1
|
Spinelli S, Humma Z, Magnone M, Zocchi E, Sturla L. Role of Abscisic Acid in the Whole-Body Regulation of Glucose Uptake and Metabolism. Nutrients 2024; 17:13. [PMID: 39796447 PMCID: PMC11723322 DOI: 10.3390/nu17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Abscisic acid (ABA) is a hormone with a long evolutionary history, dating back to the earliest living organisms, of which modern (ABA-producing) cyanobacteria are likely descendants, which existed long before the separation of the plant and animal kingdoms, with a conserved role as signals regulating cell responses to environmental challenges. In mammals, along with the anti-inflammatory and neuroprotective function of ABA, nanomolar ABA regulates the metabolic response to glucose availability by stimulating glucose uptake in skeletal muscle and adipose tissue via an insulin-independent mechanism and increasing metabolic energy production and also dissipation in brown and white adipocytes. Chronic ABA intake of micrograms per Kg body weight improves blood glucose, lipids, and morphometric parameters (waist circumference and body mass index) in borderline subjects for prediabetes and metabolic syndrome. This review summarizes the most recent in vitro and in vivo data obtained with nanomolar ABA, the involvement of the receptors LANCL1 and LANCL2 in the hormone's action, and the importance of mammals' endowment with two distinct hormones governing the metabolic response to glucose availability. Finally, unresolved issues and future directions for the clinical use of ABA in diabetes are discussed.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Zelle Humma
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (Z.H.); (M.M.); (E.Z.)
| | - Mirko Magnone
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (Z.H.); (M.M.); (E.Z.)
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (Z.H.); (M.M.); (E.Z.)
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy; (Z.H.); (M.M.); (E.Z.)
| |
Collapse
|
2
|
Gharib A, Marquez C, Meseguer-Beltran M, Sanchez-Sarasua S, Sanchez-Perez AM. Abscisic acid, an evolutionary conserved hormone: Biosynthesis, therapeutic and diagnostic applications in mammals. Biochem Pharmacol 2024; 229:116521. [PMID: 39251140 DOI: 10.1016/j.bcp.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Abscisic acid (ABA), a phytohormone traditionally recognized for its role in plant stress responses, has recently emerged as a significant player in mammalian defense mechanisms. Like plants, various mammalian cell types synthesize ABA in response to specific health challenges, although the precise pathways remain not fully elucidated. ABA is associated with the regulation of inflammation and insulin signaling, prompting extensive research into its potential as a therapeutic agent for various diseases. ABA exerts its effects through its receptors, particularly PPAR-γ and LANCL-2, which serve as signaling hubs regulating numerous pathways. Through these interactions, ABA profoundly impacts mammalian health, and new ABA targets continue to be identified. Numerous studies in animal models demonstrate ABA's benefit in managing conditions such as neurological and psychiatric disorders, cancer, and malaria infections, all of which involve significant inflammatory dysregulation. In this manuscript we review the studies covering ABA synthesis and release in cell cultures, the signaling pathways regulated by ABA, and how these impact health in preclinical models. Furthermore, we highlight recent research suggesting that measuring ABA levels in human body fluids could serve as a useful biomarker for pathological conditions, providing insights into disease progression and treatment efficacy. This comprehensive review outlines the current understanding of ABA in mammalian pathophysiology, identifying gaps in knowledge, particularly concerning ABA biosynthesis and metabolism in mammals. In addition, this study emphasizes the need for clinical trials to validate the effectiveness of ABA-based therapies and its reliability as a biomarker for various diseases.
Collapse
Affiliation(s)
- Amir Gharib
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain; Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Carlee Marquez
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain
| | - Maria Meseguer-Beltran
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain
| | - Sandra Sanchez-Sarasua
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain; CNRS UMR 5293, Institut Des Maladies Neurodégénératives, Centre Paul Broca-Nouvelle Aquitaine, University of Bordeaux, Bordeaux, France.
| | - Ana M Sanchez-Perez
- Neurobiotecnologia Group, Institute of Advanced Materiales (INAM), Universitat Jaume I, Avda. de Vicent Sos Baynat, S/n, 12071 Castelló de La Plana, Spain.
| |
Collapse
|
3
|
Tubau-Juni N, Hontecillas R, Leber AJ, Alva SS, Bassaganya-Riera J. Treating Autoimmune Diseases With LANCL2 Therapeutics: A Novel Immunoregulatory Mechanism for Patients With Ulcerative Colitis and Crohn's Disease. Inflamm Bowel Dis 2024; 30:671-680. [PMID: 37934790 DOI: 10.1093/ibd/izad258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 11/09/2023]
Abstract
Lanthionine synthetase C-like 2 (LANCL2) therapeutics have gained increasing recognition as a novel treatment modality for a wide range of autoimmune diseases. Genetic ablation of LANCL2 in mice results in severe inflammatory phenotypes in inflammatory bowel disease (IBD) and lupus. Pharmacological activation of LANCL2 provides therapeutic efficacy in mouse models of intestinal inflammation, systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and psoriasis. Mechanistically, LANCL2 activation enhances regulatory CD4 + T cell (Treg) responses and downregulates effector responses in the gut. The stability and suppressive capacities of Treg cells are enhanced by LANCL2 activation through engagement of immunoregulatory mechanisms that favor mitochondrial metabolism and amplify IL-2/CD25 signaling. Omilancor, the most advanced LANCL2 immunoregulatory therapeutic in late-stage clinical development, is a phase 3 ready, first-in-class, gut-restricted, oral, once-daily, small-molecule therapeutic in clinical development for the treatment of UC and CD. In this review, we discuss this novel mechanism of mucosal immunoregulation and how LANCL2-targeting therapeutics could help address the unmet clinical needs of patients with autoimmune diseases, starting with IBD.
