1
|
Samiei M, Harmsen MC, Abdolahinia ED, Barar J, Petridis X. Scaffold-Free Strategies in Dental Pulp/Dentine Tissue Engineering: Current Status and Implications for Regenerative Biological Processes. Bioengineering (Basel) 2025; 12:198. [PMID: 40001717 PMCID: PMC11851408 DOI: 10.3390/bioengineering12020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Conventionally, root canal treatment is performed when the dental pulp is severely damaged or lost due to dental trauma or bacterial endodontic infections. This treatment involves removing the compromised or infected pulp tissue, disinfecting the root canal system, and sealing it with inert, non-degradable materials. However, contemporary endodontic treatment has shifted from merely obturating the root canal system with inert materials to guiding endodontic tissue regeneration through biological approaches. The ultimate goal of regenerative endodontics is to restore dental pulp tissue with structural organization and functional characteristics akin to the native pulp, leveraging advancements in tissue engineering and biomaterial sciences. Dental pulp tissue engineering commonly employs scaffold-based strategies, utilizing biomaterials as initial platforms for cell and growth factor delivery, which subsequently act as scaffolds for cell proliferation, differentiation and maturation. However, cells possess an intrinsic capacity for self-organization into spheroids and can generate their own extracellular matrix, eliminating the need for external scaffolds. This self-assembling property presents a promising alternative for scaffold-free dental pulp engineering, addressing limitations associated with biomaterial-based approaches. This review provides a comprehensive overview of cell-based, self-assembling and scaffold-free approaches in dental pulp tissue engineering, highlighting their potential advantages and challenges in advancing regenerative endodontics.
Collapse
Affiliation(s)
- Mohammad Samiei
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.S.); (M.C.H.)
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.S.); (M.C.H.)
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Xenos Petridis
- Department of Endodontics, Section of Dental Pathology & Therapeutics, School of Dentistry, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Department of Endodontology, Section of Fundamental Dentistry, Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
2
|
Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet 2024; 15:1429844. [PMID: 39015772 PMCID: PMC11250479 DOI: 10.3389/fgene.2024.1429844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.
Collapse
Affiliation(s)
- Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Song
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Abdolahinia ED, Golestani S, Seif S, Afra N, Aflatoonian K, Jalalian A, Valizadeh N, Abdollahinia ED. A review of the therapeutic potential of dental stem cells as scaffold-free models for tissue engineering application. Tissue Cell 2024; 86:102281. [PMID: 38070384 DOI: 10.1016/j.tice.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
In the realm of regenerative medicine, tissue engineering has introduced innovative approaches to facilitate tissue regeneration. Specifically, in pulp tissue engineering, both scaffold-based and scaffold-free techniques have been applied. Relevant articles were meticulously chosen from PubMed, Scopus, and Google Scholar databases through a comprehensive search spanning from October 2022 to December 2022. Despite the inherent limitations of scaffolding, including inadequate mechanical strength for hard tissues, insufficient vents for vessel penetration, immunogenicity, and suboptimal reproducibility-especially with natural polymeric scaffolds-scaffold-free tissue engineering has garnered significant attention. This methodology employs three-dimensional (3D) cell aggregates such as spheroids and cell sheets with extracellular matrix, facilitating precise regeneration of target tissues. The choice of technique aside, stem cells play a pivotal role in tissue engineering, with dental stem cells emerging as particularly promising resources. Their pluripotent nature, non-invasive extraction process, and unique properties render them highly suitable for scaffold-free tissue engineering. This study delves into the latest advancements in leveraging dental stem cells and scaffold-free techniques for the regeneration of various tissues. This paper offers a comprehensive summary of recent developments in the utilization of dental stem cells and scaffold-free methods for tissue generation. It explores the potential of these approaches to advance tissue engineering and their effectiveness in therapies aimed at tissue regeneration.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan ( Khorasgan) Branch, Isfahan, Iran
| | - Sepideh Seif
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Khotan Aflatoonian
- Department of Restorative Dentistry, Dental School, Shahed University of Medical Sciences, Tehran, Iran
| | - Ali Jalalian
- Faculty of Dentistry, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Nasrin Valizadeh
- Chemistry Department, Sciences Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elham Dalir Abdollahinia
- Fellowship of Endocrinology, Endocrinology Department, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
4
|
Roi A, Roi C, Negruțiu ML, Rusu LC, Riviș M. Mesenchymal Stem Cells Derived from Human Periapical Cysts and Their Implications in Regenerative Medicine. Biomedicines 2023; 11:2436. [PMID: 37760877 PMCID: PMC10525783 DOI: 10.3390/biomedicines11092436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells currently play an important role in the tissue engineering field in developing new regenerative approaches. The oral cavity is a rich source of mesenchymal stem cells, and introducing the use of dental stem cells, characterized by a multilineage differentiation potential, immunomodulatory activity and repair capacity, offers a good perspective for clinical dentistry. Human periapical cyst mesenchymal stem cells (hPCy-MSCs) represent a new category of dental stem cells, being collected from pathological tissue and exhibiting MSCs-like properties. As studies have described, these new identified cells possess the same characteristics as those described in MSCs, exhibiting plasticity, a high proliferation rate and the potential to differentiate into osteogenic, adipogenic and neural lineages. Reusing the biological tissue that is considered pathologic offers a new perspective for the development of further clinical applications. The identification and characterization of MSCs in the human periapical cysts allows for a better understanding of the molecular interactions, the potential healing capacity and the mechanisms of inducing the local osteogenic process, integrated in the microenvironment. Although their involvement in regenerative medicine research is recent, they exhibit important properties that refer them for the development of clinical applications in dentistry.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.R.); (L.C.R.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Ciprian Roi
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Department of Anesthesiology and Oral Surgery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Meda Lavinia Negruțiu
- Department of Prostheses Technology and Dental Materials, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Research Center in Dental Medicine Using Conventional and Alternative Technologies, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| | - Laura Cristina Rusu
- Department of Oral Pathology, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania; (A.R.); (L.C.R.)
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
| | - Mircea Riviș
- Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania;
- Department of Anesthesiology and Oral Surgery, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timișoara, Romania
| |
Collapse
|
5
|
Yang C, Du XY, Luo W. Clinical application prospects and transformation value of dental follicle stem cells in oral and neurological diseases. World J Stem Cells 2023; 15:136-149. [PMID: 37181000 PMCID: PMC10173814 DOI: 10.4252/wjsc.v15.i4.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
Since dental pulp stem cells (DPSCs) were first reported, six types of dental SCs (DSCs) have been isolated and identified. DSCs originating from the craniofacial neural crest exhibit dental-like tissue differentiation potential and neuro-ectodermal features. As a member of DSCs, dental follicle SCs (DFSCs) are the only cell type obtained at the early developing stage of the tooth prior to eruption. Dental follicle tissue has the distinct advantage of large tissue volume compared with other dental tissues, which is a prerequisite for obtaining a sufficient number of cells to meet the needs of clinical applications. Furthermore, DFSCs exhibit a significantly higher cell proliferation rate, higher colony-formation capacity, and more primitive and better anti-inflammatory effects than other DSCs. In this respect, DFSCs have the potential to be of great clinical significance and translational value in oral and neurological diseases, with natural advantages based on their origin. Lastly, cryopreservation preserves the biological properties of DFSCs and enables them to be used as off-shelf products for clinical applications. This review summarizes and comments on the properties, application potential, and clinical transformation value of DFSCs, thereby inspiring novel perspectives in the future treatment of oral and neurological diseases.
Collapse
Affiliation(s)
- Chao Yang
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen 518051, Guangdong Province, China
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Xin-Ya Du
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen 518109, Guangdong Province, China
| | - Wen Luo
- Department of Stomatology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
6
|
Carvalho S, Santos JI, Moreira L, Gonçalves M, David H, Matos L, Encarnação M, Alves S, Coutinho MF. Neurological Disease Modeling Using Pluripotent and Multipotent Stem Cells: A Key Step towards Understanding and Treating Mucopolysaccharidoses. Biomedicines 2023; 11:biomedicines11041234. [PMID: 37189853 DOI: 10.3390/biomedicines11041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Despite extensive research, the links between the accumulation of glycosaminoglycans (GAGs) and the clinical features seen in patients suffering from various forms of mucopolysaccharidoses (MPSs) have yet to be further elucidated. This is particularly true for the neuropathology of these disorders; the neurological symptoms are currently incurable, even in the cases where a disease-specific therapeutic approach does exist. One of the best ways to get insights on the molecular mechanisms driving that pathogenesis is the analysis of patient-derived cells. Yet, not every patient-derived cell recapitulates relevant disease features. For the neuronopathic forms of MPSs, for example, this is particularly evident because of the obvious inability to access live neurons. This scenario changed significantly with the advent of induced pluripotent stem cell (iPSC) technologies. From then on, a series of differentiation protocols to generate neurons from iPSC was developed and extensively used for disease modeling. Currently, human iPSC and iPSC-derived cell models have been generated for several MPSs and numerous lessons were learnt from their analysis. Here we review most of those studies, not only listing the currently available MPS iPSC lines and their derived models, but also summarizing how they were generated and the major information different groups have gathered from their analyses. Finally, and taking into account that iPSC generation is a laborious/expensive protocol that holds significant limitations, we also hypothesize on a tempting alternative to establish MPS patient-derived neuronal cells in a much more expedite way, by taking advantage of the existence of a population of multipotent stem cells in human dental pulp to establish mixed neuronal and glial cultures.
