, Hu Q, Han D. Potential role of nitrogen in spore dispersal and infection of Paraphysoderma sedebokerense, a fungal parasite of Haematococcus pluvialis. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Jelinski J, Cortez M, Terwilliger A, Clark J, Maresso A. Loss of Dihydroxyacid Dehydratase Induces Auxotrophy in Bacillus anthracis. J Bacteriol 2021; 203:e0041521. [PMID: 34570623 PMCID: PMC8604071 DOI: 10.1128/jb.00415-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Anthrax disease is caused by infection with the bacteria Bacillus anthracis which, if left untreated, can result in fatal bacteremia and toxemia. Current treatment for infection requires prolonged administration of antibiotics. Despite this, inhalational and gastrointestinal anthrax still result in lethal disease. By identifying key metabolic steps that B. anthracis uses to grow in host-like environments, new targets for antibacterial strategies can be identified. Here, we report that the ilvD gene, which encodes dihydroxyacid dehydratase in the putative pathway for synthesizing branched chain amino acids, is necessary for B. anthracis to synthesize isoleucine de novo in an otherwise limiting microenvironment. We observed that ΔilvD B. anthracis cannot grow in media lacking isoleucine, but growth is restored when exogenous isoleucine is added. In addition, ΔilvD bacilli are unable to utilize human hemoglobin or serum albumin to overcome isoleucine auxotrophy, but can when provided with the murine forms. This species-specific effect is due to the lack of isoleucine in human hemoglobin. Furthermore, even when supplemented with physiological levels of human serum albumin, apotransferrin, fibrinogen, and IgG, the ilvD knockout strain grew poorly relative to nonsupplemented wild type. In addition, comparisons upon infecting humanized mice suggest that murine hemoglobin is a key source of isoleucine for both WT and ΔilvD bacilli. Further growth comparisons in murine and human blood show that the auxotrophy is detrimental for growth in human blood, not murine. This report identifies ilvD as necessary for isoleucine production in B. anthracis, and that it plays a key role in allowing the bacilli to effectively grow in isoleucine poor hosts. IMPORTANCE Anthrax disease, caused by B. anthracis, can cause lethal bacteremia and toxemia, even following treatment with antibiotics. This report identifies the ilvD gene, which encodes a dihydroxyacid dehydratase, as necessary for B. anthracis to synthesize the amino acid isoleucine in a nutrient-limiting environment, such as its mammalian host. The use of this strain further demonstrated a unique species-dependent utilization of hemoglobin as an exogenous source of extracellular isoleucine. By identifying mechanisms that B. anthracis uses to grow in host-like environments, new targets for therapeutic intervention are revealed.
Collapse
Affiliation(s)
- Joseph Jelinski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Madeline Cortez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Austen Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
24
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
25
|
Alqahtani FM, Handy ST, Sutton CL, Farone MB. Combining Genome-Wide Gene Expression Analysis (RNA-seq) and a Gene Editing Platform (CRISPR-Cas9) to Uncover the Selectively Pro-oxidant Activity of Aurone Compounds Against Candida albicans. Front Microbiol 2021; 12:708267. [PMID: 34335543 PMCID: PMC8319688 DOI: 10.3389/fmicb.2021.708267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is the major fungal cause of healthcare-associated bloodstream infections worldwide with a 40% mortality rate. The scarcity of antifungal treatments due to the eukaryotic origin of fungal cells has challenged the development of selectively antifungal drugs. In an attempt to identify novel antifungal agents, aurones SH1009 and SH9051, as synthetically bioactive compounds, have been recently documented as anti-Candida agents. Since the molecular mechanisms behind the inhibitory activities of these aurones in C. albicans are unclear, this study aimed to determine the comprehensive cellular processes affected by these aurones and their molecular targets. Genome-wide transcriptional analysis of SH1009- and SH9051-treated C. albicans revealed uniquely repressed expression in different metabolic pathways, particularly trehalose and sulfur amino acid metabolic processes for SH1009 and SH9051, respectively. In contrast, the most commonly enriched process for both aurones was the up-regulation of RNA processing and ribosomal cleavages as an indicator of high oxidative stress, suggesting that a common aspect in the chemical structure of both aurones led to pro-oxidative properties. Additionally, uniquely induced responses (iron ion homeostasis for SH1009 and arginine biosynthesis for SH9051) garnered attention on key roles for the aurone functional groups. Deletion of the transcription factor for the trehalose biosynthesis pathway, Tye7p, resulted in an SH1009-resistant mutant, which also exhibited low trehalose content, validating the primary molecular target of SH1009. Aurone SH9051 uniquely simulated an exogenous supply of methionine or cysteine, leading to sulfur amino acid catabolism as evidenced by quantifying an overproduction of sulfite. Phenyl aurone, the common structure of aurones, contributed proportionally in the pro-oxidative activity through ferric ion reduction effects leading to high ROS levels. Our results determined selective and novel molecular mechanisms for aurone SH1009 and also elucidated the diverse cellular effects of different aurones based on functional groups.
Collapse
Affiliation(s)
- Fatmah M Alqahtani
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Scott T Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Caleb L Sutton
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Mary B Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
26
|
Current Promising Therapeutic Targets for Aspergillosis Treatment. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillosis is a fungal disease caused by different species of Aspergillus. They live in soil,dust and decomposed material. Number of Aspergillus species found till now is about 300 and more are still to be identified. Only few Aspergillus species can cause human disease and the most common species for human infection is Aspergillus fumigatus, which is a ubiquitous airborne saprophytic fungus. Severity of the disease ranges from an allergic response to life-threatening generalized infection. They grow optimally at 37°C and can grow upto 50°C. The fungal conidia are being constantly inhaled by humans and animals everyday normally gets eliminated by innate immune mechanism. Due to increasing number of immunocompromised patients, severe and fatal Aspergillosis cases have augmented. Currently, available antifungal drug for the treatment of Aspergillosis act on these three molecular target are 14 alpha demethylase for Azoles, ergosterol for Polyene and β-1,3-glucan synthase for Echinocandin. These antifungal drug show high resistance problem and toxicity. So, it is high time to develop new drugs for treatment with reduced toxicity and drug resistant problem. Synthesis of essential amino acid is absent in human as they obtain it from their diet but fungi synthesis these amino acid. Thus, enzymes in this pathway acts as novel drug target. This article summarizes promising drug targets presents in different metabolic pathway of Aspergillus genome and discusses their molecular functions in detail. This review also list down the inhibitors of these novel target. We present a comprehensive review that will pave way for discovery and development of novel antifungals against these drug targets for Aspergillosis treatment.
