1
|
Crates R, Appleby D, Bray W, Langmore NE, Heinsohn R. Conserving avian vocal culture. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240139. [PMID: 40308130 PMCID: PMC12044382 DOI: 10.1098/rstb.2024.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 05/02/2025] Open
Abstract
Over 40% of bird species learn their vocalizations from conspecifics. Avian vocalizations therefore represent one of the most pervasive and quantifiable examples of culturally acquired behaviour that evolves and is maintained within populations through conformity and selection. We review research exploring the loss of vocal culture in wild birds and synthesize how this loss may occur through three processes, defined as erosion/fragmentation, divergence and convergence. We discuss the potential to conserve avian vocal cultures in the wild and in captivity, using the regent honeyeater Anthochaera phrygia as a case study. Given the current rates of global biodiversity decline, we predict that more examples of avian vocal culture loss will emerge in the future. There is a need, therefore, for a better understanding of (i) how pervasive loss of vocal culture is in birds; (ii) what factors predispose birds to loss of vocal culture; (iii) the fitness costs of loss of vocal culture, including the population size or density range within which fitness costs may be greatest; and (iv) how vocal cultures can best be conserved or restored. This knowledge could then inform management actions such that the diversity of the world's birds and their vocalizations can be maintained for generations to come.This article is part of the theme issue 'Animal culture: conservation in a changing world'.
Collapse
Affiliation(s)
- Ross Crates
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Daniel Appleby
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - William Bray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Naomi E. Langmore
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory2601, Australia
| |
Collapse
|
2
|
Pili A, Schumaker N, Camacho‐Cervantes M, Tingley R, Chapple D. Landscape Heterogeneity and Environmental Dynamics Improve Predictions of Establishment Success of Colonising Small Founding Populations. Evol Appl 2024; 17:e70027. [PMID: 39439435 PMCID: PMC11493551 DOI: 10.1111/eva.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
In long-distance dispersal events, colonising species typically begin with a small number of founding individuals. A growing body of research suggests that establishment success of small founding populations can be determined by the context of the colonisation event and the new environment. Here, we illuminate the importance of these sources of context dependence. Using a spatially explicit, temporally dynamic, mechanistic, individual-based simulator of a model amphibian species, the cane toad (Rhinella marina), we simulated colonisation scenarios to investigate how (1) the number of founding individuals, (2) the number of dispersal events, (3) landscape's spatial composition and configuration of habitats ('spatially heterogeneous landscapes') and (4) the timing of arrival with regards to dynamic environmental conditions ('dynamic environmental conditions') influence the establishment success of small founding populations. We analysed the dynamic effects of these predictors on establishment success using running-window logistic regression models. We showed establishment success increases with the number of founding individuals, whereas the number of dispersal events had a weak effect. At ≥ 20 founding individuals, propagule size swamps the effects of other factors, to whereby establishment success is near-certain (≥ 90%). But below this level, confidence in establishment success dramatically decreases as number of founding individuals decreases. At low numbers of founding individuals, the prominent predictors are landscape spatial heterogeneity and dynamic environmental conditions. For instance, compared to the annual mean, founding populations with ≤ 5 individuals have up to 18% higher establishment success when they arrive in 'packed' landscapes with relatively limited and clustered essential habitats and right before the breeding season. Accounting for landscape spatial heterogeneity and dynamic environmental conditions is integral in understanding and predicting population establishment and species colonisation. This additional complexity is necessary for advancing biogeographical theory and its application, such as in guiding species reintroduction efforts and invasive alien species management.
Collapse
Affiliation(s)
- Arman N. Pili
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
- Macroecology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam14469BrandenburgGermany
| | - Nathan H. Schumaker
- US Environmental Protection AgencyPacific Ecological Systems DivisionCorvallisOregonUSA
| | | | - Reid Tingley
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
| | - David G. Chapple
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
| |
Collapse
|
3
|
Qurban M, Khaliq A, Saqib M. Dynamics and control of two-dimensional discrete-time biological model incorporating weak Allee's effect. CHAOS (WOODBURY, N.Y.) 2024; 34:093104. [PMID: 39226475 DOI: 10.1063/5.0195199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Incorporating a weak Allee effect in a two-dimensional biological model in ℜ2, the study delves into the application of bifurcation theory, including center manifold and Ljapunov-Schmidt reduction, normal form theory, and universal unfolding, to analyze nonlinear stability issues across various engineering domains. The focus lies on the qualitative dynamics of a discrete-time system describing the interaction between prey and predator. Unlike its continuous counterpart, the discrete-time model exhibits heightened chaotic behavior. By exploring a biological Mmdel with linear functional prey response, the research elucidates the local asymptotic properties of equilibria. Additionally, employing bifurcation theory and the center manifold theorem, the analysis reveals that, for all α1 (i.e., intrinsic growth rate of prey), ð1˙ (i.e., parameter that scales the terms yn), and m (i.e., Allee effect constant), the model exhibits boundary fixed points A1 and A2, along with the unique positive fixed point A∗, given that the all parameters are positive. Additionally, stability theory is employed to explore the local dynamic characteristics, along with topological classifications, for the fixed points A1, A2, and A∗, considering the impact of the weak Allee effect on prey dynamics. A flip bifurcation is identified for the boundary fixed point A2, and a Neimark-Sacker bifurcation is observed in a small parameter neighborhood around the unique positive fixed point A∗=(mð1˙-1,α1-1-α1mð1˙-1). Furthermore, it implements two chaos control strategies, namely, state feedback and a hybrid approach. The effectiveness of these methods is demonstrated through numerical simulations, providing concrete illustrations of the theoretical findings. The model incorporates essential elements of population dynamics, considering interactions such as predation, competition, and environmental factors, along with a weak Allee effect influencing the prey population.
Collapse
Affiliation(s)
- Muhammad Qurban
- Department of Mathematics, Riphah International University, 54660 Lahore, Pakistan
| | - Abdul Khaliq
- Department of Mathematics, Riphah International University, 54660 Lahore, Pakistan
| | - Muhammad Saqib
- Institute of Mathematics, Khwaja Fareed University of Engineering and Information Technology, 64200 Rahim Yar Khan, Pakistan
| |
Collapse
|
4
|
Thompson JB, Hernández-Hernández T, Keeling G, Vásquez-Cruz M, Priest NK. Identifying the multiple drivers of cactus diversification. Nat Commun 2024; 15:7282. [PMID: 39179557 PMCID: PMC11343764 DOI: 10.1038/s41467-024-51666-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
Our understanding of the complexity of forces at play in the rise of major angiosperm lineages remains incomplete. The diversity and heterogeneous distribution of most angiosperm lineages is so extraordinary that it confounds our ability to identify simple drivers of diversification. Using machine learning in combination with phylogenetic modelling, we show that five separate abiotic and biotic variables significantly contribute to the diversification of Cactaceae. We reconstruct a comprehensive phylogeny, build a dataset of 39 abiotic and biotic variables, and predict the variables of central importance, while accounting for potential interactions between those variables. We use state-dependent diversification models to confirm that five abiotic and biotic variables shape diversification in the cactus family. Of highest importance are diurnal air temperature range, soil sand content and plant size, with lesser importance identified in isothermality and geographic range size. Interestingly, each of the estimated optimal conditions for abiotic variables were intermediate, indicating that cactus diversification is promoted by moderate, not extreme, climates. Our results reveal the potential primary drivers of cactus diversification, and the need to account for the complexity underlying the evolution of angiosperm lineages.
Collapse
Affiliation(s)
- Jamie B Thompson
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, UK.
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom.
| | | | - Georgia Keeling
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Marilyn Vásquez-Cruz
- Instituto Tecnológico Superior de Irapuato, Tecnológico Nacional de México, Irapuato, Guanajuato, México
| | - Nicholas K Priest
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
5
|
Pervenecki TJ, Bewick S, Otto G, Fagan WF, Li B. Allee effects introduced by density dependent phenology. Math Biosci 2024; 374:109221. [PMID: 38797472 DOI: 10.1016/j.mbs.2024.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 04/05/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
We consider a hybrid model of an annual species with the timing of a stage transition governed by density dependent phenology. We show that the model can produce a strong Allee effect as well as overcompensation. The density dependent probability distribution that describes how population emergence is spread over time plays an important role in determining population dynamics. Our extensive numerical simulations with a density dependent gamma distribution indicate very rich population dynamics, from stable/unstable equilibria, limit cycles, to chaos.
Collapse
Affiliation(s)
- Timothy J Pervenecki
- Department of Mathematics and Computer Science, University of Wisconsin-Superior, Superior, WI 54880, United States of America
| | - Sharon Bewick
- Department of Biological Sciences, Clemson University, Clemson, SC 29631, United States of America
| | - Garrett Otto
- Department of Mathematics, SUNY Cortland, Cortland, NY 13045, United States of America
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD 20742, United States of America
| | - Bingtuan Li
- Department of Mathematics, University of Louisville, Louisville, KY 40292, United States of America.
| |
Collapse
|
6
|
Waananen A, Richardson LK, Thoen RD, Nordstrom SW, Eichenberger EG, Kiefer G, Dykstra AB, Shaw RG, Wagenius S. High Juvenile Mortality Overwhelms Benefits of Mating Potential for Reproductive Fitness. Am Nat 2024; 203:E188-E199. [PMID: 38781531 DOI: 10.1086/730112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractAn individual's access to mates (i.e., its "mating potential") can constrain its reproduction but may also influence its fitness through effects on offspring survival. For instance, mate proximity may correspond with relatedness and lead to inbreeding depression in offspring. While offspring production and survival might respond differently to mating potential, previous studies have not considered the simultaneous effects of mating potential on these fitness components. We investigated the relationship of mating potential with both production and survival of offspring in populations of a long-lived herbaceous perennial, Echinacea angustifolia. Across 7 years and 14 sites, we quantified the mating potential of maternal plants in 1,278 mating bouts and followed the offspring from these bouts over 8 years. We used aster models to evaluate the relationship of mating potential with the number of offspring that emerged and that were alive after 8 years. Seedling emergence increased with mating potential. Despite this, the number of offspring surviving after 8 years showed no relationship to mating potential. Our results support the broader conclusion that the effect of mating potential on fitness erodes over time because of demographic stochasticity at the maternal level.
