1
|
Smoglica C, Carcagnì A, Angelucci S, Di Tana F, Marsilio F, López-Olvera JR, Di Francesco CE. Systematic review and meta-analysis of antimicrobial resistant bacteria in free-ranging wild mammals. BMC Vet Res 2025; 21:150. [PMID: 40050801 PMCID: PMC11887149 DOI: 10.1186/s12917-025-04548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/30/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Bacterial antimicrobial resistance is a significant global threat to public health, closely linked to the misuse of antimicrobials in human and veterinary medicine, aquaculture, and agriculture. The consequences of antimicrobial resistance overcome species boundaries and require a holistic approach for mitigation actions. The study of antimicrobial resistance in wildlife is thus increasingly relevant to understand the spread of antimicrobial resistance in the environment and the animal community, as well as to investigate the role of wildlife either as a carrier, reservoir, spillover, or indicator of antimicrobial resistance. The aim of this study is to describe the prevalence and type of antimicrobial resistance in bacterial isolates from wild mammals through systematic review and meta-analysis of the available literature, following the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) guidelines. RESULTS Out of 5052 collected documents, 3795 were screened, and finally 139 studies on antimicrobial resistance in free-ranging wild mammals were included in the meta-analysis. The studies covered 37 countries, mostly European. The Enterobacterales Escherichia coli and Salmonella spp., as well as Campylobacter spp., were the most frequently targeted bacterial species, mainly in the Artiodactyla order and specifically in the Suidae and Cervidae families. Low to moderate prevalences of antimicrobial resistance were found in all the continents, countries, bacteria, host taxa, and antimicrobials included in the meta-analysis, even for critically important antimicrobials as defined by the World Health Organisation, with higher values in Africa and Asia, in carnivores, and in animal species with high adaptability to diverse habitats. CONCLUSION This meta-analysis showed that antimicrobial resistance in wild mammals is widespread and variable according to taxonomy, trophic source, and geographic location. The meta-analysis highlighted methodological gaps that need to be addressed to improve the interpretation and conclusions obtained from the data. Genetic analyses on antimicrobial resistance and population ecological data should be included in future analysis to achieve a standardised methodology and overcome current limitations. To date, wildlife appears to be an environmental indicator of antimicrobial resistance and should be included in antimicrobial resistance surveillance plans not only because this sentinel role but also to monitor potential spill-back to livestock and/or humans.
Collapse
Affiliation(s)
- Camilla Smoglica
- Department of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy.
| | - Antonella Carcagnì
- Epidemiology and Biostatistics Facility, G-STeP Generator, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Angelucci
- Wildlife Research Center, Maiella National Park, Caramanico Terme, 65023, Italy
| | - Fabrizia Di Tana
- Wildlife Research Center, Maiella National Park, Caramanico Terme, 65023, Italy
| | - Fulvio Marsilio
- Department of Veterinary Medicine, University of Teramo, Teramo, 64100, Italy
| | - Jorge Ramón López-Olvera
- Wildlife Ecology and Health Groupand, Departament de MedicinaICirurgia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, 08193, Spain
| | | |
Collapse
|
2
|
Balboni A, Magliocca M, Urbani L, Battilani M. Canine Adenoviruses in Wildlife: Role in At-Risk Species Conservation and Interface with Domestic Animals. Pathogens 2025; 14:200. [PMID: 40005575 PMCID: PMC11858118 DOI: 10.3390/pathogens14020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Canine adenovirus type 1 (CAdV-1) and type 2 (CAdV-2) are well known pathogens of domestic dogs but are little investigated in wild animals. The few available studies about CAdV-1 in wild animals show that it circulates in various species and that transmission of the virus in the interface between wildlife and domestic animals is a frequent event. Furthermore, wild animals are usually subject to asymptomatic infections, but cases of serious and fatal diseases have been documented, with possible effects on the conservation of the species. In contrast, CAdV-2 infection was reported only recently and sporadically in some wild animals, with few data regarding its pathogenic role in these species. However, the real prevalence of these viruses in wildlife is still uncertain due to the use of serological tests that are largely unable to distinguish antibodies against CAdV-1 and CAdV-2. This review, reporting all the data currently available on CAdV-1 and CAdV-2 infection in wild animals, highlights the importance of these pathogens for wildlife conservation and their role in the potential transmission of the infection to domestic dogs.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy; (M.M.); (L.U.); (M.B.)