Collapse
|
4
|
Liao P, Wu QY, Li S, Hu KB, Liu HL, Wang HY, Long ZY, Lu XM, Wang YT. The ameliorative effects and mechanisms of abscisic acid on learning and memory. Neuropharmacology 2023; 224:109365. [PMID: 36462635 DOI: 10.1016/j.neuropharm.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Abscisic acid (ABA), a conserved hormone existing in plants and animals, not only regulates blood glucose and inflammation but also has good therapeutic effects on obesity, diabetes, atherosclerosis and inflammatory diseases in animals. Studies have shown that exogenous ABA can pass the blood-brain barrier and inhibit neuroinflammation, promote neurogenesis, enhance synaptic plasticity, improve learning, memory and cognitive ability in the central nervous system. At the same time, ABA plays a crucial role in significant improvement of Alzheimer's disease, depression, and anxiety. Here we review the previous research progress of ABA on the physiological effects and clinical application in the related diseases. By summarizing the biological functions of ABA, we aim to reveal the possible mechanisms of ameliorative function of ABA on learning and memory, to provide a theoretical basis that ABA as a novel and safe drug improves learning memory and cognitive impairment in central system diseases such as aging, neurodegenerative diseases and traumatic brain injury.
Collapse
Affiliation(s)
- Ping Liao
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing-Yun Wu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Kai-Bin Hu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hui-Lin Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
5
|
Atkinson FS, Villar A, Mulà A, Zangara A, Risco E, Smidt CR, Hontecillas R, Leber A, Bassaganya-Riera J. Abscisic Acid Standardized Fig ( Ficus carica) Extracts Ameliorate Postprandial Glycemic and Insulinemic Responses in Healthy Adults. Nutrients 2019; 11:nu11081757. [PMID: 31370154 PMCID: PMC6722713 DOI: 10.3390/nu11081757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/16/2022] Open
Abstract
Abscisic acid (ABA) can improve glucose homeostasis and reduce inflammation in mammals by activating lanthionine synthetase C-like 2 (LANCL2). This study examined the effects of two fig fruit extracts (FFEs), each administered at two different ABA doses, on glycemic index (GI) and insulinemic index (II) to a standard glucose drink. In a randomized, double-blind crossover study, 10 healthy adults consumed 4 test beverages containing FFE with postprandial glucose and insulin assessed at regular intervals over 2 h to determine GI and II responses. Test beverages containing 200 mg FFE-50× and 1200 mg FFE-10× significantly reduced GI values by -25% (P = 0.001) and -24% (P = 0.002), respectively. Two lower doses of FFE also reduced GI values compared with the reference drink (by approximately -14%), but the differences did not reach statistical significance. Addition of FFE to the glucose solution significantly reduced II values at all dosages and displayed a clear dose-response reduction: FFE-50× at 100 mg and 200 mg (-14% (P < 0.05) and -24% (P = 0.01), respectively) and FFE-10× at 600 mg and 1200 mg (-16% (P < 0.05) and -24% (P = 0.01), respectively). FFE supplementation is a promising nutritional intervention for the management of acute postprandial glucose and insulin homeostasis, and it is a possible adjunctive treatment for glycemic management of chronic metabolic disorders such as prediabetes and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Fiona S Atkinson
- School of Life and Environmental Sciences and Charles Perkins Centre, D17, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Agusti Villar
- Euromed S.A., C/ Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Barcelona, Spain
| | - Anna Mulà
- Euromed S.A., C/ Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Barcelona, Spain
| | - Andrea Zangara
- Euromed S.A., C/ Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Barcelona, Spain.
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia.
| | - Ester Risco
- Euromed S.A., C/ Rec de Dalt, 21-23, Pol. Ind. Can Magarola, 08100 Mollet del Valles, Barcelona, Spain
| | | | - Raquel Hontecillas
- BioTherapeutics, Inc, 1800 Kraft Drive, Suite 200, Blacksburg, VA 24060, USA
| | - Andrew Leber
- BioTherapeutics, Inc, 1800 Kraft Drive, Suite 200, Blacksburg, VA 24060, USA
| | | |
Collapse
|
6
|
Booz V, Christiansen CB, Kuhre RE, Saltiel MY, Sociali G, Schaltenberg N, Fischer AW, Heeren J, Zocchi E, Holst JJ, Bruzzone S. Abscisic acid stimulates the release of insulin and of GLP-1 in the rat perfused pancreas and intestine. Diabetes Metab Res Rev 2019; 35:e3102. [PMID: 30468287 DOI: 10.1002/dmrr.3102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/07/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
Abstract
AIMS Previous results indicate that nanomolar concentrations of abscisic acid (ABA) stimulate insulin release from β-pancreatic cells in vitro and that oral ABA at 50 mg/kg increases plasma GLP-1 in the fasted rat. The aim of this study was to test the effect of ABA on the perfused rat pancreas and intestine, to verify the insulin- and incretin-releasing actions of ABA in controlled physiological models. MATERIALS AND METHODS Rat pancreas and small intestine were perfused with solutions containing ABA at high-micromolar concentrations, or control secretagogues. Insulin and GLP-1 concentrations in the venous effluent were analysed by radioimmunoassay, and ABA levels were determined by ELISA. RESULTS High micromolar concentrations of ABA induced GLP-1 secretion from the proximal half of the small intestine and insulin secretion from pancreas. GLP-1 stimulated ABA secretion from pancreas in a biphasic manner. Notably, a positive correlation was found between the ABA area under the curve (AUC) and the insulin AUC upon GLP-1 administration. CONCLUSION Our results indicate the existence of a cross talk between GLP-1 and ABA, whereby ABA stimulates GLP-1 secretion, and vice versa. Release of ABA could be considered as a new promising molecule in the strategy of type 2 diabetes treatment and as a new endogenous hormone in the regulation of glycaemia.