Collapse
|
7
|
Makowski H, Lamb K, Galloway LF. Support for Baker's law: Facultative self-fertilization ability decreases pollen limitation in experimental colonization. AMERICAN JOURNAL OF BOTANY 2024; 111:e16351. [PMID: 38812263 DOI: 10.1002/ajb2.16351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/31/2024]
Abstract
PREMISE The ability to self-fertilize is predicted to provide an advantage in colonization because a single individual can reproduce and establish a next generation in a new location regardless of the density of mates. While there is theoretical and correlative support for this idea, the strength of mate limitation as a selective agent has not yet been delineated from other factors that can also select for self-fertilization in colonization of new habitats. We used known mating-system variation in the American bellflower (Campanula americana) to explore how plants' ability to self-fertilize can mitigate density-dependent reproduction and impact colonization success. METHODS We created experimental populations of single individuals or a small number of plants to emulate isolated colonization events. These populations were composed of plants that differed in their ability to self-fertilize. We compared pollen limitation of the single individuals to that of small populations. RESULTS Experimental populations of plants that readily self-fertilize produced consistent seed numbers regardless of population size, whereas plants with lower ability to self-fertilize had density-dependent reproduction with greater seed production in small populations than in populations composed of a single individual. CONCLUSIONS We experimentally isolated the effect of mate limitation in colonization and found that it can select for increased self-fertilization. We show the benefit of self-fertilization in colonization, which helps to explain geographic patterns of self-fertilization and shows support for Baker's law, a long-held hypothesis in the field of mating-system evolution.
Collapse
Affiliation(s)
- Hanna Makowski
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, 22904, Virginia, USA
- Black Rock Forest, 65 Reservoir Road, Cornwall, New York, 12518, USA
| | - Keric Lamb
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, 22904, Virginia, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, 22904, Virginia, USA
| |
Collapse
|
8
|
Fisher AM, Knell RJ, Price TAR, Bonsall MB. Sex ratio distorting microbes exacerbate arthropod extinction risk in variable environments. Ecol Evol 2024; 14:e11216. [PMID: 38571791 PMCID: PMC10985368 DOI: 10.1002/ece3.11216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
Maternally-inherited sex ratio distorting microbes (SRDMs) are common among arthropod species. Typically, these microbes cause female-biased sex ratios in host broods, either by; killing male offspring, feminising male offspring, or inducing parthenogenesis. As a result, infected populations can experience drastic ecological and evolutionary change. The mechanism by which SRDMs operate is likely to alter their impact on host evolutionary ecology; despite this, the current literature is heavily biased towards a single mechanism of sex ratio distortion, male-killing. Furthermore, amidst the growing concerns surrounding the loss of arthropod diversity, research into the impact of SRDMs on the viability of arthropod populations is generally lacking. In this study, using a theoretical approach, we model the epidemiology of an understudied mechanism of microbially-induced sex ratio distortion-feminisation-to ask an understudied question-how do SRDMs impact extinction risk in a changing environment? We constructed an individual-based model and measured host population extinction risk under various environmental and epidemiological scenarios. We also used our model to identify the precise mechanism modulating extinction. We find that the presence of feminisers increases host population extinction risk, an effect that is exacerbated in highly variable environments. We also identified transmission rate as the dominant epidemiological trait responsible for driving extinction. Finally, our model shows that sex ratio skew is the mechanism driving extinction. We highlight feminisers and, more broadly, SRDMs as important determinants of the resilience of arthropod populations to environmental change.
Collapse
Affiliation(s)
- Adam M. Fisher
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | | | - Tom A. R. Price
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
9
|
Urvois T, Auger-Rozenberg MA, Roques A, Kerdelhué C, Rossi JP. Intraspecific niche models for the invasive ambrosia beetle Xylosandrus crassiusculus suggest contrasted responses to climate change. Oecologia 2024; 204:761-774. [PMID: 38536504 DOI: 10.1007/s00442-024-05528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/12/2024] [Indexed: 05/02/2024]
Abstract
Xylosandrus crassiusculus is an invasive ambrosia beetle comprising two differentiated genetic lineages, named cluster 1 and cluster 2. These lineages invaded different parts of the world at different periods of time. We tested whether they exhibited different climatic niches using Schoener's D and Hellinger's I indices and modeled their current potential geographical ranges using the Maxent algorithm. The resulting models were projected according to future and recent past climate datasets for Europe and the Mediterranean region. The future projections were performed for the periods 2041-2070 and 2071-2100 using 3 SSPs and 5 GCMs. The genetic lineages exhibited different climate niches. Parts of Europe, the Americas, Sub-Saharan Africa, Asia, and Oceania were evaluated as suitable for cluster 1. Parts of Europe, South America, Central and South Africa, Asia, and Oceania were considered as suitable for cluster 2. Models projection under future climate scenarios indicated a decrease in climate suitability in Southern Europe and an increase in North Eastern Europe in 2071-2100. Most of Southern and Western Europe was evaluated as already suitable for both clusters in the early twentieth century. Our results show that large climatically suitable regions still remain uncolonized and that climate change will affect the geographical distribution of climatically suitable areas. Climate conditions in Europe were favorable in the twentieth century, suggesting that the recent colonization of Europe is rather due to an increase in propagule pressure via international trade than to recent environmental changes.
Collapse
Affiliation(s)
- T Urvois
- INRAE, URZF, 45075, Orléans, France
- UMR CBGP, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | | | - A Roques
- INRAE, URZF, 45075, Orléans, France
| | - C Kerdelhué
- UMR CBGP, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France
| | - J-P Rossi
- UMR CBGP, INRAE, CIRAD, IRD, Institut Agro, Montpellier, France.
| |
Collapse
|
10
|
Fadda LA, Osorio-Olvera L, Ibarra-Juárez LA, Soberón J, Lira-Noriega A. Predicting the dispersal and invasion dynamics of ambrosia beetles through demographic reconstruction and process-explicit modeling. Sci Rep 2024; 14:7561. [PMID: 38555364 PMCID: PMC10981740 DOI: 10.1038/s41598-024-57590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Evaluating potential routes of invasion of pathogens and vectors of sanitary importance is essential for planning and decision-making at multiple scales. An effective tool are process-explicit models that allow coupling environmental, demographic and dispersal information to evaluate population growth and range dynamics as a function of the abiotic conditions in a region. In this work we simulate multiple dispersal/invasion routes in Mexico that could be taken by ambrosia beetles and a specific symbiont, Harringtonia lauricola, responsible for a severe epiphytic of Lauraceae in North America. We used Xyleborus bispinatus Eichhoff 1868 as a study subject and estimated its demography in the laboratory in a temperature gradient (17, 20, 26, 29, 35 °C), which we then used to parameterize a process-based model to estimate its metapopulation dynamics. The maximum intrinsic growth rate of X. bispinatus is 0.13 with a thermal optimum of 26.2 °C. The models suggest important regions for the establishment and dispersal the states of Veracruz, Chiapas and Oaxaca (high host and secondary vectors diversity), the Isthmus of Tehuantepec (connectivity region), and Michoacán and Jalisco (important avocado plantations). The use of hybrid process-based models is a promising tool to refine the predictions applied to the study of biological invasions and species distributions.
Collapse
Affiliation(s)
- Lucas A Fadda
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Carretera antigua a Coatepec 351, El Haya, C. P. 91073, Xalapa, Veracruz, Mexico
| | - Luis Osorio-Olvera
- Laboratorio de Ecoinformática de la Biodiversidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, México.
- Laboratorio Nacional Conahcyt de Biología del Cambio Climático, CONAHCyT, Ciudad de México, México.
| | - Luis A Ibarra-Juárez
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México
| | - Jorge Soberón
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Andrés Lira-Noriega
- Instituto de Ecología A.C., Red de Estudios Moleculares Avanzados, Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz, México.
| |
Collapse
|
11
|
Morgan WH, Palmer SCF, Lambin X. Mating system induced lags in rates of range expansion for different simulated mating systems and dispersal strategies: a modelling study. Oecologia 2024; 204:119-132. [PMID: 38172416 PMCID: PMC10830608 DOI: 10.1007/s00442-023-05492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
Mismatches between current and potential species distributions are commonplace due to lags in the response of populations to changing environmental conditions. The prevailing mating system may contribute to such lags where it leads to mating failure at the range edge, but how active dispersers might mitigate these lags using social information to inform dispersal strategies warrants greater exploration. We used an individual-based model to explore how different mating systems for species that actively search for habitat can impose a filter on the ability to colonise empty, fragmented landscapes, and explored how using social information during dispersal can mitigate the lags caused by more constrained mating systems. The mate-finding requirements implemented in two-sex models consistently led to slower range expansion compared to those that were not mate limited (i.e., female only models), even when mating was polygynous. A mate-search settlement strategy reduced the proportion of unmated females at the range edge but had little impact on rate of spread. In contrast, a negative density-dependent settlement strategy resulted in much faster spread, which could be explained by a greater number of long-distance dispersal events. Our findings suggest that even low rates of mating failure at the range edge can lead to considerable lags in range expansion, though dispersal strategies that favour colonising more distant, sparsely occupied habitat patches may effectively mitigate these lags.