Collapse
Affiliation(s)
- Sofia Carvalho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de SantaComba, 3000-548 Coimbra, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luciana Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
7
|
Amato M, Santonocito S, Viglianisi G, Tatullo M, Isola G. Impact of Oral Mesenchymal Stem Cells Applications as a Promising Therapeutic Target in the Therapy of Periodontal Disease. Int J Mol Sci 2022; 23:13419. [PMID: 36362206 PMCID: PMC9658889 DOI: 10.3390/ijms232113419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Periodontal disease is a chronic inflammatory condition affecting about 20-50% of people, worldwide, and manifesting clinically through the detection of gingival inflammation, clinical attachment loss, radiographically assessed resorption of alveolar bone, gingival bleeding upon probing, teeth mobility and their potential loss at advanced stages. It is characterized by a multifactorial etiology, including an imbalance of the oral microbiota, mechanical stress and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include eliminating the microbial pathogens and applying biomaterials to treat the bone defects. However, periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. The aim of this review is to discuss the clinical utility of stem cells in periodontal regeneration by reviewing the relevant literature that assesses the periodontal-regenerative potential of stem cells.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, 70122 Bari, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
8
|
Bi F, Xiong J, Han X, Yang C, Li X, Chen G, Guo W, Tian W. Dental follicle cells show potential for treating Parkinson's disease through dopaminergic-neuronogenic differentiation. Hum Cell 2022; 35:1708-1721. [PMID: 36040643 DOI: 10.1007/s13577-022-00774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/20/2022] [Indexed: 11/04/2022]
Abstract
Among all the adult stem cells, odontogenic stem cells inherit the characterization of neurogenic potential of their precursor ones-the cranial crest cells. Dental follicle cells (DFCs), one of the special kind of odontogenic stem cells, are raising interest in applying to regenerative medicine for they possess multi-differentiation potential, relatively free access and ethic-friendly characteristic. Parkinson's disease (PD), as one of the common neurodegenerative disorders, affects about 0.3% of the general population. Stem cell therapies are thought to be effective to treat it. Aiming at tackling ethical-concernings, confined sources and practically applicational limits, we made use of dopaminergic neurongenic differentiation potential of the DFCs and dedicated every effort to applying them as promising cell source for treating PD. Dental follicle cells were cultured from human dental follicle tissues collected from 12 to 18-year-old teenagers' completely impacted third molars. Our data demonstrated that hDFCs were expressing mesenchymal stem cell-associated surface markers, and possessed the ability of osteogenic, adipogenic and neurogenic differentiation in vitro. Additionally, hDFCs formed neuron-like cells in vitro and in vivo, as well as expressing dopaminergic-neuronogenic marker-TH. Moreover, hDFCs survived in the transplanted areas of the Parkinson's disease model of mouse over six weeks post-surgery, and the number of TH-positive DFCs in the DFCs-Grafted group surpassed its counterpart of the MPTP group with statistically significant difference. This study indicated that hDFCs might be a promising source of dopaminergic neurons for functional transplantation, and encouraged further detailed studies on the potential of hDFCs for treating PD.
Collapse
Affiliation(s)
- Fei Bi
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
| | - Jie Xiong
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue Han
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
| | - Chao Yang
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinghan Li
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guoqing Chen
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China.
| | - Weidong Tian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Koh B, Ab Rahman FH, Matlan NA, Rajan M, Musta'ain AY, Mohd Jeffry Lee MR, Ramli R, Mohd Yunus SS, Binti Hj Idrus R, Yazid MD. Potential role of dental pulp stem cells conditioned medium for odontoblastic differentiation. Biol Res 2022; 55:11. [PMID: 35246266 PMCID: PMC8895822 DOI: 10.1186/s40659-022-00380-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Functional bioengineered tooth regeneration using autologous or allogeneic alternative differentiated cells sources are thought to have a great potential in replacing conventional dentures. This study investigated the potential of dental pulp stem cells (DPSCs) conditioned medium for odontoblastic differentiation of Wharton’s jelly mesenchymal stem cells (WJMSCs). The DPSCs derived from healthy adult permanent first molars were cultured at high confluence prior to conditioned medium collection. The WJMSCs were cultured in six different treatments, with varying ratios of culture media to DPSCs-conditioned medium. MTT assay was used to measure the rate of proliferation of WJMSCs, while immunocytochemistry staining was utilised to detect the expression of dental matrix protein 1 (DMP-1). The deposited calcium was detected and analysed via Alizarin-Red Staining (ARS). Results It was found that the proliferation of WJMSCs cultured under the mixture of complete medium and DPSCs conditioned medium showed significantly lower than the control; presumably the cells started to exit proliferative state prior differentiation. In 14 days of induction, the cells in all treatments showed osteoblastic-like morphology, calcium compound deposits were observed at day 7, 10 and 14 of differentiation suggested that DPSCs conditioned medium could lead to osteoblastic/odontoblastic differentiation. However, the DMP-1 protein can be seen only expressed minimally at day 14 of conditioned medium induction. Conclusions In conclusion, DPSCs conditioned medium appeared as a potential odontoblastic induction approach for WJMSCs. To further investigate the stimulatory effects by DPSCs conditioned medium, specific signalling pathway need to be elucidated to enhance the differentiation efficiency.
Collapse
Affiliation(s)
- Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Farynna Hana Ab Rahman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Najwa Amira Matlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Manissha Rajan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Aimi Yasmin Musta'ain
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Mohamad Ridhwan Mohd Jeffry Lee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Roszalina Ramli
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Siti Salmiah Mohd Yunus
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Paganelli A, Trubiani O, Diomede F, Pisciotta A, Paganelli R. Immunomodulating Profile of Dental Mesenchymal Stromal Cells: A Comprehensive Overview. FRONTIERS IN ORAL HEALTH 2022; 2:635055. [PMID: 35047993 PMCID: PMC8757776 DOI: 10.3389/froh.2021.635055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Dental mesenchymal stromal cells (MSCs) are multipotent cells present in dental tissues, characterized by plastic adherence in culture and specific surface markers (CD105, CD73, CD90, STRO-1, CD106, and CD146), common to all other MSC subtypes. Dental pulp, periodontal ligament, apical papilla, human exfoliated deciduous teeth, alveolar bone, dental follicle, tooth germ, and gingiva are all different sources for isolation and expansion of MSCs. Dental MSCs have regenerative and immunomodulatory properties; they are scarcely immunogenic but actively modulate T cell reactivity. in vitro studies and animal models of autoimmune diseases have provided evidence for the suppressive effects of dental MSCs on peripheral blood mononuclear cell proliferation, clearance of apoptotic cells, and promotion of a shift in the Treg/Th17 cell ratio. Appropriately stimulated MSCs produce anti-inflammatory mediators, such as transforming growth factor-β (TGF-β), prostaglandin E2, and interleukin (IL)-10. A particular mechanism through which MSCs exert their immunomodulatory action is via the production of extracellular vesicles containing such anti-inflammatory mediators. Recent studies demonstrated MSC-mediated inhibitory effects both on monocytes and activated macrophages, promoting their polarization to an anti-inflammatory M2-phenotype. A growing number of trials focusing on MSCs to treat autoimmune and inflammatory conditions are ongoing, but very few use dental tissue as a cellular source. Recent results suggest that dental MSCs are a promising therapeutic tool for immune-mediated disorders. However, the exact mechanisms responsible for dental MSC-mediated immunosuppression remain to be clarified, and impairment of dental MSCs immunosuppressive function in inflammatory conditions and aging must be assessed before considering autologous MSCs or their secreted vesicles for therapeutic purposes.
Collapse
Affiliation(s)
- Alessia Paganelli
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy.,Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Alessandra Pisciotta
- Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Paganelli
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" Chieti-Pescara, Chieti, Italy.,YDA, Institute of Clinical Immunotherapy and Advanced Biological Treatments, Pescara, Italy
| |
Collapse
|
11
|
Inada E, Saitoh I, Kubota N, Iwase Y, Kiyokawa Y, Noguchi H, Yamasaki Y, Sato M. RNA analysis based on a small number of manually isolated fixed cells (RNA-snMIFxC) to profile stem cells from human deciduous tooth-derived dental pulp cells. Biol Proced Online 2021; 23:12. [PMID: 34116635 PMCID: PMC8194139 DOI: 10.1186/s12575-021-00149-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023] Open
Abstract
Background Expression of stemness factors, such as octamer-binding transcription factor 3/4 (OCT3/4), sex determining region Y-box 2 (SOX2), and alkaline phosphatase (ALP) in human deciduous tooth-derived dental pulp cells (HDDPCs) can be assessed through fixation and subsequent immuno- or cytochemical staining. Fluorescence-activated cell sorting (FACS), a powerful system to collect cells of interest, is limited by the instrument cost and difficulty in handling. Magnetic-activated cell sorting is inexpensive compared to FACS, but is confined to cells with surface expression of the target molecule. In this study, a simple and inexpensive method was developed for the molecular analysis of immuno- or cytochemically stained cells with intracellular expression of a target molecule, through isolation of a few cells under a dissecting microscope using a mouthpiece-controlled micropipette. Results Two or more colored cells (~ 10), after staining with a chromogen such a 3,3′-diaminobenzidine, were successfully segregated from unstained cells. Expression of glyceraldehyde 3-phosphate dehydrogenase, a housekeeping gene, was discernible in all samples, while the expression of stemness genes (such as OCT3/4, SOX2, and ALP) was confined to positively stained cells. Conclusion These findings indicate the fidelity of these approaches in profiling cells exhibiting cytoplasmic or nuclear localization of stemness-specific gene products at a small-scale.
Collapse
Affiliation(s)
- Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu, 501-0296, Japan.,Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Naoko Kubota
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Yoko Iwase
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan.,Department of Dentistry for the Disabled, Asahi University School of Dentistry, Gifu, 501-0296, Japan
| | - Yuki Kiyokawa
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, 951-8514, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Youichi Yamasaki
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, 2-10-1, Tokyo, 157-8535, Japan. .,Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima, 890-8544, Japan.
| |
Collapse
|
12
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
13
|
AlHindi M, Philip MR. Osteogenic differentiation potential and quantification of fresh and cryopreserved dental follicular stem cells-an in vitro analysis. J Stem Cells Regen Med 2021; 17:28-34. [PMID: 34434005 PMCID: PMC8372412 DOI: 10.46582/jsrm.1701004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
Purpose: To isolate and characterize mesenchymal stem cells of dental follicle from fresh and cryopreserved samples and to test any significant difference in their osteogenic differentiation potential by using digital imaging software. We also investigated whether the cryoprotectant used and its concentration is able to maintain cell count and viability. Methods: Mesenchymal stem cells (MSCs) were isolated from dental follicle of impacted third molars. The osteogenic differentiation potential of dental follicle stem cells was assessed using alizarin red and alkaline phosphatase staining followed by digital imaging quantification of the stains. Results: Dental follicle cells have shown typical characterisation by exhibiting the stem cell stromal markers and hematopoietic markers, but there was variance in the percentage of expression in fresh and cryopreserved samples. There was considerable osteogenic differentiation potential in the fresh sample compared to cryopreserved sample. The cell count and viability were preserved in both samples. Conclusions: The results in the study have shown wide variation of osteogenic differentiation potential in fresh and cryopreserved samples. Also, the cryoprotectant was found to be effective in its purpose at the specified concentration.