Collapse
|
27
|
The critical role of MetR/ MetB/ MetC/ MetX in cysteine and methionine metabolism, fungal development and virulence of Alternaria alternata. Appl Environ Microbiol 2021; 87:AEM.01911-20. [PMID: 33277273 PMCID: PMC7851696 DOI: 10.1128/aem.01911-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Methionine is a unique sulfur-containing amino acid, which plays an important role in biological protein synthesis and various cellular processes. Here, we characterized the biological functions of AaMetB, AaMetC, and AaMetX in the tangerine pathotype of Alternaria alternata Morphological analysis showed that the mutants lacking AaMetB, AaMetC, or AaMetX resulted in less aerial hypha and fewer conidia in artificial media. Pathogenicity analysis showed that AaMetB, AaMetC, and AaMetX are required for full virulence. The defects in vegetative growth, conidiation and virulence of ΔMetB, ΔMetC, and ΔMetX can be restored by exogenous methionine and homocysteine, indicating that AaMetB, AaMetC, and AaMetX are required for methionine biosynthesis. However, exogenous cysteine only restored the growth and virulence defects of ΔMetR but not ΔMetB/C/X, suggesting that AaMetR is essential for cysteine biosynthesis. Oxidant sensitivity assay showed that only ΔMetR is sensitive to H2O2 and many ROS-generating compounds, indicating that AaMetR is essential for oxidative tolerance. Interestingly, fungicides indoor bioassays showed that only the ΔMetR mutants are susceptive to chlorothalonil, a fungicide that could bind to the cysteine of glyceraldehyde-3-phosphate dehydrogenase. Comparative transcriptome analysis showed that the inactivation of MetB, MetC, MetX, or MetR significantly affected the expression of methionine metabolism-related genes. Moreover, the inactivation of AaMetR significantly affected the expression of many genes related to glutathione metabolism, which is essential for ROS tolerance. Taken together, our study provides genetic evidence to define the critical roles of AaMetB, AaMetC, AaMetX, and AaMetR in cysteine and methionine metabolism, fungal development and virulence of Alternaria alternata IMPORTANCE The transcription factor METR regulating methionine metabolism is essential for reactive oxygen species (ROS) tolerance and virulence in many phytopathogenic fungi. However, the underlying regulatory mechanism of METR involved in this process is still unclear. In the present study, we generated AaMetB, AaMetC and AaMetX deletion mutants and compared these mutants with AaMetR disrupted mutants. Interestingly, we found that AaMetB, AaMetC and AaMetX are required for vegetative growth, conidiation, and pathogenicity in Alternaria alternata, but not for ROS tolerance and cysteine metabolism. Furthermore, we found that METR is involved in the biosynthesis of cysteine, which is an essential substrate for the biosynthesis of methionine and glutathione. This study emphasizes the critical roles of MetR, MetB, MetC, MetX in the regulation of cysteine and methionine metabolism, as well as the cross-link with glutathione-mediated ROS tolerance in phytopathogenic fungi, which provides a foundation for future investigations.
Collapse
|
28
|
Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels. ISME JOURNAL 2020; 15:1257-1270. [PMID: 33323978 PMCID: PMC8115155 DOI: 10.1038/s41396-020-00848-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions. Our analysis of more than 900 paired fungal–bacterial metabolic models predicted key gut bacterial species modulating C. albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can significantly affect potentially harmful levels of C. albicans. Genome-scale model reconstruction of C. albicans with 89% growth accuracy. Mutualism and parasitism are the most common predicted C. albicans-gut bacteria interactions. Metagenomic sequencing and in vitro assays reveal modulators of fungal growth. Alistipes putredinis potentially prevents elevated C. albicans levels.
Collapse
|
29
|
Hall CJ, Mackie ER, Gendall AR, Perugini MA, Soares da Costa TP. Review: amino acid biosynthesis as a target for herbicide development. PEST MANAGEMENT SCIENCE 2020; 76:3896-3904. [PMID: 32506606 DOI: 10.1002/ps.5943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
There are three amino acid biosynthesis pathways that are targeted by current herbicides, namely those leading to the production of aromatic amino acids, branched chain amino acids and glutamine. However, their efficacy is diminishing as a result of the increasing number of resistant weeds. Indeed, resistance to most classes of herbicides is on the rise, posing a significant threat to the utility of current herbicides to sustain effective weed management. This review provides an overview of potential herbicide targets within amino acid biosynthesis that remain unexploited commercially, and recent inhibitor discovery efforts. Despite contemporary approaches to herbicide discovery, such as chemical repurposing and the use of omics technologies, there have been no new products introduced to the market that inhibit amino acid biosynthesis over the past three decades. This highlights the chasm that exists between identifying a potent inhibitor and introducing a commercial herbicide. The unpredictability of a mode of action at the systemic level, as well as poor physicochemical properties, often contribute to a lack of progression beyond the target inhibition stage. Nevertheless, it will be important to overcome these obstacles for the development of new herbicides to protect our agricultural industry and ensure food security for an increasing world population. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cody J Hall
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Emily Rr Mackie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Anthony R Gendall
- Department of Animal, Plant and Soil Sciences, Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Bundoora, VIC, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
30
|
de Sousa ESO, Cortez ACA, de Souza Carvalho Melhem M, Frickmann H, de Souza JVB. Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Braz J Microbiol 2020; 51:1791-1800. [PMID: 32757139 DOI: 10.1007/s42770-020-00354-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
Due to the increasing numbers of fungal infections and the emergence of drug-resistant fungi, optimization and standardization of diagnostic methods for the measurement of antifungal susceptibility are ongoing. The M27-A4 document by the US Clinical and Laboratory Standards Institute (CLSI) is presently used for the interpretation of minimum inhibitory concentrations of major opportunistic yeast species as measured by broth microdilution testing in many countries. Although microdilution is considered a benchmark for reproducible and accurate results, increased testing capacity, and limited human bias, the method is often inaccessible to routine clinical laboratories and researchers, especially in low-income countries. Furthermore, several studies suggest that there are still a considerable number of factors that make the estimation of in vitro activity of antifungal agents challenging. This review article summarizes the limitations of the M27-A4 standard which, despite the advances and improvements obtained by the standardization of antimicrobial resistance testing methods by CLSI, still persist.