Collapse
Affiliation(s)
- W H Morgan
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | - S C F Palmer
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - X Lambin
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
12
|
Ye ZM, Jin XF, He YD, Cao Y, Zou Y, Wang QF, Traveset A, Bergamo PJ, Yang CF. The interplay between scale, pollination niche and floral attractiveness on density-dependent plant-pollinator interactions. Oecologia 2023; 203:193-204. [PMID: 37823959 DOI: 10.1007/s00442-023-05461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Pollinators mediate interspecific and intraspecific plant-plant indirect interactions (competition vs. facilitation) via density-dependent processes, potentially shaping the dynamics of plant communities. However, it is still unclear which ecological drivers regulate density-dependent patterns, including scale, pollination niches (i.e., the main pollinator functional group) and floral attractiveness to pollinators. In this study, we conducted three-year field observations in Hengduan Mountains of southwest China. By gathering data for more than 100 animal-pollinated plant species, we quantified the effect (positive vs. negative) of conspecific and heterospecific flower density on pollination at two scales: plot-level (4 m2) and site-level (100-5000 m2). Then, we investigated how pollination niches and floral attractiveness to pollinators (estimated here as average per-flower visitation rates) modulated density-dependent pollination interactions. Pollinator visitation depended on conspecific and heterospecific flower density, with rare plants subjected to interspecific competition at the plot-level and interspecific facilitation at the site-level. Such interspecific competition at the plot-level was stronger for plants pollinated by diverse insects, while interspecific facilitation at the site-level was stronger for bee-pollinated plants. Moreover, we also found stronger positive conspecific density-dependence for plants with lower floral attractiveness at the site-level, meaning that they become more frequently visited when abundant. Our study indicates that the role of pollination in maintaining rare plants and plant diversity depends on the balance of density-dependent processes in species-rich communities. We show here that such balance is modulated by scale, pollination niches and floral attractiveness to pollinators, indicating the context-dependency of diversity maintenance mechanisms.
Collapse
Affiliation(s)
- Zhong-Ming Ye
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiao-Fang Jin
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yong-Deng He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Cao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yi Zou
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Qing-Feng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Anna Traveset
- Mediterranean Institute for Advanced Studies, CSIC-UIB, Miquel Marqués 21, 07190, Esporles, Mallorca, Spain
| | - Pedro J Bergamo
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio De Janeiro, 22460-030, Brazil.
| | - Chun-Feng Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
13
|
Barry JP, Litvin SY, DeVogelaere A, Caress DW, Lovera CF, Kahn AS, Burton EJ, King C, Paduan JB, Wheat CG, Girard F, Sudek S, Hartwell AM, Sherman AD, McGill PR, Schnittger A, Voight JR, Martin EJ. Abyssal hydrothermal springs-Cryptic incubators for brooding octopus. SCIENCE ADVANCES 2023; 9:eadg3247. [PMID: 37611094 PMCID: PMC10446498 DOI: 10.1126/sciadv.adg3247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
Does warmth from hydrothermal springs play a vital role in the biology and ecology of abyssal animals? Deep off central California, thousands of octopus (Muusoctopus robustus) migrate through cold dark waters to hydrothermal springs near an extinct volcano to mate, nest, and die, forming the largest known aggregation of octopus on Earth. Warmth from the springs plays a key role by raising metabolic rates, speeding embryonic development, and presumably increasing reproductive success; we show that brood times for females are ~1.8 years, far faster than expected for abyssal octopods. Using a high-resolution subsea mapping system, we created landscape-scale maps and image mosaics that reveal 6000 octopus in a 2.5-ha area. Because octopuses die after reproducing, hydrothermal springs indirectly provide a food supplement to the local energy budget. Although localized deep-sea heat sources may be essential to octopuses and other warm-tolerant species, most of these unique and often cryptic habitats remain undiscovered and unexplored.
Collapse
Affiliation(s)
- James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Andrew DeVogelaere
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - David W. Caress
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Chris F. Lovera
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Amanda S. Kahn
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Erica J. Burton
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - Chad King
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | | | - C. Geoffrey Wheat
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Moss Landing, CA, USA
| | - Fanny Girard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Paul R. McGill
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Eric J. Martin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| |
Collapse
|
14
|
Biswas S, Ghosh D. Evolutionarily stable strategies to overcome Allee effect in predator-prey interaction. CHAOS (WOODBURY, N.Y.) 2023; 33:2894469. [PMID: 37276555 DOI: 10.1063/5.0145914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023]
Abstract
Every successful species invasion is facilitated by both ecological and evolutionary mechanisms. The evolution of population's fitness related traits acts as functional adaptations to Allee effects. This trade-off increases predatory success at an expense of elevated death rate of potential predators. We address our queries employing an eco-evolutionary modeling approach that provides a means of circumventing inverse density-dependent effect. In the absence of evolution, the ecological system potentially exhibits multi-stable configurations under identical ecological conditions by allowing different bifurcation scenarios with the Allee effect. The model predicts a high risk of catastrophic extinction of interacting populations around different types of saddle-node bifurcations resulting from the increased Allee effect. We adopt the game-theoretic approach to derive the analytical conditions for the emergence of evolutionarily stable strategy (ESS) when the ecological system possesses asymptotically stable steady states as well as population cycles. We establish that ESSs occur at those values of adopted evolutionary strategies that are local optima of some functional forms of model parameters. Overall, our theoretical study provides important ecological insights in predicting successful biological invasions in the light of evolution.
Collapse
Affiliation(s)
- Saswati Biswas
- Department of Mathematics, University of Kalyani, Kalyani, Nadia 741235, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| |
Collapse
|
15
|
Verschut TA, Ng R, Doubovetzky NP, Le Calvez G, Sneep JL, Minnaard AJ, Su CY, Carlsson MA, Wertheim B, Billeter JC. Aggregation pheromones have a non-linear effect on oviposition behavior in Drosophila melanogaster. Nat Commun 2023; 14:1544. [PMID: 36941252 PMCID: PMC10027874 DOI: 10.1038/s41467-023-37046-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Female fruit flies (Drosophila melanogaster) oviposit at communal sites where the larvae may cooperate or compete for resources depending on group size. This offers a model system to determine how females assess quantitative social information. We show that the concentration of pheromones found on a substrate increases linearly with the number of adult flies that have visited that site. Females prefer oviposition sites with pheromone concentrations corresponding to an intermediate number of previous visitors, whereas sites with low or high concentrations are unattractive. This dose-dependent decision is based on a blend of 11-cis-Vaccenyl Acetate (cVA) indicating the number of previous visitors and heptanal (a novel pheromone deriving from the oxidation of 7-Tricosene), which acts as a dose-independent co-factor. This response is mediated by detection of cVA by odorant receptor neurons Or67d and Or65a, and at least five different odorant receptor neurons for heptanal. Our results identify a mechanism allowing individuals to transform a linear increase of pheromones into a non-linear behavioral response.
Collapse
Affiliation(s)
- Thomas A Verschut
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Renny Ng
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nicolas P Doubovetzky
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Guillaume Le Calvez
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan L Sneep
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Adriaan J Minnaard
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mikael A Carlsson
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
16
|
Zambrano A, Laguna MF, Kuperman MN, Laterra P, Monjeau JA, Nahuelhual L. A tragedy of the commons case study: modeling the fishers king crab system in Southern Chile. PeerJ 2023; 11:e14906. [PMID: 36935908 PMCID: PMC10022511 DOI: 10.7717/peerj.14906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/25/2023] [Indexed: 03/17/2023] Open
Abstract
Illegal fishing in small-scale fisheries is a contentious issue and resists a straightforward interpretation. Particularly, there is little knowledge regarding cooperative interactions between legal and illegal fishers and the potential effects on fisheries arising from these interactions. Taking the Chilean king crab (Lithodes santolla; common name centolla) fishery as a case study, our goal is twofold: (i) to model the effect of illegal-legal fishers' interactions on the fishery and (ii) analyze how management and social behavior affect fishery's outcomes. We framed the analysis of this problem within game theory combined with network theory to represent the architecture of competitive interactions. The fishers' system was set to include registered (legal) fishers and unregistered (illegal) fishers. In the presence of unregistered fishers, legal fishers may decide to cooperate (ignoring the presence of illegal fishers) or defect, which involves becoming a "super fisher" and whitewashing the captures of illegal fishers for a gain. The utility of both players, standard fisher and super fisher depend on the strategy chosen by each of them, as well as on the presence of illegal fishers. The nodes of the network represent the legal fishers (both standard and super fishers) and the links between nodes indicate that these fishers compete for the resource, assumed to be finite and evenly distributed across space. The decision to change (or not) the adopted strategy is modeled considering that fishers are subjected to variable levels of temptation to whitewash the illegal capture and to social pressure to stop doing so. To represent the vital dynamics of the king crab, we propose a model that includes the Allee effect and a term accounting for the crab extraction. We found that the super fisher strategy leads to the decrease of the king crab population under a critical threshold as postulated in the tragedy of the commons hypothesis when there are: (i) high net extraction rates of the network composed of non-competing standard fishers, (ii) high values of the extent of the fishing season, and (iii) high density of illegal fishers. The results suggest that even in the presence of super fishers and illegal fishers, the choice of properly distributed fishing/closure cycles or setting an extraction limit per vessel can prevent the king crab population from falling below a critical threshold. This finding, although controversial, reflects the reality of this fishery that, for decades, has operated under a dynamic in which whitewashing and super fishers have become well established within the system.