Collapse
Affiliation(s)
- Maryam AlHindi
- Department of Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, PO Box11545, KSA
| | - Manju Roby Philip
- Department of Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, PO Box11545, KSA
| |
Collapse
|
14
|
Angiogenesis in Regenerative Dentistry: Are We Far Enough for Therapy? Int J Mol Sci 2021; 22:ijms22020929. [PMID: 33477745 PMCID: PMC7832295 DOI: 10.3390/ijms22020929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.
Collapse
|
15
|
Zeng S, Zhao X, Zhang L, Pathak JL, Huang W, Li Y, Guan H, Zhao W, Ge L, Shu Y. Effect of ciliary neurotrophic factor on neural differentiation of stem cells of human exfoliated deciduous teeth. J Biol Eng 2020; 14:29. [PMID: 33298129 PMCID: PMC7724848 DOI: 10.1186/s13036-020-00251-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/23/2020] [Indexed: 01/06/2023] Open
Abstract
The stem cells of human exfoliated deciduous teeth (SHEDs) are considered to be one of the main sources of seed cells in stem cell therapy. The aim of this study was to examine the effect of ciliary neurotrophic factor (CNTF) on neurogenic differentiation of SHEDs. With the consent of parents, SHEDs from 6 to 8 year old children were isolated and cultured. The mesenchymal stemness and the potential of multidirectional (adipogenic and osteogenic) differentiation for the isolated SHEDs were firstly determined. The effect of CNTF on specific neurogenic differentiation of SHEDs was then examined by detecting the expression of marker genes and proteins via RT-PCR, immunoblotting, and immunofluorescence microscopy. The isolated SHEDs expressed specific surface markers of mesenchymal stem cells, and their potential of osteogenic and adipogenic differentiation were confirmed. CNTF promoted the differentiation of SHEDs into neuron-like cells with a high expression of acetylcholine transferase (CHAT), a marker of cholinergic neurons. The expression of other neuron markers including nestin, microtubule-associated protein 2 (MAP 2), and β-tublin III was also detected. Interestingly, the expression of neurogenic markers was maintained at a high level after neurogenic induction. SHEDs can be induced by CNTF to differentiate into cholinergic neuron-like cells under appropriate culture conditions. Our findings have laid a foundation for future use of SHEDs to treat neurological diseases.
Collapse
Affiliation(s)
- Sujuan Zeng
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Xuedan Zhao
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Lingling Zhang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.,GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou, 510095, China
| | - Janak L Pathak
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Wenyan Huang
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Yunyang Li
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Hongbing Guan
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lihong Ge
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China.
| | - Yan Shu
- Department of Pediatric Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, 510182, China. .,Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, MD, USA.
| |
Collapse
|
16
|
Perczel-Kovách K, Hegedűs O, Földes A, Sangngoen T, Kálló K, Steward MC, Varga G, Nagy KS. STRO-1 positive cell expansion during osteogenic differentiation: A comparative study of three mesenchymal stem cell types of dental origin. Arch Oral Biol 2020; 122:104995. [PMID: 33278647 DOI: 10.1016/j.archoralbio.2020.104995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Although the osteogenic differentiation potential of mesenchymal stem cells of dental origin is well established, the roles of different marker proteins in this process remain to be clarified. Our aim was to compare the cellular and molecular changes, focusing in particular on mesenchymal stem cell markers, during in vitro osteogenesis in three dental stem cell types: dental follicle stem cells (DFSCs), periodontal ligament stem cells (PDLSCs) and dental pulp stem cells (DPSCs). DESIGN Human DFSCs, PDLSCs and DPSCs were isolated, cultured and their osteogenic differentiation was induced for 3 weeks. Mineralization was assessed by von Kossa staining and calcium concentration measurements. The expression of mesenchymal and osteogenic markers was studied by immunocytochemistry and qPCR techniques. Alkaline phosphatase (ALP) activity and the frequency of STRO-1 positive cells were also quantified. RESULTS The three cultures all showed abundant mineralization, with high calcium content by day 21. The expression of vimentin and nestin was sustained after osteogenic induction. The osteogenic medium induced a considerable elevation of STRO-1 positive cells. By day 7, the ALP mRNA level had increased more than 100-fold in DFSCs, PDLSCs, and DPSCs. Quantitative PCR results indicated dissimilarities of osteoblastic marker levels in the three dental stem cell cultures. CONCLUSIONS DFSCs, PDLSCs and DPSCs have similar functional osteogenic differentiation capacities although their expressional profiles of key osteogenic markers show considerable variations. The STRO-1 positive cell fraction expands during osteogenic differentiation while vimentin and nestin expression remain high. For identification of stemness, functional studies rather than marker expressions are needed.
Collapse
Affiliation(s)
- Katalin Perczel-Kovách
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Orsolya Hegedűs
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Anna Földes
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Thanyaporn Sangngoen
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Karola Kálló
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary
| | - Martin C Steward
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary; School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| | - Krisztina S Nagy
- Department of Oral Biology, Semmelweis University, Nagyvárad Square 4. H-1089 Budapest, Hungary.
| |
Collapse
|
17
|
Takabatake K, Tsujigiwa H, Nakano K, Inada Y, Qiusheng S, Kawai H, Sukegawa S, Fushimi S, Nagatsuka H. Geometrical Structure of Honeycomb TCP to Control Dental Pulp-Derived Cell Differentiation. MATERIALS 2020; 13:ma13225155. [PMID: 33207665 PMCID: PMC7696394 DOI: 10.3390/ma13225155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022]
Abstract
Recently, dental pulp has been attracting attention as a promising source of multipotent mesenchymal stem cells (MSCs) for various clinical applications of regeneration fields. To date, we have succeeded in establishing rat dental pulp-derived cells showing the characteristics of odontoblasts under in vitro conditions. We named them Tooth matrix-forming, GFP rat-derived Cells (TGC). However, though TGC form massive dentin-like hard tissues under in vivo conditions, this does not lead to the induction of polar odontoblasts. Focusing on the importance of the geometrical structure of an artificial biomaterial to induce cell differentiation and hard tissue formation, we previously have succeeded in developing a new biomaterial, honeycomb tricalcium phosphate (TCP) scaffold with through-holes of various diameters. In this study, to induce polar odontoblasts, TGC were induced to form odontoblasts using honeycomb TCP that had various hole diameters (75, 300, and 500 μm) as a scaffold. The results showed that honeycomb TCP with 300-μm hole diameters (300TCP) differentiated TGC into polar odontoblasts that were DSP positive. Therefore, our study indicates that 300TCP is an appropriate artificial biomaterial for dentin regeneration.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
| | - Hidetsugu Tsujigiwa
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan
- Correspondence:
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
| | - Yasunori Inada
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
| | - Shan Qiusheng
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
- Department of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Kagawa 760-0065, Japan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (Y.I.); (S.Q.); (H.K.); (S.S.); (S.F.); (H.N.)
| |
Collapse
|
18
|
Pourlak T, Pourlak T, Ghodrati M, Mortazavi A, Dolati S, Yousefi M. Usage of stem cells in oral and maxillofacial region. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2020; 122:441-452. [PMID: 33099018 DOI: 10.1016/j.jormas.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/07/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Malformations of the maxillofacial region has disturbing psychosocial effects and causes enormous socioeconomic concerns. The management of maxillofacial defects caused by congenital anomalies, trauma, osteoporotic fractures, periodontitis, or cancer treatment is challenging for oral and maxillofacial surgeons. Numerous approaches have been recommended for the managing of these deficiencies. The traditional treatment for maxillofacial defects or their repair is an intricate process by autologous bone grafts from the scapula, ribs, fibula, or iliac crest origins. Regenerative medicine is well thought-out as a perfect substitute approach for autologous bone grafts to renovate bone deficiencies. The use of stem cells has improved results and offered a technique to reconstruct craniofacial bone defects. The field of tissue engineering for the regeneration of maxillofacial needs integration of biochemical and biomaterial engineering aspects with cell transplantation to generate better-quality biomimetic scaffolds, prevascularize three-dimensional (3D) tissue structures, and engineer the composite interface of diverse facial tissues. In this review, we have discussed the application of different adult stem cells to repair oral and maxillofacial defects in animal models and clinical trials.