| | | | | | | |
Collapse
|
3
|
Bertelloni F, Cagnoli G, Ebani VV. Survey on the Occurrence of Zoonotic Bacterial Pathogens in the Feces of Wolves ( Canis lupus italicus) Collected in a Protected Area in Central Italy. Microorganisms 2024; 12:2367. [PMID: 39597755 PMCID: PMC11596315 DOI: 10.3390/microorganisms12112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Previous investigations have explored the involvement of wolves in parasitic and viral diseases, but data on the zoonotic bacteria are limited. The aim of this study was to assess the occurrence of bacterial zoonotic agents in 16 wolf (Canis lupus italicus) fecal samples collected in a protected area in Central Italy. Campylobacter spp., Salmonella spp., Yersinia spp., Listeria monocytogenes, and Shiga Toxin-Producing Escherichia coli (STEC) were investigated by culture, while polymerase chain reaction (PCR) was employed to detect Coxiella burnetii, Mycobacterium spp., Brucella spp., and Francisella tularensis. The presence of Extended Spectrum β-Lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae was also evaluated, using selective isolation media and detection of antimicrobial resistance genes. All samples were negative for Campylobacter spp., Salmonella spp., C. burnetii, Mycobacterium spp., Brucella spp., F. tularensis, and carbapenemase-producing Enterobacteriaceae. One sample tested positive for Yersinia aldovae and three for Yersinia enterocolitica BT1A. One L. monocytogenes (serogroup IIa) and one STEC, carrying the stx1 gene, were isolated. Two ESBL isolates were detected: one Serratia fonticola, carrying blaFONA-3/6 gene, and one Escherichia coli, carrying blaCTX-M-1 gene. Both ESBL isolates were resistant to different antimicrobials and therefore classified as multi-drug-resistant. Our data suggest that wolves are potential carriers of zoonotic bacteria and may contribute to the environmental contamination through their feces.
Collapse
Affiliation(s)
- Fabrizio Bertelloni
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
| | - Giulia Cagnoli
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
| | - Valentina Virginia Ebani
- Department of Veterinary Science, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.B.); (G.C.)
- Centre for Climate Change Impact, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
4
|
Magliocca M, Taddei R, Urbani L, Bertasio C, Facile V, Gallina L, Sampieri M, Rugna G, Rubini S, Maioli G, Terrusi A, Battilani M, Balboni A. Molecular Detection of Viral and Bacterial Pathogens in Red Foxes ( Vulpes vulpes) from Italy. Animals (Basel) 2024; 14:1969. [PMID: 38998080 PMCID: PMC11240561 DOI: 10.3390/ani14131969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
Animals, including wildlife, are part of One-Health concept since many infectious diseases can affect both humans and animals. In this study, 126 red foxes (Vulpes vulpes) from Northern Italy in 2022-2023 were tested by molecular assays for Protoparvovirus carnivoran 1 (PPVC-1), Canine adenovirus type 1 and 2 (CAdV-1 and CAdV-2), Circovirus canine (CanineCV), Canine distemper virus (CDV), and Leptospira spp. A total of 39 of 126 (30.9%) red foxes were infected with at least one pathogen and five of these were coinfected: 20/126 (15.9%) red foxes tested positive for PPVC-1, 3/126 (2.4%) for CAdV, 20/126 (15.9%) for CanineCV, and 2/126 (1.6%) for Leptospira spp. DNA. No foxes tested positive for CDV RNA. The pathogens identified were genetically analysed. New findings were reported such as a fox with multiple feline panleukopenia virus (FPV) and canine parvovirus type 2b (CPV-2b) infection associated with quasispecies dynamics, typical genetic characteristics of the identified CanineCV, and the first detection in red foxes of Leptospira ST198 related to L. interrogans serogroup Australis. Further studies are necessary to investigate the transmission between domestic animals and wildlife and to understand the role of red foxes in the maintenance of these pathogens not only in the wild but also in urban and peri-urban environments.