Collapse
Affiliation(s)
- Valeria Booz
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, Genoa, Italy
| | - Charlotte Bayer Christiansen
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rune Ehrenreich Kuhre
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Monika Yosifova Saltiel
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Giovanna Sociali
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, Genoa, Italy
| | - Nicola Schaltenberg
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander W Fischer
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, Genoa, Italy
| | - Jens J Holst
- NovoNordisk Foundation Center for Metabolic Research and Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, and CEBR, University of Genova, Genoa, Italy
| |
Collapse
|
7
|
Bennink S, von Bohl A, Ngwa CJ, Henschel L, Kuehn A, Pilch N, Weißbach T, Rosinski AN, Scheuermayer M, Repnik U, Przyborski JM, Minns AM, Orchard LM, Griffiths G, Lindner SE, Llinás M, Pradel G. A seven-helix protein constitutes stress granules crucial for regulating translation during human-to-mosquito transmission of Plasmodium falciparum. PLoS Pathog 2018; 14:e1007249. [PMID: 30133543 PMCID: PMC6122839 DOI: 10.1371/journal.ppat.1007249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/04/2018] [Accepted: 07/29/2018] [Indexed: 12/16/2022] Open
Abstract
The complex life-cycle of the human malaria parasite Plasmodium falciparum requires a high degree of tight coordination allowing the parasite to adapt to changing environments. One of the major challenges for the parasite is the human-to-mosquito transmission, which starts with the differentiation of blood stage parasites into the transmissible gametocytes, followed by the rapid conversion of the gametocytes into gametes, once they are taken up by the blood-feeding Anopheles vector. In order to pre-adapt to this change of host, the gametocytes store transcripts in stress granules that encode proteins needed for parasite development in the mosquito. Here we report on a novel stress granule component, the seven-helix protein 7-Helix-1. The protein, a homolog of the human stress response regulator LanC-like 2, accumulates in stress granules of female gametocytes and interacts with ribonucleoproteins, such as CITH, DOZI, and PABP1. Malaria parasites lacking 7-Helix-1 are significantly impaired in female gametogenesis and thus transmission to the mosquito. Lack of 7-Helix-1 further leads to a deregulation of components required for protein synthesis. Consistently, inhibitors of translation could mimic the 7-Helix-1 loss-of-function phenotype. 7-Helix-1 forms a complex with the RNA-binding protein Puf2, a translational regulator of the female-specific antigen Pfs25, as well as with pfs25-coding mRNA. In accord, gametocytes deficient of 7-Helix-1 exhibit impaired Pfs25 synthesis. Our data demonstrate that 7-Helix-1 constitutes stress granules crucial for regulating the synthesis of proteins needed for life-cycle progression of Plasmodium in the mosquito vector.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andreas von Bohl
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Che J. Ngwa
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Leonie Henschel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Andrea Kuehn
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Nicole Pilch
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Tim Weißbach
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | - Alina N. Rosinski
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | - Allen M. Minns
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Scott E. Lindner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States of America
- Department of Chemistry & Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, United States of America
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
8
|
Rational Discovery of (+) (S) Abscisic Acid as a Potential Antifungal Agent: a Repurposing Approach. Sci Rep 2018; 8:8565. [PMID: 29867091 PMCID: PMC5986790 DOI: 10.1038/s41598-018-26998-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Fungal infections are spreading widely worldwide, and the types of treatment are limited due to the lack of diverse therapeutic agents and their associated side effects and toxicity. The discovery of new antifungal classes is vital and critical. We discovered the antifungal activity of abscisic acid through a rational drug design methodology that included the building of homology models for fungal chorismate mutases and a pharmacophore model derived from a transition state inhibitor. Ligand-based virtual screening resulted in some hits that were filtered using molecular docking and molecular dynamic simulations studies. Both in silico methods and in vitro antifungal assays were used as tools to select and validate the abscisic acid repurposing. Abscisic acid inhibition assays confirmed the inhibitory effect of abscisic acid on chorismate mutase through the inhibition of phenylpyruvate production. The repositioning of abscisic acid, the well-known and naturally occurring plant growth regulator, as a potential antifungal agent because of its suggested action as an inhibitor to several fungal chorismate mutases was the main result of this work.
Collapse
|
9
|
Cichero E, Fresia C, Guida L, Booz V, Millo E, Scotti C, Iamele L, de Jonge H, Galante D, De Flora A, Sturla L, Vigliarolo T, Zocchi E, Fossa P. Identification of a high affinity binding site for abscisic acid on human lanthionine synthetase component C-like protein 2. Int J Biochem Cell Biol 2018; 97:52-61. [DOI: 10.1016/j.biocel.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/25/2018] [Accepted: 02/02/2018] [Indexed: 12/20/2022]
|
10
|
Zocchi E, Hontecillas R, Leber A, Einerhand A, Carbo A, Bruzzone S, Tubau-Juni N, Philipson N, Zoccoli-Rodriguez V, Sturla L, Bassaganya-Riera J. Abscisic Acid: A Novel Nutraceutical for Glycemic Control. Front Nutr 2017; 4:24. [PMID: 28660193 PMCID: PMC5468461 DOI: 10.3389/fnut.2017.00024] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 01/03/2023] Open
Abstract
Abscisic acid is naturally present in fruits and vegetables, and it plays an important role in managing glucose homeostasis in humans. According to the latest U.S. dietary survey, about 92% of the population might have a deficient intake of ABA due to their deficient intake of fruits and vegetables. This review summarizes the in vitro, preclinical, mechanistic, and human translational findings obtained over the past 15 years in the study of the role of ABA in glycemic control. In 2007, dietary ABA was first reported to ameliorate glucose tolerance and obesity-related inflammation in mice. The most recent findings regarding the topic of ABA and its proposed receptor lanthionine synthetase C-like 2 in glycemic control and their interplay with insulin and glucagon-like peptide-1 suggest a major role for ABA in the physiological response to a glucose load in humans. Moreover, emerging evidence suggests that the ABA response might be dysfunctional in diabetic subjects. Follow on intervention studies in healthy individuals show that low-dose dietary ABA administration exerts a beneficial effect on the glycemia and insulinemia profiles after oral glucose load. These recent findings showing benefits in humans, together with extensive efficacy data in mouse models of diabetes and inflammatory disease, suggest the need for reference ABA values and its possible exploitation of the glycemia-lowering effects of ABA for preventative purposes. Larger clinical studies on healthy, prediabetic, and diabetic subjects are needed to determine whether addressing the widespread dietary ABA deficiency improves glucose control in humans.
