1
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Gou Y, Li H, Sun X, Chen D, Tian F. Parathyroid hormone (1-34) retards the lumbar facet joint degeneration and activates Wnt/β-catenin signaling pathway in ovariectomized rats. J Orthop Surg Res 2024; 19:352. [PMID: 38877549 PMCID: PMC11177467 DOI: 10.1186/s13018-024-04817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17β-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/β-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and β-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/β-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/β-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION Wnt/β-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17β-estradiol, and the efficacy may be attributed to its restoration of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Hetong Li
- Department of Orthopaedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xun Sun
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Desheng Chen
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
3
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
4
|
Martínez-Gil N, Ugartondo N, Grinberg D, Balcells S. Wnt Pathway Extracellular Components and Their Essential Roles in Bone Homeostasis. Genes (Basel) 2022; 13:genes13010138. [PMID: 35052478 PMCID: PMC8775112 DOI: 10.3390/genes13010138] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt pathway is involved in several processes essential for bone development and homeostasis. For proper functioning, the Wnt pathway is tightly regulated by numerous extracellular elements that act by both activating and inhibiting the pathway at different moments. This review aims to describe, summarize and update the findings regarding the extracellular modulators of the Wnt pathway, including co-receptors, ligands and inhibitors, in relation to bone homeostasis, with an emphasis on the animal models generated, the diseases associated with each gene and the bone processes in which each member is involved. The precise knowledge of all these elements will help us to identify possible targets that can be used as a therapeutic target for the treatment of bone diseases such as osteoporosis.
Collapse
|
5
|
Zweifler LE, Koh AJ, Daignault-Newton S, McCauley LK. Anabolic actions of PTH in murine models: two decades of insights. J Bone Miner Res 2021; 36:1979-1998. [PMID: 34101904 PMCID: PMC8596798 DOI: 10.1002/jbmr.4389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 01/19/2023]
Abstract
Parathyroid hormone (PTH) is produced by the parathyroid glands in response to low serum calcium concentrations where it targets bones, kidneys, and indirectly, intestines. The N-terminus of PTH has been investigated for decades for its ability to stimulate bone formation when administered intermittently (iPTH) and is used clinically as an effective anabolic agent for the treatment of osteoporosis. Despite great interest in iPTH and its clinical use, the mechanisms of PTH action remain complicated and not fully defined. More than 70 gene targets in more than 90 murine models have been utilized to better understand PTH anabolic actions. Because murine studies utilized wild-type mice as positive controls, a variety of variables were analyzed to better understand the optimal conditions under which iPTH functions. The greatest responses to iPTH were in male mice, with treatment starting later than 12 weeks of age, a treatment duration lasting 5-6 weeks, and a PTH dose of 30-60 μg/kg/day. This comprehensive study also evaluated these genetic models relative to the bone formative actions with a primary focus on the trabecular compartment revealing trends in critical genes and gene families relevant for PTH anabolic actions. The summation of these data revealed the gene deletions with the greatest increase in trabecular bone volume in response to iPTH. These included PTH and 1-α-hydroxylase (Pth;1α(OH)ase, 62-fold), amphiregulin (Areg, 15.8-fold), and PTH related protein (Pthrp, 10.2-fold). The deletions with the greatest inhibition of the anabolic response include deletions of: proteoglycan 4 (Prg4, -9.7-fold), low-density lipoprotein receptor-related protein 6 (Lrp6, 1.3-fold), and low-density lipoprotein receptor-related protein 5 (Lrp5, -1.0-fold). Anabolic actions of iPTH were broadly affected via multiple and diverse genes. This data provides critical insight for future research and development, as well as application to human therapeutics. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Laura E Zweifler
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Amy J Koh
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Pathology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Carrillo-López N, Martínez-Arias L, Fernández-Villabrille S, Ruiz-Torres MP, Dusso A, Cannata-Andía JB, Naves-Díaz M, Panizo S. Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif Tissue Int 2021; 108:439-451. [PMID: 33586001 DOI: 10.1007/s00223-020-00803-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022]
Abstract
In the course of chronic kidney disease (CKD), alterations in the bone-vascular axis augment the risk of bone loss, fractures, vascular and soft tissue calcification, left ventricular hypertrophy, renal and myocardial fibrosis, which markedly increase morbidity and mortality rates. A major challenge to improve skeletal and cardiovascular outcomes in CKD patients requires a better understanding of the increasing complex interactions among the main modulators of the bone-vascular axis. Serum parathyroid hormone (PTH), phosphorus (P), calcium (Ca), fibroblast growth factor 23 (FGF23), calcidiol, calcitriol and Klotho are involved in this axis interact with RANK/RANKL/OPG system and the Wnt/β-catenin pathway. The RANK/RANKL/OPG system controls bone remodeling by inducing osteoblast synthesis of RANKL and downregulating OPG production and it is also implicated in vascular calcification. The complexity of this system has recently increased due the discovery of LGR4, a novel RANKL receptor involved in bone formation, but possibly also in vascular calcification. The Wnt/β-catenin pathway plays a key role in bone formation: when this pathway is activated, bone is formed, but when it is inhibited, bone formation is stopped. In the progression of CKD, a downregulation of the Wnt/β-catenin pathway has been described which occurs mainly through the not coincident elevations of sclerostin, Dickkopf1 (Dkk1) and the secreted Frizzled Related Proteins (sFRPs). This review analyzes the interactions of PTH, P, Ca, FGF23, calcidiol, calcitriol and Klotho with the RANKL/RANKL/OPG system and the Wnt/β-catenin, pathway and their implications in bone and cardiovascular disorders in CKD.
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - María Piedad Ruiz-Torres
- Department of System Biology, Universidad de Alcalá, Retic REDinREN-ISCIII, Alcalá de Henares, Spain
| | - Adriana Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain.
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain.
| | | |
Collapse
|
7
|
Mohamad NV, Ima-Nirwana S, Chin KY. Self-emulsified annatto tocotrienol improves bone histomorphometric parameters in a rat model of oestrogen deficiency through suppression of skeletal sclerostin level and RANKL/OPG ratio. Int J Med Sci 2021; 18:3665-3673. [PMID: 34790038 PMCID: PMC8579289 DOI: 10.7150/ijms.64045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Menopause is the leading cause of osteoporosis for elderly women due to imbalanced bone remodelling in the absence of oestrogen. The ability of tocotrienol in reversing established bone loss due to oestrogen deficiency remains unclear despite the plenitude of evidence showcasing its preventive effects. This study aimed to investigate the effects of self-emulsified annatto tocotrienol (SEAT) on bone histomorphometry and remodelling in ovariectomised rats. Female Sprague Dawley rats (n=36) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with annatto tocotrienol (AT) (60 mg/kg), SEAT (60 mg/kg) and raloxifene (1 mg/kg). Daily treatment given through oral gavage was started two months after castration. The rats were euthanised after eight weeks of treatment. Blood was collected for bone biomarkers. Femur and lumbar bones were collected for histomorphometry and remodelling markers. The results showed that AT and SEAT improved osteoblast numbers and trabecular mineralisation rate (p<0.05 vs untreated OVX). AT also decreased skeletal sclerostin expression in OVX rats (p<0.05 vs untreated OVX). Similar effects were observed in the raloxifene-treated group. Only SEAT significantly increased bone formation rate and reduced RANKL/OPG ratio (p<0.05 vs untreated OVX). However, no changes in osteoclast-related parameters were observed among the groups (p>0.05). In conclusion, SEAT exerts potential skeletal anabolic properties by increasing bone formation, suppressing sclerostin expression and reducing RANKL/OPG ratio in rats with oestrogen deficiency.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Martínez-Gil N, Roca-Ayats N, Atalay N, Pineda-Moncusí M, Garcia-Giralt N, Van Hul W, Boudin E, Ovejero D, Mellibovsky L, Nogués X, Díez-Pérez A, Grinberg D, Balcells S. Functional Assessment of Coding and Regulatory Variants From the DKK1 Locus. JBMR Plus 2020; 4:e10423. [PMID: 33354644 PMCID: PMC7745885 DOI: 10.1002/jbm4.10423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022] Open
Abstract
The DKK1 gene encodes an extracellular inhibitor of the Wnt pathway with an important role in bone tissue development, bone homeostasis, and different critical aspects of bone biology. Several BMD genome‐wide association studies (GWASs) have consistently found association with SNPs in the DKK1 genomic region. For these reasons, it is important to assess the functionality of coding and regulatory variants in the gene. Here, we have studied the functionality of putative regulatory variants, previously found associated with BMD in different studies by others and ourselves, and also six missense variants present in the general population. Using a Wnt‐pathway‐specific luciferase reporter assay, we have determined that the variants p.Ala41Thr, p.Tyr74Phe, p.Arg120Leu, and p.Ser157Ile display a reduced DKK1 inhibitory capacity as compared with WT. This result agrees with the high‐bone‐mass (HBM) phenotype of two women from our cohort who carried mutations p.Tyr74Phe or p.Arg120Leu. On the other hand, by means of a circularized chromosome conformation capture‐ (4C‐) sequencing experiment, we have detected that the region containing 24 BMD‐GWA variants, located 350‐kb downstream of DKK1, interacts both with DKK1 and the LNCAROD (LncRNA‐activating regulator of DKK1, AKA LINC0148) in osteoblastic cells. In conclusion, we have shown that some rare coding variants are partial loss‐of‐function mutations that may lead to a HBM phenotype, whereas the common SNPs associated with BMD in GWASs belong to a putative long‐range regulatory region, through a yet unknown mechanism involving LNCAROD. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Núria Martínez-Gil
- Department of Genetics, Microbiology and Statistics, Faculty of Biology Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD) Barcelona Spain
| | - Neus Roca-Ayats
- Department of Genetics, Microbiology and Statistics, Faculty of Biology Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD) Barcelona Spain
| | - Nurgül Atalay
- Department of Genetics, Microbiology and Statistics, Faculty of Biology Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD) Barcelona Spain
| | - Marta Pineda-Moncusí
- Musculoskeletal Research Group, Hospital del Mar Medical Research Institute Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable, ISCIII Barcelona Spain
| | - Natàlia Garcia-Giralt
- Musculoskeletal Research Group, Hospital del Mar Medical Research Institute Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable, ISCIII Barcelona Spain
| | - Wim Van Hul
- Center of Medical Genetics University of Antwerp & University Hospital Antwerp Antwerp Belgium
| | - Eveline Boudin
- Center of Medical Genetics University of Antwerp & University Hospital Antwerp Antwerp Belgium
| | - Diana Ovejero
- Musculoskeletal Research Group, Hospital del Mar Medical Research Institute Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable, ISCIII Barcelona Spain
| | - Leonardo Mellibovsky
- Musculoskeletal Research Group, Hospital del Mar Medical Research Institute Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable, ISCIII Barcelona Spain
| | - Xavier Nogués
- Musculoskeletal Research Group, Hospital del Mar Medical Research Institute Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable, ISCIII Barcelona Spain
| | - Adolfo Díez-Pérez
- Musculoskeletal Research Group, Hospital del Mar Medical Research Institute Centro de Investigación Biomédica en Red en Fragilidad y Envejecimiento Saludable, ISCIII Barcelona Spain
| | - Daniel Grinberg
- Department of Genetics, Microbiology and Statistics, Faculty of Biology Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD) Barcelona Spain
| | - Susanna Balcells
- Department of Genetics, Microbiology and Statistics, Faculty of Biology Universitat de Barcelona, Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD) Barcelona Spain
| |
Collapse
|
9
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part III - Further strategies for local and systemic modulation. Clin Hemorheol Microcirc 2020; 73:439-488. [PMID: 31177207 DOI: 10.3233/ch-199104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this third in a series of reviews on adjuvant drug-assisted bone healing, further approaches aiming at influencing the healing process are discussed. Local and systemic modulation of bone metabolism is pursued with use of a number of drugs with completely different indications, which are characterized by a pleiotropic spectrum of action. These include drugs used to treat lipid disorders (HMG-CoA reductase inhibitors), hypertension (ACE inhibitors), osteoporosis (bisphosphonates), cancer (proteasome inhibitors) and others. Potential applications to enhance bone healing are discussed.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
10
|
Hashimoto K, Kaito T, Furuya M, Seno S, Okuzaki D, Kikuta J, Tsukazaki H, Matsuda H, Yoshikawa H, Ishii M. In vivo dynamic analysis of BMP-2-induced ectopic bone formation. Sci Rep 2020; 10:4751. [PMID: 32179857 PMCID: PMC7076033 DOI: 10.1038/s41598-020-61825-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/03/2020] [Indexed: 12/29/2022] Open
Abstract
Bone morphogenetic protein (BMP)-2 plays a central role in bone-tissue engineering because of its potent bone-induction ability. However, the process of BMP-induced bone formation in vivo remains poorly elucidated. Here, we aimed to establish a method for intravital imaging of the entire process of BMP-2-induced ectopic bone formation. Using multicolor intravital imaging in transgenic mice, we visualized the spatiotemporal process of bone induction, including appearance and motility of osteoblasts and osteoclasts, angiogenesis, collagen-fiber formation, and bone-mineral deposition. Furthermore, we investigated how PTH1-34 affects BMP-2-induced bone formation, which revealed that PTH1-34 administration accelerated differentiation and increased the motility of osteoblasts, whereas it decreased morphological changes in osteoclasts. This is the first report on visualization of the entire process of BMP-2-induced bone formation using intravital imaging techniques, which, we believe, will contribute to our understanding of ectopic bone formation and provide new parameters for evaluating bone-forming activity.