Collapse
Affiliation(s)
- Alan Zambrano
- Fundación Bariloche and CONICET, San Carlos de Bariloche, Argentina
| | - María F. Laguna
- Centro Atómico Bariloche - CONICET, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Río Negro, Argentina
| | - Marcelo N. Kuperman
- Centro Atómico Bariloche - CONICET, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Río Negro, Argentina
- Instituto Balseiro, Universidad Nacional de Cuyo, Cuyo, Mendoza, Argentina
| | - Pedro Laterra
- Fundación Bariloche and CONICET, San Carlos de Bariloche, Argentina
| | - Jorge A. Monjeau
- Fundación Bariloche and CONICET, San Carlos de Bariloche, Argentina
| | - Laura Nahuelhual
- Departamento de Ciencias Sociales, Universidad de Los Lagos, Osorno, Chile
- Instituto Milenio en Socio-Ecología Costera, Santiago, Chile
- Centro de Investigación, Dinámica de Ecosistemas Marinos de Altas Latitudes, Chile
| |
Collapse
|
17
|
Rodriguero MS, Confalonieri VA, Mackay Smith A, Dornon MK, Zagoren E, Palmer A, Sequeira AS. Genetically Depauperate and Still Successful: Few Multilocus Genotypes of the Introduced Parthenogenetic Weevil Naupactus cervinus (Coleoptera: Curculionidae) Prevail in the Continental United States. INSECTS 2023; 14:113. [PMID: 36835682 PMCID: PMC9958569 DOI: 10.3390/insects14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Naupactus cervinus is a parthenogenetic weevil native to South America that is currently distributed worldwide. This flightless species is polyphagous and capable of modifying gene expression regimes for responding to stressful situations. Naupactus cervinus was first reported in the continental United States in 1879 and has rapidly colonized most of the world since. Previous studies suggested that an invader genotype successfully established even in areas of unsuitable environmental conditions. In the present work, we analyze mitochondrial and nuclear sequences from 71 individuals collected in 13 localities across three states in the southern US, in order to describe the genetic diversity in this area of introduction that has not yet been previously studied. Our results suggest that 97% of the samples carry the most prevalent invader genotype already reported, while the rest shows a close mitochondrial derivative. This would support the hypothesis of a general purpose genotype, with parthenogenesis and its associated lack of recombination maintaining the linkage of genetic variants capable of coping with adverse conditions and enlarging its geographical range. However, demographic advantages related to parthenogenetic reproduction as the main driver of geographic expansion (such as the foundation of a population with a single virgin female) cannot be ruled out. Given the historical introduction records and the prevalence of the invader genotype, it is possible that the continental US may act as a secondary source of introductions to other areas. We propose that both the parthenogenesis and scarce genetic variation in places of introduction may, in fact, be an asset that allows N. cervinus to thrive across a range of environmental conditions.
Collapse
Affiliation(s)
- Marcela S. Rodriguero
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET–Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina
| | - Viviana A. Confalonieri
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET–Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina
| | - Ava Mackay Smith
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Mary Kate Dornon
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Eleanor Zagoren
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Alice Palmer
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Andrea S. Sequeira
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| |
Collapse
|
18
|
Carley LN, Morris WF, Walsh R, Riebe D, Mitchell‐Olds T. Are genetic variation and demographic performance linked? Evol Appl 2022; 15:1888-1906. [PMID: 36426131 PMCID: PMC9679243 DOI: 10.1111/eva.13487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Quantifying relationships between genetic variation and population viability is important from both basic biological and applied conservation perspectives, yet few populations have been monitored with both long-term demographic and population genetics approaches. To empirically test whether and how genetic variation and population dynamics are related, we present one such paired approach. First, we use eight years of historical demographic data from five populations of Boechera fecunda (Brassicaceae), a rare, self-compatible perennial plant endemic to Montana, USA, and use integral projection models to estimate the stochastic population growth rate (λ S) and extinction risk of each population. We then combine these demographic estimates with previously published metrics of genetic variation in the same populations to test whether genetic diversity within populations is linked to demographic performance. Our results show that in this predominantly inbred species, standing genetic variation and demography are weakly positively correlated. However, the inbreeding coefficient was not strongly correlated with demographic performance, suggesting that more inbred populations are not necessarily less viable or at higher extinction risk than less inbred populations. A contemporary re-census of these populations revealed that neither genetic nor demographic parameters were consistently strong predictors of current population density, although populations showing lower probabilities of extinction in demographic models had larger population sizes at present. In the absence of evidence for inbreeding depression decreasing population viability in this species, we recommend conservation of distinct, potentially locally adapted populations of B. fecunda rather than alternatives such as translocations or reintroductions.
Collapse
Affiliation(s)
- Lauren N. Carley
- University Program in EcologyDuke UniversityDurhamNorth CarolinaUSA
- Biology DepartmentDuke UniversityDurhamNorth CarolinaUSA
- Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| | | | - Roberta Walsh
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Donna Riebe
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Tom Mitchell‐Olds
- Biology DepartmentDuke UniversityDurhamNorth CarolinaUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
19
|
How mutation shapes the rate of population spread in the presence of a mate-finding Allee effect. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Braun J, Lortie CJ. Drivers of plant individual-based pollinator visitation network topology in an arid ecosystem. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Li M, Dong R, Tuohetahong Y, Li X, Zhang H, Ye X, Yu X. Impact of Allee effects on the establishment of reintroduction populations of endangered species: The case of the Crested Ibis. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
Selection for male stamina can help explain costly displays with cost-minimizing female choice. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
In many species, male lifespan is shorter than that of females, often attributed to sexual selection favouring costly expression of traits preferred by females. Coevolutionary models of female preferences and male traits predict that males can be selected to have such life histories; however, this typically requires that females also pay some costs to express their preferences. Here we show that this problem diminishes when we link coevolutionary models of costly mate choice with the idea of stamina. In our model, the most successful males are those who can combine high attendance time on a lek — or, more generally, tenacious effort in their display time budgets — with high viability such that they are not too strongly compromised in terms of lifespan. We find that an opportunistic female strategy, that minimizes its costs by mating with highly visible (displaying) males, often beats other alternatives. It typically resists invasion attempts of genotypes that mate randomly in the population genetic sense, as well as invasion of stricter ways of being choosy (which are potentially costly if choice requires e.g. active rejection of all males who do not presently display, or risky travel to lekking sites). Our model can produce a wide range of male time budgets (display vs. self-maintenance). This includes cases of alternative mating tactics where males in good condition spend much time displaying, while those in poor condition never display yet, importantly, gain some mating success due to females not engaging in rejection behaviours should these be very costly to express.
Significance statement
In many species, males spend much time and energy on displaying to attract females, but it is not always clear what females gain from paying attention to male displays. The tradition in mathematical models attempting to understand the situation is to assume that random mating is the least costly option for females. However, random mating in the population genetic sense requires females to behave in a manner that equalizes mating success between displaying and non-displaying males, and here we point out that this is biologically unlikely. Opportunistically mating females can cause males to spend much of their time budgets displaying and will shorten male lifespans in a quality-dependent manner.
Collapse
|
23
|
Shaw AK. Diverse perspectives from diverse scholars are vital for theoretical biology. THEOR ECOL-NETH 2022. [DOI: 10.1007/s12080-022-00533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractScience is based on studying some aspects of the world while holding others constant. The assumptions of what can and cannot be ignored implicitly shape our understanding of the world around us. This truth is particularly evident when studying biology through mathematical models, where one must explicitly state assumptions during the process of model building. Although we often recognize that all models are “wrong” in their assumptions, we often overlook the corollary that developing multiple models that are wrong in different ways can help us triangulate truth in our understanding. Theoretical biologists build models in the image of how they envision the world, an image that is shaped by their scientific identity, experiences, and perspectives. A lack of diversity in any of these axes handicaps our ability to understand biological systems through theory. However, we can overcome this by collectively recognizing our own assumptions, by understanding how perspective shapes the development of theory, and — most importantly — by increasing the diversity of theoretical biologists (in terms of identity, experiences, and perspectives). Combined, this will lead to developing theory that provides a richer understanding of the biological world.