Collapse
Affiliation(s)
- T Pourlak
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - T Pourlak
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Ghodrati
- Department of Endodontics, Dental and Periodental Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Mortazavi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - S Dolati
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Zayed M, Iohara K. Immunomodulation and Regeneration Properties of Dental Pulp Stem Cells: A Potential Therapy to Treat Coronavirus Disease 2019. Cell Transplant 2020; 29:963689720952089. [PMID: 32830527 PMCID: PMC7443577 DOI: 10.1177/0963689720952089] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, originating from Wuhan, China, is known to cause severe acute respiratory symptoms. The occurrence of a cytokine storm in the lungs is a critical step in the disease pathogenesis, as it causes pathological lesions, pulmonary edema, and acute respiratory distress syndrome, potentially resulting in death. Currently, there is no effective treatment that targets the cytokine storm and helps regenerate the damaged tissue. Mesenchymal stem cells (MSCs) are known to act as anti-inflammatory/immunomodulatory candidates and activate endogenous regeneration. As a result, MSC therapy is a potential treatment approach for COVID-19. Intravenous injection of clinical-grade MSCs into COVID-19 patients can induce an immunomodulatory response along with improved lung function. Dental pulp stem cells (DPSCs) are considered a potential source of MSCs for immunomodulation, tissue regeneration, and clinical application. Although some current clinical trials have treated COVID-19 patients with DPSCs, this therapy has not been approved. Here, we review the potential use of DPSCs and their significance in the development of a therapy for COVID-19.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, Egypt
- Mohammed Zayed, Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi 474-8511, Japan.
| | - Koichiro Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan
| |
Collapse
|
20
|
Nowwarote N, Manokawinchoke J, Kanjana K, Fournier BPJ, Sukarawan W, Osathanon T. Transcriptome analysis of basic fibroblast growth factor treated stem cells isolated from human exfoliated deciduous teeth. Heliyon 2020; 6:e04246. [PMID: 32617420 PMCID: PMC7322690 DOI: 10.1016/j.heliyon.2020.e04246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/23/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Basic fibroblast growth factor (bFGF) regulates cell proliferation, migration, and differentiation in various cell types. The aim of the present study was to determine the bFGF target genes in stem cells isolated from human exfoliated deciduous teeth (SHEDs). Methods Cells were isolated from pulp tissue obtained from exfoliated deciduous teeth. Mesenchymal stem cell surface markers and the differentiation potential toward adipogenic and neurogenic lineages were characterized. The bFGF-treated SHED transcriptome was examined using a high throughput RNA sequencing technique. The mRNA and protein expression of selected genes were evaluated using real-time polymerase chain reaction and immunofluorescence staining, respectively. Cell cycle analysis was performed by flow cytometry. The colony forming unit number was also examined. Results The isolated cells expressed CD44, CD90, CD105, but not CD45. The upregulation of adipogenic and neurogenic marker genes was observed after culturing cells in the appropriate induction medium. Transcriptome analysis of the bFGF treated cells revealed that the upregulated genes were in the cell cycle related pathways, while the downregulated genes were in the extracellular matrix related pathways. Correspondingly, bFGF induced MKI67 mRNA expression and Ki67 protein expression. Furthermore, bFGF treatment significantly decreased the G0/G1, but increased the G2/M, population in SHEDs. Colony formation was markedly increased in the bFGF treated group and was attenuated by pretreating the cells with FGFR or PI3K inhibitors. Conclusion bFGF controls cell cycle progression in SHEDs. Thus, it can be used to amplify cell number to obtain the amount of cells required for regenerative treatments.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Kiattipan Kanjana
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, Molecular Oral Physiopathology, Paris, France.,Faculty of Dentistry Garanciere, Universite de Paris, France
| | - Waleerat Sukarawan
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand.,Genomics and Precision Dentistry Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330 Thailand
| |
Collapse
|
21
|
Yusof MFH, Hashim SNM, Zahari W, Chandra H, Noordin KBAA, Kannan TP, Hamid SSA, Mokhtar KI, Azlina A. Amniotic Membrane Enhance the Effect of Vascular Endothelial Growth Factor on the Angiogenic Marker Expression of Stem Cells from Human Exfoliated Deciduous Teeth. Appl Biochem Biotechnol 2020; 191:177-190. [PMID: 32096060 DOI: 10.1007/s12010-020-03266-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Previously, it was reported that human amniotic membrane (AM) induced stem cells from human deciduous exfoliated teeth (SHED) endothelial-like-cell differentiation. This interesting effect of AM matrix on SHED demands further elucidation. Objective of this in vitro work was to study the effect of 24-h VEGF induced on SHED endothelial differentiation when seeded on acellular stromal side (SS) of AM matrix. Stemness of SHED was identified by flow cytometry. Cell attachment and morphological changes towards the matrix was observed by scanning electron microscopy. Protein expression of endothelial marker was examined by Western blot. The expression of stem cells and endothelial-specific gene markers of VEGF-induced SHED cultured on human AM was inspected via reverse transcriptase-polymerase chain reaction. Results showed SHED at both passages retain stemness property. Ang-1 protein was expressed in SHED. Cells treated with VEGF and cultured on AM transformed attached well to AM. VEGF-induced SHED expressed both stem cell and endothelial-specific markers throughout the treatments and timeline. Interestingly, prolonged VEGF treatment increased the expression of Cox-2 and VE-Cadherin genes in all treated groups when compared to SHED. It was concluded that the VEGF-induced SHED showed better expression of endothelial-specific markers when cultured on SS of AM, with prolonged VEGF treatment.
Collapse
Affiliation(s)
- Muhammad Fuad Hilmi Yusof
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurnasihah Md Hashim
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Wafa' Zahari
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Hamshawagini Chandra
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | | | - Thirumulu Ponnuraj Kannan
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Suzina Sheikh Abdul Hamid
- Tissue Bank, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Khairani Idah Mokhtar
- Kulliyyah of Dentistry, International Islamic University Malaysia, 25200, Kuantan, Pahang, Malaysia
| | - Ahmad Azlina
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
22
|
Zhou LL, Liu W, Wu YM, Sun WL, Dörfer CE, Fawzy El-Sayed KM. Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int 2020; 2020:1327405. [PMID: 32184830 PMCID: PMC7060886 DOI: 10.1155/2020/1327405] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023] Open
Abstract
Oral mesenchymal stem/progenitor cells (MSCs) are renowned in the field of tissue engineering/regeneration for their multilineage differentiation potential and easy acquisition. These cells encompass the periodontal ligament stem/progenitor cells (PDLSCs), the dental pulp stem/progenitor cells (DPSCs), the stem/progenitor cells from human exfoliated deciduous teeth (SHED), the gingival mesenchymal stem/progenitor cells (GMSCs), the stem/progenitor cells from the apical papilla (SCAP), the dental follicle stem/progenitor cells (DFSCs), the bone marrow mesenchymal stem/progenitor cells (BM-MSCs) from the alveolar bone proper, and the human periapical cyst-mesenchymal stem cells (hPCy-MSCs). Apart from their remarkable regenerative potential, oral MSCs possess the capacity to interact with an inflammatory microenvironment. Although inflammation might affect the properties of oral MSCs, they could inversely exert a multitude of immunological actions to the local inflammatory microenvironment. The present review discusses the current understanding about the immunomodulatory role of oral MSCs both in periodontitis and systemic diseases, their "double-edged sword" uniqueness in inflammatory regulation, their affection of the immune system, and the underlying mechanisms, involving oral MSC-derived extracellular vesicles.
Collapse
Affiliation(s)
- Li-li Zhou
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Wei Liu
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, China
| | - Yan-min Wu
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wei-lian Sun
- Department of Periodontology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - C. E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel 24105, Germany
| | - K. M. Fawzy El-Sayed
- Oral Medicine and Periodontology Department, Faculty of Oral and Dental Medicine, Cairo University, Cairo 11435, Egypt
| |
Collapse
|
23
|
Man RC, Sulaiman N, Idrus RBH, Ariffin SHZ, Wahab RMA, Yazid MD. Insights into the Effects of the Dental Stem Cell Secretome on Nerve Regeneration: Towards Cell-Free Treatment. Stem Cells Int 2019; 2019:4596150. [PMID: 31772587 PMCID: PMC6855004 DOI: 10.1155/2019/4596150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/28/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Cell-free treatment is emerging as an alternative to cell delivery to promote endogenous regeneration using cell-derived factors. The purpose of this article was to systematically review studies of the effects of the dental stem cell secretome on nerve regeneration. PubMed and Scopus databases were used where searched and related studies were selected. The primary search identified 36 articles with the utilized keywords; however, only 13 articles met the defined inclusion criteria. Eight out of thirteen articles included in vivo and in vitro studies. We classified the dental stem cell-derived secretome with its nerve regeneration potential. All studies demonstrated that dental stem cell-derived factors promote neurotrophic effects that can mechanistically stimulate nerve regeneration in neurodegenerative diseases and nerve injury. This data collection will enable researchers to gather information to create a precise formulation for future prescribed treatments.
Collapse
Affiliation(s)
- Rohaina Che Man
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- Malaysia Genome Institute (MGI), National Institute of Biotechnology Malaysia (NIBM), Jalan Bangi, 43000 Bangi, Selangor, Malaysia
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Orthodontic, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Zhang J, Ding H, Liu X, Sheng Y, Liu X, Jiang C. Dental Follicle Stem Cells: Tissue Engineering and Immunomodulation. Stem Cells Dev 2019; 28:986-994. [PMID: 30968740 DOI: 10.1089/scd.2019.0012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jie Zhang
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Hong Ding
- Department of Orthodontics, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinfeng Liu
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunfei Sheng
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Xinqiang Liu
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| | - Chunmiao Jiang
- Department of Orthodontics, the Affiliated Hospital of Qingdao University; School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Huang Y, Tang X, Cehreli ZC, Dai X, Xu J, Zhu H. Autologous transplantation of deciduous tooth pulp into necrotic young permanent teeth for pulp regeneration in a dog model. J Int Med Res 2019; 47:5094-5105. [PMID: 31364449 PMCID: PMC6833418 DOI: 10.1177/0300060519862094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Objectives To investigate the potential for pulpal regeneration via autologous transplantation of deciduous tooth pulp into immature necrotic permanent teeth using an experimental dog model. Methods Experimental apical periodontitis was induced in 60 teeth of six Beagle dogs. Following canal disinfection and pulpotomy, autologous deciduous pulp tissue was transplanted into the root canals (n = 30); as controls, contralateral teeth were treated in accordance with the recommendations of the American Association of Endodontists. Radiographic examinations were performed immediately before transplant, as well as 3 and 6 months after transplant. At the 6-month examination, root samples were collected and histological and immunohistochemical analyses were used to examine tissue regeneration. Results Radiographic analysis showed no significant differences in most histopathological parameters examined; however, apical diameter reduction was greater in the experimental group. Histological and immunohistochemical analyses showed that the canal walls of the experimental group had newly formed dentin-like tissue with dentinal tubules, while the control group had cementum-like deposits along the canal wall and apical foramina. Conclusions Autologous transplantation may be useful for regeneration of dental pulp in necrotic young permanent teeth.