Collapse
Affiliation(s)
- Kunihiko Hashimoto
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.
| | - Masayuki Furuya
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Japan Organization of Occupational Health and Safety Osaka Rosai Hospital, Osaka, 591-8025, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science & Technology, Osaka University, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Hiroyuki Tsukazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.,Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hideo Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science & Technology, Osaka University, Osaka, 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine & Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Morse A, Ko FC, McDonald MM, Lee LR, Schindeler A, van der Meulen MCH, Little DG. Increased anabolic bone response in Dkk1 KO mice following tibial compressive loading. Bone 2020; 131:115054. [PMID: 31521827 DOI: 10.1016/j.bone.2019.115054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022]
Abstract
A viable Dkk1 knockout (KO) mouse strain in which embryonic lethality is rescued by developmental Wnt3 heterozygosity (Dkk1-/-:Wnt3+/-) exhibits increased bone formation and a high bone mass phenotype. We hypothesized that in vivo mechanical loading would further augment the bone formation response in Dkk1 KO mice, comparable to results from Sost KO mice. A cyclic loading protocol was applied to Dkk1 KO mice, wild type mice (WT; Dkk1+/+:Wnt3+/+), and Wnt3 heterozygote (Wnt3+/-; Dkk1+/+:Wnt3+/-) controls. The left tibiae of 10-week-old female mice were dynamically loaded in vivo with 7N maximum compressive force 5 days/week for 2 weeks. Dkk1 KO bones were significantly stiffer, and so an additional group of Dkk1 KO received 12N maximum compressive force to achieve an equivalent +1200με strain at the mid-diaphysis. MicroCT and bone histomorphometry analyses were subsequently performed. All groups responded to tibial loading with increased mid-diaphyseal bone volume. The largest effect size was in the Dkk1 KO -12N group. Thus, Dkk1 KO animals had enhanced sensitivity to mechanical loading. Increases in cortical bone volume reflected increased periosteal bone formation. Bone volume and formation were not altered between WT and Wnt3+/- controls. These data support the concept that agonists of Wnt/β-catenin signaling can act synergistically with load-bearing exercise. Notably, Sost expression decreased with loading in Dkk1 KO and WT mice, independent of genotype. These data suggest that a compensatory downregulation of Sost in Dkk1 KO mice is not likely the primary mechanism for the augmented response to mechanical load.
Collapse
Affiliation(s)
- Alyson Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Frank C Ko
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Michelle M McDonald
- Healthy Aging Theme, Bone Biology, The Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Lucinda R Lee
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Marjolein C H van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States; Research Division, Hospital for Special Surgery, NY, United States
| | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
12
|
Jo S, Yoon S, Lee SY, Kim SY, Park H, Han J, Choi SH, Han JS, Yang JH, Kim TH. DKK1 Induced by 1,25D3 Is Required for the Mineralization of Osteoblasts. Cells 2020; 9:cells9010236. [PMID: 31963554 PMCID: PMC7017072 DOI: 10.3390/cells9010236] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D3), the most popular drug for osteoporosis treatment, drives osteoblast differentiation and bone mineralization. Wnt/β-catenin signaling is involved in commitment and differentiation of osteoblasts, but the role of the Dickkopf-related protein 1 (DKK1), a Wnt antagonist, in osteoblasts remains unknown. Here, we demonstrate the molecular mechanism of DKK1 induction by 1,25D3 and its physiological role during osteoblast differentiation. 1,25D3 markedly promoted the expression of both CCAAT/enhancer binding protein beta (C/EBPβ) and DKK1 at day 7 during osteoblast differentiation. Interestingly, mRNA and protein levels of C/EBPβ and DKK1 in osteoblasts were elevated by 1,25D3. We also found that C/EBPβ, in response to 1,25D3, directly binds to the human DKK1 promoter. Knockdown of C/EBPβ downregulated the expression of DKK1 in osteoblasts, which was partially reversed by 1,25D3. In contrast, overexpression of C/EBPβ upregulated DKK1 expression in osteoblasts, which was enhanced by 1,25D3. Furthermore, 1,25D3 treatment in osteoblasts stimulated secretion of DKK1 protein within the endoplasmic reticulum to extracellular. Intriguingly, blocking DKK1 attenuated calcified nodule formation in mineralized osteoblasts, but not ALP activity or collagen synthesis. Taken together, these observations suggest that 1,25D3 promotes the mineralization of osteoblasts through activation of DKK1 followed by an increase of C/EBPβ.
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Subin Yoon
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - So Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
| | - So Yeon Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | | | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea;
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Jae-Hyuk Yang
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Gyeonggi-do 11923, Korea;
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-9245; Fax: +82-2-2298-8231
| |
Collapse
|
13
|
Wong SK, Chin KY, Ima-Nirwana S. The Effects of Tocotrienol on Bone Peptides in a Rat Model of Osteoporosis Induced by Metabolic Syndrome: The Possible Communication between Bone Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3313. [PMID: 31505801 PMCID: PMC6765824 DOI: 10.3390/ijerph16183313] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
A positive association between metabolic syndrome (MetS) and osteoporosis has been demonstrated in previous animal studies. The mechanisms of MetS in orchestrating the bone remodelling process have traditionally focused on the interactions between mature osteoblasts and osteoclasts, while the role of osteocytes is unexplored. Our earlier studies demonstrated the bone-promoting effects of tocotrienol using a rat model of osteoporosis induced by MetS. This study aimed to investigate the expression of osteocyte-derived peptides in the bone of rats with MetS-induced osteoporosis treated with tocotrienol. Age-matched male Wistar rats (12-week-old; n = 42) were divided into seven experimental groups. Two groups served as the baseline and normal group, respectively. The other five groups were fed with a high-carbohydrate high-fat (HCHF) diet to induce MetS. The five groups of HCHF animals were treated with tocopherol-stripped corn oil (vehicle), annatto tocotrienol (60 and 100 mg/kg), and palm tocotrienol (60 and 100 mg/kg) starting from week 8. At the end of the study, the rats were sacrificed and their right tibias were harvested. Protein was extracted from the metaphyseal region of the proximal right tibia and levels of bone peptides, including osteoprotegerin (OPG), soluble receptor activator of nuclear factor-kappa B ligand (sRANKL), sclerostin (SOST), Dickkopf-related protein 1 (DKK-1), fibroblast growth factor-23 (FGF-23), and parathyroid hormone (PTH), were measured. The vehicle-treated animals displayed higher levels of sRANKL, SOST, DKK-1, FGF-23, and PTH as compared to the normal animals. Oral supplementation of annatto and palm tocotrienol (60 and 100 mg/kg) reduced the levels of sRANKL and FGF-23 in the HCHF animals. Only 100 mg/kg annatto and palm tocotrienol lowered SOST and DKK-1 levels in the HCHF animals. In conclusion, tocotrienol exerts potential skeletal-promoting benefit by modulating the levels of osteocytes-derived bone-related peptides.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Chen Y, Aiken A, Saw S, Weiss A, Fang H, Khokha R. TIMP Loss Activates Metalloproteinase-TNFα-DKK1 Axis To Compromise Wnt Signaling and Bone Mass. J Bone Miner Res 2019; 34:182-194. [PMID: 30216540 DOI: 10.1002/jbmr.3585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 12/17/2022]
Abstract
Deregulated proteolysis invariably underlies most human diseases including bone pathologies. Metalloproteinases constitute the largest of the five protease families, and the metzincin metalloproteinases are inhibited by the four tissue inhibitors of metalloproteinase called TIMPs. We hypothesized that Timp genes are essential for skeletal homeostasis. We bred individual Timp knockout mice to generate unique mouse models, the quadruple Timp null strain (QT) as well as mice harboring only a single Timp3 allele (QT3+/- ). QT mice are grossly smaller and exhibit a dramatic reduction of trabeculae in long bones by μCT imaging with a corresponding increase in metalloproteinase activity. At the cellular level, Timp deficiency compromised differentiation markers, matrix deposition and mineralization in neonatal osteoblasts from calvariae, as well as the fibroblastic colony-forming unit (CFU-F) capacity of bone marrow-derived stromal cells. In contrast, we observed that osteoclasts were overactive in the Timp null state, consistent with the noted excessive bone resorption of QT bones. Immunohistochemistry (IHC) and immunofluorescence (IF) analyses of bone sections revealed higher Cathepsin K and RANKL signals upon Timp loss. Seeking the molecular mechanism, we identified abnormal TNFα bioactivity to be a central event in Timp-deficient mice. Specifically, TNFα triggered induction of the Wnt signaling inhibitor Dkk1 in the osteoblasts at the mRNA and protein levels, with a simultaneous increase in RANKL. Neutralizing TNFα antibody was capable of rescuing the induction of Dkk1 as well as RANKL. Therefore, the generation of novel Timp-deficient systems allowed us to uncover the essential and collective function of TIMP proteins in mammalian long-bone homeostasis. Moreover, our study discovers a functional TIMP/metalloproteinase-TNFα-Dkk1/RANKL nexus for optimal control of the bone microenvironment, which dictates coexistence of the osteoblast and osteoclast lineages. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yan Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Alison Aiken
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sanjay Saw
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ashley Weiss
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hui Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
15
|
Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol 2018; 14:605-623. [PMID: 30181608 DOI: 10.1038/s41574-018-0087-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WNT signalling pathway is a key regulator of bone metabolism, particularly bone formation, which has helped to define the role of osteocytes - the most abundant bone cells - as orchestrators of bone remodelling. Several molecules involved in the control of the WNT signalling pathway have been identified as potential targets for the development of bone-building therapeutics for patients with osteoporosis. Several of these molecules have been investigated in animal models, but only inhibitors of sclerostin (which is produced by osteocytes) have been investigated in phase III clinical studies. Here, we review the rationale for these developments and the specificity and potential off-target actions of WNT-based therapeutics. We also describe the available preclinical and clinical studies and discuss the benefits and risks of using sclerostin inhibitors for the management of patients with osteoporosis.