Collapse
Affiliation(s)
| | - Ana Claúdia Alves Cortez
- Department of Medical Microbiology, National Institute for Amazonian Research - INPA, André Araújo Avenue, Manaus, Amazonas, Brazil
| | - Marcia de Souza Carvalho Melhem
- Department of Mycology, Adolfo Lutz Institute, Av. Dr. Arnaldo, Sao Paulo, Brazil
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Hagen Frickmann
- Department of Tropical Medicine at the Bernhard Nocht Institute, German Armed Forces Hospital of Hamburg, Hamburg, Germany, Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - João Vicente Braga de Souza
- Department of Medical Microbiology, National Institute for Amazonian Research - INPA, André Araújo Avenue, Manaus, Amazonas, Brazil.
| |
Collapse
|
31
|
Synthesis of Some Novel Fluorinated/Nonfluorinated α-Amino Acids, Bearing 3-Thioxo-5-oxo-1,2,4-triazin-6-yl and Steroidal Moieties, and Evaluation of Their Amylolytic Effects against Some Fungi, Part-II. HETEROATOM CHEMISTRY 2020. [DOI: 10.1155/2020/9645949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Some new fluorinated/nonfluorinated α-amino acids bearing 3-thioxo-5-oxo-1,2,4-triazin-6-yl and steroidal moieties have been obtained from condensation of the corresponding amino-triazinones with the steroid (Epiandrosterone). This was followed by the addition of HCN and, finally, acidic hydrolysis. The structure of the targets was established from their elemental analysis and spectral data. The amylolytic activity of the new products was evaluated against some fungi.
Collapse
|
32
|
Idrees M, Mohammad AR, Karodia N, Rahman A. Multimodal Role of Amino Acids in Microbial Control and Drug Development. Antibiotics (Basel) 2020; 9:E330. [PMID: 32560458 PMCID: PMC7345125 DOI: 10.3390/antibiotics9060330] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Amino acids are ubiquitous vital biomolecules found in all kinds of living organisms including those in the microbial world. They are utilised as nutrients and control many biological functions in microorganisms such as cell division, cell wall formation, cell growth and metabolism, intermicrobial communication (quorum sensing), and microbial-host interactions. Amino acids in the form of enzymes also play a key role in enabling microbes to resist antimicrobial drugs. Antimicrobial resistance (AMR) and microbial biofilms are posing a great threat to the world's human and animal population and are of prime concern to scientists and medical professionals. Although amino acids play an important role in the development of microbial resistance, they also offer a solution to the very same problem i.e., amino acids have been used to develop antimicrobial peptides as they are highly effective and less prone to microbial resistance. Other important applications of amino acids include their role as anti-biofilm agents, drug excipients, drug solubility enhancers, and drug adjuvants. This review aims to explore the emerging paradigm of amino acids as potential therapeutic moieties.
Collapse
Affiliation(s)
- Muhammad Idrees
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| | | | - Nazira Karodia
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| | - Ayesha Rahman
- Faculty of Science and Technology, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (N.K.)
| |
Collapse
|
33
|
Valenzuela-Cota DF, Morales-Amparano MB, Plascencia-Jatomea M, Martínez-Cruz O, Hernández-García F, Vázquez-Moreno L, Rosas-Burgos EC, Huerta-Ocampo JÁ. Proteomic analysis of the inhibitory effect of the butanolic fraction of Jacquinia macrocarpa on Fusarium verticillioides. Can J Microbiol 2020; 66:535-548. [PMID: 32407666 DOI: 10.1139/cjm-2020-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Jacquinia macrocarpa, a plant native to northwestern Mexico, has an inhibitory effect against phytopathogenic fungi. Previous studies have shown that the butanolic extract of J. macrocarpa causes retardation and atrophy in mycelial growth of Fusarium verticillioides. However, the action mechanism of this extract is unknown. We used a proteomics approach to understand the inhibitory effect of J. macrocarpa butanolic extract, based on differential protein accumulation in F. verticillioides. Proteins were extracted from F. verticillioides cultured in Czapek broth with and without 202.12 μg/mL (IC50) of butanolic extract of J. macrocarpa. Thirty-eight protein spots showing statistically significant changes (ANOVA, p < 0.01) and at least a 2-fold change in abundance between experimental conditions were analyzed by mass spectrometry. Identified proteins were grouped into different biological processes according to Gene Ontology, among them were amino acid metabolism, protein folding and stabilization, protein degradation, protein transport, carbohydrate metabolism, oxidative stress response, and miscellaneous. This work is the first report of changes in the proteomic profile of F. verticillioides exposed to the J. macrocarpa extract. This information provides new insights into the inhibitory mechanism of the extract and represents a starting point for dissection of the fungal response against the J. macrocarpa extract components.