Collapse
Affiliation(s)
- Martina Magliocca
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Roberta Taddei
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Bologna, 40127 Bologna, Italy
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Cristina Bertasio
- Italian Reference Centre for Animal Leptospirosis, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Brescia, 25124 Brescia, Italy
| | - Veronica Facile
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Laura Gallina
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Maria Sampieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Bologna, 40127 Bologna, Italy
| | - Gianluca Rugna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Modena, 41122 Modena, Italy
| | - Silva Rubini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Ferrara, 44124 Ferrara, Italy
| | - Giulia Maioli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER) "Bruno Ubertini", Sede Territoriale di Bologna, 40127 Bologna, Italy
| | - Alessia Terrusi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, 40064 Ozzano Emilia, Bologna, Italy
| |
Collapse
|
5
|
Milićević V, Glišić D, Veljović L, Vasić A, Milovanović B, Kureljušić B, Paunović M. Protoparvovirus carnivoran 1 infection of golden jackals Canis aureus in Serbia. Vet Res Commun 2024; 48:1203-1209. [PMID: 37932576 DOI: 10.1007/s11259-023-10249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Parvoviruses are among the major animal pathogens that can cause considerable health disorders ranging from subclinical to lethal in domestic and wild animals. Golden jackal (Canis aureus), an expanding European species, is a reservoir of many pathogens, including vector-borne diseases and zoonoses. Given the importance of parvovirus infections in dogs and cats, this study aimed to unfold the virus prevalence and molecular characterisation in the golden jackal population in Serbia. The spleen samples from 68 hunted jackals during 2022/2023 were tested for the VP2-specific genome region of Protoparvovirus carnivoran 1 by PCR. BLAST analysis of partial VP2 sequences obtained from three animals (4.4%) revealed the highest similarity to Protoparvovirus carnivoran 1, genogroup Feline panleukopenia virus, which is the second report on FPV infection in jackals. Based on specific amino acid residues within partial VP2, the jackals' Protoparvovirus carnivoran 1 was also classified as FPV. One jackal's strain showed two synonymous mutations at positions 699 and 1167. Although species cross-transmission could not be established, jackals' health should be maintained by preventing the transmission of viruses to native species and vice versa. Although jackals are considered pests, their role as natural cleaners is of greater importance. Therefore, further monitoring of their health is needed to understand the influence of infectious diseases on population dynamics and to determine the relationship between domestic predators and jackals and the direction of cross-species transmission.
Collapse
Affiliation(s)
- Vesna Milićević
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia.