Collapse
|
16
|
Morse A, Cheng TL, Schindeler A, McDonald MM, Mohanty ST, Kneissel M, Kramer I, Little DG. Dkk1 KO Mice Treated with Sclerostin Antibody Have Additional Increases in Bone Volume. Calcif Tissue Int 2018; 103:298-310. [PMID: 29845410 DOI: 10.1007/s00223-018-0420-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Dickkopf-1 (DKK1) and sclerostin are antagonists of the Wnt/β-catenin pathway and decreased expression of either results in increased bone formation and mass. As both affect the same signaling pathway, we aimed to elucidate the redundancy and/or compensation of sclerostin and DKK1. Weekly sclerostin antibody (Scl-Ab) was used to treat 9-week-old female Dkk1 KO (Dkk1-/-:Wnt3+/-) mice and compared to Scl-Ab-treated wild-type mice as well as vehicle-treated Dkk1 KO and wild-type animals. While Wnt3 heterozygote (Wnt3+/-) mice show no bone phenotype, Scl-Ab and vehicle-treated control groups of this genotype were included. Specimens were harvested after 3 weeks for microCT, bone histomorphometry, anti-sclerostin immunohistochemistry, and biomechanical testing. Scl-Ab enhanced bone anabolism in all treatment groups, but with synergistic enhancement seen in the cancellous compartment of Dkk1 KO mice (bone volume + 55% Dkk1 KO p < 0.01; + 22% wild type p < 0.05). Scl-Ab treatment produced less marked increases in cortical bone of the tibiae, with anabolic effects similar across genotypes. Mechanical testing confirmed that Scl-Ab improved strength across all genotypes; however, no enhancement was seen within Dkk1 KO mice. Dynamic bone labeling showed that Scl-Ab treatment was associated with increased bone formation, regardless of genotype. Immunohistochemical staining for sclerostin protein indicated no differences in the Dkk1 KO mice, indicating that the increased Wnt signaling associated with DKK1 deficiency was not compensated by upregulation of sclerostin protein. These data suggest complex interactions between Wnt signaling factors in bone, but critically illustrate synergy between DKK1 deficiency and Scl-Ab treatment. These data support the application of dual-targeted therapeutics in the modulation of bone anabolism.
Collapse
Affiliation(s)
- Alyson Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Tegan L Cheng
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Michelle M McDonald
- Bone Biology Program, The Garvan Institute of Medical Research, Sydney, Australia
| | - Sindhu T Mohanty
- Bone Biology Program, The Garvan Institute of Medical Research, Sydney, Australia
| | | | | | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, 2145, Australia.
- Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
17
|
Dickkopf-1: Current knowledge and related diseases. Life Sci 2018; 209:249-254. [PMID: 30102902 DOI: 10.1016/j.lfs.2018.08.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
Abstract
Dickkopf-1(DKK-1) has been identified as a secretory protein that can inhibit the Wnt signaling transduction pathway. It is well known that the Wnt signaling pathway plays an important role in embryogenesis, organogenesis and homeostasis. This signaling cascade is essential for many normal physiological processes such as cellular proliferation, tissue regeneration, embryonic development and many other systemic and local effects, and it can be regulated at different levels. Therefore, defects in the pathway may lead to some complicated effects. In addition, it has been demonstrated that defects in this pathway are closely linked to some diseases including cancer, rheumatism, bone disease, diabetes, and Alzheimer disease. Since DKK-1 is an antagonist of the Wnt pathway, it may be related to these diseases; in fact, many studies have identified this fact. This review will summarize the current knowledge of DKK-1 and DKK-1-mediated regulation of Wnt signaling in the development of these related diseases.
Collapse
|
18
|
Shupp AB, Kolb AD, Mukhopadhyay D, Bussard KM. Cancer Metastases to Bone: Concepts, Mechanisms, and Interactions with Bone Osteoblasts. Cancers (Basel) 2018; 10:E182. [PMID: 29867053 PMCID: PMC6025347 DOI: 10.3390/cancers10060182] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/31/2022] Open
Abstract
The skeleton is a unique structure capable of providing support for the body. Bone resorption and deposition are controlled in a tightly regulated balance between osteoblasts and osteoclasts with no net bone gain or loss. However, under conditions of disease, the balance between bone resorption and deposition is upset. Osteoblasts play an important role in bone homeostasis by depositing new bone osteoid into resorption pits. It is becoming increasingly evident that osteoblasts additionally play key roles in cancer cell dissemination to bone and subsequent metastasis. Our laboratory has evidence that when osteoblasts come into contact with disseminated breast cancer cells, the osteoblasts produce factors that initially reduce breast cancer cell proliferation, yet promote cancer cell survival in bone. Other laboratories have demonstrated that osteoblasts both directly and indirectly contribute to dormant cancer cell reactivation in bone. Moreover, we have demonstrated that osteoblasts undergo an inflammatory stress response in late stages of breast cancer, and produce inflammatory cytokines that are maintenance and survival factors for breast cancer cells and osteoclasts. Advances in understanding interactions between osteoblasts, osteoclasts, and bone metastatic cancer cells will aid in controlling and ultimately preventing cancer cell metastasis to bone.
Collapse
Affiliation(s)
- Alison B Shupp
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Alexus D Kolb
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Dimpi Mukhopadhyay
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Karen M Bussard
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
19
|
Kaesler N, Verhulst A, De Maré A, Deck A, Behets GJ, Hyusein A, Evenepoel P, Floege J, Marx N, Babler A, Kramer I, Kneissel M, Kramann R, Weis D, D'Haese PC, Brandenburg VM. Sclerostin deficiency modifies the development of CKD-MBD in mice. Bone 2018; 107:115-123. [PMID: 29175269 DOI: 10.1016/j.bone.2017.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/16/2023]
Abstract
UNLABELLED Sclerostin is a soluble antagonist of canonical Wnt signaling and a strong inhibitor of bone formation. We present experimental data on the role of sclerostin in chronic kidney disease - bone mineral disorder (CKD-MBD). METHODS We performed 5/6 nephrectomies in 36-week-old sclerostin-deficient (SOST-/-) B6-mice and in C57BL/6J wildtype (WT) mice. Animals received a high phosphate diet for 11weeks. The bones were analyzed by high-resolution micro-computed tomography (μCT) and quantitative bone histomorphometry. Aortic tissue was analyzed regarding the extent of vascular calcification. RESULTS All nephrectomized mice had severe renal failure, and parathyroid hormone was highly increased compared to corresponding sham animals. All SOST-/- animals revealed the expected high bone mass phenotype. Overall, the bone compartment in WT and SOST-/- mice responded similarly to nephrectomy. In uremic WT animals, μCT data at both the distal femur and lumbar spine revealed significantly increased trabecular volume compared to non-uremic WTs. In SOST-/- mice, the differences between trabecular bone volume were less pronounced when comparing uremic with sham animals. Cortical thickness and cortical bone density at the distal femur decreased significantly and comparably in both genotypes after 5/6 nephrectomy compared to sham animals (cortical bone density -18% and cortical thickness -32%). Overall, 5/6 nephrectomy and concomitant hyperparathyroidism led to a genotype-independent loss of cortical bone volume and density. Overt vascular calcification was not detectable in either of the genotypes. CONCLUSION Renal osteodystrophy changes were more pronounced in WT mice than in SOST-/- mice. The high bone mass phenotype of sclerostin deficiency was detectable also in the setting of chronic renal failure with severe secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Nadine Kaesler
- Department of Nephrology, University Hospital of the RWTH Aachen, Germany.
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Annelies De Maré
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Annika Deck
- Department of Cardiology, University Hospital of the RWTH Aachen, Germany
| | - Geert J Behets
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ayshe Hyusein
- Department of Nephrology, University Hospital of the RWTH Aachen, Germany
| | - Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Jürgen Floege
- Department of Nephrology, University Hospital of the RWTH Aachen, Germany
| | - Nikolaus Marx
- Department of Cardiology, University Hospital of the RWTH Aachen, Germany
| | - Anne Babler
- Helmholtz Institute for Biomedical Engineering, Biointerface Laboratory, 52074 Aachen, Germany
| | - Ina Kramer
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michaela Kneissel
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Rafael Kramann
- Department of Nephrology, University Hospital of the RWTH Aachen, Germany
| | - Daniel Weis
- Department of Nephrology, University Hospital of the RWTH Aachen, Germany
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | | |
Collapse
|
20
|
McDonald MM, Morse A, Schindeler A, Mikulec K, Peacock L, Cheng T, Bobyn J, Lee L, Baldock PA, Croucher PI, Tam PPL, Little DG. Homozygous Dkk1 Knockout Mice Exhibit High Bone Mass Phenotype Due to Increased Bone Formation. Calcif Tissue Int 2018; 102:105-116. [PMID: 29105022 DOI: 10.1007/s00223-017-0338-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Wnt antagonist Dkk1 is a negative regulator of bone formation and Dkk1 +/- heterozygous mice display a high bone mass phenotype. Complete loss of Dkk1 function disrupts embryonic head development. Homozygous Dkk1 -/- mice that were heterozygous for Wnt3 loss of function mutation (termed Dkk1 KO) are viable and allowed studying the effects of homozygous inactivation of Dkk1 on bone formation. Dkk1 KO mice showed a high bone mass phenotype exceeding that of heterozygous mice as well as a high incidence of polydactyly and kinky tails. Whole body bone density was increased in the Dkk1 KO mice as shown by longitudinal dual-energy X-ray absorptiometry. MicroCT analysis of the distal femur revealed up to 3-fold increases in trabecular bone volume and up to 2-fold increases in the vertebrae, compared to wild type controls. Cortical bone was increased in both the tibiae and vertebrae, which correlated with increased strength in tibial 4-point bending and vertebral compression tests. Dynamic histomorphometry identified increased bone formation as the mechanism underlying the high bone mass phenotype in Dkk1 KO mice, with no changes in bone resorption. Mice featuring only Wnt3 heterozygosity showed no evident bone phenotype. Our findings highlight a critical role for Dkk1 in the regulation of bone formation and a gene dose-dependent response to loss of DKK1 function. Targeting Dkk1 to enhance bone formation offers therapeutic potential for osteoporosis.