Collapse
Affiliation(s)
- Daniel F Valenzuela-Cota
- Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, C.P. 83000, Hermosillo, Sonora, México
| | - Martha B Morales-Amparano
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Colonia La Victoria, C.P. 83304, Hermosillo, Sonora, México
| | - Maribel Plascencia-Jatomea
- Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, C.P. 83000, Hermosillo, Sonora, México
| | - Oliviert Martínez-Cruz
- Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, C.P. 83000, Hermosillo, Sonora, México
| | - Francisca Hernández-García
- Universidad Miguel Hernández de Elche, Carretera de Bienel Km 3.2 s/n, C.P. 03312, Orihuela, Alacant, España
| | - Luz Vázquez-Moreno
- Coordinación de Ciencia de los Alimentos, Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Colonia La Victoria, C.P. 83304, Hermosillo, Sonora, México
| | - Ema C Rosas-Burgos
- Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, C.P. 83000, Hermosillo, Sonora, México
| | - José Á Huerta-Ocampo
- CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Colonia La Victoria, C.P. 83304, Hermosillo, Sonora, México
| |
Collapse
|
34
|
Dahal GP, Launder D, McKeone KMM, Hunter JP, Conti HR, Viola RE. Aspartate semialdehyde dehydrogenase inhibition suppresses the growth of the pathogenic fungus Candida albicans. Drug Dev Res 2020; 81:736-744. [PMID: 32383780 DOI: 10.1002/ddr.21682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/27/2022]
Abstract
Potent inhibitors of an essential microbial enzyme have been shown to be effective growth inhibitors of Candida albicans, a pathogenic fungus. C. albicans is the main cause of oropharyngeal candidiasis, and also causes invasive fungal infections, including systemic sepsis, leading to serious complications in immunocompromised patients. As the rates of drug-resistant fungal infections continue to rise novel antifungal treatments are desperately needed. The enzyme aspartate semialdehyde dehydrogenase (ASADH) is critical for the functioning of the aspartate biosynthetic pathway in microbes and plants. Because the aspartate pathway is absent in humans, ASADH has the potential to be a promising new target for antifungal research. Deleting the asd gene encoding for ASADH significantly decreases the survival of C. albicans, establishing this enzyme as essential for this organism. Previously developed ASADH inhibitors were tested against several strains of C. albicans to measure their possible therapeutic impact. The more potent inhibitors show a good correlation between enzyme inhibitor potency and fungal growth inhibition. Growth curves generated by incubating different C. albicans strains with varying enzyme inhibitor levels show significant slowing of fungal growth by these inhibitors against each of these strains, similar to the effect observed with a clinical antifungal drug. The most effective inhibitors also demonstrated relatively low cytotoxicity against a human epithelial cell line. Taken together, these results establish that the ASADH enzyme is a promising new target for further development as a novel antifungal treatment against C. albicans and related fungal species.
Collapse
Affiliation(s)
- Gopal P Dahal
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Dylan Launder
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | | | - Joseph P Hunter
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Heather R Conti
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
35
|
Walvekar AS, Laxman S. Methionine at the Heart of Anabolism and Signaling: Perspectives From Budding Yeast. Front Microbiol 2019; 10:2624. [PMID: 31798560 PMCID: PMC6874139 DOI: 10.3389/fmicb.2019.02624] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
Studies using a fungal model, Saccharomyces cerevisiae, have been instrumental in advancing our understanding of sulfur metabolism in eukaryotes. Sulfur metabolites, particularly methionine and its derivatives, induce anabolic programs in yeast, and drive various processes integral to metabolism (one-carbon metabolism, nucleotide synthesis, and redox balance). Thereby, methionine also connects these processes with autophagy and epigenetic regulation. The direct involvement of methionine-derived metabolites in diverse chemistries such as transsulfuration and methylation reactions comes from the elegant positioning and safe handling of sulfur through these molecules. In this mini-review, we highlight studies from yeast that reveal how this amino acid holds a unique position in both metabolism and cell signaling, and illustrate cell fate decisions that methionine governs. We further discuss the interconnections between sulfur and NADPH metabolism, and highlight critical nodes around methionine metabolism that are promising for antifungal drug development.
Collapse
Affiliation(s)
| | - Sunil Laxman
- Regulation of Cell Fate, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, India
| |
Collapse
|
36
|
Bueno PSA, Rodrigues FAV, Santos JL, Canduri F, Biavatti DC, Pimentel AL, Bagatin MC, Kioshima ÉS, de Freitas Gauze G, Seixas FAV. New inhibitors of homoserine dehydrogenase from Paracoccidioides brasiliensis presenting antifungal activity. J Mol Model 2019; 25:325. [PMID: 31654136 DOI: 10.1007/s00894-019-4221-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by fungi of the genus Paracoccidioides spp., which mainly affects workers in rural regions of Latin America. Although the antifungal agents currently available for the treatment of PCM are effective in controlling the disease, many months are needed for healing, making the side effects and drug interactions relevant. In addition, conventional treatments are not able to control the sequelae left by PCM, even after the cure, justifying the search for new therapeutic options against PCM. In this context, the enzyme homoserine dehydrogenase of P. brasiliensis (PbHSD) was used to screen a library of natural products from the Zinc database using three different docking programs, i.e. Autodock, Molegro, and CLC Drugdiscovery Workbench. Three molecules (Zinc codes 2123137, 15967722, and 20611644) were better ranked than the homoserine substrate (HSE) and were used for in vitro trials of the minimum inhibitory concentration (MIC) and minimal fungicidal concentration (MCF). All three molecules presented a fungicidal profile with MICs/MCFs of 8, 32, and 128 μg mL-1, respectively. The two most promising molecules presented satisfactory results with wide therapeutic ranges in the cytotoxicity assays. Molecular dynamics simulations of PbHSD indicated that the ligands remained bound to the protein by a common mechanism throughout the simulation. The molecule with the lowest MIC value presented the highest number of contacts with the protein. The results presented in this work suggest that the molecule Zinc2123137 may be considered as a hit in the development of new therapeutic options for PCM.