Collapse
Affiliation(s)
- Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Raquel Hontecillas
- BioTherapeutics Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Andrew Leber
- BioTherapeutics Inc., Blacksburg, VA, United States
| | | | - Adria Carbo
- BioTherapeutics Inc., Blacksburg, VA, United States
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | | | | | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Josep Bassaganya-Riera
- BioTherapeutics Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
11
|
Leber A, Bassaganya-Riera J, Tubau-Juni N, Zoccoli-Rodriguez V, Lu P, Godfrey V, Kale S, Hontecillas R. Lanthionine Synthetase C-Like 2 Modulates Immune Responses to Influenza Virus Infection. Front Immunol 2017; 8:178. [PMID: 28270815 PMCID: PMC5318425 DOI: 10.3389/fimmu.2017.00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
Broad-based, host-targeted therapeutics have the potential to ameliorate viral infections without inducing antiviral resistance. We identified lanthionine synthetase C-like 2 (LANCL2) as a new therapeutic target for immunoinflammatory diseases. To examine the therapeutic efficacy of oral NSC61610 administration on influenza, we infected C57BL/6 mice with influenza A H1N1pdm virus and evaluated influenza-related mortality, lung inflammatory profiles, and pulmonary histopathology. Oral treatment with NSC61610 ameliorates influenza virus infection by down-modulating pulmonary inflammation through the downregulation of TNF-α and MCP-1 and reduction in the infiltration of neutrophils. NSC61610 treatment increases IL10-producing CD8+ T cells and macrophages in the lungs during the resolution phase of disease. The loss of LANCL2 or neutralization of IL-10 in mice infected with influenza virus abrogates the ability of NSC61610 to accelerate recovery and induce IL-10-mediated regulatory responses. These studies validate that oral treatment with NSC61610 ameliorates morbidity and mortality and accelerates recovery during influenza virus infection through a mechanism mediated by activation of LANCL2 and subsequent induction of IL-10 responses by CD8+ T cells and macrophages in the lungs.
Collapse
Affiliation(s)
- Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Victoria Zoccoli-Rodriguez
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Pinyi Lu
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Victoria Godfrey
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Shiv Kale
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
12
|
Lievens L, Pollier J, Goossens A, Beyaert R, Staal J. Abscisic Acid as Pathogen Effector and Immune Regulator. FRONTIERS IN PLANT SCIENCE 2017; 8:587. [PMID: 28469630 PMCID: PMC5395610 DOI: 10.3389/fpls.2017.00587] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/31/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a sesquiterpene signaling molecule produced in all kingdoms of life. To date, the best known functions of ABA are derived from its role as a major phytohormone in plant abiotic stress resistance. Different organisms have developed different biosynthesis and signal transduction pathways related to ABA. Despite this, there are also intriguing common themes where ABA often suppresses host immune responses and is utilized by pathogens as an effector molecule. ABA also seems to play an important role in compatible mutualistic interactions such as mycorrhiza and rhizosphere bacteria with plants, and possibly also the animal gut microbiome. The frequent use of ABA in inter-species communication could be a possible reason for the wide distribution and re-invention of ABA as a signaling molecule in different organisms. In humans and animal models, it has been shown that ABA treatment or nutrient-derived ABA is beneficial in inflammatory diseases like colitis and type 2 diabetes, which confer potential to ABA as an interesting nutraceutical or pharmacognostic drug. The anti-inflammatory activity, cellular metabolic reprogramming, and other beneficial physiological and psychological effects of ABA treatment in humans and animal models has sparked an interest in this molecule and its signaling pathway as a novel pharmacological target. In contrast to plants, however, very little is known about the ABA biosynthesis and signaling in other organisms. Genes, tools and knowledge about ABA from plant sciences and studies of phytopathogenic fungi might benefit biomedical studies on the physiological role of endogenously generated ABA in humans.