Collapse
|
24
|
Andrén H, Hemmingmoore H, Aronsson M, Åkesson M, Persson J. No Allee effect detected during the natural recolonization by a large carnivore despite low growth rate. Ecosphere 2022. [DOI: 10.1002/ecs2.3997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Henrik Andrén
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
| | - Heather Hemmingmoore
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
| | - Malin Aronsson
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
- Department of Zoology Stockholm University Stockholm Sweden
| | - Mikael Åkesson
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
| | - Jens Persson
- Grimsö Wildlife Research Station, Department of Ecology Swedish University of Agricultural Sciences Riddarhyttan Sweden
| |
Collapse
|
25
|
Dawson-Glass E, Hargreaves AL. Does pollen limitation limit plant ranges? Evidence and implications. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210014. [PMID: 35067093 PMCID: PMC8784924 DOI: 10.1098/rstb.2021.0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/23/2021] [Indexed: 11/12/2022] Open
Abstract
Sexual reproduction often declines towards range edges, reducing fitness, dispersal and adaptive potential. For plants, sexual reproduction is frequently limited by inadequate pollination. While case studies show that pollen limitation can limit plant distributions, the extent to which pollination commonly declines towards plant range edges is unknown. Here, we use global databases of pollen-supplementation experiments and plant occurrence data to test whether pollen limitation increases towards plant range edges, using a phylogenetically controlled meta-analysis. While there was significant pollen limitation across studies, we found little evidence that pollen limitation increases towards plant range edges. Pollen limitation was not stronger towards the tropics, nor at species' equatorward versus poleward range limits. Meta-analysis results are consistent with results from targeted experiments, in which pollen limitation increased significantly towards only 14% of 14 plant range edges, suggesting that pollination contributes to range limits less often than do other interactions. Together, these results suggest pollination is one of the rich variety of potential ecological factors that can contribute to range limits, rather than a generally important constraint on plant distributions. This article is part of the theme issue 'Species' ranges in the face of changing environments (part I)'.
Collapse
Affiliation(s)
- Emma Dawson-Glass
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal H3A 1B1, Canada
| | - Anna L. Hargreaves
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal H3A 1B1, Canada
| |
Collapse
|
26
|
Richardson LK, Wagenius S. Fire influences reproductive outcomes by modifying flowering phenology and mate-availability. THE NEW PHYTOLOGIST 2022; 233:2083-2093. [PMID: 34921422 DOI: 10.1111/nph.17923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
A recent study posited that fire in grasslands promotes persistence of plant species by improving mating opportunities and reproductive outcomes. We devised an investigation to test these predicted mechanisms in two widespread, long-lived perennials. We expect fire to synchronize flowering, increase mating and boost seed set. We quantified individual flowering phenology and seed set of Liatris aspera and Solidago speciosa for 3 yr on a preserve in Minnesota, USA. The preserve comprises two management units burned on alternating years, allowing for comparisons between plants in burned and unburned areas within the same year, and plants in the same area across years with and without burns. Fire increased flowering synchrony and increased time between start date and peak flowering. Individuals of both species that initiated flowering later in the season had higher seed set. Fire was associated with substantially higher flowering rates and seed set in L. aspera but not S. speciosa. In L. aspera, greater synchrony was associated with increased mean seed set. Although fire affected flowering phenology in both species, reproductive success improved only in the species in which fire also synchronized among-year flowering. Our results support the hypothesis that reproduction in some grassland species benefits from fire.
Collapse
Affiliation(s)
- Lea K Richardson
- Program in Plant Biology and Conservation, Northwestern University, 2205 Tech Drive - Hogan 6-140B, Evanston, IL, 60208, USA
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| | - Stuart Wagenius
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL, 60022, USA
| |
Collapse
|
27
|
Fargevieille A, Reedy AM, Kahrl AF, Mitchell TS, Durso AM, Delaney DM, Pearson PR, Cox RM, Warner DA. Propagule size and sex ratio influence colonisation dynamics after introduction of a non-native lizard. J Anim Ecol 2022; 91:845-857. [PMID: 35114034 DOI: 10.1111/1365-2656.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/23/2022] [Indexed: 11/28/2022]
Abstract
The composition of founding populations plays an important role in colonisation dynamics and can influence population growth during early stages of biological invasion. Specifically, founding populations with small propagules (i.e., low number of founders) are vulnerable to the Allee effect and have reduced likelihood of establishment compared to those with large propagules. The founding sex ratio can also impact establishment via its influence on mating success and offspring production. Our goal was to test the effects of propagule size and sex ratio on offspring production and annual population growth following introductions of a non-native lizard species (Anolis sagrei). We manipulated propagule composition on nine small islands, then examined offspring production, population growth, and survival rate of founders and their descendants encompassing three generations. By the third reproductive season, per capita offspring production was higher on islands seeded with a relatively large propagule size, but population growth was not associated with propagule size. Propagule sex ratio did not affect offspring production, but populations with a female-biased propagule had positive growth, whereas those with a male-biased propagule had negative growth in the first year. Populations were not affected by propagule sex ratio in subsequent years, possibly due to rapid shifts towards balanced (or slightly female-biased) population sex ratios. Overall, we show that different components of population fitness have different responses to propagule size and sex ratio in ways that could affect early stages of biological invasion. Despite these effects, the short lifespan and high fecundity of A. sagrei likely helped small populations to overcome Allee effects and enabled all populations to successfully establish. Our rare experimental manipulation of propagule size and sex ratio can inform predictions of colonisation dynamics in response to different compositions of founding populations, which is critical in the context of population ecology and invasion dynamics.
Collapse
Affiliation(s)
- Amélie Fargevieille
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Aaron M Reedy
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Ariel F Kahrl
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA.,Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg, 18B SE-10691, Stockholm, Sweden
| | - Timothy S Mitchell
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Andrew M Durso
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL, 33965, USA
| | - David M Delaney
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80302, USA
| | - Phillip R Pearson
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,Centre for Conservation, Ecology and Genomics, University of Canberra, Bruce, ACT, 2617, Australia
| | - Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Daniel A Warner
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.,Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.,Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
28
|
McLain DK, Pratt AE. The opportunity for and intensity of sexual selection in a seed bug depend on host plant dispersion. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2021.2024267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Denson K. McLain
- Department of Biological Sciences, Georgia Southern University, P.O. Box 8042, Statesboro, GA 30460, USA
| | - Ann E. Pratt
- Department of Biological Sciences, Georgia Southern University, P.O. Box 8042, Statesboro, GA 30460, USA
| |
Collapse
|
29
|
Santorelli Junior S, Magnusson WE, de Deus CP, Keitt TH. Neutral processes and reduced dispersal across Amazonian rivers may explain how rivers maintain species diversity after secondary contact. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Piquet JC, López-Darias M. Invasive snake causes massive reduction of all endemic herpetofauna on Gran Canaria. Proc Biol Sci 2021; 288:20211939. [PMID: 34875190 PMCID: PMC8651408 DOI: 10.1098/rspb.2021.1939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 11/12/2022] Open
Abstract
Invasive snakes represent a serious threat to island biodiversity, being responsible for far-reaching impacts that are noticeably understudied, particularly regarding native reptiles. We analysed the impact of the invasive California kingsnake, Lampropeltis californiae-recently introduced in the Canary Islands-on the abundance of all endemic herpetofauna of the island of Gran Canaria. We quantified the density in invaded and uninvaded sites for the Gran Canaria giant lizard, Gallotia stehlini, the Gran Canaria skink, Chalcides sexlineatus, and Boettger's wall gecko, Tarentola boettgeri. We used spatially explicit capture-recapture and distance-sampling methods for G. stehlini and active searches under rocks for the abundance of the other two reptiles. The abundance of all species was lower in invaded sites, with a reduction in the number of individuals greater than 90% for G. stehlini, greater than 80% for C. sexlineatus and greater than 50% for T. boettgeri in invaded sites. Our results illustrate the severe impact of L. californiae on the endemic herpetofauna of Gran Canaria and highlight the need for strengthened measures to manage this invasion. We also provide further evidence of the negative consequences of invasive snakes on island reptiles and emphasize the need for further research on this matter on islands worldwide.
Collapse
Affiliation(s)
- Julien C. Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
31
|
Population genetic structure of raccoons as a consequence of multiple introductions and range expansion in the Boso Peninsula, Japan. Sci Rep 2021; 11:19294. [PMID: 34588496 PMCID: PMC8481489 DOI: 10.1038/s41598-021-98029-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
The raccoon (Procyon lotor) is an invasive carnivore that invaded various areas of the world. Although controlling feral raccoon populations is important to reduce serious threats to local ecosystems, raccoons are not under rigid population control in Europe and Japan. We examined the D-loop and nuclear microsatellite regions to identify spatially explicit and feasible management units for effective population control and further range expansion retardation. Through the identification of five mitochondrial DNA haplotypes and three nuclear genetic groups, we identified at least three independent introductions, range expansion, and subsequent genetic admixture in the Boso Peninsula. The management unit considered that two were appropriate because two populations have already genetic exchange. Furthermore, when taking management, we think that it is important to monitor DNA at the same time as capture measures for feasible management. This makes it possible to determine whether there is a invasion that has a significant impact on population growth from out of the unit, and enables adaptive management.
Collapse
|
32
|
Using Chemical Ecology to Enhance Weed Biological Control. INSECTS 2021; 12:insects12080695. [PMID: 34442263 PMCID: PMC8396541 DOI: 10.3390/insects12080695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary Signaling chemicals produced by one organism that bring about a behavioral response in a recipient organism are known as semiochemicals, with pheromones being a well-known example. Semiochemicals have been widely used to monitor and control insect pests in agricultural and forestry settings, but they have not been widely used in weed biological control. Here, we list the few examples of semiochemical use in the practice of classical weed biological control, where a natural enemy (biocontrol agent) from the native range of the plant is introduced into the new invaded range. Uses of semiochemicals include monitoring of biocontrol agents (sex pheromones), keeping biocontrol agents together long enough for them to become well established (aggregation pheromones) and repelling agents from areas where they may be unwanted (host or non-host plant volatile organic deterrents). We make the case that given the vast potential of biological control in suppressing invasive plants it is well worth developing and utilizing semiochemicals to enhance biocontrol programs. Abstract In agricultural systems, chemical ecology and the use of semiochemicals have become critical components of integrated pest management. The categories of semiochemicals that have been used include sex pheromones, aggregation pheromones, and plant volatile compounds used as attractants as well as repellents. In contrast, semiochemicals are rarely utilized for management of insects used in weed biological control. Here, we advocate for the benefit of chemical ecology principles in the implementation of weed biocontrol by describing successful utilization of semiochemicals for release, monitoring and manipulation of weed biocontrol agent populations. The potential for more widespread adoption and successful implementation of semiochemicals justifies multidisciplinary collaborations and increased research on how semiochemicals and chemical ecology can enhance weed biocontrol programs.