Collapse
Affiliation(s)
- Paulo Sérgio Alves Bueno
- Department of Technology, Universidade Estadual de Maringá, Campus Umuarama. Av. Ângelo Moreira da Fonseca, 1800, Umuarama, PR, 87506-370, Brazil
| | | | - Jessyka Lima Santos
- São Carlos Institute of Chemistry, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Fernanda Canduri
- São Carlos Institute of Chemistry, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Débora Carina Biavatti
- Department of Technology, Universidade Estadual de Maringá, Campus Umuarama. Av. Ângelo Moreira da Fonseca, 1800, Umuarama, PR, 87506-370, Brazil
| | - Arethusa Lobo Pimentel
- Department of Technology, Universidade Estadual de Maringá, Campus Umuarama. Av. Ângelo Moreira da Fonseca, 1800, Umuarama, PR, 87506-370, Brazil
| | | | - Érika Seki Kioshima
- Department of Clinical Analysis and Biomedicine, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Flavio Augusto Vicente Seixas
- Department of Technology, Universidade Estadual de Maringá, Campus Umuarama. Av. Ângelo Moreira da Fonseca, 1800, Umuarama, PR, 87506-370, Brazil.
| |
Collapse
|
37
|
Crystal structure and biochemical characterization of O-acetylhomoserine acetyltransferase from Mycobacterium smegmatis ATCC 19420. Biochem Biophys Res Commun 2019; 517:399-406. [PMID: 31378370 DOI: 10.1016/j.bbrc.2019.07.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 11/24/2022]
Abstract
Mycobacterium smegmatis is a good model for studying the physiology and pathogenesis of Mycobacterium tuberculosis due to its genetic similarity. As methionine biosynthesis exists only in microorganisms, the enzymes involved in methionine biosynthesis can be a potential target for novel antibiotics. Homoserine O-acetyltransferase from M. smegmatis (MsHAT) catalyzes the transfer of acetyl-group from acetyl-CoA to homoserine. To investigate the molecular mechanism of MsHAT, we determined its crystal structure in apo-form and in complex with either CoA or homoserine and revealed the substrate binding mode of MsHAT. A structural comparison of MsHAT with other HATs suggests that the conformation of the α5 to α6 region might influence the shape of the dimer. In addition, the active site entrance shows an open or closed conformation and might determine the substrate binding affinity of HATs.
Collapse
|
38
|
Role of Amino Acid Metabolism in the Virulence of Human Pathogenic Fungi. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00124-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Identification of small molecule enzyme inhibitors as broad-spectrum anthelmintics. Sci Rep 2019; 9:9085. [PMID: 31235822 PMCID: PMC6591293 DOI: 10.1038/s41598-019-45548-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022] Open
Abstract
Targeting chokepoint enzymes in metabolic pathways has led to new drugs for cancers, autoimmune disorders and infectious diseases. This is also a cornerstone approach for discovery and development of anthelmintics against nematode and flatworm parasites. Here, we performed omics-driven knowledge-based identification of chokepoint enzymes as anthelmintic targets. We prioritized 10 of 186 phylogenetically conserved chokepoint enzymes and undertook a target class repurposing approach to test and identify new small molecules with broad spectrum anthelmintic activity. First, we identified and tested 94 commercially available compounds using an in vitro phenotypic assay, and discovered 11 hits that inhibited nematode motility. Based on these findings, we performed chemogenomic screening and tested 32 additional compounds, identifying 6 more active hits. Overall, 6 intestinal (single-species), 5 potential pan-intestinal (whipworm and hookworm) and 6 pan-Phylum Nematoda (intestinal and filarial species) small molecule inhibitors were identified, including multiple azoles, Tadalafil and Torin-1. The active hit compounds targeted three different target classes in humans, which are involved in various pathways, including carbohydrate, amino acid and nucleotide metabolism. Last, using representative inhibitors from each target class, we demonstrated in vivo efficacy characterized by negative effects on parasite fecundity in hamsters infected with hookworms.
Collapse
|
40
|
Petronikolou N, Ortega MA, Borisova SA, Nair SK, Metcalf WW. Molecular Basis of Bacillus subtilis ATCC 6633 Self-Resistance to the Phosphono-oligopeptide Antibiotic Rhizocticin. ACS Chem Biol 2019; 14:742-750. [PMID: 30830751 DOI: 10.1021/acschembio.9b00030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rhizocticins are phosphono-oligopeptide antibiotics that contain a toxic C-terminal ( Z) -l -2-amino-5-phosphono-3-pentenoic acid (APPA) moiety. APPA is an irreversible inhibitor of threonine synthase (ThrC), a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the conversion of O-phospho-l-homoserine to l-threonine. ThrCs are essential for the viability of bacteria, plants, and fungi and are a target for antibiotic development, as de novo threonine biosynthetic pathway is not found in humans. Given the ability of APPA to interfere in threonine metabolism, it is unclear how the producing strain B. subtilis ATCC 6633 circumvents APPA toxicity. Notably, in addition to the housekeeping APPA-sensitive ThrC ( BsThrC), B. subtilis encodes a second threonine synthase (RhiB) encoded within the rhizocticin biosynthetic gene cluster. Kinetic and spectroscopic analyses show that PLP-dependent RhiB is an authentic threonine synthase, converting O-phospho-l-homoserine to threonine with a catalytic efficiency comparable to BsThrC. To understand the structural basis of inhibition, we determined the crystal structure of APPA bound to the housekeeping BsThrC, revealing a covalent complex between the inhibitor and PLP. Structure-based sequence analyses reveal structural determinants within the RhiB active site that contribute to rendering this ThrC homologue resistant to APPA. Together, this work establishes the self-resistance mechanism utilized by B. subtilis ATCC 6633 against APPA exemplifying one of many ways by which bacteria can overcome phosphonate toxicity.