Collapse
Affiliation(s)
- Michelle M McDonald
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Bone Biology Division, The Garvan Institute for Medical Research, Sydney, Australia
| | - Alyson Morse
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Kathy Mikulec
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Lauren Peacock
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia
| | - Tegan Cheng
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Justin Bobyn
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Lucinda Lee
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Paul A Baldock
- Bone Biology Division, The Garvan Institute for Medical Research, Sydney, Australia
| | - Peter I Croucher
- Bone Biology Division, The Garvan Institute for Medical Research, Sydney, Australia
| | - Patrick P L Tam
- Embryology Unit, The Children's Medical Research Institute, Westmead, Australia
- Discipline of Anatomy and Histology, School of Medical Sciences, Sydney Medical School, University of Sydney, Sydney, Australia
| | - David G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Research Building, Locked Bag 4001, Westmead, NSW, 2145, Australia.
- Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Sydney, Australia.
| |
Collapse
|
21
|
Intermittent parathyroid hormone (PTH) promotes cementogenesis and alleviates the catabolic effects of mechanical strain in cementoblasts. BMC Cell Biol 2017; 18:19. [PMID: 28427342 PMCID: PMC5397739 DOI: 10.1186/s12860-017-0133-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/01/2017] [Indexed: 02/05/2023] Open
Abstract
Background External root resorption, commonly starting from cementum, is a severe side effect of orthodontic treatment. In this pathological process and repairing course followed, cementoblasts play a significant role. Previous studies implicated that parathyroid hormone (PTH) could act on committed osteoblast precursors to promote differentiation, and inhibit apoptosis. But little was known about the role of PTH in cementoblasts. The purpose of this study was to investigate the effects of intermittent PTH on cementoblasts and its influence after mechanical strain treatment. Results Higher levels of cementogenesis- and differentiation-related biomarkers (bone sialoprotein (BSP), osteocalcin (OCN), Collagen type I (COL1) and Osterix (Osx)) were shown in 1–3 cycles of intermittent PTH treated groups than the control group. Additionally, intermittent PTH increased alkaline phosphatase (ALP) activity and mineralized nodules formation, as measured by ALP staining, quantitative ALP assay, Alizarin red S staining and quantitative calcium assay. The morphology of OCCM-30 cells changed after mechanical strain exertion. Expression of BSP, ALP, OCN, osteopontin (OPN) and Osx was restrained after 18 h mechanical strain. Furthermore, intermittent PTH significantly increased the expression of cementogenesis- and differentiation-related biomarkers in mechanical strain treated OCCM-30 cells. Conclusions Taken together, these data suggested that intermittent PTH promoted cementum formation through activating cementogenesis- and differentiation-related biomarkers, and attenuated the catabolic effects of mechanical strain in immortalized cementoblasts OCCM-30. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0133-0) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Varela A, Chouinard L, Lesage E, Smith SY, Hattersley G. One Year of Abaloparatide, a Selective Activator of the PTH1 Receptor, Increased Bone Formation and Bone Mass in Osteopenic Ovariectomized Rats Without Increasing Bone Resorption. J Bone Miner Res 2017; 32:24-33. [PMID: 27748532 DOI: 10.1002/jbmr.3003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 01/20/2023]
Abstract
Abaloparatide is a novel 34-amino acid peptide selected to be a potent and selective activator of the parathyroid hormone receptor (PTH1R) signaling pathway with 41% homology to PTH(1-34) and 76% homology to PTHrP(1-34). A 12-month treatment study was conducted in osteopenic ovariectomized (OVX) rats to characterize the mechanisms by which abaloparatide increases bone mass. Sprague-Dawley (SD) rats were subjected to OVX or sham surgery at age 6 months and left untreated for 3 months to allow OVX-induced bone loss. Ten OVX rats were euthanized after this bone depletion period, and the remaining OVX rats received daily subcutaneous injections of vehicle (n = 18) or abaloparatide at 1, 5, or 25 μg/kg/d (n = 18/dose level) for 12 months. Sham controls (n = 18) received vehicle daily. Bone densitometry and biochemical markers of bone formation and resorption were assessed longitudinally, and L3 vertebra and tibia were collected at necropsy for histomorphometry. Abaloparatide increased biochemical bone formation markers without increasing bone resorption markers or causing hypercalcemia. Abaloparatide increased histomorphometric indices of bone formation on trabecular, endocortical, and periosteal surfaces without increasing osteoclasts or eroded surfaces. Abaloparatide induced substantial increases in trabecular bone volume and density and improvements in trabecular microarchitecture. Abaloparatide stimulated periosteal expansion and endocortical bone apposition at the tibial diaphysis, leading to marked increases in cortical bone volume and density. Whole-body bone mineral density (BMD) remained stable in OVX-Vehicle controls while increasing 25% after 12 months of abaloparatide (25 μg/kg). Histomorphometry and biomarker data suggest that gains in cortical and trabecular bone mass were attributable to selective anabolic effects of abaloparatide, without evidence for stimulated bone resorption. © 2016 American Society for Bone and Mineral Research.
Collapse
|
23
|
Osagie-Clouard L, Sanghani A, Coathup M, Briggs T, Bostrom M, Blunn G. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017; 6:14-21. [PMID: 28062525 PMCID: PMC5227055 DOI: 10.1302/2046-3758.61.bjr-2016-0085.r1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022] Open
Abstract
Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called 'anabolic window'. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through 'coupled' and 'uncoupled' mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect. CITE THIS ARTICLE L. Osagie-Clouard, A. Sanghani, M. Coathup, T. Briggs, M. Bostrom, G. Blunn. Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation. Bone Joint Res 2017;6:14-21. DOI: 10.1302/2046-3758.61.BJR-2016-0085.R1.
Collapse
Affiliation(s)
- L Osagie-Clouard
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - A Sanghani
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - M Coathup
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - T Briggs
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| | - M Bostrom
- Hospital for Special Surgery, New York, New York, USA
| | - G Blunn
- Institute of Orthopaedics and Musculoskeletal Sciences, University College London, Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, London, UK
| |
Collapse
|
24
|
Xie Y, Yi L, Weng T, Huang J, Luo F, Jiang W, Xian CJ, Du X, Chen L. Fibroblast Growth Factor Receptor 3 Deficiency Does Not Impair the Osteoanabolic Action of Parathyroid Hormone on Mice. Int J Biol Sci 2016; 12:990-9. [PMID: 27489502 PMCID: PMC4971737 DOI: 10.7150/ijbs.14077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/18/2016] [Indexed: 01/14/2023] Open
Abstract
Summary: PTH stimulates bone formation in Fgfr3 knockout mice through promotion of proliferation and differentiation in osteoblasts. Introduction: Previous studies showed that endogenous fibroblast growth factor 2 (FGF-2) is required for parathyroid hormone (PTH)-stimulated bone anabolic effects, however, the exact mechanisms by which PTH stimulate bone formation and the function of FGF receptors in mediating these actions are not fully defined. FGF receptor 3 (FGFR3) has been characterized as an important regulator of bone metabolism and is confirmed to cross-talk with PTH/PTHrP signal in cartilage and bone development. Methods: Fgfr3 knockout and wild-type mice at 2-month-old and 4-month-old were intraperitoneally injected with PTH intermittently for 4 weeks and then the skeletal responses to PTH were assessed by dual energy X-ray absorptiometry (DEXA), micro-computed tomography (μCT) and bone histomorphometry. Results: Intermittent PTH treatment improved bone mineral density (BMD) and femoral mechanical properties in both Fgfr3-/- and wild-type mice. Histomorphometric analysis showed that bone formation and bone resorption were increased in both genotypes following PTH treatment. PTH treatment increased trabecular bone volume (BV/TV) in WT and Fgfr3-deficient mice. The anabolic response in Fgfr3-deficient and wild-type bone is characterized by an increase of both bone formation and resorption-related genes following PTH treatment. In addition, we found that Fgfr3 null osteoblasts (compared to wild-type controls) maintained normal abilities to response to PTH-stimulated increase of proliferation, differentiation, expression of osteoblastic marker genes (Cbfa1, Osteopontin and Osteocalcin), and phosphorylation of Erk1/2. Conclusions: Bone anabolic effects of PTH were not impaired by the absence of FGFR3, suggesting that the FGFR3 signaling may not be required for osteoanabolic effects of PTH activities.
Collapse
Affiliation(s)
- Yangli Xie
- 1. Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lingxian Yi
- 1. Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China;; 3. Intensive Care Unit, The 306th hospital of PLA, Beijing 100101, China
| | - Tujun Weng
- 1. Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Junlan Huang
- 1. Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Fengtao Luo
- 1. Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Wanling Jiang
- 1. Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Cory J Xian
- 2. Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Xiaolan Du
- 1. Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- 1. Center of Bone Metabolism and Repair, Department of Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| |
Collapse
|
25
|
P2X7 nucleotide receptor signaling potentiates the Wnt/β-catenin pathway in cells of the osteoblast lineage. Purinergic Signal 2016; 12:509-20. [PMID: 27206526 DOI: 10.1007/s11302-016-9517-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 05/06/2016] [Indexed: 12/12/2022] Open
Abstract
The P2X7 and Wnt/β-catenin signaling pathways regulate osteoblast differentiation and are critical for the anabolic responses of bone to mechanical loading. However, whether these pathways interact to control osteoblast activity is unknown. The purpose of this study was to investigate the effects of P2X7 activation on Wnt/β-catenin signaling in osteoblasts. Using MC3T3-E1 cells, we found that combined treatment with Wnt3a and the P2X7 agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) elicited more sustained β-catenin nuclear localization than that induced by Wnt3a alone. Wnt3a-induced increases in β-catenin transcriptional activity were also potentiated by treatment with BzATP. Consistent with involvement of P2X7, a high ATP concentration (1 mM) potentiated Wnt3a-induced β-catenin transcriptional activity, whereas a low concentration (10 μM) of ATP, adenosine 5'-diphosphate (ADP), or uridine 5'-triphosphate (UTP) failed to elicit a response. The potentiation of β-catenin transcriptional activity elicited by BzATP was also inhibited by two distinct P2X7 antagonists: A 438079 and A 740003. Furthermore, responses to Wnt3a in calvarial cells isolated from P2rx7 knockout mice were significantly less than in cells from wild-type controls. In MC3T3-E1 cells, BzATP increased inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β), a process that was blocked by A 438079 and diminished by inhibition of protein kinase C. Thus, P2X7 signaling may potentiate the canonical Wnt pathway through GSK3β inhibition. Taken together, we show that P2X7 activation prolongs and potentiates Wnt/β-catenin signaling. Consequently, cross-talk between P2X7 and Wnt/β-catenin pathways may modulate osteoblast activity in response to mechanical loading.