| | - Dimitrije Glišić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Ljubiša Veljović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Ana Vasić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Bojan Milovanović
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Branislav Kureljušić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, Belgrade, 11000, Republic of Serbia
| | - Milan Paunović
- Natural History Museum, Njegoševa 51, Belgrade, 11111, Republic of Serbia
| |
Collapse
|
6
|
Matas-Méndez P, Ávalos G, Caballero-Gómez J, Dashti A, Castro-Scholten S, Jiménez-Martín D, González-Barrio D, Muñoz-de-Mier GJ, Bailo B, Cano-Terriza D, Mateo M, Nájera F, Xiao L, Köster PC, García-Bocanegra I, Carmena D. Detection and Molecular Diversity of Cryptosporidium spp. and Giardia duodenalis in the Endangered Iberian Lynx ( Lynx pardinus), Spain. Animals (Basel) 2024; 14:340. [PMID: 38275800 PMCID: PMC10812403 DOI: 10.3390/ani14020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Cryptosporidium spp. and Giardia duodenalis are the main non-viral causes of diarrhoea in humans and domestic animals globally. Comparatively, much less information is currently available in free-ranging carnivore species in general and in the endangered Iberian lynx (Lynx pardinus) in particular. Cryptosporidium spp. and G. duodenalis were investigated with molecular (PCR and Sanger sequencing) methods in individual faecal DNA samples of free-ranging and captive Iberian lynxes from the main population nuclei in Spain. Overall, Cryptosporidium spp. and G. duodenalis were detected in 2.4% (6/251) and 27.9% (70/251) of the animals examined, respectively. Positive animals to at least one of them were detected in each of the analysed population nuclei. The analysis of partial ssu rRNA gene sequences revealed the presence of rodent-adapted C. alticolis (n = 1) and C. occultus (n = 1), leporid-adapted C. cuniculus (n = 2), and zoonotic C. parvum (n = 2) within Cryptosporidium, and zoonotic assemblages A (n = 5) and B (n = 3) within G. duodenalis. Subgenotyping analyses allowed for the identification of genotype VaA19 in C. cuniculus (gp60 locus) and sub-assemblages AI and BIII/BIV in G. duodenalis (gdh, bg, and tpi loci). This study represents the first molecular description of Cryptosporidium spp. and G. duodenalis in the Iberian lynx in Spain. The presence of rodent/leporid-adapted Cryptosporidium species in the surveyed animals suggests spurious infections associated to the Iberian lynx's diet. The Iberian lynx seems a suitable host for zoonotic genetic variants of Cryptosporidium (C. parvum) and G. duodenalis (assemblages A and B), although the potential risk of human transmission is regarded as limited due to light parasite burdens and suspected low excretion of infective (oo)cysts to the environment by infected animals. More research should be conducted to ascertain the true impact of these protozoan parasites in the health status of the endangered Iberian lynx.
Collapse
Affiliation(s)
- Pablo Matas-Méndez
- Faculty of Veterinary, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
| | - Gabriel Ávalos
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Javier Caballero-Gómez
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, 14004 Córdoba, Spain
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Sabrina Castro-Scholten
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
| | - Débora Jiménez-Martín
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
| | - David González-Barrio
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - Gemma J. Muñoz-de-Mier
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
| | - David Cano-Terriza
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - Marta Mateo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Fernando Nájera
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
- Faculty of Health Sciences, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain;
- Faculty of Medicine, Alfonso X El Sabio University (UAX), 28691 Villanueva de la Cañada, Spain
| | - Ignacio García-Bocanegra
- Department of Animal Health, Animal Health and Zoonosis Research Group (GISAZ), UIC Zoonoses and Emerging Diseases (ENZOEM), University of Córdoba, 14014 Córdoba, Spain; (S.C.-S.); (D.J.-M.); (D.C.-T.); (I.G.-B.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, 28220 Majadahonda, Spain; (G.Á.); (A.D.); (D.G.-B.); (B.B.); (D.C.)