Collapse
Affiliation(s)
- Yan Huang
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Department of Pediatric Dentistry, Jiangxi, PR China
- Yan Huang, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Department of Pediatric Dentistry, Jiangxi 330006, PR China. Emails:
| | - Xiaoying Tang
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Department of Pediatric Dentistry, Jiangxi, PR China
| | - Zafer C. Cehreli
- Department of Pediatric Dentistry, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, LA, USA
| | - Xiaoyun Dai
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Department of Pediatric Dentistry, Jiangxi, PR China
| | - Jiangjingjun Xu
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Department of Pediatric Dentistry, Jiangxi, PR China
| | - Hongshui Zhu
- Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine, Department of Pediatric Dentistry, Jiangxi, PR China
| |
Collapse
|
26
|
Caputi S, Trubiani O, Sinjari B, Trofimova S, Diomede F, Linkova N, Diatlova A, Khavinson V. Effect of short peptides on neuronal differentiation of stem cells. Int J Immunopathol Pharmacol 2019; 33:2058738419828613. [PMID: 30791821 PMCID: PMC6376556 DOI: 10.1177/2058738419828613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It has been demonstrated that short peptides play an important role in the transmission of biological information, modulation of transcription, and restoring genetically conditioned alterations occurring with age. Peptidergic regulation of homeostasis occupies an important place in physiological processes, which lead to the aging of cells, tissues, and organs, consisting in the involution of major regulatory systems-the nervous, the endocrine, and the immune. The effect of AED (Ala-Glu-Asp), KED (Lys-Glu-Asp), KE (Lys-Glu), AEDG (Ala-Glu-Asp-Gly) peptides and their compound on neuronal differentiation of human periodontal ligament stem cells (hPDLSCs) was studied by immunofluorescence and western blot analysis. Growth-Associated Protein 43 (GAP43), which implements neurotransmission mechanisms and neuroplasticity, demonstrated an increased expression in hPDLSCs cultured with a compound of all studied peptides and with KED alone. The peptide compound and KED, increase the expression of Nestin (neurofilament protein), expressed in early neuronal precursors in hPDLSCs cultures. Thus, the compound of peptides AEDG, KE, AED, and KED could promote the neuronal differentiation of hPDLSCs and be a promising tool for the study of peptides as a modulator of neurogenesis in neurodegenerative diseases studied in animal models.
Collapse
Affiliation(s)
- Sergio Caputi
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Oriana Trubiani
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Bruna Sinjari
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Svetlana Trofimova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia
| | - Francesca Diomede
- 1 Laboratory of Stem Cells and Regenerative Medicine, Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Natalia Linkova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,3 Department of Medical Physic, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Anastasia Diatlova
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,3 Department of Medical Physic, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Vladimir Khavinson
- 2 Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, Saint Petersburg, Russia.,4 Group of Peptide Regulation of Ageing, Pavlov Institute of Physiology of RAS, Saint Petersburg, Russia
| |
Collapse
|
27
|
Wang D, Wang Y, Tian W, Pan J. Advances of tooth-derived stem cells in neural diseases treatments and nerve tissue regeneration. Cell Prolif 2019; 52:e12572. [PMID: 30714230 PMCID: PMC6536383 DOI: 10.1111/cpr.12572] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Nerous system diseases, both central and peripheral, bring an incredible burden onto patients and enormously reduce their quality of life. Currently, there are still no effective treatments to repair nerve lesions that do not have side effects. Stem cell-based therapies, especially those using dental stem cells, bring new hope to neural diseases. Dental stem cells, derived from the neural crest, have many characteristics that are similar to neural cells, indicating that they can be an ideal source of cells for neural regeneration and repair. This review summarizes the neural traits of all the dental cell types, including DPSCs, PDLCs, DFCs, APSCs and their potential applications in nervous system diseases. We have summed up the advantages of dental stem cells in neural repair, such as their neurotrophic and neuroprotective traits, easy harvest and low rejective reaction rate, among others. Taken together, dental stem cells are an ideal cell source for neural tissue regeneration and repair.
Collapse
Affiliation(s)
- Dianri Wang
- State Key Laboratory of Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Yuhao Wang
- State Key Laboratory of Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jian Pan
- State Key Laboratory of Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
- Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
28
|
Luzuriaga J, Pastor-Alonso O, Encinas JM, Unda F, Ibarretxe G, Pineda JR. Human Dental Pulp Stem Cells Grown in Neurogenic Media Differentiate Into Endothelial Cells and Promote Neovasculogenesis in the Mouse Brain. Front Physiol 2019; 10:347. [PMID: 30984027 PMCID: PMC6447688 DOI: 10.3389/fphys.2019.00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 12/27/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have the capacity to give rise to cells with neuronal-like phenotypes, suggesting their use in brain cell therapies. In the present work, we wanted to address the phenotypic fate of adult genetically unmodified human DPSCs cultured in NeurocultTM (Stem Cell Technologies), a cell culture medium without serum which can be alternatively supplemented for the expansion and/or differentiation of adult neural stem cells (NSCs). Our results show that non-genetically modified human adult DPSCs cultured with Neurocult NS-A proliferation supplement generated neurosphere-like dentospheres expressing the NSC markers Nestin and glial fibrillary acidic protein (GFAP), but also the vascular endothelial cell marker CD31. Remarkably, 1 month after intracranial graft into athymic nude mice, human CD31+/CD146+ and Nestin+ DPSC-derived cells were found tightly associated with both the endothelial and pericyte layers of brain vasculature, forming full blood vessels of human origin which showed an increased laminin staining. These results are the first demonstration that DPSC-derived cells contributed to the generation of neovasculature within brain tissue, and that Neurocult and other related serum-free cell culture media may constitute a fast and efficient way to obtain endothelial cells from human DPSCs.
Collapse
Affiliation(s)
- Jon Luzuriaga
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Juan Manuel Encinas
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Fernando Unda
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Gaskon Ibarretxe
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jose Ramon Pineda
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Leioa, Spain
| |
Collapse
|
29
|
Al-Habib M, Huang GTJ. Dental Mesenchymal Stem Cells: Dental Pulp Stem Cells, Periodontal Ligament Stem Cells, Apical Papilla Stem Cells, and Primary Teeth Stem Cells-Isolation, Characterization, and Expansion for Tissue Engineering. Methods Mol Biol 2019; 1922:59-76. [PMID: 30838565 DOI: 10.1007/978-1-4939-9012-2_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dental stem cells (DSCs) have been shown to possess great potential for multiple biomedical applications, especially for dental tissue regeneration. They are a special type of subpopulation of mesenchymal stem/stromal cells (MSCs) and present subtle differences from other types of MSCs. Therefore, it requires a specialized expertise to isolate, culture, and characterize these cells in vitro and in vivo. The purpose of this chapter is to share our experience in studying these cells. We will describe in detail laboratory protocols outlining how the cells are isolated, cultured, expanded, and characterized using various in vitro cellular and biochemical analyses, as well as an in vivo study model using immunocompromised mice to observe tissue regeneration after transplantation of these DSCs.
Collapse
Affiliation(s)
- Mey Al-Habib
- Faculty of Dentistry, Department of Endodontics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - George T-J Huang
- Department of Bioscience Research, University of Tennessee Health Science Center, College of Dentistry, Memphis, TN, USA.
| |
Collapse
|
30
|
Prahasanti C, Ulfah N, Kusuma II, Hayati N, Ernawati DS, Krismariono A, Bramantoro T. Transforming Growth Factor-β1 and Runt-related Transcription Factor 2 as Markers of Osteogenesis in Stem Cells from Human Exfoliated Deciduous Teeth Enriched Bone Grafting. Contemp Clin Dent 2018; 9:574-576. [PMID: 31772465 PMCID: PMC6868629 DOI: 10.4103/ccd.ccd_609_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Stem cells from human exfoliated deciduous teeth (SHED) are one source of adult stem cells which can proliferate and differentiate into many types of tissues than any other stem cells. SHED represent potential stem cells for therapeutic therapy and tissue engineering. AIMS The aim of this study was to compare the expression of transforming growth factor-β1 (TGF-β1) and runt-related transcription factor 2 (RUNX2) in hydroxyapatite (HA) scaffold with SHED. SUBJECTS AND METHODS Eight experimental animals were divided into two groups. The first group was transplanted with HA and the second with HA and SHED. The expression of TGF-β1 and RUNX2 was seen 21 days later by means of immunohistochemical analysis. STATISTICAL ANALYSIS USED Data were analyzed using an independent t-test with a significance level of 5%. RESULTS The analysis results of an independent t-test showed a significant difference between the two groups. The second group given HA with SHED showed a significantly higher expression of TGF-β1 and RUNX2 than that of the first group. CONCLUSIONS Expression of TGF-β1 and RUNX2 occurs after the application of HA with SHED, while TGF-β1 and RUNX2 expression in the HA with SHED group was significantly higher than in the group without SHED.