Collapse
Affiliation(s)
- Laurens Lievens
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIBGhent, Belgium
- Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
| | - Jacob Pollier
- VIB-UGent Center for Plant Systems Biology, VIBGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Alain Goossens
- VIB-UGent Center for Plant Systems Biology, VIBGhent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIBGhent, Belgium
- Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
| | - Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIBGhent, Belgium
- Department of Biomedical Molecular Biology, Ghent UniversityGhent, Belgium
- *Correspondence: Jens Staal
| |
Collapse
|
13
|
Sasikala D, Jeyakanthan J, Srinivasan P. Structure-based virtual screening and biological evaluation of LuxT inhibitors for targeting quorum sensing through an in vitro biofilm formation. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.07.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Carbo A, Gandour RD, Hontecillas R, Philipson N, Uren A, Bassaganya-Riera J. An N,N-Bis(benzimidazolylpicolinoyl)piperazine (BT-11): A Novel Lanthionine Synthetase C-Like 2-Based Therapeutic for Inflammatory Bowel Disease. J Med Chem 2016; 59:10113-10126. [DOI: 10.1021/acs.jmedchem.6b00412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adria Carbo
- Biotherapeutics Inc., 1800 Kraft Drive,
Suite 200, Blacksburg, Virginia 24060, United States
| | - Richard D. Gandour
- Biotherapeutics Inc., 1800 Kraft Drive,
Suite 200, Blacksburg, Virginia 24060, United States
| | - Raquel Hontecillas
- Biotherapeutics Inc., 1800 Kraft Drive,
Suite 200, Blacksburg, Virginia 24060, United States
| | - Noah Philipson
- Biotherapeutics Inc., 1800 Kraft Drive,
Suite 200, Blacksburg, Virginia 24060, United States
| | - Aykut Uren
- Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Josep Bassaganya-Riera
- Biotherapeutics Inc., 1800 Kraft Drive,
Suite 200, Blacksburg, Virginia 24060, United States
| |
Collapse
|
15
|
Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F. Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Front Immunol 2016; 7:290. [PMID: 27531998 PMCID: PMC4970383 DOI: 10.3389/fimmu.2016.00290] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Numerous reviews have discussed gut microbiota composition changes during inflammatory bowel diseases (IBD), particularly Crohn’s disease (CD). However, most studies address the observed effects by focusing on studying the univariate connection between disease and dietary-induced alterations to gut microbiota composition. The possibility that these effects may reflect a number of other interconnected (i.e., pantropic) mechanisms, activated in parallel, particularly concerning various bacterial metabolites, is in the process of being elucidated. Progress seems, however, hampered by various difficult-to-study factors interacting at the mucosal level. Here, we highlight some of such factors that merit consideration, namely: (1) the contribution of host genetics and diet in altering gut microbiome, and in turn, the crosstalk among secondary metabolic pathways; (2) the interdependence between the amount of dietary fat, the fatty acid composition, the effects of timing and route of administration on gut microbiota community, and the impact of microbiota-derived fatty acids; (3) the effect of diet on bile acid composition, and the modulator role of bile acids on the gut microbiota; (4) the impact of endogenous and exogenous intestinal micronutrients and metabolites; and (5) the need to consider food associated toxins and chemicals, which can introduce confounding immune modulating elements (e.g., antioxidant and phytochemicals in oils and proteins). These concepts, which are not mutually exclusive, are herein illustrated paying special emphasis on physiologically inter-related processes.
Collapse
Affiliation(s)
- Abigail Basson
- Digestive Health Research Institute, Case Western Reserve University , Cleveland, OH , USA
| | - Ashley Trotter
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| | | | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
16
|
Verma M, Hontecillas R, Abedi V, Leber A, Tubau-Juni N, Philipson C, Carbo A, Bassaganya-Riera J. Modeling-Enabled Systems Nutritional Immunology. Front Nutr 2016; 3:5. [PMID: 26909350 PMCID: PMC4754447 DOI: 10.3389/fnut.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/01/2016] [Indexed: 12/14/2022] Open
Abstract
This review highlights the fundamental role of nutrition in the maintenance of health, the immune response, and disease prevention. Emerging global mechanistic insights in the field of nutritional immunology cannot be gained through reductionist methods alone or by analyzing a single nutrient at a time. We propose to investigate nutritional immunology as a massively interacting system of interconnected multistage and multiscale networks that encompass hidden mechanisms by which nutrition, microbiome, metabolism, genetic predisposition, and the immune system interact to delineate health and disease. The review sets an unconventional path to apply complex science methodologies to nutritional immunology research, discovery, and development through “use cases” centered around the impact of nutrition on the gut microbiome and immune responses. Our systems nutritional immunology analyses, which include modeling and informatics methodologies in combination with pre-clinical and clinical studies, have the potential to discover emerging systems-wide properties at the interface of the immune system, nutrition, microbiome, and metabolism.
Collapse
Affiliation(s)
- Meghna Verma
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Andrew Leber
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | | | | | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA; The Center for Modeling Immunity to Enteric Pathogens, Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
17
|
Lu P, Hontecillas R, Abedi V, Kale S, Leber A, Heltzel C, Langowski M, Godfrey V, Philipson C, Tubau-Juni N, Carbo A, Girardin S, Uren A, Bassaganya-Riera J. Modeling-Enabled Characterization of Novel NLRX1 Ligands. PLoS One 2015; 10:e0145420. [PMID: 26714018 PMCID: PMC4694766 DOI: 10.1371/journal.pone.0145420] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Nucleotide-binding domain and leucine-rich repeat containing (NLR) family are intracellular sentinels of cytosolic homeostasis that orchestrate immune and inflammatory responses in infectious and immune-mediated diseases. NLRX1 is a mitochondrial-associated NOD-like receptor involved in the modulation of immune and metabolic responses. This study utilizes molecular docking approaches to investigate the structure of NLRX1 and experimentally assesses binding to naturally occurring compounds from several natural product and lipid databases. Screening of compound libraries predicts targeting of NLRX1 by conjugated trienes, polyketides, prenol lipids, sterol lipids, and coenzyme A-containing fatty acids for activating the NLRX1 pathway. The ligands of NLRX1 were identified by docking punicic acid (PUA), eleostearic acid (ESA), and docosahexaenoic acid (DHA) to the C-terminal fragment of the human NLRX1 (cNLRX1). Their binding and that of positive control RNA to cNLRX1 were experimentally determined by surface plasmon resonance (SPR) spectroscopy. In addition, the ligand binding sites of cNLRX1 were predicted in silico and validated experimentally. Target mutagenesis studies demonstrate that mutation of 4 critical residues ASP677, PHE680, PHE681, and GLU684 to alanine resulted in diminished affinity of PUA, ESA, and DHA to NLRX1. Consistent with the regulatory actions of NLRX1 on the NF-κB pathway, treatment of bone marrow derived macrophages (BMDM)s with PUA and DHA suppressed NF-κB activity in a NLRX1 dependent mechanism. In addition, a series of pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the regulatory function of PUA on colitis is NLRX1 dependent. Thus, we identified novel small molecules that bind to NLRX1 and exert anti-inflammatory actions.