- CIBERINFEC, ISCIII—CIBER Infectious Diseases, Health Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Figueiredo AM, Köster PC, Dashti A, Torres RT, Fonseca C, Mysterud A, Bailo B, Carvalho J, Ferreira E, Hipólito D, Fernandes J, Lino A, Palmeira JD, Sarmento P, Neves N, Carrapato C, Calero-Bernal R, Carmena D. Molecular Detection and Distribution of Giardia duodenalis and Cryptosporidium spp. Infections in Wild and Domestic Animals in Portugal. Transbound Emerg Dis 2023; 2023:5849842. [PMID: 40303765 PMCID: PMC12017001 DOI: 10.1155/2023/5849842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/30/2023] [Indexed: 05/02/2025]
Abstract
Enteric protozoan parasites Giardia duodenalis, Cryptosporidium spp., and, to a lesser extent, the ciliate Balantioides coli are responsible for severe human and animal intestinal disorders globally. However, limited information is available on the occurrence and epidemiology of these parasites in domestic, but especially wild species in Portugal. To fill this gap of knowledge, we have investigated G. duodenalis, Cryptosporidium spp., and B. coli occurrence, distribution, genetic diversity, and zoonotic potential by analyzing 756 fecal samples from several wild carnivores (n = 288), wild ungulates (n = 242), and domestic species (n = 226) collected across different areas of mainland Portugal. Overall, infection rates were 16.1% (122/756; 95% CI: 13.59-18.96) for G. duodenalis and 2.7% (20/756; CI: 1.62-4.06) for Cryptosporidium spp., while no ungulate sample analyzed yielded positive results for B. coli. Giardia duodenalis was found across a wide range of hosts and sampling areas, being most prevalent in the Iberian lynx (26.7%), the Iberian wolf (24.0%), and the domestic dog (23.9%). Cryptosporidium spp. was only identified in wild boar (8.4%), red fox (3.4%), Iberian lynx (3.3%), red deer (3.1%), and Iberian wolf (2.5%). Sequence analysis of G. duodenalis determined zoonotic assemblage A (subassemblage AI) in one roe deer sample, canine-specific assemblages C and D in Iberian wolf, red fox, and domestic dog, and ungulate-specific assemblage E in wild boar, sheep, cattle, and horse. Six Cryptosporidium species were identified: C. scrofarum in wild boar, C. canis in the Iberian wolf and red fox, C. ubiquitum in red deer and wild boar, C. felis in the Iberian lynx, and both C. ryanae and C. occultus in red deer. Giardia duodenalis and Cryptosporidium spp. coinfections were observed in 0.7% (5/756) of the samples. This is the first, most comprehensive, and largest molecular-based epidemiology study of its kind carried out in Portugal, covering a wide range of wild and domestic hosts and sampling areas. The detection of zoonotic Cryptosporidium spp. and G. duodenalis subassemblage AI demonstrates the role of wild and domestic host species in the transmission of these agents while representing a potential source of environmental contamination for other animals and humans.
Collapse
Affiliation(s)
- Ana M. Figueiredo
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, P.O Box 1066 Blindern, NO-316 Oslo, Norway
| | - Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Majadahonda 28220, Madrid, Spain
| | - Alejandro Dashti
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Majadahonda 28220, Madrid, Spain
| | - Rita T. Torres
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Carlos Fonseca
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
- ForestWISE – Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001–801, Vila Real, Portugal
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis, Department of Bioscience, University of Oslo, P.O Box 1066 Blindern, NO-316 Oslo, Norway
| | - Begoña Bailo
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Majadahonda 28220, Madrid, Spain
| | - João Carvalho
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Eduardo Ferreira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Dário Hipólito
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
- Veterinary Biology Unit, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55 10000, Zagreb, Croatia
| | - Joana Fernandes
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ana Lino
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Josman D. Palmeira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Pedro Sarmento
- Instituto da Conservação da Natureza e das Florestas, Direção Regional do Alentejo, Centro Polivalente da Casa do Lanternim, Rua D. Sancho II., n15 7750–350 Mértola, Portugal
| | - Nuno Neves
- Instituto da Conservação da Natureza e das Florestas, Direção Regional do Alentejo, Centro Polivalente da Casa do Lanternim, Rua D. Sancho II., n15 7750–350 Mértola, Portugal
| | - Carlos Carrapato
- Instituto da Conservação da Natureza e das Florestas, Direção Regional do Alentejo, Centro Polivalente da Casa do Lanternim, Rua D. Sancho II., n15 7750–350 Mértola, Portugal
| | - Rafael Calero-Bernal
- SALUVET, Animal Health Department Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n 28040, Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Majadahonda 28220, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
| |
Collapse
|
8
|