Collapse
Affiliation(s)
- Chiquita Prahasanti
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Noer Ulfah
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ivan Indra Kusuma
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Hayati
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Agung Krismariono
- Department of Periodontology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Taufan Bramantoro
- Department of Dental Public Health, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
31
|
Pizzicannella J, Diomede F, Merciaro I, Caputi S, Tartaro A, Guarnieri S, Trubiani O. Endothelial committed oral stem cells as modelling in the relationship between periodontal and cardiovascular disease. J Cell Physiol 2018; 233:6734-6747. [DOI: 10.1002/jcp.26515] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/30/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Jacopo Pizzicannella
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
- Institute of Cardiology ASL 02 Lanciano/Vasto/Chieti Chieti Italy
| | - Francesca Diomede
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Ilaria Merciaro
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Sergio Caputi
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Armando Tartaro
- Department of Neuroscience, Imaging and Clinical Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Simone Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences University “G. d'Annunzio” Chieti and Pescara Chieti Italy
| |
Collapse
|
32
|
Heng BC, Gong T, Wang S, Lim LW, Wu W, Zhang C. Decellularized Matrix Derived from Neural Differentiation of Embryonic Stem Cells Enhances the Neurogenic Potential of Dental Follicle Stem Cells. J Endod 2018; 43:409-416. [PMID: 28231979 DOI: 10.1016/j.joen.2016.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/07/2016] [Accepted: 10/22/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Dental follicle stem cells (DFSCs) possess neurogenic potential because they originate from the embryonic neural crest. This study investigated whether neural differentiation of DFSCs can be enhanced by culture on decellularized matrix substrata (NSC-DECM) derived from neurogenesis of human embryonic stem cells (hESCs). METHODS The hESCs were differentiated into neural stem cells (NSCs), and NSC-DECM was extracted from confluent monolayers of NSCs through treatment with deionized water. DFSCs seeded on NSC-DECM, Geltrex, and tissue culture polystyrene (TCPS) were subjected to neural induction during a period of 21 days. Expression of early/intermediate (Musashi1, PAX6, NSE, and βIII-tubulin) and mature/late (NGN2, NeuN, NFM, and MASH1) neural markers by DFSCs was analyzed at the 7-, 14-, and 21-day time points with quantitative real-time polymerase chain reaction. Immunocytochemistry for detection of βIII-tubulin, PAX6, and NGN2 expression by DFSCs on day 7 of neural induction was also carried out. RESULTS Quantitative RT-PCR showed that expression of PAX6, Musashi1, βIII-tubulin, NSE, NGN2, and NFM by DFSCs was enhanced on NSC-DECM versus either the Geltrex or TCPS groups. Immunocytochemistry showed that DFSCs in the NSC-DECM group displayed more intense staining for βIII-tubulin, PAX6, and NGN2 expression, together with more neurite outgrowths and elongated morphology, as compared with either Geltrex or TCPS. CONCLUSIONS DECM derived from neurogenesis of hESCs can enhance the neurogenic potential of DFSCs.
Collapse
Affiliation(s)
- Boon Chin Heng
- Endodontology, Faculty of Dentistry, University of Hong Kong, Pokfulam, Hong Kong, China; Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ting Gong
- Endodontology, Faculty of Dentistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shuai Wang
- ENT Institute of Shenzhen, Shenzhen Longgang ENT Hospital, Shenzhen, China
| | - Lee Wei Lim
- Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wutian Wu
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, University of Hong Kong, Pokfulam, Hong Kong, China; HKU Shenzhen Institute of Research and Innovation, Hong Kong, China.
| |
Collapse
|
33
|
Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers Med Sci 2017; 33:95-102. [DOI: 10.1007/s10103-017-2355-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023]
|
34
|
Abstract
Craniofacial mesenchymal stem cells (MSCs), isolated from an abundant and accessible source of craniofacial tissues, possess self-renewal and multilineage differentiation potential. It has been reported that craniofacial MSCs show elevated proliferation and regeneration capacities compared to bone marrow mesenchymal stem cells (BMMSCs). Furthermore, the immunomodulatory property has generated an emerging multidisciplinary research field that translates MSC-based therapies to the clinic for the treatment of inflammatory and autoimmune diseases. Due to tremendous unmet clinical needs, it was extensively investigated how craniofacial MSCs impose their therapeutic effects, especially by interacting with immune cells. Mechanically, MSCs take advantage of a variety of pathways to regulate immune cells, including paracrine signaling such as transforming growth factor (TGF)-β and hepatocyte growth factor (HGF) pathways, and cell-cell contact Fas/FasL signaling-induced apoptosis. In return, immune cells attenuate MSC function by secreting inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β. This perspective review critically discusses the interaction of craniofacial MSCs with the immune milieu, as well as the underlying molecular mechanism contributing to the future improved therapeutic effects of craniofacial MSCs.
Collapse
Affiliation(s)
- Ruili Yang
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Tingting Yu
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081 China
| | - Yanheng Zhou
- Center for Craniofacial Stem Cell Research and Regeneration, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, #22 Zhongguancun South Avenue, Beijing, 100081 China
| |
Collapse
|
35
|
Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng 2017; 8:2041731417702531. [PMID: 28616151 PMCID: PMC5461911 DOI: 10.1177/2041731417702531] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cell biology has become an important field in regenerative medicine and tissue engineering therapy since the discovery and characterization of mesenchymal stem cells. Stem cell populations have also been isolated from human dental tissues, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from apical papilla, dental follicle progenitor cells, and periodontal ligament stem cells. Dental stem cells are relatively easily obtainable and exhibit high plasticity and multipotential capabilities. The dental stem cells represent a gold standard for neural-crest-derived bone reconstruction in humans and can be used for the repair of body defects in low-risk autologous therapeutic strategies. The bioengineering technologies developed for tooth regeneration will make substantial contributions to understand the developmental process and will encourage future organ replacement by regenerative therapies in a wide variety of organs such as the liver, kidney, and heart. The concept of developing tooth banking and preservation of dental stem cells is promising. Further research in the area has the potential to herald a new dawn in effective treatment of notoriously difficult diseases which could prove highly beneficial to mankind in the long run.
Collapse
Affiliation(s)
- Elna Paul Chalisserry
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
| | - Seung Yun Nam
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sang Hyug Park
- Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University, Busan, Korea
- Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan, South Korea
| | - Sukumaran Anil
- Division of Periodontics, Department of Preventive Dental Sciences, College of Dentistry Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
36
|
Ginani F, Soares DM, Rabêlo LM, Rocha HAO, de Souza LB, Barboza CAG. Effect of a cryopreservation protocol on the proliferation of stem cells from human exfoliated deciduous teeth. Acta Odontol Scand 2016; 74:598-604. [PMID: 27576361 DOI: 10.1080/00016357.2016.1224919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the influence of a cryopreservation protocol on the proliferation and viability of stem cells from human exfoliated deciduous teeth (SHEDs). MATERIALS AND METHODS Cells from the pulp of three deciduous teeth were isolated and characterized to confirm their stem cell nature. In second passage, part of the cells were submitted to normal conditions of cell culture (Control group), while part of the cells were maintained in 10% DMSO diluted in foetal bovine serum and submitted to the following cryopreservation protocol: 2 h at 4 °C, 18 h at -20 °C and then at -80 °C for two intervals (30 days - Cryopreservation I; and 180 days Cryopreservation II). Cell proliferation and cell cycle were evaluated at intervals of 24, 48 and 72 h after plating, and apoptosis-related events were analyzed at 72 h. RESULTS All groups exhibited an increase in the number of cells, and no significant differences between the cryopreserved and control groups were observed (p > .05). The distribution of cells in the cell cycle phases was consistent with cell proliferation, and the percentage of viable cells was higher than 99% in all groups, indicating that cell viability was not affected by the cryopreservation protocol throughout the experiment. CONCLUSION The proposed cryopreservation protocol is adequate for the storage of SHED, permitting their use in future experimental studies.
Collapse
|
37
|
Klingelhöffer C, Reck A, Morsczeck C. The extracellular concentration of osteocalcin decreased in dental follicle cell cultures during biomineralization. Cytotechnology 2016; 68:2171-2176. [PMID: 27447177 PMCID: PMC5023567 DOI: 10.1007/s10616-016-0012-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/16/2016] [Indexed: 01/26/2023] Open
Abstract
The secretion of osteocalcin (OCN) is an excellent differentiation marker for the osteogenic differentiation. This study investigated the secretion of OCN during the osteogenic differentiation of DFCs. During the differentiation of DFCs the extracellular concentrations of OCN were higher in standard cell culture medium than in osteogenic differentiation medium. However, after 4 weeks in the osteogenic differentiation medium the extracellular OCN concentration decreased strongly, whereas the concentration remains high in the control medium. At this point in time DFCs formed connective tissue like structures with mineralized clusters and OCN. Real-time RT-PCR analyses and western-blot analyses proved that OCN was expressed in both cell culture media. However, the expression of the mRNA was inhibited in the osteogenic differentiation medium. These results suggest that DFCs secrete constitutively OCN into the cell culture medium and that the osteogenic differentiation medium suppresses the gene expression of OCN. Moreover, OCN imbeds into the extracellular matrix after the formation of connective tissue like structures, and the soluble OCN in the cell culture medium disappears. Hence, extracellular OCN in the cell culture medium is not a marker for the osteogenic differentiation of DFCs.
Collapse
Affiliation(s)
- C Klingelhöffer
- Department of Cranio- and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - A Reck
- Department of Cranio- and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - C Morsczeck
- Department of Cranio- and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
38
|
Santamaría S, Sanchez N, Sanz M, Garcia-Sanz JA. Comparison of periodontal ligament and gingiva-derived mesenchymal stem cells for regenerative therapies. Clin Oral Investig 2016; 21:1095-1102. [PMID: 27270903 DOI: 10.1007/s00784-016-1867-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Tissue-engineering therapies using undifferentiated mesenchymal cells (MSCs) from intra-oral origin have been tested in experimental animals. This experimental study compared the characteristics of undifferentiated mesenchymal stem cells from either periodontal ligament or gingival origin, aiming to establish the basis for the future use of these cells on regenerative therapies. MATERIALS AND METHODS Gingiva-derived mesenchymal stem cells (GMSCs) were obtained from de-epithelialized gingival biopsies, enzymatically digested and expanded in conditions of exponential growth. Their growth characteristics, phenotype, and differentiation ability were compared with those of periodontal ligament-derived mesenchymal stem cells (PDLMSCs). RESULTS Both periodontal ligament- and gingiva-derived cells displayed a MSC-like phenotype and were able to differentiate into osteoblasts, chondroblasts, and adipocytes. These cells were genetically stable following in vitro expansion and did not generate tumors when implanted in immunocompromised mice. Furthermore, under suboptimal growth conditions, GMSCs proliferated with higher rates than PDLMSCs. CONCLUSIONS Stem cells derived from gingival biopsies represent bona fide MSCs and have demonstrated genetic stability and lack of tumorigenicity. CLINICAL RELEVANCE Gingiva-derived MSCs may represent an accessible source of messenchymal stem cells to be used in future periodontal regenerative therapies.