Collapse
|
26
|
Brandenburg VM, D'Haese P, Deck A, Mekahli D, Meijers B, Neven E, Evenepoel P. From skeletal to cardiovascular disease in 12 steps-the evolution of sclerostin as a major player in CKD-MBD. Pediatr Nephrol 2016; 31:195-206. [PMID: 25735207 DOI: 10.1007/s00467-015-3069-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 10/23/2022]
Abstract
Canonical Wnt signaling activity contributes to physiological and adaptive bone mineralization and is an essential player in bone remodeling. Sclerostin is a prototypic soluble canonical Wnt signaling pathway inhibitor that is produced in osteocytes and blocks osteoblast differentiation and function. Therefore, sclerostin is a potent inhibitor of bone formation and mineralization. Accordingly, rodent sclerostin-deficiency models exhibit a strong bone phenotype. Moreover, blocking sclerostin represents a promising treatment perspective against osteoporosis. Beyond the bone field novel data definitely associate Wnt signaling in general and sclerostin in particular with ectopic extraosseous mineralization processes, as is evident in cardiovascular calcification or calciphylaxis. Uremia is characterized by parallel occurrence of disordered bone mineralization and accelerated cardiovascular calcification (chronic kidney disease - mineral and bone disorder, CKD-MBD), linking skeletal and cardiovascular disease-the so-called bone-vascular calcification paradox. In consequence, sclerostin may qualify as an emerging player in CKD-MBD. We present a stepwise review approach regarding the rapidly evolving field sclerostin participation in CKD-MBD. Starting from data originating in the classical bone field we look separately at three major areas of CKD-MBD: disturbed mineral metabolism, renal osteodystrophy, and uremic cardiovascular disease. Our review is intended to help the nephrologist revise the potential importance of sclerostin in CKD by focusing on how sclerostin research is gradually evolving from the classical osteoporosis niche into the area of CKD-MBD. In particular, we integrate the limited amount of available data in the context of pediatric nephrology.
Collapse
Affiliation(s)
- Vincent M Brandenburg
- Department of Cardiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52057, Aachen, Germany.
| | - Patrick D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Annika Deck
- Department of Cardiology, University Hospital of the RWTH Aachen, Pauwelsstraße 30, 52057, Aachen, Germany
| | - Djalila Mekahli
- Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Björn Meijers
- Department of Immunology and Microbiology, Laboratory of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Neven
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Wang JY, Zhou PR, Liu Y, Xu XJ, Ma DD, Xia WB, Jiang Y, Wang O, Xing XP, Li M. The analysis of DKK1 polymorphisms in relation to skeletal phenotypes and bone response to alendronate treatment in Chinese postmenopausal women. Pharmacogenomics 2016; 17:209-17. [PMID: 26780085 DOI: 10.2217/pgs.15.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To investigate the correlation between DKK1 polymorphisms with bone phenotypes and response to alendronate treatment. Materials & methods: Five tag single nucleotide polymorphisms of DKK1 were analyzed in 639 Chinese postmenopausal women with osteoporosis or osteopenia. Bone mineral density (BMD), β-CTX and ALP were measured before and after alendronate treatment. Results: Genotypes at rs1896367, rs1528877 and rs2241529 correlated to baseline BMD (p < 0.05). rs1528877 and rs2241529 polymorphisms correlated to baseline β-CTX levels (p < 0.05). rs2241529 polymorphisms of DKK1 had a small influence on the skeletal response to alendronate treatment (p < 0.05). Conclusion: DKK1 polymorphisms may correlate to baseline BMD and serum β-CTX levels, but present a weak effect on the response to alendronate.
Collapse
Affiliation(s)
- Jian-yi Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Pei-ran Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-jie Xu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dou-dou Ma
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-bo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Pacheco-Costa R, Davis HM, Sorenson C, Hon MC, Hassan I, Reginato RD, Allen MR, Bellido T, Plotkin LI. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone 2015; 81:632-643. [PMID: 26409319 PMCID: PMC4640960 DOI: 10.1016/j.bone.2015.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/04/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
Connexin 43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43(ΔCT/fl)) were studied. Cx43(ΔCT/fl) mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43(fl/fl) controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43(ΔCT) is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43(ΔCT) mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43(ΔCT) were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions.
Collapse
Affiliation(s)
- Rafael Pacheco-Costa
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Morphology & Genetics, Federal University of São Paulo School of Medicine, São Paulo, Brazil.
| | - Hannah M Davis
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Chad Sorenson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Mary C Hon
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Iraj Hassan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Rejane D Reginato
- Department of Morphology & Genetics, Federal University of São Paulo School of Medicine, São Paulo, Brazil.
| | - Matthew R Allen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Div. Endocrinology, Dept. Internal Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush Veterans Administration Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
29
|
Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 2015; 22:41-50. [PMID: 25854704 DOI: 10.1016/j.coph.2015.03.005] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/24/2015] [Indexed: 12/16/2022]
Abstract
Parathyroid hormone (PTH) is essential for the maintenance of calcium homeostasis through, in part, its actions to regulate bone remodeling. While PTH stimulates both bone formation and bone resorption, the duration and periodicity of exposure to PTH governs the net effect on bone mass, that is whether it is catabolic or anabolic. PTH receptor signaling in osteoblasts and osteocytes can increase the RANKL/OPG ratio, increasing both osteoclast recruitment and osteoclast activity, and thereby stimulating bone resorption. In contrast, PTH-induced bone formation is explained, at least in part, by its ability to downregulate SOST/sclerostin expression in osteocytes, permitting the anabolic Wnt signaling pathway to proceed. The two modes of administration of PTH, that is, continuous vs. intermittent, can regulate, in bone cells, different sets of genes; alternatively, the same sets of genes exposed to PTH in sustained vs. transient way, will favor bone resorption or bone formation, respectively. This article reviews the effects of PTH on bone cells that lead to these dual catabolic and anabolic actions on the skeleton.
Collapse
Affiliation(s)
- Barbara C Silva
- Santa Casa de Belo Horizonte and Felicio Rocho Hospital, Division of Endocrinology, Brazil
| | - John P Bilezikian
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, Columbia University, United States.
| |
Collapse
|
30
|
Chen H, Senda T, Kubo KY. The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Med Mol Morphol 2015; 48:61-8. [PMID: 25791218 DOI: 10.1007/s00795-015-0099-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/04/2015] [Indexed: 12/17/2022]
Abstract
Osteocytes are the most abundant cells in bone and are the major orchestrators of bone remodeling and mineral homeostasis. They possess a specialized cellular morphology and a unique molecular feature. Osteocytes are a stellate shape with numerous long, slender dendritic processes. The osteocyte cell body resides in the bone matrix of the lacuna and the dendritic processes extend within the canaliculi to adjacent osteocytes and other cells on the bone surface. Osteocytes form extensive intercellular network to sense and respond to environmental mechanical stimulus by the lacunar-canalicular system and gap junction. Osteocytes are long-lived bone cells. They can undergo apoptosis, which may have specific regulatory effects on osteoclastic bone resorption. Osteocytes can secrete several molecules, including sclerostin, receptor activator of nuclear factor κB ligand and fibroblast growth factor 23 to regulate osteoblastic bone formation, osteoclastic bone resorption and mineral homeostasis. A deeper understanding of the complex mechanisms that mediate the control of osteoblast and osteoclast function by osteocytes may identify new osteocyte-derived molecules as potential pharmacological targets for treating osteoporosis and other skeletal diseases.
Collapse
Affiliation(s)
- Huayue Chen
- Department of Anatomy, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan,
| | | | | |
Collapse
|
31
|
Jin H, Wang B, Li J, Xie W, Mao Q, Li S, Dong F, Sun Y, Ke HZ, Babij P, Tong P, Chen D. Anti-DKK1 antibody promotes bone fracture healing through activation of β-catenin signaling. Bone 2015; 71:63-75. [PMID: 25263522 PMCID: PMC4376475 DOI: 10.1016/j.bone.2014.07.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/11/2014] [Accepted: 07/12/2014] [Indexed: 12/17/2022]
Abstract
In this study we investigated if Wnt/β-catenin signaling in mesenchymal progenitor cells plays a role in bone fracture repair and if DKK1-Ab promotes fracture healing through activation of β-catenin signaling. Unilateral open transverse tibial fractures were created in CD1 mice and in β-catenin(Prx1ER) conditional knockout (KO) and Cre-negative control mice (C57BL/6 background). Bone fracture callus tissues were collected and analyzed by radiography, micro-CT (μCT), histology, biomechanical testing and gene expression analysis. The results demonstrated that treatment with DKK1-Ab promoted bone callus formation and increased mechanical strength during the fracture healing process in CD1 mice. DKK1-Ab enhanced fracture repair by activation of endochondral ossification. The normal rate of bone repair was delayed when the β-catenin gene was conditionally deleted in mesenchymal progenitor cells during the early stages of fracture healing. DKK1-Ab appeared to act through β-catenin signaling to enhance bone repair since the beneficial effect of DKK1-Ab was abrogated in β-catenin(Prx1ER) conditional KO mice. Further understanding of the signaling mechanism of DKK1-Ab in bone formation and bone regeneration may facilitate the clinical translation of this anabolic agent into therapeutic intervention.
Collapse
Affiliation(s)
- Hongting Jin
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Baoli Wang
- Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Jia Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA; Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Wanqing Xie
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA; Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Qiang Mao
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Shan Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Fuqiang Dong
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Yan Sun
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Zhejiang, China
| | | | | | - Peijian Tong
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, Zhejiang, China; Department of Orthopaedics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China.
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
32
|
Saidak Z, Le Henaff C, Azzi S, Marty C, Da Nascimento S, Sonnet P, Marie PJ. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J Biol Chem 2015; 290:6903-12. [PMID: 25631051 DOI: 10.1074/jbc.m114.621219] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The α5β1 integrin is a key fibronectin (FN) receptor that binds to RGD-containing peptides to mediate cell adhesion. We previously reported that α5β1 integrin promotes osteogenic differentiation in mesenchymal skeletal cells (MSCs), but the underlying mechanisms are not fully understood. In this study, we determined the signaling mechanisms induced by α5β1 integrin interaction with its high-affinity ligand CRRETAWAC in murine and human MSCs and in vivo. We show that cyclized CRRETAWAC fully displaced MSC adhesion to FN, whereas related peptides lacking the full RRET sequence produced a partial displacement, indicating that RRET acts as an RGD-like sequence that is required to antagonize FN-mediated cell adhesion. However, all peptides increased focal adhesion kinase phosphorylation, OSE2 transcriptional activity, osteoblast gene expression, and matrix mineralization in MSCs, indicating that peptide-induced α5β1 integrin priming can promote osteogenic differentiation independently of the RRET sequence. Biochemical analyses showed that peptide-induced α5β1 integrin priming transiently increased PI3K/Akt phosphorylation and promoted Wnt/β-catenin transcriptional activity independently of RRET. Consistently, pharmacological inhibition of PI3K activity reduced osteoblast differentiation and abolished Wnt regulatory gene expression induced by α5β1 integrin priming. In vivo, systemic delivery of cyclized GACRETAWACGA linked to (DSS)6 to allow delivery to bone-forming sites for 6 weeks increased serum osteocalcin levels and improved long bone mass and microarchitecture in SAMP-6 senescent osteopenic mice. The results support a mechanism whereby α5β1 integrin priming by high-affinity ligands integrates Wnt/β-catenin signaling to promote osteoblast differentiation independently of cell adhesion, which could be used to improve bone mass and microarchitecture in the aging skeleton.