Collapse
|
33
|
LAWRENCE AJ, Carleton SA, Gould WR, Nichols CT. Lesser Prairie‐Chicken Survival in Varying Densities of Energy Development. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew J. LAWRENCE
- Department of Biology New Mexico State University Las Cruces NM 88003 USA
| | - Scott A. Carleton
- Division of Migratory Birds United States Fish and Wildlife Service Albuquerque NM 87102 USA
| | - William R. Gould
- Applied Statistics Program, College of Business New Mexico State University Las Cruces NM 88003 USA
| | - Clay T. Nichols
- Ecological Services Division United States Fish and Wildlife Service Arlington TX 76006 USA
| |
Collapse
|
34
|
Genomics-informed models reveal extensive stretches of coastline under threat by an ecologically dominant invasive species. Proc Natl Acad Sci U S A 2021; 118:2022169118. [PMID: 34083434 DOI: 10.1073/pnas.2022169118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explaining why some species are widespread, while others are not, is fundamental to biogeography, ecology, and evolutionary biology. A unique way to study evolutionary and ecological mechanisms that either limit species' spread or facilitate range expansions is to conduct research on species that have restricted distributions. Nonindigenous species, particularly those that are highly invasive but have not yet spread beyond the introduced site, represent ideal systems to study range size changes. Here, we used species distribution modeling and genomic data to study the restricted range of a highly invasive Australian marine species, the ascidian Pyura praeputialis This species is an aggressive space occupier in its introduced range (Chile), where it has fundamentally altered the coastal community. We found high genomic diversity in Chile, indicating high adaptive potential. In addition, genomic data clearly showed that a single region from Australia was the only donor of genotypes to the introduced range. We identified over 3,500 km of suitable habitat adjacent to its current introduced range that has so far not been occupied, and importantly species distribution models were only accurate when genomic data were considered. Our results suggest that a slight change in currents, or a change in shipping routes, may lead to an expansion of the species' introduced range that will encompass a vast portion of the South American coast. Our study shows how the use of population genomics and species distribution modeling in combination can unravel mechanisms shaping range sizes and forecast future range shifts of invasive species.
Collapse
|
35
|
Takou M, Hämälä T, Koch EM, Steige KA, Dittberner H, Yant L, Genete M, Sunyaev S, Castric V, Vekemans X, Savolainen O, de Meaux J. Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Mol Biol Evol 2021; 38:1820-1836. [PMID: 33480994 PMCID: PMC8097302 DOI: 10.1093/molbev/msaa322] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.
Collapse
Affiliation(s)
- Margarita Takou
- Institute of Botany, University of Cologne, Cologne, Germany
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Evan M Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kim A Steige
- Institute of Botany, University of Cologne, Cologne, Germany
| | | | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Mathieu Genete
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vincent Castric
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Xavier Vekemans
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | |
Collapse
|
36
|
Crates R, Langmore N, Ranjard L, Stojanovic D, Rayner L, Ingwersen D, Heinsohn R. Loss of vocal culture and fitness costs in a critically endangered songbird. Proc Biol Sci 2021; 288:20210225. [PMID: 33726592 PMCID: PMC8059949 DOI: 10.1098/rspb.2021.0225] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cultures in humans and other species are maintained through interactions among conspecifics. Declines in population density could be exacerbated by culture loss, thereby linking culture to conservation. We combined historical recordings, citizen science and breeding data to assess the impact of severe population decline on song culture, song complexity and individual fitness in critically endangered regent honeyeaters (Anthochaera phrygia). Song production in the remaining wild males varied dramatically, with 27% singing songs that differed from the regional cultural norm. Twelve per cent of males, occurring in areas of particularly low population density, completely failed to sing any species-specific songs and instead sang other species' songs. Atypical song production was associated with reduced individual fitness, as males singing atypical songs were less likely to pair or nest than males that sang the regional cultural norm. Songs of captive-bred birds differed from those of all wild birds. The complexity of regent honeyeater songs has also declined over recent decades. We therefore provide rare evidence that a severe decline in population density is associated with the loss of vocal culture in a wild animal, with concomitant fitness costs for remaining individuals. The loss of culture may be a precursor to extinction in declining populations that learn selected behaviours from conspecifics, and therefore provides a useful conservation indicator.
Collapse
Affiliation(s)
- Ross Crates
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - Naomi Langmore
- Research School of Biology, Australian National University, 46 Sullivan's Creek Rd, Acton, Canberra 2601, Australia
| | - Louis Ranjard
- Research School of Biology, Australian National University, 46 Sullivan's Creek Rd, Acton, Canberra 2601, Australia
| | - Dejan Stojanovic
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | - Laura Rayner
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| | | | - Robert Heinsohn
- Fenner School of Environment and Society, Australian National University, Linnaeus Way, Acton, Canberra 2601, Australia
| |
Collapse
|
37
|
Demography, genetics, and decline of a spatially structured population of lekking bird. Oecologia 2021; 195:117-129. [PMID: 33392789 DOI: 10.1007/s00442-020-04808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Understanding the mechanisms underlying population decline is a critical challenge for conservation biologists. Both deterministic (e.g. habitat loss, fragmentation, and Allee effect) and stochastic (i.e. demographic and environmental stochasticity) demographic processes are involved in population decline. Simultaneously, a decrease of population size has far-reaching consequences for genetics of populations by increasing the risk of inbreeding and the strength of genetic drift, which together inevitably results in a loss of genetic diversity and a reduced effective population size ([Formula: see text]). These genetic factors may retroactively affect vital rates (a phenomenon coined 'inbreeding depression'), reduce population growth, and accelerate demographic decline. To date, most studies that have examined the demographic and genetic processes driving the decline of wild populations have neglected their spatial structure. In this study, we examined demographic and genetic factors involved in the decline of a spatially structured population of a lekking bird, the western capercaillie (Tetrao urogallus). To address this issue, we collected capture-recapture and genetic data over a 6-years period in the Vosges Mountains (France). Our study showed that the population of T. urogallus experienced a severe decline between 2010 and 2015. We did not detect any Allee effect on survival and recruitment. By contrast, individuals of both sexes dispersed to avoid small subpopulations, thus suggesting a potential behavioral response to a mate finding Allee effect. In parallel to this demographic decline, the population showed low levels of genetic diversity, high inbreeding and low effective population sizes at both subpopulation and population levels. Despite this, we did not detect evidence of inbreeding depression: neither adult survival nor recruitment were affected by individual inbreeding level. Our study underlines the benefit from combining demographic and genetic approaches to investigate processes that are involved in population decline.
Collapse
|
38
|
Pham HT, McNamara KB, Elgar MA. Socially cued anticipatory adjustment of female signalling effort in a moth. Biol Lett 2020; 16:20200614. [PMID: 33259772 DOI: 10.1098/rsbl.2020.0614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Juvenile population density has profound effects on subsequent adult development, morphology and reproductive investment. Yet, little is known about how the juvenile social environment affects adult investment into chemical sexual signalling. Male gumleaf skeletonizer moths, Uraba lugens, facultatively increase investment into antennae (pheromone receiving structures) when reared at low juvenile population densities, but whether there is comparable adjustment by females into pheromone investment is not known. We investigate how juvenile population density influences the 'calling' (pheromone-releasing) behaviour of females and the attractiveness of their pheromones. Female U. lugens adjust their calling behaviour in response to socio-sexual cues: adult females reared in high juvenile population densities called earlier and for longer than those from low juvenile densities. Juvenile density also affected female pheromonal attractiveness: Y-maze olfactometer assays revealed that males prefer pheromones produced by females reared at high juvenile densities. This strategic investment in calling behaviour by females, based on juvenile cues that anticipate the future socio-sexual environment, likely reflects a response to avoid mating failure through competition with neighbouring signallers.