Collapse
Affiliation(s)
- Silvia Santamaría
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- ETEP Research Group, Faculty of Odontology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Nerea Sanchez
- ETEP Research Group, Faculty of Odontology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Jose A Garcia-Sanz
- Centro de Investigaciones Biologicas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
39
|
Zhang N, Chen B, Wang W, Chen C, Kang J, Deng SQ, Zhang B, Liu S, Han F. Isolation, characterization and multi-lineage differentiation of stem cells from human exfoliated deciduous teeth. Mol Med Rep 2016; 14:95-102. [PMID: 27151462 PMCID: PMC4918624 DOI: 10.3892/mmr.2016.5214] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/02/2016] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to isolate stem cells from human exfoliated deciduous teeth (SHEDs) and identify their phenotypes and multi‑lineage differentiation potential. Three SHED cell strains were successfully isolated from three exfoliated deciduous teeth from different human subjects using the outgrowth method. Flow cytometric analysis indicated that SHEDs displayed high expression of the mesenchymal cell markers CD73 and CD90 but low expression of the hematopoietic stem cell marker CD34. PCR analysis illustrated that SHEDs expressed the mesenchymal stem cell markers CD44, CD73 and CD90, the osteoblast markers Alpl, Runx2, CBFA1 and collagen Ⅰ, the cartilage cell markers Col10a1 and Acan, the adipose cell markers PPARγ2 and LPL, and the neuronal stem cell marker Nestin. In vitro induction experiments demonstrated the potential of the SHEDs for osteogenic, adipogenic and neurogenic differentiation. These SHED cells may be useful for further stem cell research and future therapeutic applications.
Collapse
Affiliation(s)
- Nan Zhang
- Centre for Stem Cells and Regenerative Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Baoxing Chen
- Department of Stomatology, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Wei Wang
- Centre for Stem Cells and Regenerative Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Chao Chen
- Centre for Stem Cells and Regenerative Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Jie Kang
- Department of Stomatology, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Samuel Qinnan Deng
- Department of Stomatology, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Bin Zhang
- Department of Stomatology, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Shuwei Liu
- Shandong Provincial Key Laboratory of Mental Disorders, Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Fabin Han
- Centre for Stem Cells and Regenerative Medicine, Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
40
|
Ullah I, Subbarao RB, Kim EJ, Bharti D, Jang SJ, Park JS, Shivakumar SB, Lee SL, Kang D, Byun JH, Park BW, Rho GJ. In vitro comparative analysis of human dental stem cells from a single donor and its neuronal differentiation potential evaluated by electrophysiology. Life Sci 2016; 154:39-51. [PMID: 27107840 DOI: 10.1016/j.lfs.2016.04.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
AIMS The aim of this study was to find out a mesenchymal stem cells (MSCs) source from human dental tissues of the same donor (follicle, papilla and pulp), which exhibits higher neurogenic differentiation potential in vitro. MAIN METHODS MSCs were isolated from dental tissues (follicle, papilla and pulp) by digestion method. All MSCs were analyzed for pluripotent makers by western blot, cell surface markers by flow cytometry, adipo- and osteocytes markers by RT-qPCR. The neuronal differentiated MSCs were characterized for neuronal specific markers by RT-qPCR and immunofluorescence. Functional neuronal properties were analyzed by electrophysiology and synaptic markers expression. KEY FINDINGS All MSCs expressed pluripotent markers (Oct4, Sox2 and Nanog) and were found positive for mesenymal markers (CD44, CD90, CD105) while negative for hematopoietic markers (CD34 and CD45). Furthermore, MSCs were successfully differentiated into adipocytes, osteocytes and trans-differentiated into neuronal cells. Among them, dental pulp derived MSCs exhibits higher neurogenic differentiation potential, in term of expression of neuronal specific markers at both gene and protein level, and having higher Na(+) and K(+) current with the expression of synaptic markers. SIGNIFICANCE The three types of dental MSCs from a single donor broadly possessed similar cellular properties and can differentiate into neuronal cells; however, pulp derived MSCs showed higher neurogenic potential than the follicle and papilla, suggesting their use in future stem cells therapy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Eun-Jin Kim
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dawon Kang
- Department of Physiology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 660-751, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Science, School of Medicine, Gyeongsang National University, Republic of Korea.
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
41
|
Heng BC, Lim LW, Wu W, Zhang C. An Overview of Protocols for the Neural Induction of Dental and Oral Stem Cells In Vitro. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:220-50. [PMID: 26757369 DOI: 10.1089/ten.teb.2015.0488] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, various adult stem cells have been identified within the oral cavity, including dental pulp stem cells, dental follicle stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, and mesenchymal stem cells from the gingiva. All of these possess neurogenic potential due to their common developmental origin from the embryonic neural crest. Besides the relative ease of isolation of these adult stem cells from readily available biological waste routinely produced during dental treatment, these cells also possess the advantage of immune compatibility in autologous transplantation. In recent years, much interest has been focused on the derivation of neural lineages from these adult stem cells for therapeutic applications in the brain, spinal cord, and peripheral nerve regeneration. In addition, there are also promising nontherapeutic applications of stem cell-derived neurons in pharmacological and toxicological screening of neuroactive drugs, and for in vitro modeling of neurodevelopmental and neurodegenerative diseases. Hence, this review will critically examine the diverse array of in vitro neural induction protocols that have been devised for dental and oral-derived stem cells. These protocols are defined not only by the culture milieu comprising the basal medium plus growth factors, small molecules, and other culture supplements but also by the substrata/surface coatings utilized, the presence of multiple culture stages, the total culture duration, the initial seeding density, and whether the spheroid/neurosphere formation is being utilized to recapitulate the three-dimensional neural differentiation microenvironment that is naturally present physiologically in vivo.
Collapse
Affiliation(s)
- Boon Chin Heng
- 1 Comprehensive Dental Care, Endodonthics, Faculty of Dentistry, The University of Hong Kong , Pokfulam, Hong Kong
| | - Lee Wei Lim
- 2 School of Biomedical Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | - Wutian Wu
- 2 School of Biomedical Sciences, The University of Hong Kong , Pokfulam, Hong Kong
| | - Chengfei Zhang
- 1 Comprehensive Dental Care, Endodonthics, Faculty of Dentistry, The University of Hong Kong , Pokfulam, Hong Kong
| |
Collapse
|
42
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Suchánek J, Suchánková Kleplová T, Řeháček V, Browne KZ, Soukup T. Proliferative Capacity and Phenotypical Alteration of Multipotent Ecto-Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth Cultured in Xenogeneic and Allogeneic Media. Folia Biol (Praha) 2016; 62:1-14. [PMID: 27085005 DOI: 10.14712/fb2016062010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Foetal calf serum (FCS) is a standard supplement used in media for in vitro stem cell cultivation. This xenogeneic supplement remains widely used for its favourable growth-promoting properties and ease of accessibility; however, it is inherently not fit for human medicine due to its capacity to temper with the cultured cell quality. For this reason, the international community encourages research and development of allogeneic sera, which would expunge this issue. This study aims to investigate the differences in proliferative capacity, phenotype, and differentiation capacity of ecto-mesenchymal stem cells from human exfoliated deciduous teeth (SHED) cultured in vitro in media supplemented with allogeneic and xenogeneic sera. To address these aims, we cultured three lineages of stem cells in media supplemented with FCS in a concentration of 2% + growth factors; human blood plasma and platelet-rich plasma in concentrations of 2% + growth factors, and 10%. Here, the xenogeneic cultivation was considered as a basis for comparison because this serum is commonly used in studies concerning ecto-mesenchymal stem cells. The study shows that multipotent ecto-mesenchymal SHED can be feasibly cultivated in media where the xenogeneic FCS is substituted by allogeneic platelet-rich plasma, considering the cultured cell proliferative and differentiation capacities. We have also proved that different sera impact the cultured cells' phenotype differently, which has major implications for previous and future stem cell research and regenerative therapy.
Collapse
Affiliation(s)
- J Suchánek
- Charles University in Prague, Faculty of Medicine in Hradec Králové, Department of Dentistry, Hradec Králové, Czech Republic
| | - T Suchánková Kleplová
- Charles University in Prague, Faculty of Medicine in Hradec Králové, Department of Dentistry, Hradec Králové, Czech Republic
| | - V Řeháček
- Transfusion Department, University Hospital Hradec Králové, Czech Republic
| | - K Z Browne
- Charles University in Prague, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Hradec Králové, Czech Republic
| | - T Soukup
- Charles University in Prague, Faculty of Medicine in Hradec Králové, Department of Histology and Embryology, Hradec Králové, Czech Republic
| |
Collapse
|
44
|
Lucaciu O, Soriţău O, Gheban D, Ciuca DR, Virtic O, Vulpoi A, Dirzu N, Câmpian R, Băciuţ G, Popa C, Simon S, Berce P, Băciuţ M, Crisan B. Dental follicle stem cells in bone regeneration on titanium implants. BMC Biotechnol 2015; 15:114. [PMID: 26718927 PMCID: PMC4697321 DOI: 10.1186/s12896-015-0229-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
Background We aimed to demonstrate that DF stem cells from impacted molars and canines can be used to improve bone regeneration on titanium implants surfaces. This study highlights the presence of stem cells in DF, their potential to adhere and differentiate into osteoblasts on different types of titanium surfaces. Results Isolated cells from the harvested DF tissue from impacted canine/molars, expressed stem cells markers. Differentiation into bone cells was induced in presence or absence of BMP-2 and TGFβ1. The presence of growth factors until 28 days in medium maintained the cells in an earlier stage of differentiation with a lower level of specific bone proteins and a higher expression of alkaline phosphatase (ALP). Influence of titanium implants with different bioactive coatings, hydroxyapatite (TiHA) and with silicatitanate (TiSiO2), and porous Ti6Al7Nb implants as control (TiCtrl), was studied in terms of cell adhesion and viability. Ti HA implants proved to be more favorable for adhesion and proliferation of DF stem cells in first days of cultivation. The influence of titanium coatings and osteogenic differentiation mediums with or without growth factors were evaluated. Additional BMP-2 in the medium did not allow DF stem cells to develop a more mature phenotype, leaving them in a pre-osteogenic stage. The best sustained mineralization process evaluated by immuno-cytochemical staining, scanning electron microscopy and Ca2+ quantification was observed for TiHA implants with a higher expression of ALP, collagen and Ca2+ deposition. Long term culturing (70 days) on titanium surfaces of DF stem cells in standard medium without soluble osteogenic inducers, indicated that HA coating is more favorable, with the acquisition of a more mature osteoblastic phenotype as shown by immunocytochemical staining. These findings demonstrated that even in absence of exogenous osteogenic factors, TiHA implants and in a lesser extent TiCtrl and TiSiO2 implants can induce and sustain osteogenic differentiation of DF stem cells, by their chemical and topographical properties. Conclusions Our research demonstrated that DF stem cells have a spontaneous tendency for osteogenic differentiation and can be used for improving bone regeneration on titanium implants surfaces. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ondine Lucaciu
- Department of Oral Rehabilitation, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 15 Victor Babeș Street, 400012, Cluj-Napoca, Cluj, Romania.