Samorek-Pieróg M, Cencek T, Łabuć E, Pac-Sosińska M, Pieróg M, Korpysa-Dzirba W, Bełcik A, Bilska-Zając E, Karamon J. Occurrence of Eucoleus aerophilus in wild and domestic animals: a systematic review and meta-analysis. Parasit Vectors 2023; 16:245. [PMID: 37475031 PMCID: PMC10360280 DOI: 10.1186/s13071-023-05830-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Eucoleus aerophilus (syn. Capillaria aerophila) is a nematode with a worldwide geographical distribution. It causes a disease called lung capillariosis by affecting the respiratory tract of wild and domestic animals, and has also occasionally been described in humans. Despite steady increases in knowledge of the morphology of this neglected parasite, many aspects are still poorly understood. Epidemiological data regarding, for example, geographic distribution, range of hosts, clinical relevance and the actual zoonotic potential of this nematode are scarce and incomplete. METHODS This article is a systematic review based on the screening of three databases (PubMed, Web of Science and Science Direct) to identify eligible studies published from 1973 to the end of 2022. RESULTS From a total of 606 studies describing the occurrence of E. aerophilus, 141 articles from 38 countries worldwide were included in this meta-analysis, all of which presented results obtained mainly with flotation and necropsy. Due to the occurrence of E. aerophilus in many different species and different matrices (lungs and faeces), we decided to conduct the meta-analysis separately for each species with a given matrix. This systematic review confirmed the status of the Red fox as the main reservoir and main transmitter of E. aerophilus (average prevalence of 43% in faeces and 49% in lungs) and provided evidence of a higher prevalence of E. aerophilus in wild animals in comparison to domestic animals, such as dogs (3% in faeces) and cats (2% in faeces and 8% in lungs). Previous studies have investigated many host-related factors (age, sex, environmental/living conditions) in relation to the prevalence of E. aerophilus, but they show wide variations and no simple relationship has been demonstrates. Furthermore, mixed infections with other pulmonary nematodes, such as Crenosoma vulpis and/or Angiostrongylus vasorum, are reported very frequently, which greatly complicates the diagnosis. CONCLUSIONS This systematic review focused on identifying data gaps and promoting future research directions in this area. To the best of our knowledge, this is the first systematic review that evaluates and summarizes existing knowledge on the occurrence and prevalence of E. aerophilus in wild and domestic animals originating from different geographical locations worldwide.
Collapse
Affiliation(s)
- Małgorzata Samorek-Pieróg
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100, Puławy, Poland.
| | - Tomasz Cencek
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100, Puławy, Poland
| | - Emilia Łabuć
- Institute of Biological Sciences, Laboratory of Bioinformatics, University of Maria Curie-Skłodowska, Akademicka 19, 20-033, Lublin, Poland
| | - Małgorzata Pac-Sosińska
- Institute of Biological Sciences, Laboratory of Bioinformatics, University of Maria Curie-Skłodowska, Akademicka 19, 20-033, Lublin, Poland
| | - Mateusz Pieróg
- Institute of Biological Sciences, Department of Animal Physiology and Pharmacology, University of Maria Curie-Skłodowska, Akademicka 19, 20-033, Lublin, Poland
| | - Weronika Korpysa-Dzirba
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100, Puławy, Poland
| | - Aneta Bełcik
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100, Puławy, Poland
| | - Ewa Bilska-Zając
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100, Puławy, Poland
| | - Jacek Karamon
- Department of Parasitology and Invasive Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100, Puławy, Poland
| |
Collapse
|
9
|
Smoglica C, Angelucci S, Di Tana F, Antonucci A, Marsilio F, Di Francesco CE. Antibiotic Resistance in the Apennine Wolf ( Canis lupus italicus): Implications for Wildlife and Human Health. Antibiotics (Basel) 2023; 12:950. [PMID: 37370269 DOI: 10.3390/antibiotics12060950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Apennine wolf (Canis lupus italicus) is a subspecies of gray wolf that is widespread throughout Italy. Due to hunting and habitat loss, their population declined dramatically in the late 19th and early 20th centuries, but conservation efforts improved to restore the species to an estimated population of 3300 individuals. The presence of antibiotic-resistant bacteria in Apennine Wolf may pose a risk to its health and survival, as well as the health of other animals in its environment. In this study, we investigated the antibiotic resistance profiles of bacteria collected from Apennine wolves admitted to the Wildlife Research Center of Maiella National Park (Italy) in 2022. A total of 12 bacteria collected from four wolves were isolated and tested for susceptibility to antibiotics used in veterinary medicine and to critically important antibiotics for human health by means of the Vitek 2 system. All isolates were resistant to at least one antibiotic, and six bacteria were multidrug resistant to critically important antibiotics (third-generation cephalosporins, carbapenems and fluoroquinolones). The results of this pilot study have allowed for the characterization of resistant profiles in Escherichia coli, Enterococcus faecalis and other bacterial species not previously reported in Apennine wolves. Our findings provide important insights into antibiotic resistance in wildlife and its potential implications for the conservation of biodiversity and public health.