Collapse
Affiliation(s)
- Pinyi Lu
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Raquel Hontecillas
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Vida Abedi
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Shiv Kale
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Andrew Leber
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Chase Heltzel
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Mark Langowski
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Victoria Godfrey
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Casandra Philipson
- BioTherapeutics, 1800 Kraft Drive, Suite 200, Blacksburg, Virginia, 24060, United States of America
| | - Nuria Tubau-Juni
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
| | - Adria Carbo
- BioTherapeutics, 1800 Kraft Drive, Suite 200, Blacksburg, Virginia, 24060, United States of America
| | - Stephen Girardin
- Laboratory of Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Aykut Uren
- Georgetown University Medical Center, Washington, District of Columbia, 20057, United States of America
| | - Josep Bassaganya-Riera
- The Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory (www.nimml.org), Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, 24061, United States of America
- * E-mail:
| |
Collapse
|
18
|
Vigliarolo T, Guida L, Millo E, Fresia C, Turco E, De Flora A, Zocchi E. Abscisic acid transport in human erythrocytes. J Biol Chem 2015; 290:13042-52. [PMID: 25847240 DOI: 10.1074/jbc.m114.629501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Indexed: 11/06/2022] Open
Abstract
Abscisic acid (ABA) is a plant hormone involved in the response to environmental stress. Recently, ABA has been shown to be present and active also in mammals, where it stimulates the functional activity of innate immune cells, of mesenchymal and hemopoietic stem cells, and insulin-releasing pancreatic β-cells. LANCL2, the ABA receptor in mammalian cells, is a peripheral membrane protein that localizes at the intracellular side of the plasma membrane. Here we investigated the mechanism enabling ABA transport across the plasmamembrane of human red blood cells (RBC). Both influx and efflux of [(3)H]ABA occur across intact RBC, as detected by radiometric and chromatographic methods. ABA binds specifically to Band 3 (the RBC anion transporter), as determined by labeling of RBC membranes with biotinylated ABA. Proteoliposomes reconstituted with human purified Band 3 transport [(3)H]ABA and [(35)S]sulfate, and ABA transport is sensitive to the specific Band 3 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Once inside RBC, ABA stimulates ATP release through the LANCL2-mediated activation of adenylate cyclase. As ATP released from RBC is known to exert a vasodilator response, these results suggest a role for plasma ABA in the regulation of vascular tone.
Collapse
Affiliation(s)
- Tiziana Vigliarolo
- From the Department of Experimental Medicine, Section of Biochemistry, and
| | - Lucrezia Guida
- From the Department of Experimental Medicine, Section of Biochemistry, and
| | - Enrico Millo
- the Center of Excellence for Biomedical Research, University of Genova, Genova 16132, Italy and
| | - Chiara Fresia
- From the Department of Experimental Medicine, Section of Biochemistry, and
| | - Emilia Turco
- the Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Antonio De Flora
- From the Department of Experimental Medicine, Section of Biochemistry, and
| | - Elena Zocchi
- From the Department of Experimental Medicine, Section of Biochemistry, and
| |
Collapse
|
19
|
Hensley K, Denton TT. Alternative functions of the brain transsulfuration pathway represent an underappreciated aspect of brain redox biochemistry with significant potential for therapeutic engagement. Free Radic Biol Med 2015; 78:123-34. [PMID: 25463282 PMCID: PMC4280296 DOI: 10.1016/j.freeradbiomed.2014.10.581] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022]
Abstract
Scientific appreciation for the subtlety of brain sulfur chemistry has lagged, despite understanding that the brain must maintain high glutathione (GSH) to protect against oxidative stress in tissue that has both a high rate of oxidative respiration and a high content of oxidation-prone polyunsaturated fatty acids. In fact, the brain was long thought to lack a complete transsulfuration pathway (TSP) for cysteine synthesis. It is now clear that not only does the brain possess a functional TSP, but brain TSP enzymes catalyze a rich array of alternative reactions that generate novel species including the gasotransmitter hydrogen sulfide (H2S) and the atypical amino acid lanthionine (Lan). Moreover, TSP intermediates can be converted to unusual cyclic ketimines via transamination. Cell-penetrating derivatives of one such compound, lanthionine ketimine (LK), have potent antioxidant, neuroprotective, neurotrophic, and antineuroinflammatory actions and mitigate diverse neurodegenerative conditions in preclinical rodent models. This review will explore the source and function of alternative TSP products, and lanthionine-derived metabolites in particular. The known biological origins of lanthionine and its ketimine metabolite will be described in detail and placed in context with recent discoveries of a GSH- and LK-binding brain protein called LanCL1 that is proving essential for neuronal antioxidant defense; and a related LanCL2 homolog now implicated in immune sensing and cell fate determinations. The review will explore possible endogenous functions of lanthionine metabolites and will discuss the therapeutic potential of lanthionine ketimine derivatives for mitigating diverse neurological conditions including Alzheimer׳s disease, stroke, motor neuron disease, and glioma.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology and Department of Neurosciences, University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614, USA.
| | - Travis T Denton
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, P.O. Box 1495, Spokane, WA 99201, USA.