Collapse
Affiliation(s)
- Zuzana Saidak
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| | - Carole Le Henaff
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| | - Sofia Azzi
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| | - Caroline Marty
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| | - Sophie Da Nascimento
- the Equipe Théra, Laboratoire de Glycochimie, des Antimicrobiens, et des Agroressources (LG2A)-FRE-CNRS 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens Cedex 1, France
| | - Pascal Sonnet
- the Equipe Théra, Laboratoire de Glycochimie, des Antimicrobiens, et des Agroressources (LG2A)-FRE-CNRS 3517, UFR de Pharmacie, Université de Picardie Jules Verne, 80037 Amiens Cedex 1, France
| | - Pierre J Marie
- From UMR-1132 INSERM, 75475 Paris Cedex 10, France, the Université Paris Diderot, Sorbonne Paris Cité, Paris, France, and
| |
Collapse
|
33
|
Standal T, Johnson RW, McGregor NE, Poulton IJ, Ho PWM, Martin TJ, Sims NA. gp130 in late osteoblasts and osteocytes is required for PTH-induced osteoblast differentiation. J Endocrinol 2014; 223:181-90. [PMID: 25228504 DOI: 10.1530/joe-14-0424] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Parathyroid hormone (PTH) treatment stimulates osteoblast differentiation and bone formation, and is the only currently approved anabolic therapy for osteoporosis. In cells of the osteoblast lineage, PTH also stimulates the expression of members of the interleukin 6 (IL-6) cytokine superfamily. Although the similarity of gene targets regulated by these cytokines and PTH suggest cooperative action, the dependence of PTH anabolic action on IL-6 cytokine signaling is unknown. To determine whether cytokine signaling in the osteocyte through glycoprotein 130 (gp130), the common IL-6 superfamily receptor subunit, is required for PTH anabolic action, male mice with conditional gp130 deletion in osteocytes (Dmp1Cre.gp130(f/f)) and littermate controls (Dmp1Cre.gp130(w/w)) were treated with hPTH(1-34) (30 μg/kg 5× per week for 5 weeks). PTH dramatically increased bone formation in Dmp1Cre.gp130(w/w) mice, as indicated by elevated osteoblast number, osteoid surface, mineralizing surface, and increased serum N-terminal propeptide of type 1 collagen (P1NP). However, in mice with Dmp1Cre-directed deletion of gp130, PTH treatment changed none of these parameters. Impaired PTH anabolic action was associated with a 50% reduction in Pth1r mRNA levels in Dmp1Cre.gp130(f/f) femora compared with Dmp1Cre.gp130(w/w). Furthermore, lentiviral-Cre infection of gp130(f/f) primary osteoblasts also lowered Pth1r mRNA levels to 16% of that observed in infected C57/BL6 cells. In conclusion, osteocytic gp130 is required to maintain PTH1R expression in the osteoblast lineage, and for the stimulation of osteoblast differentiation that occurs in response to PTH.
Collapse
Affiliation(s)
- Therese Standal
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rachelle W Johnson
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Narelle E McGregor
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingrid J Poulton
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Patricia W M Ho
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - T John Martin
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Natalie A Sims
- St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway St.Vincent's Institute of Medical Research9 Princes St, Fitzroy, Victoria 3065, AustraliaDepartment of Medicine at St. Vincent's Hospital MelbourneThe University of Melbourne, Fitzroy, Victoria, AustraliaDepartment of Cancer Research and Molecular MedicineThe KG Jebsen Center for Myeloma Research and Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
34
|
Sinha P, Aarnisalo P, Chubb R, Ono N, Fulzele K, Selig M, Saeed H, Chen M, Weinstein LS, Pajevic PD, Kronenberg HM, Wu JY. Loss of Gsα early in the osteoblast lineage favors adipogenic differentiation of mesenchymal progenitors and committed osteoblast precursors. J Bone Miner Res 2014; 29:2414-26. [PMID: 24806274 PMCID: PMC4220542 DOI: 10.1002/jbmr.2270] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/22/2014] [Accepted: 04/30/2014] [Indexed: 12/18/2022]
Abstract
In humans, aging and glucocorticoid treatment are associated with reduced bone mass and increased marrow adiposity, suggesting that the differentiation of osteoblasts and adipocytes may be coordinately regulated. Within the bone marrow, both osteoblasts and adipocytes are derived from mesenchymal progenitor cells, but the mechanisms guiding the commitment of mesenchymal progenitors into osteoblast versus adipocyte lineages are not fully defined. The heterotrimeric G protein subunit Gs α activates protein kinase A signaling downstream of several G protein-coupled receptors including the parathyroid hormone receptor, and plays a crucial role in regulating bone mass. Here, we show that targeted ablation of Gs α in early osteoblast precursors, but not in differentiated osteocytes, results in a dramatic increase in bone marrow adipocytes. Mutant mice have reduced numbers of mesenchymal progenitors overall, with an increase in the proportion of progenitors committed to the adipocyte lineage. Furthermore, cells committed to the osteoblast lineage retain adipogenic potential both in vitro and in vivo. These findings have clinical implications for developing therapeutic approaches to direct the commitment of mesenchymal progenitors into the osteoblast lineage.
Collapse
Affiliation(s)
- Partha Sinha
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Piia Aarnisalo
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Laboratory Services (HUSLAB), Helsinki, Finland
| | - Rhiannon Chubb
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Noriaki Ono
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Keertik Fulzele
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Selig
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Hamid Saeed
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | | | - Joy Y Wu
- Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
35
|
Martineau C, Kevorkova O, Brissette L, Moreau R. Scavenger receptor class B, type I (Scarb1) deficiency promotes osteoblastogenesis but stunts terminal osteocyte differentiation. Physiol Rep 2014; 2:2/10/e12117. [PMID: 25281615 PMCID: PMC4254088 DOI: 10.14814/phy2.12117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI), the Scarb1 gene product, is a high-density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1-deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1-null and wild-type (WT) cells. Scarb1 genic expression was down-regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1-null mice. Genic expression of co-receptors for Wnt signaling, namely LDL-related protein (Lrp) 5 and Lrp8, was increased, respectively, by two- and threefold, and of transcription target-genes axis inhibition protein 2 (Axin2) and lymphoid enhancer-binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs-related protein 1 (Dkk1) were found to be increased 10- to 20-fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1-deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice.
Collapse
Affiliation(s)
- Corine Martineau
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Olha Kevorkova
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Louise Brissette
- Laboratoire du Métabolisme des Lipoprotéines, Département des Sciences Biologiques, BioMed, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Robert Moreau
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| |
Collapse
|
36
|
Saidak Z, Le Henaff C, Azzi S, Marty C, Marie PJ. Low-dose PTH increases osteoblast activity via decreased Mef2c/Sost in senescent osteopenic mice. J Endocrinol 2014; 223:25-33. [PMID: 25056116 DOI: 10.1530/joe-14-0249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intermittent administration of parathyroid hormone (PTH) 1-34 at a standard dose has been shown to induce anabolic effects in bone. However, whether low-dose PTH promotes bone formation during senescence is unknown. To address this issue, we determined the effects of low-dose PTH and analysed the underlying mechanisms in prematurely senescent mice that display osteopenia. Treatment of 9-week-old Samp6 mice for 6 weeks with PTH at a standard dose (100 μg/kg per day) increased vertebral and femoral bone mass and improved bone microarchitecture as a result of increased bone-forming surfaces and mineral apposition rate (MAR). At a tenfold lower dose (10 μg/kg per day), PTH increased axial bone volume and trabecular thickness, as detected by bone histomorphometry but not by micro-computed tomography analysis. This anabolic effect resulted from increased osteoblast activity, as reflected by increased serum N-terminal propeptide of type 1 procollagen (P1NP) levels and MAR, with unchanged bone-forming surface or osteoblast surface. Mechanistically, low-dose PTH increased the expression of osteoblast markers in bone marrow stromal cells and mature osteoblasts, which was associated with increased expression of the Wnt effector Wisp1. Moreover, low-dose PTH decreased the expression of the Mef2c transcription factor, resulting in decreased Sost expression in osteoblasts/osteocytes. These results indicate that PTH at a low dose is effective at promoting bone formation and increased bone volume in senescent osteopenic mice through increased osteoblast activity and modulation of specific Wnt effectors, which raises the potential therapeutic use of intermittent PTH at low dose to increase bone forming activity and bone mass in skeletal senescence.
Collapse
Affiliation(s)
- Zuzana Saidak
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Carole Le Henaff
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Sofia Azzi
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Caroline Marty
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| | - Pierre J Marie
- UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France UMR-1132 InsermHôpital Lariboisière, 2 Rue Ambroise Paré, 75475 Paris Cedex 10, FranceUniversité Paris DiderotSorbonne Paris Cité, Paris, France
| |
Collapse
|
37
|
Malhotra D, Yang Y. Wnts' fashion statement: from body stature to dysplasia. BONEKEY REPORTS 2014; 3:541. [PMID: 24991404 DOI: 10.1038/bonekey.2014.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022]
Abstract
Bone is constantly being made and remodeled to maintain bone volume and calcium homeostasis. Even small changes in the dosage, location and duration of int/Wingless (Wnt) signaling affect skeletal development and homeostasis. Wnt/β-catenin signaling controls cell fate determination, proliferation and survival by affecting a balance between bone-forming osteoblast and bone-resorbing osteoclast cell differentiation. During early skeletal development, Wnt/β-catenin signaling is required in directing mesenchymal progenitor cells toward the osteoblast lineage. Later, Wnt/β-catenin in chondrocytes of the growth plate promotes chondrocyte survival, hypertrophic differentiation and endochondral ossification. Gain- or loss-of-function mutations in the Wnt signaling components are causally linked to high or low bone mass in mice and humans. Inactivation of Wnt/β-catenin signaling leads to imbalance between bone formation and resorption because of accelerated osteoclastogenesis due to decline in the levels of osteoprotegerin (OPG) secreted by osteoblasts or directly via Frizzled 8 (Fzd8). In this review, we provide a landscape of the Wnt pathway components in influencing progenitor cell differentiation toward osteoblasts or osteoclasts under physiological conditions as well as pathological disorders resulting in various skeletal dysplasia syndromes.