Collapse
Affiliation(s)
- Hieu T Pham
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Kathryn B McNamara
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mark A Elgar
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
39
|
Vortkamp I, Barraquand F, Hilker FM. Ecological Allee effects modulate optimal strategies for conservation in agricultural landscapes. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
le Roex N, Ferreira SM. Age structure changes indicate direct and indirect population impacts in illegally harvested black rhino. PLoS One 2020; 15:e0236790. [PMID: 32726369 PMCID: PMC7390388 DOI: 10.1371/journal.pone.0236790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Overharvesting affects the size and growth of wildlife populations and can impact population trajectories. Overharvesting can also severely alter population structure and may result in changes in spatial organisation, social dynamics and recruitment. Understanding the relationship between overharvesting and population growth is therefore crucial for the recovery of exploited species. The black rhinoceros (Diceros bicornis; black rhino) is a long-lived megaherbivore native to sub-Saharan Africa, listed as Critically Endangered on the IUCN Red List of Threatened Species. Since 2009, the targeted illegal killing of rhino for their horns has escalated dramatically in South Africa. Given their slow life trajectories, spatial structure and social dynamics, black rhino may be susceptible to both direct and indirect impacts of overharvesting. Our study compared black rhino demography before and during extensive poaching to understand the impact of illegal killing. The population exhibited significant changes in age structure after four years of heavy poaching; these changes were primarily explained by a decrease in the proportion of calves over time. Population projections incorporating both direct poaching removals and decreased fecundity/recruitment were most similar to the observed demographic profile in 2018, suggesting that indirect impacts are also contributing to the observed population trajectory. These indirect impacts are likely a result of decreased density, through processes such as reduced mate-finding, population disturbance and/or increased calf predation. This study illustrates the combined effect of direct and indirect impacts on an endangered species, providing a more comprehensive approach by which to evaluate exploited populations.
Collapse
Affiliation(s)
- Nikki le Roex
- Scientific Services, South African National Parks, Skukuza, South Africa
- Institute for Communities and Wildlife in Africa (iCWild), Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Sam M. Ferreira
- Scientific Services, South African National Parks, Skukuza, South Africa
| |
Collapse
|
41
|
Mishra A, Tung S, Shree Sruti VR, Srivathsa S, Dey S. Mate-finding dispersal reduces local mate limitation and sex bias in dispersal. J Anim Ecol 2020; 89:2089-2098. [PMID: 32535925 DOI: 10.1111/1365-2656.13278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Sex-biased dispersal (SBD) often skews the local sex ratio in a population. This can result in a shortage of mates for individuals of the less-dispersive sex. Such mate limitation can lead to Allee effects in populations that are small or undergoing range expansion, consequently affecting their survival, growth, stability and invasion speed. Theory predicts that mate shortage can lead to either an increase or a decrease in the dispersal of the less-dispersive sex. However, neither of these predictions have been empirically validated. To investigate how SBD-induced mate limitation affects dispersal of the less-dispersive sex, we used Drosophila melanogaster populations with varying dispersal propensities. To rule out any mate-independent density effects, we examined the behavioural plasticity of dispersal in the presence of mates as well as same-sex individuals with differential dispersal capabilities. In the presence of high-dispersive mates, the dispersal of both male and female individuals was significantly increased. However, the magnitude of this increase was much larger in males than in females, indicating that the former shows greater mate-finding dispersal. Moreover, the dispersal of either sex did not change when dispersing alongside high- or low-dispersive individuals of the same sex. This suggested that the observed plasticity in dispersal was indeed due to mate-finding dispersal, and not mate-independent density effects. Strong mate-finding dispersal can diminish the magnitude of sex bias in dispersal. This can modulate the evolutionary processes that shape range expansions and invasions, depending on the population size. In small populations, mate-finding dispersal can ameliorate Allee effects. However, in large populations, it can dilute the effects of spatial sorting.
Collapse
Affiliation(s)
- Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - V R Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sahana Srivathsa
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| |
Collapse
|
42
|
Aubier TG. Positive density dependence acting on mortality can help maintain species-rich communities. eLife 2020; 9:e57788. [PMID: 32553104 PMCID: PMC7302881 DOI: 10.7554/elife.57788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Conspecific negative density dependence is ubiquitous and has long been recognized as an important factor favoring the coexistence of competing species at local scale. By contrast, a positive density-dependent growth rate is thought to favor species exclusion by inhibiting the growth of less competitive species. Yet, such conspecific positive density dependence often reduces extrinsic mortality (e.g. reduced predation), which favors species exclusion in the first place. Here, using a combination of analytical derivations and numerical simulations, I show that this form of positive density dependence can favor the existence of equilibrium points characterized by species coexistence. Those equilibria are not globally stable, but allow the maintenance of species-rich communities in multispecies simulations. Therefore, conspecific positive density dependence does not necessarily favor species exclusion. On the contrary, some forms of conspecific positive density dependence may even help maintain species richness in natural communities. These results should stimulate further investigations into the precise mechanisms underlying density dependence.
Collapse
Affiliation(s)
- Thomas G Aubier
- Department of Evolutionary Biology and Environmental Studies, University of ZurichZurichSwitzerland
| |
Collapse
|
43
|
Bliege Bird R, McGuire C, Bird DW, Price MH, Zeanah D, Nimmo DG. Fire mosaics and habitat choice in nomadic foragers. Proc Natl Acad Sci U S A 2020; 117:12904-12914. [PMID: 32461375 PMCID: PMC7293616 DOI: 10.1073/pnas.1921709117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the mid-1950s Western Desert of Australia, Aboriginal populations were in decline as families left for ration depots, cattle stations, and mission settlements. In the context of reduced population density, an ideal free-distribution model predicts landscape use should contract to the most productive habitats, and people should avoid areas that show more signs of extensive prior use. However, ecological or social facilitation due to Allee effects (positive density dependence) would predict that the intensity of past habitat use should correlate positively with habitat use. We analyzed fire footprints and fire mosaics from the accumulation of several years of landscape use visible on a 35,300-km2 mosaic of aerial photographs covering much of contemporary Indigenous Martu Native Title Lands imaged between May and August 1953. Structural equation modeling revealed that, consistent with an Allee ideal free distribution, there was a positive relationship between the extent of fire mosaics and the intensity of recent use, and this was consistent across habitats regardless of their quality. Fire mosaics build up in regions with low cost of access to water, high intrinsic food availability, and good access to trade opportunities; these mosaics (constrained by water access during the winter) then draw people back in subsequent years or seasons, largely independent of intrinsic habitat quality. Our results suggest that the positive feedback effects of landscape burning can substantially change the way people value landscapes, affecting mobility and settlement by increasing sedentism and local population density.
Collapse
Affiliation(s)
- Rebecca Bliege Bird
- Department of Anthropology, Pennsylvania State University, University Park, PA 16801;
| | - Chloe McGuire
- Department of Anthropology, Pennsylvania State University, University Park, PA 16801
| | - Douglas W Bird
- Department of Anthropology, Pennsylvania State University, University Park, PA 16801
| | | | - David Zeanah
- Department of Anthropology, California State University, Sacramento, CA 95819
| | - Dale G Nimmo
- Institute for Land, Water and Society, Charles Sturt University, Albury, NSW 2640, Australia
| |
Collapse
|
44
|
Fisher AM, Cornell SJ, Holwell GI, Price TAR. Mate‐finding Allee effects can be exacerbated or relieved by sexual cannibalism. J Anim Ecol 2020; 89:1581-1592. [DOI: 10.1111/1365-2656.13214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/21/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Adam M. Fisher
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | | | | | - Tom A. R. Price
- Institute of Integrative Biology University of Liverpool Liverpool UK
| |
Collapse
|
45
|
Harman RR, Goddard J, Shivaji R, Cronin JT. Frequency of Occurrence and Population-Dynamic Consequences of Different Forms of Density-Dependent Emigration. Am Nat 2020; 195:851-867. [DOI: 10.1086/708156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Goto D, Hamel MJ, Pegg MA, Hammen JJ, Rugg ML, Forbes VE. Divergent density feedback control of migratory predator recovery following sex-biased perturbations. Ecol Evol 2020; 10:3954-3967. [PMID: 32489623 PMCID: PMC7244814 DOI: 10.1002/ece3.6153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 01/02/2023] Open
Abstract
Uncertainty in risks posed by emerging stressors such as synthetic hormones impedes conservation efforts for threatened vertebrate populations. Synthetic hormones often induce sex-biased perturbations in exposed animals by disrupting gonad development and early life-history stage transitions, potentially diminishing per capita reproductive output of depleted populations and, in turn, being manifest as Allee effects. We use a spatially explicit biophysical model to evaluate how sex-biased perturbation in life-history traits of individuals (maternal investment in egg production and male-skewed sex allocation in offspring) modulates density feedback control of year-class strength and recovery trajectories of a long-lived, migratory fish-shovelnose sturgeon (Scaphirhynchus platorynchus)-under spatially and temporally dynamic synthetic androgen exposure and habitat conditions. Simulations show that reduced efficiency of maternal investment in gonad development prolonged maturation time, increased the probability of skipped spawning, and, in turn, shrunk spawner abundance, weakening year-class strength. However, positive density feedback disappeared (no Allee effect) once the exposure ceased. By contrast, responses to the demographic perturbation manifested as strong positive density feedback; an abrupt shift in year-class strength and spawner abundance followed after more than two decades owing to persistent negative population growth (a strong Allee effect), reaching an alternative state without any sign of recovery. When combined with the energetic perturbation, positive density feedback of the demographic perturbation was dampened as extended maturation time reduced the frequency of producing male-biased offspring, allowing the population to maintain positive growth rate (a weak Allee effect) and gradually recover. The emergent patterns in long-term population projections illustrate that sex-biased perturbation in life-history traits can interactively regulate the strength of density feedback in depleted populations such as Scaphirhynchus sturgeon to further diminish reproductive capacity and abundance, posing increasingly greater conservation challenges in chemically altered riverscapes.