Collapse
Affiliation(s)
- Nektaria Petronikolou
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
| | - Manuel A. Ortega
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Svetlana A. Borisova
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana−Champaign, Roger Adams Laboratory, 600 S. Mathews Ave., Urbana Illinois 61801, United States
| | - William W. Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 W. Gregory Drive, Urbana, Illinois 61801, United States
- Department of Microbiology, University of Illinois at Urbana−Champaign, Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave., Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
The methionine biosynthesis regulator AaMetR contributes to oxidative stress tolerance and virulence in Alternaria alternata. Microbiol Res 2018; 219:94-109. [PMID: 30642471 DOI: 10.1016/j.micres.2018.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 12/29/2022]
Abstract
The tangerine pathotype of A. alternata, which produces a unique host-selective ACT toxin causes brown spots on citrus leaves and fruits. In this study, we report a methionine biosynthesis regulator (MetR), which belong to bZIP transcription factor, is required for methionine metabolism, oxidative stress tolerance and pathogenicity. We generated two ΔAaMetR mutants in the tangerine pathotype of Alternaria alternata and investigated the resulting mutant phenotypes. The ΔAaMetR disruption mutant grew poorly in the absence of methionine and unable to produce conidia. Furthermore, pathogenicity tests have shown that ΔAaMetR mutant on their tangerine host can neither penetrate nor cause disease. These ΔAaMetR mutants exhibit an increased sensitivity to exogenous H2O2 and many ROS generating oxidants. To elucidate the transcription network of AaMetR, we performed RNA-Seq experiments on wild-type and ΔAaMetR mutant and identified genes that were differentially expressed between the two genotypes. Transcriptome data demonstrated that AaMetR contributes in many other biological processes including ROS detoxification, sulfur transfer, and amino acid metabolism. Comparative transcriptome analysis indicated that the ΔAaMetR mutant up-regulated several genes involved in cysteine and methionine metabolism. In conclusion, our results highlight the global regulatory role of AaMetR in cysteine and methionine metabolism and provide new insights into the crucial role of ROS detoxification, sporulation and pathogenicity in the tangerine pathotype of A. alternata.
Collapse
|
42
|
Argentilactone Molecular Targets in Paracoccidioides brasiliensis Identified by Chemoproteomics. Antimicrob Agents Chemother 2018; 62:AAC.00737-18. [PMID: 30150478 DOI: 10.1128/aac.00737-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/17/2018] [Indexed: 01/11/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is the cause of many deaths from systemic mycoses. The etiological agents of PCM belong to the Paracoccidioides genus, which is restricted to Latin America. The infection is acquired through the inhalation of conidia that primarily lodge in the lungs and may disseminate to other organs and tissues. The treatment for PCM is commonly performed via the administration of antifungals such as amphotericin B, co-trimoxazole, and itraconazole. The antifungal toxicity and side effects, in addition to their long treatment times, have stimulated research for new bioactive compounds. Argentilactone is a compound that was isolated from the Brazilian savanna plant Hyptis ovalifolia, and it has been suggested to be a potent antifungal, inhibiting the dimorphism of P. brasiliensis and the enzymatic activity of isocitrate lyase, a key enzyme of the glyoxylate cycle. This work was developed due to the importance of elucidating the putative mode of action of argentilactone. The chemoproteomics approach via affinity chromatography was the methodology used to explore the interactions between P. brasiliensis proteins and argentilactone. A total of 109 proteins were identified and classified functionally. The most representative functional categories were related to amino acid metabolism, energy, and detoxification. Argentilactone inhibited the enzymatic activity of malate dehydrogenase, citrate synthase, and pyruvate dehydrogenase. Furthermore, argentilactone induces the production of reactive oxygen species and inhibits the biosynthesis of cell wall polymers.
Collapse
|
43
|
Vallières C, Raulo R, Dickinson M, Avery SV. Novel Combinations of Agents Targeting Translation That Synergistically Inhibit Fungal Pathogens. Front Microbiol 2018; 9:2355. [PMID: 30349511 PMCID: PMC6186996 DOI: 10.3389/fmicb.2018.02355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
A range of fungicides or antifungals are currently deployed to control fungi in agriculture or medicine, but resistance to current agents is growing so new approaches and molecular targets are urgently needed. Recently, different aminoglycoside antibiotics combined with particular transport inhibitors were found to produce strong, synergistic growth-inhibition of fungi, by synergistically increasing the error rate of mRNA translation. Here, focusing on translation fidelity as a novel target for combinatorial antifungal treatment, we tested the hypothesis that alternative combinations of agents known to affect the availability of functional amino acids would synergistically inhibit growth of major fungal pathogens. We screened 172 novel combinations against three phytopathogens (Rhizoctonia solani, Zymoseptoria tritici, and Botrytis cinerea) and three human pathogens (Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus), showing that 48 combinations inhibited strongly the growth of the pathogens; the growth inhibition effect was significantly greater with the agents combined than by a simple product of their individual effects at the same doses. Of these, 23 combinations were effective against more than one pathogen, including combinations comprising food-and-drug approved compounds, e.g., quinine with bicarbonate, and quinine with hygromycin. These combinations [fractional inhibitory combination (FIC) index ≤0.5] gave up to 100% reduction of fungal growth yield at concentrations of agents which, individually, had negligible effect. No synergy was evident against bacterial, plant or mammalian cells, indicating specificity for fungi. Mode-of-action analyses for quinine + hygromycin indicated that synergistic mistranslation was the antifungal mechanism. That mechanism was not universal as bicarbonate exacerbated quinine action by increasing drug uptake. The study unveils chemical combinations and a target process with potential for control of diverse fungal pathogens, and suggests repurposing possibilities for several current therapeutics.