Collapse
Affiliation(s)
- Deepti Malhotra
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health , Bethesda, MD, USA
| | - Yingzi Yang
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
38
|
Vervloet MG, Massy ZA, Brandenburg VM, Mazzaferro S, Cozzolino M, Ureña-Torres P, Bover J, Goldsmith D. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders. Lancet Diabetes Endocrinol 2014; 2:427-36. [PMID: 24795256 DOI: 10.1016/s2213-8587(14)70059-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent reports of several bone-derived substances, some of which have hormonal properties, have shed new light on the bone-cardiovascular axis. Deranged concentrations of humoral factors are not only epidemiologically connected to cardiovascular morbidity and mortality, but can also be causally implicated, especially in chronic kidney disease. FGF23 rises exponentially with advancing chronic kidney disease, seems to reach maladaptive concentrations, and then induces left ventricular hypertrophy, and is possibly implicated in the process of vessel calcification. Sclerostin and DKK1, both secreted mainly by osteocytes, are important Wnt inhibitors and as such can interfere with systems for biological signalling that operate in the vessel wall. Osteocalcin, produced by osteoblasts or released from mineralised bone, interferes with insulin concentrations and sensitivity, and its metabolism is disturbed in kidney disease. These bone-derived humoral factors might place the bone at the centre of cardiovascular disease associated with chronic kidney disease. Most importantly, factors that dictate the regulation of these substances in bone and subsequent secretion into the circulation have not been researched, and could provide entirely new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Marc G Vervloet
- Department of Nephrology and Institute for Cardiovascular Research VU, VU University Medical Center, Amsterdam, Netherlands.
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, Paris Ile de France Ouest University, Boulogne Billancourt, Paris, France; INSERM U1088, Picardie University Jules Verne, Amiens, France
| | - Vincent M Brandenburg
- Department of Cardiology and Intensive Care Medicine, RWTH University Hospital Aachen, Aachen, Germany
| | - Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, San Paolo Hospital, University of Milan, Milan, Italy
| | - Pablo Ureña-Torres
- Department of Nephrology and Dialysis, Clinique du Landy, Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Jordi Bover
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, REDinREN, Barcelona, Spain
| | | | | |
Collapse
|
39
|
Wang W, Xu J, Liu K, Liu X, Li C, Cui C, Zhang Y, Li H. Suppression of Sclerostin and Dickkopf-1 levels in patients with fluorine bone injury. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 35:402-407. [PMID: 23467116 DOI: 10.1016/j.etap.2013.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
Evidence has been accumulating for the role of Sclerostin and Dickkopf-1 as the antagonists of Wnt/β-Catenin signaling pathway, which suppresses bone formation through inhibiting osteoblastic function. To get deep-inside information about the expression of the antagonists in patients with fluorine bone injury, a case-control study was conducted in two counties in Hubei Province. Urinary and serum fluoride were significantly higher in patients with fluorine bone injury than in healthy controls. Additionally, patients with fluorine bone injury had significantly lower serum Sclerostin and Dickkopf-1 levels compared with healthy controls (P<0.001). Serum Sclerostin and Dickkopf-1 levels were significantly correlated with serum fluoride in all studied subjects (n=186). Low Sclerostin and Dickkopf-1 levels were associated with a significantly increased risk of fluorine bone injury. In conclusion, serum Sclerostin and Dickkopf-1 might be used as important markers of bone metabolism change and potential therapeutic targets to treat fluorine bone injury.
Collapse
Affiliation(s)
- Wenpeng Wang
- Key Laboratory of Environment and Health, Ministry of Education, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Maupin KA, Droscha CJ, Williams BO. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice. Bone Res 2013; 1:27-71. [PMID: 26273492 DOI: 10.4248/br201301004] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
The Wnt signaling pathway plays key roles in differentiation and development and alterations in this signaling pathway are causally associated with numerous human diseases. While several laboratories were examining roles for Wnt signaling in skeletal development during the 1990s, interest in the pathway rose exponentially when three key papers were published in 2001-2002. One report found that loss of the Wnt co-receptor, Low-density lipoprotein related protein-5 (LRP5), was the underlying genetic cause of the syndrome Osteoporosis pseudoglioma (OPPG). OPPG is characterized by early-onset osteoporosis causing increased susceptibility to debilitating fractures. Shortly thereafter, two groups reported that individuals carrying a specific point mutation in LRP5 (G171V) develop high-bone mass. Subsequent to this, the causative mechanisms for these observations heightened the need to understand the mechanisms by which Wnt signaling controlled bone development and homeostasis and encouraged significant investment from biotechnology and pharmaceutical companies to develop methods to activate Wnt signaling to increase bone mass to treat osteoporosis and other bone disease. In this review, we will briefly summarize the cellular mechanisms underlying Wnt signaling and discuss the observations related to OPPG and the high-bone mass disorders that heightened the appreciation of the role of Wnt signaling in normal bone development and homeostasis. We will then present a comprehensive overview of the core components of the pathway with an emphasis on the phenotypes associated with mice carrying genetically engineered mutations in these genes and clinical observations that further link alterations in the pathway to changes in human bone.
Collapse
Affiliation(s)
- Kevin A Maupin
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Casey J Droscha
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| | - Bart O Williams
- Program for Skeletal Pathobiology and Center for Tumor Metastasis, Van Andel Research Institute , 333 Bostwick NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
41
|
Cain CJ, Manilay JO. Hematopoietic stem cell fate decisions are regulated by Wnt antagonists: Comparisons and current controversies. Exp Hematol 2013; 41:3-16. [DOI: 10.1016/j.exphem.2012.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/19/2022]
|
42
|
Register TC, Hruska KA, Divers J, Bowden DW, Palmer ND, Carr JJ, Wagenknecht LE, Hightower RC, Xu J, Smith SC, Dietzen DJ, Langefeld CD, Freedman BI. Plasma Dickkopf1 (DKK1) concentrations negatively associate with atherosclerotic calcified plaque in African-Americans with type 2 diabetes. J Clin Endocrinol Metab 2013; 98:E60-5. [PMID: 23125289 PMCID: PMC3537092 DOI: 10.1210/jc.2012-3038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bone mineral density (BMD) and atherosclerotic arterial calcified plaque (CP) demonstrate inverse relationships through unknown mechanisms. Dickkopf-1 (DKK1) is an endogenous inhibitor of bone formation, and serum DKK1 has been associated with impaired osteoblast activation and susceptibility to bone loss. Plasma DKK1, BMD in the spine, and CP in three arterial beds were assessed in African-Americans (AAs) to determine relationships of serum DKK1 with atherosclerotic vascular calcification. METHODS Plasma DKK1, computed tomography-derived trabecular volumetric BMD (vBMD) in thoracic and lumbar vertebrae, and coronary artery, carotid artery, and aortoiliac CP were measured in 450 unrelated AAs with type 2 diabetes. Generalized linear models were fitted to test for associations between DKK1, vBMD, and CP. RESULTS Participants were 56% female with mean/SD/median age of 55.4/9.5/55.0 yr, diabetes duration of 10.3/8.2/8.0 yr, plasma DKK1 of 481.6/271.8/417 pg/ml, coronary artery CP mass score of 284/648/13, carotid artery CP mass score of 46/132/0, and aortoiliac CP mass score of 1613/2910/282. Adjusting for age, sex, body mass index, mean arterial blood pressure, smoking, hemoglobin A(1c), and low-density lipoprotein-cholesterol, DKK1 was inversely associated with coronary artery and aortoiliac CP [parameter estimates -0.0011 (P = 0.0137) and -0.0010 (P = 0.0214), respectively], with a trend for carotid artery CP (P = 0.1404). No associations were observed between DKK1 and vBMD in the thoracic or lumbar vertebrae. CONCLUSIONS Plasma DKK1 levels were inversely associated with coronary artery and aortoiliac CP, but not vBMD, in this cross-sectional study of AAs with type 2 diabetes. DKK1 may play a role in vascular mineral metabolism in this clinical setting.
Collapse
Affiliation(s)
- Thomas C Register
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mödder UI, Rudnik V, Liu G, Khosla S, Monroe DG. A DNA binding mutation in estrogen receptor-α leads to suppression of Wnt signaling via β-catenin destabilization in osteoblasts. J Cell Biochem 2012; 113:2248-55. [PMID: 22573547 DOI: 10.1002/jcb.24095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Estrogen receptors (ERs) play vital roles in the function and remodeling of bone. Their cellular mechanisms can broadly be categorized into those involving direct DNA binding (classical) or indirect DNA binding (non-classical). The generation of non-classical ER knock-in (ERα(-/NERKI) ) mice provides a unique opportunity to define these pathways in bone. We previously demonstrated that ERα(-/NERKI) mice exhibit an osteoporotic phenotype; however, the mechanism(s) for this remain unresolved. Gene expression analyses of cortical bone from ERα(-/NERKI) mice revealed suppression of lymphoid enhancer factor-1 (Lef1), a classic Wnt-responsive transcription factor that associates with β-catenin. Since Wnt signaling is generally considered bone anabolic, this observation leads to the hypothesis that NERKI-induced suppression of Wnt signaling may contribute to the low bone mass phenotype. We generated ERα(-/NERKI) mice crossed with the Wnt-responsive TOPGAL transgenic mouse model and observed significantly less β-galactosidase activity in ERα(-/NERKI) mice, confirming suppression of Wnt activity in vivo. Adenoviral expression of the NERKI receptor using an in vitro cell system resulted in the induction of several secreted antagonists of Wnt signaling. Furthermore, expression of NERKI abrogated Wnt10b-dependent Wnt activation using a lentiviral-mediated reporter assay. Finally, expression of NERKI destabilized β-catenin cellular protein levels and disrupted ER/β-catenin interactions. Collectively, these data suggest the osteoporotic phenotype of ERα(-/NERKI) mice may involve the suppression of Lef1-mediated Wnt signaling through both the stimulation of secreted Wnt inhibitors and/or disruption of normal β-catenin function.
Collapse
Affiliation(s)
- Ulrike I Mödder
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
44
|
Fei Y, Hurley MM. Role of fibroblast growth factor 2 and Wnt signaling in anabolic effects of parathyroid hormone on bone formation. J Cell Physiol 2012; 227:3539-45. [PMID: 22378151 DOI: 10.1002/jcp.24075] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoporosis poses enormous health and economic burden worldwide. One of the very few anabolic agents for osteoporosis is parathyroid hormone (PTH). Although great progress has been made since the FDA approved PTH in 2002, the detailed mechanisms of the bone anabolic effects of intermittent PTH treatment is still not well understood. PTH bone anabolic effect is regulated by extracellular factors. Maximal bone anabolic effect of PTH requires fibroblast growth factor 2 (FGF2) signaling, which might be mediated by transcription factor activating transcription factor 4 (ATF4). Maximal bone anabolic effect of PTH also requires Wnt signaling. Particularly, Wnt antagonists such as sclerostin, dickkopf 1 (DKK1) and secreted frizzled related protein 1 (sFRP1) are promising targets to increase bone formation. Interestingly, FGF2 signaling modulates Wnt/β-Catenin signaling pathway in bone. Therefore, multiple signaling pathways utilized by PTH are cross talking and working together to promote bone formation. Extensive studies on the mechanisms of action of PTH will help to identify new pathways that regulate bone formation, to improve available agents to stimulate bone formation, and to identify potential new anabolic agents for osteoporosis.