Collapse
Affiliation(s)
- Daisuke Goto
- Institute of Marine Research/HavforskningsinstituttetBergenNorway
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Martin J. Hamel
- School of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNEUSA
- University of Georgia, Warnell School of Forestry and Natural ResourcesAthensGAUSA
| | - Mark A. Pegg
- School of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNEUSA
| | | | | | - Valery E. Forbes
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Ecology, Evolution and BehaviorUniversity of MinnesotaSt. PaulMNUSA
| |
Collapse
|
47
|
Mazes to Study the Effects of Spatial Complexity, Predation and Population Density on Mate Finding. INSECTS 2020; 11:insects11040256. [PMID: 32326018 PMCID: PMC7240405 DOI: 10.3390/insects11040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
The difficulty to locate mates and overcome predation can hamper species establishment and population maintenance. The effects of sparseness between individuals or the effect of predators on the probability of population growth can be difficult to measure experimentally. For testing hypotheses about population density and predation, we contend that habitat complexity can be simulated using insect mazes of varying mathematical difficulty. To demonstrate the concept, we investigated whether the use of 3D printed mazes of varying complexity could be used to increase spatial separation between sexes of Drosophila simulans, and whether the presence of a generalist predator hampered mate-finding. We then examined how increasing D. simulans population density might overcome the artificially created effects of increasing the distance between mates and having a predator present. As expected, there was an increase in time taken to find a mate and a lower incidence of mating as habitat complexity increased. Increasing the density of flies reduced the searching time and increased mating success, and overcame the effect of the predator in the maze. Printable 3D mazes offer the opportunity to quickly assess the effects of spatial separation on insect population growth in the laboratory, without the need for large enclosed spaces. Mazes could be scaled up for larger insects and can be used for other applications such as learning.
Collapse
|
48
|
Cayuela H, Griffiths RA, Zakaria N, Arntzen JW, Priol P, Léna JP, Besnard A, Joly P. Drivers of amphibian population dynamics and asynchrony at local and regional scales. J Anim Ecol 2020; 89:1350-1364. [PMID: 32173904 DOI: 10.1111/1365-2656.13208] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Identifying the drivers of population fluctuations in spatially distinct populations remains a significant challenge for ecologists. Whereas regional climatic factors may generate population synchrony (i.e. the Moran effect), local factors including the level of density dependence may reduce the level of synchrony. Although divergences in the scaling of population synchrony and spatial environmental variation have been observed, the regulatory factors that underlie such mismatches are poorly understood. Few previous studies have investigated how density-dependent processes and population-specific responses to weather variation influence spatial synchrony at both local and regional scales. We addressed this issue in a pond-breeding amphibian, the great crested newt Triturus cristatus. We used capture-recapture data collected through long-term surveys in five T. cristatus populations in Western Europe. In all populations-and subpopulations within metapopulations-population size, annual survival and recruitment fluctuated over time. Likewise, there was considerable variation in these demographic rates between populations and within metapopulations. These fluctuations and variations appear to be context-dependent and more related to site-specific characteristics than local or regional climatic drivers. We found a low level of demographic synchrony at both local and regional levels. Weather has weak and spatially variable effects on survival, recruitment and population growth rate. In contrast, density dependence was a common phenomenon (at least for population growth) in almost all populations and subpopulations. Our findings support the idea that the Moran effect is low in species where the population dynamics more closely depends on local factors (e.g. population density and habitat characteristics) than on large-scale environmental fluctuation (e.g. regional climatic variation). Such responses may have far-reaching consequences for the long-term viability of spatially structured populations and their ability to respond to large-scale climatic anomalies.
Collapse
Affiliation(s)
- Hugo Cayuela
- Institut de Biologie Integrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Richard A Griffiths
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Nurul Zakaria
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, UK
| | - Jan W Arntzen
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Jean-Paul Léna
- UMR 5023 LEHNA, Université de Lyon, Lyon1, CNRS, ENTPE, Villeurbanne, France
| | - Aurélien Besnard
- CNRS, PSL Research University, EPHE, UM, SupAgro, IRD, INRA, UMR 5175 CEFE, Montpellier, France
| | - Pierre Joly
- UMR 5023 LEHNA, Université de Lyon, Lyon1, CNRS, ENTPE, Villeurbanne, France
| |
Collapse
|
49
|
Jiménez‐Franco MV, Giménez A, Rodríguez‐Caro RC, Sanz‐Aguilar A, Botella F, Anadón JD, Wiegand T, Graciá E. Sperm storage reduces the strength of the mate-finding Allee effect. Ecol Evol 2020; 10:1938-1948. [PMID: 32128127 PMCID: PMC7042743 DOI: 10.1002/ece3.6019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/23/2019] [Indexed: 11/07/2022] Open
Abstract
Mate searching is a key component of sexual reproduction that can have important implications for population viability, especially for the mate-finding Allee effect. Interannual sperm storage by females may be an adaptation that potentially attenuates mate limitation, but the demographic consequences of this functional trait have not been studied. Our goal is to assess the effect of female sperm storage durability on the strength of the mate-finding Allee effect and the viability of populations subject to low population density and habitat alteration. We used an individual-based simulation model that incorporates realistic representations of the demographic and spatial processes of our model species, the spur-thighed tortoise (Testudo graeca). This allowed for a detailed assessment of reproductive rates, population growth rates, and extinction probabilities. We also studied the relationship between the number of reproductive males and the reproductive rates for scenarios combining different levels of sperm storage durability, initial population density, and landscape alteration. Our results showed that simulated populations parameterized with the field-observed demographic rates collapsed for short sperm storage durability, but were viable for a durability of one year or longer. In contrast, the simulated populations with a low initial density were only viable in human-altered landscapes for sperm storage durability of 4 years. We find that sperm storage is an effective mechanism that can reduce the strength of the mate-finding Allee effect and contribute to the persistence of low-density populations. Our study highlights the key role of sperm storage in the dynamics of species with limited movement ability to facilitate reproduction in patchy landscapes or during population expansion. This study represents the first quantification of the effect of sperm storage durability on population dynamics in different landscapes and population scenarios.
Collapse
Affiliation(s)
- María V. Jiménez‐Franco
- Ecology AreaDeparment of Applied BiologyMiguel Hernández University ‐ Av. de la Universidad. TorreblancaElcheSpain
- Department of Ecological ModelingUFZ–Helmholtz Centre for Environmental ResearchLeipzigGermany
| | - Andrés Giménez
- Ecology AreaDeparment of Applied BiologyMiguel Hernández University ‐ Av. de la Universidad. TorreblancaElcheSpain
| | - Roberto C. Rodríguez‐Caro
- Ecology AreaDeparment of Applied BiologyMiguel Hernández University ‐ Av. de la Universidad. TorreblancaElcheSpain
- Departamento de EcologíaUniversidad de AlicanteAlicanteSpain
| | - Ana Sanz‐Aguilar
- Ecology AreaDeparment of Applied BiologyMiguel Hernández University ‐ Av. de la Universidad. TorreblancaElcheSpain
- Animal Demography and Ecology UnitIMEDEA (CSIC‐UIB)EsporlesSpain
- Applied Zoology and Conservation GroupUniversity of Balearic IslandsPalmaSpain
| | - Francisco Botella
- Ecology AreaDeparment of Applied BiologyMiguel Hernández University ‐ Av. de la Universidad. TorreblancaElcheSpain
| | - José D. Anadón
- Department of BiologyQueens College, City University of New YorkFlushingNYUSA
- The Graduate Center, Biology ProgramCity University of New YorkNew YorkNYUSA
- Área de EcologíaDepartamento de Ciencias Agrarias y el Medio NaturalUniversidad de ZaragozaHuescaSpain
| | - Thorsten Wiegand
- Department of Ecological ModelingUFZ–Helmholtz Centre for Environmental ResearchLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Eva Graciá
- Ecology AreaDeparment of Applied BiologyMiguel Hernández University ‐ Av. de la Universidad. TorreblancaElcheSpain
- Department of Ecological ModelingUFZ–Helmholtz Centre for Environmental ResearchLeipzigGermany
| |
Collapse
|
50
|
Fire synchronizes flowering and boosts reproduction in a widespread but declining prairie species. Proc Natl Acad Sci U S A 2020; 117:3000-3005. [PMID: 31988124 DOI: 10.1073/pnas.1907320117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fire is an important determinant of habitat structure and biodiversity across ecosystems worldwide. In fire-dependent communities, similar to the North American prairie, fire suppression contributes to local plant extinctions. Yet the demographic mechanisms responsible for species loss have not been directly investigated. We conducted a 21-y longitudinal study of 778 individual plants of Echinacea angustifolia, a widespread perennial species with chronically limited mating opportunities, to explore how fire affects reproduction. In a large preserve, with management units on different burn schedules, we investigated Echinacea mating scenes, which quantify isolation from potential mates and overlap in the timing of flowering, to determine the extent to which fire influences the potential for sexual reproduction. We demonstrate that fire consistently increased mating opportunities by synchronizing reproductive effort. Each fire occurred during fall or spring and stimulated flowering in the subsequent summer, thus synchronizing reproduction among years and increasing the proximity of potential mates after a fire. Greater within-season flowering synchrony in postfire mating scenes further increased mating potential. The improved postfire mating scene enhanced reproduction by increasing pollination efficiency. Seed set in scenes postfire exceeded other scenes by 55%, and annual fecundity nearly doubled (88% increase). We predict the reproductive benefits of synchronized flowering after fire can alleviate mate-finding Allee effects, promote population growth, and forestall local extirpation in small populations of Echinacea and many other prairie species. Furthermore, the synchronization of flowering by burning may improve mating opportunities, reproduction, and the likelihood of persistence for many other plant species in fire-dependent habitats.
Collapse
|