Collapse
Affiliation(s)
- Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Roxane Raulo
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| | - Matthew Dickinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park Campus, Nottingham, United Kingdom
| |
Collapse
|
44
|
Zhang S, Liu S, Zhang J, Reiter RJ, Wang Y, Qiu D, Luo X, Khalid AR, Wang H, Feng L, Lin Z, Ren M. Synergistic anti-oomycete effect of melatonin with a biofungicide against oomycetic black shank disease. J Pineal Res 2018; 65:e12492. [PMID: 29575191 DOI: 10.1111/jpi.12492] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/09/2018] [Indexed: 01/19/2023]
Abstract
Human health, food safety, and agriculture have been threatened by oomycetic diseases caused by notorious pathogenic oomycetes. Chemical oomyceticides are the main approaches in control of pathogenic oomycetes. However, the overused chemical oomyceticides have resulted in serious environmental pollution and drug resistance. The eco-friendly bio-oomyceticides are required for sustainable development through screening synergistic drug combinations. In this study, Phytophthora nicotianae (P. nicotianae), as one of the most destructive oomycetic diseases in agriculture, was used as a model system to screen the novel bio-oomyceticides based on drug combination. The results showed that treatment of melatonin or ethylicin (IUPAC Name: 1-ethylsulfonylsulfanylethane) alone displayed similar phenotypes such as the inhibition of the hyphal growth, reduction of the cell viability, and suppression of the virulence of P. nicotianae. Importantly, melatonin and ethylicin shared the same targets of interfering with the amino acid metabolism, overexpressing apoptosis-inducing factor, and dysregulating the virulence-related genes. Furthermore, strong synergism against P. nicotianae was induced by combining melatonin with ethylicin. Under treatment of the combination of melatonin and ethylicin, the expression of genes associated with amino acid, the apoptosis-inducing factor, and the virulence-related genes was much more significantly dysregulated than that of single drug treatment. Thus, the tobacco black shank caused by P. nicotianae can be successfully controlled using the combination of melatonin and ethylicin. These observations suggest that the synergistic effect based on the combination of melatonin and ethylicin is an eco-friendly alternative for the control of the destructive oomycetic diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Sen Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Russel J Reiter
- Department of Cellular and Structure Biology, UT Health, San Antonio, TX, USA
| | - Ying Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dan Qiu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - A Rehman Khalid
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hanyan Wang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
45
|
Guarding the gateway to histidine biosynthesis in plants: Medicago truncatula ATP-phosphoribosyltransferase in relaxed and tense states. Biochem J 2018; 475:2681-2697. [PMID: 30072492 DOI: 10.1042/bcj20180289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 11/17/2022]
Abstract
In the first committed step of histidine biosynthesis, adenosine 5'-triphosphate (ATP) and 5-phosphoribosyl-α1-pyrophosphate (PRPP), in the presence of ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17), yield phosphoribosyl-ATP. ATP-PRTs are subject to feedback inhibition by histidine that allosterically binds between the regulatory domains. Histidine biosynthetic pathways of bacteria, lower eukaryotes, and plants are considered promising targets for the design of antibiotics, antifungal agents, and herbicides because higher organisms are histidine heterotrophs. Plant ATP-PRTs are similar to one of the two types of their bacterial counterparts, the long-type ATP-PRTs. A biochemical and structural study of ATP-PRT from the model legume plant, Medicago truncatula (MedtrATP-PRT1) is reported herein. Two crystal structures, presenting homohexameric MedtrATP-PRT1 in its relaxed (R-) and histidine-bound, tense (T-) states allowed to observe key features of the enzyme and provided the first structural insights into an ATP-PRT from a eukaryotic organism. In particular, they show pronounced conformational reorganizations during R-state to T-state transition that involves substantial movements of domains. This rearrangement requires a trans- to cis- switch of a peptide backbone within the hinge region of MedtrATP-PRT1. A C-terminal α-helix, absent in bacteria, reinforces the hinge that is constituted by two peptide strands. As a result, conformations of the R- and T-states are significantly different from the corresponding states of prokaryotic enzymes with known 3-D structures. Finally, adenosine 5'-monophosphate (AMP) bound at the active site is consistent with a competitive (and synergistic with histidine) nature of AMP inhibition.