Collapse
Affiliation(s)
- Yurong Fei
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
45
|
Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev 2012; 33:747-83. [PMID: 22723594 DOI: 10.1210/er.2011-1060] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The processes of bone growth, modeling, and remodeling determine the structure, mass, and biomechanical properties of the skeleton. Dysregulated bone resorption or bone formation may lead to metabolic bone diseases. The Wnt pathway plays an important role in bone formation and regeneration, and expression of two Wnt pathway inhibitors, sclerostin and Dickkopf-1 (DKK1), appears to be associated with changes in bone mass. Inactivation of sclerostin leads to substantially increased bone mass in humans and in genetically manipulated animals. Studies in various animal models of bone disease have shown that inhibition of sclerostin using a monoclonal antibody (Scl-Ab) increases bone formation, density, and strength. Additional studies show that Scl-Ab improves bone healing in models of bone repair. Inhibition of DKK1 by monoclonal antibody (DKK1-Ab) stimulates bone formation in younger animals and to a lesser extent in adult animals and enhances fracture healing. Thus, sclerostin and DKK1 are emerging as the leading new targets for anabolic therapies to treat bone diseases such as osteoporosis and for bone repair. Clinical trials are ongoing to evaluate the effects of Scl-Ab and DKK1-Ab in humans for the treatment of bone loss and for bone repair.
Collapse
Affiliation(s)
- Hua Zhu Ke
- Metabolic Disorders Research, Amgen Inc., One Amgen Center Drive, MS 29-M-B, Thousand Oaks, California 91320, USA.
| | | | | | | |
Collapse
|
46
|
Yao GQ, Wu JJ, Troiano N, Zhu ML, Xiao XY, Insogna K. Selective deletion of the membrane-bound colony stimulating factor 1 isoform leads to high bone mass but does not protect against estrogen-deficiency bone loss. J Bone Miner Metab 2012; 30:408-18. [PMID: 22105655 PMCID: PMC4378684 DOI: 10.1007/s00774-011-0336-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 10/30/2011] [Indexed: 12/15/2022]
Abstract
To better define the biologic function of membrane-bound CSF1 (mCSF1) in vivo, we have generated mCSF1 knockout (k/o) mice. Spinal bone density (BMD) was 15.9% higher in k/o mice compared to wild-type (wt) controls (P < 0.01) and total BMD was increased by 6.8% (P < 0.05). A higher mean femur BMD was also observed but did not reach statistical significance (6.9% P = NS). The osteoclastogenic potential of bone marrow isolated from mCSF1 k/o mice was reduced compared to wt marrow. There were no defects in osteoblast number or function suggesting that the basis for the high bone mass phenotype was reduced resorption. In addition to a skeletal phenotype, k/o mice had significantly elevated serum triglyceride levels (123 ± 7 vs. 88 ± 3.2 mg/dl; k/o vs. wt, P < 0.001), while serum cholesterol levels were similar (122 ± 6 vs. 116 ± 6 mg/dl; k/o vs. wt, P = NS). One month after surgery, 5-month-old k/o and wt female mice experienced the same degree of bone loss following ovariectomy (OVX). OVX induced a significant fourfold increase in the expression of the soluble CSF1 isoform (sCSF1) in the bones of wt mice while expression of mCSF1 was unchanged. These findings indicate that mCSF1 is essential for normal bone remodeling since, in its absence, BMD is increased. Membrane-bound CSF1 does not appear to be required for estrogen-deficiency bone loss while in contrast; our data suggest that sCSF1 could play a key role in this pathologic process. The reasons why mCSF1 k/o mice have hypertriglyceridemia are currently under study.
Collapse
Affiliation(s)
- Gang-Qing Yao
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520-8016, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Schneider MR, Dahlhoff M, Andrukhova O, Grill J, Glösmann M, Schüler C, Weber K, Wolf E, Erben RG. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone. Bone 2012; 50:237-44. [PMID: 22056328 DOI: 10.1016/j.bone.2011.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 11/18/2022]
Abstract
Although the bone anabolic properties of intermittent parathyroid hormone (PTH) have long been employed in the treatment of osteoporosis, the molecular mechanisms behind this action remain largely unknown. Previous studies showed that PTH increases the expression and the activity of epidermal growth factor receptor (EGFR) in osteoblasts, and activation of ERK1/2 by PTH in osteoblasts was demonstrated to induce the proteolytical release of EGFR ligands and EGFR transactivation. However, conclusive evidence for an important role of the EGFR system in mediating the anabolic actions of intermittent PTH on bone in vivo is lacking. Here, we evaluated the effects of intermittent PTH on bone in Waved-5 (Wa5) mice which carry an antimorphic Egfr allele whose product acts as a dominant negative receptor. Heterozygous Wa5 females and control littermates received a subcutaneous injection of PTH (80 μg/kg) or buffer on 5 days per week for 4 weeks. Wa5 mice had slightly lower total bone mineral density (BMD), but normal cancellous bone volume and turnover in the distal femoral metaphysis. The presence of the antimorphic Egfr allele neither influenced the PTH-induced increase in serum osteocalcin nor the increases in distal femoral BMD, cortical thickness, cancellous bone volume, and cancellous bone formation rate. Similarly, the PTH-induced rise in lumbar vertebral BMD was unchanged in Wa5 relative to wild-type mice. Wa5-derived osteoblasts showed considerably lower basal extracellular signal-regulated kinase 1/2 (ERK1/2) activation as compared to control osteoblasts. Whereas activation of ERK1/2 by the EGFR ligand amphiregulin was largely blocked in Wa5 osteoblasts, treatment with PTH induced ERK1/2 activation comparable to that observed in control osteoblasts, relative to baseline levels. Our data indicate that impairment of EGFR signaling does not affect the anabolic action of intermittent PTH on cancellous and cortical bone.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Update on Wnt signaling in bone cell biology and bone disease. Gene 2011; 492:1-18. [PMID: 22079544 DOI: 10.1016/j.gene.2011.10.044] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 12/17/2022]
Abstract
For more than a decade, Wnt signaling pathways have been the focus of intense research activity in bone biology laboratories because of their importance in skeletal development, bone mass maintenance, and therapeutic potential for regenerative medicine. It is evident that even subtle alterations in the intensity, amplitude, location, and duration of Wnt signaling pathways affects skeletal development, as well as bone remodeling, regeneration, and repair during a lifespan. Here we review recent advances and discrepancies in how Wnt/Lrp5 signaling regulates osteoblasts and osteocytes, introduce new players in Wnt signaling pathways that have important roles in bone development, discuss emerging areas such as the role of Wnt signaling in osteoclastogenesis, and summarize progress made in translating basic studies to clinical therapeutics and diagnostics centered around inhibiting Wnt pathway antagonists, such as sclerostin, Dkk1 and Sfrp1. Emphasis is placed on the plethora of genetic studies in mouse models and genome wide association studies that reveal the requirement for and crucial roles of Wnt pathway components during skeletal development and disease.
Collapse
|
49
|
Robling AG, Kedlaya R, Ellis SN, Childress PJ, Bidwell JP, Bellido T, Turner CH. Anabolic and catabolic regimens of human parathyroid hormone 1-34 elicit bone- and envelope-specific attenuation of skeletal effects in Sost-deficient mice. Endocrinology 2011; 152:2963-75. [PMID: 21652726 PMCID: PMC3138236 DOI: 10.1210/en.2011-0049] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PTH is a potent calcium-regulating factor that has skeletal anabolic effects when administered intermittently or catabolic effects when maintained at consistently high levels. Bone cells express PTH receptors, but the cellular responses to PTH in bone are incompletely understood. Wnt signaling has recently been implicated in the osteo-anabolic response to the hormone. Specifically, the Sost gene, a major antagonist of Wnt signaling, is down-regulated by PTH exposure. We investigated this mechanism by treating Sost-deficient mice and their wild-type littermates with anabolic and catabolic regimens of PTH and measuring the skeletal responses. Male Sost(+/+) and Sost(-/-) mice were injected daily with human PTH 1-34 (0, 30, or 90 μg/kg) for 6 wk. Female Sost(+/+) and Sost(-/-) mice were continuously infused with vehicle or high-dose PTH (40 μg/kg · d) for 3 wk. Dual energy x-ray absorptiometry-derived measures of intermittent PTH (iPTH)-induced bone gain were impaired in Sost(-/-) mice. Further probing revealed normal or enhanced iPTH-induced cortical bone formation rates but concomitant increases in cortical porosity among Sost(-/-) mice. Distal femur trabecular bone was highly responsive to iPTH in Sost(-/-) mice. Continuous PTH (cPTH) infusion resulted in equal bone loss in Sost(+/+) and Sost(-/-) mice as measured by dual energy x-ray absorptiometry. However, distal femur trabecular bone, but not lumbar spine trabecular bone, was spared the bone-wasting effects of cPTH in Sost(-/-) mice. These results suggest that changes in Sost expression are not required for iPTH-induced anabolism. iPTH-induced resorption of cortical bone might be overstimulated in Sost-deficient environments. Furthermore, Sost deletion protects some trabecular compartments, but not cortical compartments, from bone loss induced by high-dose PTH infusion.
Collapse
Affiliation(s)
- Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS 5035, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wu JY, Aarnisalo P, Bastepe M, Sinha P, Fulzele K, Selig MK, Chen M, Poulton IJ, Purton LE, Sims NA, Weinstein LS, Kronenberg HM. Gsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice. J Clin Invest 2011; 121:3492-504. [PMID: 21804192 DOI: 10.1172/jci46406] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022] Open
Abstract
The heterotrimeric G protein subunit Gsα stimulates cAMP-dependent signaling downstream of G protein-coupled receptors. In this study, we set out to determine the role of Gsα signaling in cells of the early osteoblast lineage in vivo by conditionally deleting Gsα from osterix-expressing cells. This led to severe osteoporosis with fractures at birth, a phenotype that was found to be the consequence of impaired bone formation rather than increased resorption. Osteoblast number was markedly decreased and osteogenic differentiation was accelerated, resulting in the formation of woven bone. Rapid differentiation of mature osteoblasts into matrix-embedded osteocytes likely contributed to depletion of the osteoblast pool. In addition, the number of committed osteoblast progenitors was diminished in both bone marrow stromal cells (BMSCs) and calvarial cells of mutant mice. In the absence of Gsα, expression of sclerostin and dickkopf1 (Dkk1), inhibitors of canonical Wnt signaling, was markedly increased; this was accompanied by reduced Wnt signaling in the osteoblast lineage. In summary, we have shown that Gsα regulates bone formation by at least two distinct mechanisms: facilitating the commitment of mesenchymal progenitors to the osteoblast lineage in association with enhanced Wnt signaling; and restraining the differentiation of committed osteoblasts to enable production of bone of optimal mass, quality, and strength.
Collapse
Affiliation(s)
- Joy Y Wu
- Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|