| | - Olga Soriţău
- "Ion Chiricuţă" Oncological Institute Cluj-Napoca, 34-36 Republicii Street, 400015, Cluj-Napoca, Cluj, Romania.
| | - Dan Gheban
- Department of Anatomic Pathology, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj Napoca, 1-3 Clinicilor Street, 400006, Cluj Napoca, Cluj, Romania.
| | - Dan Rus Ciuca
- Department of Pathological Anatomy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 8 Victor Babeș Street, 400012, Cluj-Napoca, Cluj, Romania.
| | - Oana Virtic
- Department of Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 8 Victor Babeș Street, 400012, Cluj-Napoca, Cluj, Romania.
| | - Adriana Vulpoi
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.
| | | | - Radu Câmpian
- Department of Oral Rehabilitation, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 15 Victor Babeș Street, 400012, Cluj-Napoca, Cluj, Romania.
| | - Grigore Băciuţ
- Department of Cranio-Maxillofacial Surgery, Dental Implantology, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 37 Cardinal Iuliu Hossu Street, 400029, Cluj-Napoca, Cluj, Romania.
| | | | - Simion Simon
- Faculty of Physics & Institute of Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania.
| | | | - Mihaela Băciuţ
- Department of Cranio-Maxillofacial Surgery, Dental Implantology, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 37 Cardinal Iuliu Hossu Street, 400029, Cluj-Napoca, Cluj, Romania.
| | - Bogdan Crisan
- Department of Cranio-Maxillofacial Surgery, Dental Implantology, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 37 Cardinal Iuliu Hossu Street, 400029, Cluj-Napoca, Cluj, Romania.
| |
Collapse
|
45
|
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2015. [PMID: 26392396 DOI: 10.1007/s.00784-015-1601-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated. RESULTS TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein). CONCLUSIONS ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1. CLINICAL RELEVANCE The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Collapse
|
46
|
Cementoblastic lineage formation in the cross-talk between stem cells of human exfoliated deciduous teeth and epithelial rests of Malassez cells. Clin Oral Investig 2015; 20:1181-91. [PMID: 26392396 DOI: 10.1007/s00784-015-1601-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/11/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the synergistic effect of epithelial rests of Malassez cells (ERM) and transforming growth factor-β1 (TGF-β1) on proliferation, cementogenic and osteogenic differentiation of stem cells derived from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS SHED were co-cultured with ERM with/without TGF-β1. Then, SHED proliferation, morphological appearance, alkaline phosphatase (ALP) activity, mineralization behaviour and gene/protein expression of cemento/osteoblastic phenotype were evaluated. RESULTS TGF-β1 enhanced SHED proliferation when either cultured alone or co-cultured with ERM. ERM induced the cementoblastic differentiation of SHED which was significantly accelerated when treated with TGF-β1. This activity was demonstrated by high ALP activity, strong mineral deposition and upregulation of cementum/bone-related gene and protein expressions (i.e. ALP, collagen type I, bone sialoprotein, osteocalcin and cementum attachment protein). CONCLUSIONS ERM were able to induce SHED differentiation along the cemento/osteoblastic lineage that was triggered in the presence of TGF-β1. CLINICAL RELEVANCE The cemento/osteoblastic differentiation capability of SHED possesses a therapeutic potential in endodontic and periodontal tissue engineering.
Collapse
|
47
|
Comparison of human mesenchymal stem cells derived from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous tooth pulp. Int J Oral Maxillofac Surg 2015; 45:124-31. [PMID: 26235629 DOI: 10.1016/j.ijom.2015.06.022] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 05/29/2015] [Accepted: 06/29/2015] [Indexed: 01/09/2023]
Abstract
Populations of pluripotent stem cells were isolated from bone marrow, synovial fluid, adult dental pulp, and exfoliated deciduous teeth and their multipotentiality properties compared. Osteogenic, chondrogenic, adipogenic, and neurogenic differentiation potentials were examined. Bone marrow mesenchymal stem cells (BMMSCs) and synovial fluid-derived cells (SFCs) showed the highest levels of osteogenesis as expressed by alkaline phosphatase (ALP) activity (0.54±0.094 U/mg protein and 0.57±0.039 U/mg protein, respectively; P=0.60) and by osteocalcin (BGLAP; determined by real-time RT-PCR). SFCs showed the highest levels of chondrogenesis as expressed by ALP activity (1.75±0.097 U/mg protein) and of COL2A1 and COL10A1 by real-time PCR. In terms of adipogenesis, lipid vesicles were observed in the BMMSCs and SFCs. Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) exhibited neurogenesis potential, as shown by increases in expression of class III β-tubulin (TUBB3) and microtubule-associated protein 2 (MAP2) on RT-PCR. Variability was found in the differentiation potential corresponding to the tendency of the original tissue to differentiate. It is suggested that the cell type should be selected depending on the regenerative treatment regimen.
Collapse
|
48
|
Wu Y, Feng G, Song J, Zhang Y, Yu Y, Huang L, Zheng L, Deng F. TrAmplification of Human Dental Follicle Cells by piggyBac Transposon - Mediated Reversible Immortalization System. PLoS One 2015; 10:e0130937. [PMID: 26172849 PMCID: PMC4501788 DOI: 10.1371/journal.pone.0130937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Dental follicle cells (DFCs) are the precursor cells of periodontium. Under certain differentiation conditions, DFCs can be induced to differentiate into chondrogenic, osteogenic and adipogenic cells. However, DFCs has limited lifespan in vitro, so it's difficult to harvest enough cells for basic research and translational application. pMPH86 is a piggyBac transposon-mediated vector which contains SV40 T-Ag cassette that can be removed by flippase recognition target (FRT) recombinase. Here we demonstrated the pMPH86 can effectively amplify human DFCs through reversible immortalization. The immortalized DFCs (iDFCs) exhibit higher proliferate activity, which can be reversed to its original level before immortalization when deimmortalized by FLP recombinase. The iDFCs and deimmortalized DFCs (dDFCs) express most DFC markers and maintain multiple differentiation potential in vitro as they can be induced by BMP9 to differentiate into chondrogenic, osteogenic and adipogenic cells evidenced by gene expression and protein marker. We also proved telomerase activity of iDFCs are significantly increased and maintained at a high level, while the telomerase activity of primary DFCs was relatively low and decreased with every passage. After SV40 T-Ag was removed to deimmortalize the cells, telomerase activity was reduced to its original level before immortalization and decreased with passages just the same as primary DFCs. These results suggest that piggyBac immortalization system could be a potential strategy to amplify primary cells, which is critical for regenerative research and further clinical application.
Collapse
Affiliation(s)
- Yan Wu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Ge Feng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Jinlin Song
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine (WFIRM), Wake Forest University Health Sciences, Winston-Salem, North Carolina, United States of America
| | - Yong Yu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Lan Huang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Leilei Zheng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Feng Deng
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, P. R. China
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Chongqing, P. R. China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
- * E-mail:
| |
Collapse
|
49
|
Germain L, De Berdt P, Vanacker J, Leprince J, Diogenes A, Jacobs D, Vandermeulen G, Bouzin C, Préat V, Dupont-Gillain C, des Rieux A. Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine. Regen Med 2015; 10:153-67. [DOI: 10.2217/rme.14.81] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: Evaluation of survival, proliferation and neurodifferentiation of dental stem cells from the apical papilla (SCAP) in fibrin hydrogels. We hypothesized that fibrin composition will influence cell behavior. Methods: Modulus, pore and fiber size were measured. SCAP in vitro viability, proliferation and neural differentiation, as well as in vivo proliferation and angiogenesis were studied. Results: Hydrogel moduli were influenced by fibrin formulation but not hydrogel morphology, SCAP in vitro viability and proliferation. In total 60% of SCAP expressed PanNeurofilament in vitro without induction in Fibrinogen50-Thrombin10. SCAP proliferated when implanted in vivo and stimulated host endothelial cell infiltration. Conclusion: Fibrinogen30-Thrombin10 or Thrombin50 would be more favorable to in vitro SCAP viability and in vivo proliferation, while Fibrinogen 50-Thrombin50 would be more adapted to neurodifferentiation.
Collapse
Affiliation(s)
- Loïc Germain
- Department of Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline De Berdt
- Department of Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julie Vanacker
- Department of Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julian Leprince
- Department of Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Anibal Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Damien Jacobs
- Department of Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gaëlle Vandermeulen
- Department of Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Véronique Préat
- Department of Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Christine Dupont-Gillain
- Bio & Soft Matter Unit, Institute of Condensed Matter & Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anne des Rieux
- Department of Advanced Drug Delivery & Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- Bio & Soft Matter Unit, Institute of Condensed Matter & Nanosciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
50
|
Liu J, Yu F, Sun Y, Jiang B, Zhang W, Yang J, Xu GT, Liang A, Liu S. Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015; 33:627-38. [PMID: 25447379 DOI: 10.1002/stem.1909] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/21/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Junjun Liu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Fang Yu
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Yao Sun
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Beizhan Jiang
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology; Tongji University; Shanghai People's Republic of China
| | - Wenjun Zhang
- Translational Center for Stem Cell Research, Tongji Hospital; Tongji University School of Medicine; Shanghai People's Republic of China
| | - Jianhua Yang
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Guo-Tong Xu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| | - Aibin Liang
- Translational Center for Stem Cell Research, Tongji Hospital; Tongji University School of Medicine; Shanghai People's Republic of China
| | - Shangfeng Liu
- Department of Ophthalmology; Shanghai Tenth People's Hospital
| |
Collapse
|