| |
Collapse
|
20
|
Abstract
Pattern recognition receptors are essential mediators of host defense and inflammation in the gastrointestinal system. Recent data have revealed that toll-like receptors and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs) function to maintain homeostasis between the host microbiome and mucosal immunity. The NLR proteins are a diverse class of cytoplasmic pattern recognition receptors. In humans, only about half of the identified NLRs have been adequately characterized. The majority of well-characterized NLRs participate in the formation of a multiprotein complex, termed the inflammasome, which is responsible for the maturation of interleukin-1β and interleukin-18. However, recent observations have also uncovered the presence of a novel subgroup of NLRs that function as positive or negative regulators of inflammation through modulating critical signaling pathways, including NF-κB. Dysregulation of specific NLRs from both proinflammatory and inhibitory subgroups have been associated with the development of inflammatory bowel disease (IBD) in genetically susceptible human populations. Our own preliminary retrospective data mining efforts have identified a diverse range of NLRs that are significantly altered at the messenger RNA level in colons from patients with IBD. Likewise, studies using genetically modified mouse strains have revealed that multiple NLR family members have the potential to dramatically modulate the immune response during IBD. Targeting NLR signaling represents a promising and novel therapeutic strategy. However, significant effort is necessary to translate the current understanding of NLR biology into effective therapies.
Collapse
|
21
|
Molecular design of new aggrecanases-2 inhibitors. Bioorg Med Chem Lett 2013; 23:5339-50. [DOI: 10.1016/j.bmcl.2013.07.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 01/07/2023]
|
22
|
Spence JP, Lai D, Shekhar A, Carr LG, Foroud T, Liang T. Quantitative trait locus for body weight identified on rat chromosome 4 in inbred alcohol-preferring and -nonpreferring rats: potential implications for neuropeptide Y and corticotrophin releasing hormone 2. Alcohol 2013; 47:63-7. [PMID: 23312492 DOI: 10.1016/j.alcohol.2012.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
Abstract
The alcohol-preferring (P) and -nonpreferring (NP) rat lines were developed using bidirectional selective breeding for alcohol consumption (g/kg/day) and alcohol preference (water:ethanol ratio). During a preliminary study, we detected a difference in body weight between inbred P (iP) and inbred NP (iNP) rats that appeared to be associated with the transfer of the Chromosome 4 quantitative trait locus (QTL) seen in the P.NP and NP.P congenic strains. After the initial confirmation that iP rats displayed lower body weight when compared to iNP rats (data not shown), body weight and growth rates of each chromosome 4 reciprocal congenic rat strain (P.NP and NP.P) were measured, and their body weight was consistent with their respective donor strain phenotype, confirming that a quantitative trait locus for body weight mapped to the chromosome 4 interval. Utilizing the newly developed interval-specific congenic strains (ISCS-A and ISCS-B), the QTL interval was further narrowed identifying the following candidate genes of interest: neuropeptide Y (Npy), juxtaposed with another zinc finger gene 1 (Jazf1), corticotrophin releasing factor receptor 2 (Crfr2) and LanC lantibiotic synthetase component C-like 2 (Lancl2). These findings indicate that a biologically active variant(s) regulates body weight on rat chromosome 4 in iP and iNP rats. This QTL for body weight was successfully captured in the P.NP and NP.P congenic strains, and interval-specific congenic strains (ISCSs) were subsequently employed to fine-map the QTL interval identifying the following candidate genes of interest: Npy, Jazf1, Crfr2 and Lancl2. Both Npy and Crfr2 have been previously identified as candidate genes of interest underlying the chromosome 4 QTL for alcohol consumption in iP and iNP rats.
Collapse
|
23
|
Tossi V, Cassia R, Bruzzone S, Zocchi E, Lamattina L. ABA says NO to UV-B: a universal response? TRENDS IN PLANT SCIENCE 2012; 17:510-7. [PMID: 22698377 DOI: 10.1016/j.tplants.2012.05.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/24/2012] [Accepted: 05/03/2012] [Indexed: 05/21/2023]
Abstract
Abscisic acid (ABA) signaling pathways have been widely characterized in plants, whereas the function of ABA in animals is less well understood. However, recent advances show ABA production by a wide range of lower animals and higher mammals. This enables a new evaluation of ABA signaling pathways in different organisms in response to common environmental stress, such as ultraviolet (UV)-B. In this opinion article, we propose that the induction of common signaling components, such as ABA, nitric oxide (NO) and Ca(2+), in plant and animal cells in response to high doses of UV-B, suggests that the evolution of a general mechanism activated by UV-B is conserved in divergent multicellular organisms challenged by a changing common environment.
Collapse
Affiliation(s)
- Vanesa Tossi
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
24
|
Lu P, Hontecillas R, Horne WT, Carbo A, Viladomiu M, Pedragosa M, Bevan DR, Lewis SN, Bassaganya-Riera J. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2. PLoS One 2012; 7:e34643. [PMID: 22509338 PMCID: PMC3324509 DOI: 10.1371/journal.pone.0034643] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 03/05/2012] [Indexed: 12/15/2022] Open
Abstract
Background Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. Conclusions/Significance LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.