Collapse
|
46
|
Skwarecki AS, Schielmann M, Martynow D, Kawczyński M, Wiśniewska A, Milewska MJ, Milewski S. Antifungal dipeptides incorporating an inhibitor of homoserine dehydrogenase. J Pept Sci 2018; 24. [PMID: 29322651 DOI: 10.1002/psc.3060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 11/08/2022]
Abstract
The antifungal activity of 5-hydroxy-4-oxo-l-norvaline (HONV), exhibited under conditions mimicking human serum, may be improved upon incorporation of this amino acid into a dipeptide structure. Several HONV-containing dipeptides inhibited growth of human pathogenic yeasts of the Candida genus in the RPMI-1640 medium, with minimal inhibitory concentration values in the 32 to 64 μg mL-1 range. This activity was not affected by multidrug resistance that is caused by overexpression of genes encoding drug efflux proteins. The mechanism of antifungal action of HONV dipeptides involved uptake by the oligopeptide transport system, subsequent intracellular cleavage by cytosolic peptidases, and inhibition of homoserine dehydrogenase by the released HONV. The relative transport rates determined the anticandidal activity of HONV dipeptides.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk, Poland
| | - Marta Schielmann
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk, Poland
| | - Dorota Martynow
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk, Poland
| | - Marcin Kawczyński
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk, Poland
| | - Aleksandra Wiśniewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk, Poland
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Narutowicza St, 80-233, Gdańsk, Poland
| |
Collapse
|
47
|
Turecka K, Chylewska A, Kawiak A, Waleron KF. Antifungal Activity and Mechanism of Action of the Co(III) Coordination Complexes With Diamine Chelate Ligands Against Reference and Clinical Strains of Candida spp. Front Microbiol 2018; 9:1594. [PMID: 30072969 PMCID: PMC6058090 DOI: 10.3389/fmicb.2018.01594] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Although many antifungal agents are available in clinical treatment, increasing resistance of fungi, especially Candida species, to the available drugs requires the development of new safe and non-toxic compounds with novel modes of action as effective treatment against resistant microorganisms. Cobalt complexes are very interesting and attractive as potential candidates with antimicrobial activity. Their therapeutic uses as antiviral, antibacterial antifungal, antiparasitic, antitumour, transferrin transporters, and anti-inflammatory agents are being intensively investigated. In this study we examined the antifungal activity of Co(III) complexes with diamine chelate ligands against a broad spectrum of Candida species. Minimum inhibitory concentration was determined by the microbroth dilution method and with serial passaging assay; the synergistic antimicrobial activity of the tested complexes combined with two antifungal drugs (ketoconazole and amphotericin B) was made by checkerboard assay. The effects of Co(III) complexes on yeast cell morphology were studied by optical and transmission electron microscopy. The mode of action of Co(III) complexes on the yeast cell wall (sorbitol assay) and cell membrane (ergosterol assay) were investigated. The cytotoxic effects of the tested compounds on red blood cells and the human keratinocyte (HaCaT) cell line were also evaluated. The analyzed compounds revealed significant antifungal activity for selected strains of Candida species; [CoCl2(dap)2]Cl (1) and [CoCl2(en)2]Cl (2) were more effective than ketoconazole. Its probable mechanism of action did not involve the cell wall or ergosterol binding. However, the checkerboard assay showed, that the antifungal activity of ketoconazole increased in combination with the tested complexes of Co(III). Our results suggest that both diamine complexes with Co(III) analogs caused damage to mitochondrial membrane or the membrane of the endoplasmic reticulum. The effect was observed by transmission electron microscope. Co(III) complexes with diamine chelate ligands are non-toxic at concentrations active against Candida species. This study provides new data on potential antifungal drugs, especially against Candida species.
Collapse
Affiliation(s)
- Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof F Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
48
|
Alcazar-Fuoli L. Amino acid biosynthetic pathways as antifungal targets for fungal infections. Virulence 2018; 7:376-8. [PMID: 27029506 DOI: 10.1080/21505594.2016.1169360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Laura Alcazar-Fuoli
- a Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III , Madrid , Spain
| |
Collapse
|
49
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
50
|
Majumdar R, Lebar M, Mack B, Minocha R, Minocha S, Carter-Wientjes C, Sickler C, Rajasekaran K, Cary JW. The Aspergillus flavus Spermidine Synthase ( spds) Gene, Is Required for Normal Development, Aflatoxin Production, and Pathogenesis During Infection of Maize Kernels. FRONTIERS IN PLANT SCIENCE 2018; 9:317. [PMID: 29616053 PMCID: PMC5870473 DOI: 10.3389/fpls.2018.00317] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/27/2018] [Indexed: 05/10/2023]
Abstract
Aspergillus flavus is a soil-borne saprophyte and an opportunistic pathogen of both humans and plants. This fungus not only causes disease in important food and feed crops such as maize, peanut, cottonseed, and tree nuts but also produces the toxic and carcinogenic secondary metabolites (SMs) known as aflatoxins. Polyamines (PAs) are ubiquitous polycations that influence normal growth, development, and stress responses in living organisms and have been shown to play a significant role in fungal pathogenesis. Biosynthesis of spermidine (Spd) is critical for cell growth as it is required for hypusination-mediated activation of eukaryotic translation initiation factor 5A (eIF5A), and other biochemical functions. The tri-amine Spd is synthesized from the diamine putrescine (Put) by the enzyme spermidine synthase (Spds). Inactivation of spds resulted in a total loss of growth and sporulation in vitro which could be partially restored by addition of exogenous Spd. Complementation of the Δspds mutant with a wild type (WT) A. flavus spds gene restored the WT phenotype. In WT A. flavus, exogenous supply of Spd (in vitro) significantly increased the production of sclerotia and SMs. Infection of maize kernels with the Δspds mutant resulted in a significant reduction in fungal growth, sporulation, and aflatoxin production compared to controls. Quantitative PCR of Δspds mutant infected seeds showed down-regulation of aflatoxin biosynthetic genes in the mutant compared to WT A. flavus infected seeds. Expression analyses of PA metabolism/transport genes during A. flavus-maize interaction showed significant increase in the expression of arginine decarboxylase (Adc) and S-adenosylmethionine decarboxylase (Samdc) genes in the maize host and PA uptake transporters in the fungus. The results presented here demonstrate that Spd biosynthesis is critical for normal development and pathogenesis of A. flavus and pre-treatment of a Δspds mutant with Spd or Spd uptake from the host plant, are insufficient to restore WT levels of pathogenesis and aflatoxin production during seed infection. The data presented here suggest that future studies targeting spermidine biosynthesis in A. flavus, using RNA interference-based host-induced gene silencing approaches, may be an effective strategy to reduce aflatoxin contamination in maize and possibly in other susceptible crops.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Matt Lebar
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Brian Mack
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Rakesh Minocha
- United States Department of Agriculture Forest Service, Northern Research Station, Durham, NH, United States
| | - Subhash Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH, United States
| | - Carol Carter-Wientjes
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Christine Sickler
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Kanniah Rajasekaran
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, United States
- *Correspondence: Jeffrey W. Cary,
| |
Collapse
|