Collapse
Affiliation(s)
- Pinyi Lu
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (PL); (JBR)
| | - Raquel Hontecillas
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - William T. Horne
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Adria Carbo
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Monica Viladomiu
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Mireia Pedragosa
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
| | - David R. Bevan
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephanie N. Lewis
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Josep Bassaganya-Riera
- Center for Modeling Immunity to Enteric Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (PL); (JBR)
| |
Collapse
|
25
|
Sturla L, Fresia C, Guida L, Grozio A, Vigliarolo T, Mannino E, Millo E, Bagnasco L, Bruzzone S, De Flora A, Zocchi E. Binding of abscisic acid to human LANCL2. Biochem Biophys Res Commun 2011; 415:390-5. [DOI: 10.1016/j.bbrc.2011.10.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/14/2011] [Indexed: 10/16/2022]
|
26
|
Li HH, Hao RL, Wu SS, Guo PC, Chen CJ, Pan LP, Ni H. Occurrence, function and potential medicinal applications of the phytohormone abscisic acid in animals and humans. Biochem Pharmacol 2011; 82:701-12. [DOI: 10.1016/j.bcp.2011.06.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 01/22/2023]
|
27
|
Guri AJ, Evans NP, Hontecillas R, Bassaganya-Riera J. T cell PPARγ is required for the anti-inflammatory efficacy of abscisic acid against experimental IBD. J Nutr Biochem 2011; 22:812-9. [PMID: 21109419 PMCID: PMC3117068 DOI: 10.1016/j.jnutbio.2010.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 06/14/2010] [Accepted: 06/30/2010] [Indexed: 12/14/2022]
Abstract
The phytohormone abscisic acid (ABA) has been shown to be effective in ameliorating chronic and acute inflammation. The objective of this study was to investigate whether ABA's anti-inflammatory efficacy in the gut is dependent on peroxisome proliferator-activated receptor γ (PPARγ) in T cells. PPARγ-expressing and T cell-specific PPARγ null mice were fed diets with or without ABA (100 mg/kg) for 35 days prior to challenge with 2.5% dextran sodium sulfate. The severity of clinical disease was assessed daily, and mice were euthanized on Day 7 of the dextran sodium sulfate challenge. Colonic inflammation was assessed through macroscopic and histopathological examination of inflammatory lesions and real-time quantitative RT-PCR-based quantification of inflammatory genes. Flow cytometry was used to phenotypically characterize leukocyte populations in the blood and mesenteric lymph nodes. Colonic sections were stained immunohistochemically to determine the effect of ABA on colonic regulatory T (T(reg)) cells. ABA's beneficial effects on disease activity were completely abrogated in T cell-specific PPARγ null mice. Additionally, ABA improved colon histopathology, reduced blood F4/80(+)CD11b(+) monocytes, increased the percentage of CD4(+) T cells expressing the inhibitory molecule cytotoxic T lymphocyte antigen 4 in blood and enhanced the number of T(reg) cells in the mesenteric lymph nodes and colons of PPARγ-expressing but not T cell-specific PPARγ null mice. We conclude that dietary ABA ameliorates experimental inflammatory bowel disease by enhancing T(reg) cell accumulation in the colonic lamina propria through a PPARγ-dependent mechanism.
Collapse
Affiliation(s)
- Amir J Guri
- Nutritional Immunology and Molecular Nutrition Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Nicholas P. Evans
- Nutritional Immunology and Molecular Nutrition Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Nutrition Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Nutrition Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
28
|
Bassaganya-Riera J, Guri AJ, Hontecillas R. Treatment of Obesity-Related Complications with Novel Classes of Naturally Occurring PPAR Agonists. J Obes 2011; 2011:897894. [PMID: 21253508 PMCID: PMC3021882 DOI: 10.1155/2011/897894] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/25/2010] [Accepted: 12/02/2010] [Indexed: 01/25/2023] Open
Abstract
The prevalence of obesity and its associated comorbidities has grown to epidemic proportions in the US and worldwide. Thus, developing safe and effective therapeutic approaches against these widespread and debilitating diseases is important and timely. Activation of peroxisome proliferator-activated receptors (PPARs) α, γ, and δ through several classes of pharmaceuticals can prevent or treat a variety of metabolic and inflammatory diseases, including type II diabetes (T2D). Thus, PPARs represent important molecular targets for developing novel and better treatments for a wide range of debilitating and widespread obesity-related diseases and disorders. However, available PPAR γ agonistic drugs such as Avandia have significant adverse side effects, including weight gain, fluid retention, hepatotoxicity, and congestive heart failure. An alternative to synthetic agonists of PPAR γ is the discovery and development of naturally occurring and safer nutraceuticals that may be dual or pan PPAR agonists. The purpose of this paper is to summarize the health effects of three plant-derived PPAR agonists: abscisic acid (ABA), punicic acid (PUA), and catalpic acid (CAA) in the prevention and treatment of chronic inflammatory and metabolic diseases and disorders.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- *Josep Bassaganya-Riera:
| | - Amir J. Guri
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Hensley K, Venkova K, Christov A. Emerging biological importance of central nervous system lanthionines. Molecules 2010; 15:5581-94. [PMID: 20714314 PMCID: PMC6257760 DOI: 10.3390/molecules15085581] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/10/2010] [Accepted: 08/12/2010] [Indexed: 11/17/2022] Open
Abstract
Lanthionine (Lan), the thioether analog of cystine, is a natural but nonproteogenic amino acid thought to form naturally in mammals through promiscuous reactivity of the transsulfuration enzyme cystathionine-beta-synthase (CbetaS). Lanthionine exists at appreciable concentrations in mammalian brain, where it undergoes aminotransferase conversion to yield an unusual cyclic thioether, lanthionine ketimine (LK; 2H-1,4-thiazine-5,6-dihydro-3,5-dicarboxylic acid). Recently, LK was discovered to possess neuroprotective, neuritigenic and anti-inflammatory activities. Moreover, both LK and the ubiquitous redox regulator glutathione (gamma-glutamyl-cysteine-glycine) bind to mammalian lanthionine synthetase-like protein-1 (LanCL1) protein which, along with its homolog LanCL2, has been associated with important physiological processes including signal transduction and insulin sensitization. These findings begin to suggest that Lan and its downstream metabolites may be physiologically important substances rather than mere metabolic waste. This review summarizes the current state of knowledge about lanthionyl metabolites with emphasis on their possible relationships to LanCL1/2 proteins and glutathione. The potential significance of lanthionines in paracrine signaling is discussed with reference to opportunities for utilizing bioavailable pro-drug derivatives of these compounds as novel pharmacophores.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA.
| | | | | |
Collapse
|