Collapse
Affiliation(s)
- Camilla Smoglica
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| | - Simone Angelucci
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Fabrizia Di Tana
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Antonio Antonucci
- Wildlife Research Center, Maiella National Park, Viale del Vivaio, 65023 Caramanico Terme, Italy
| | - Fulvio Marsilio
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| | - Cristina Esmeralda Di Francesco
- Post-Graduation School of Animal Health, Breeding and Zootechnical Productions, Department of Veterinary Medicine, University of Teramo, Loc. Piano D'Accio, 64100 Teramo, Italy
| |
Collapse
|
10
|
Crotti S, Brustenga L, Cruciani D, Bonelli P, D'Avino N, Felici A, Morandi B, Sebastiani C, Spina S, Gobbi M. Molecular Screening of Echinococcus spp. and Other Cestodes in Wild Carnivores from Central Italy. Vet Sci 2023; 10:vetsci10050318. [PMID: 37235401 DOI: 10.3390/vetsci10050318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Tapeworm infections are among the most relevant parasitic diseases in humans and animals. Tapeworms from the Genus Echinococcus are particularly important as they can cause cystic or alveolar echinococcosis. A molecular screening was performed on 279 fecal samples collected from carcasses of wild carnivores from Central Italy using PCR targeting diagnostic fragments of nad1, rrnS, and nad5 genes. Samples positive for either Taenia spp. or Echinococcus granulosus were sequenced to taxonomically identify the parasitic DNA. Of the 279 samples, 134 (48.0%) gave positive results in the multiplex PCR. Only one (0.4%) sample from an Apennine wolf tested positive for Echinococcus granulosus sensu stricto (genotype G3), whereas no sample tested positive for E. multilocularis. The most frequently detected tapeworms were: Mesocestoides corti (syn M. vogae) (12.9%), M. litteratus (10.8%), Taenia serialis (9.3%), and T. hydatigena (6.5%), other tapeworms were rarely detected. The results suggest that Echinococcus infections in Central Italy do not seem to be sustained by sylvatic cycles, confirming the absence of E. multilocularis in Central Italy. The survey corroborates, yet again, the importance of passive surveillance of wild animals that can serve as reservoirs for zoonotic pathogens, especially on wild canids that in other areas are strongly implicated in the transmission of E. granulosus and E. multilocularis.
Collapse
Affiliation(s)
- Silvia Crotti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Leonardo Brustenga
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 6, 06126 Perugia, Italy
| | - Deborah Cruciani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Piero Bonelli
- OIE Reference Laboratory for Echinococcosis, Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Vienna 2, 07100 Sassari, Italy
- Centro Nazionale di Referenza per l'Echinococcosi/Idatidosi (Ce.NRE), Istituto Zooprofilattico Sperimentale della Sardegna "G. Pegreffi", Via Vienna 2, 07100 Sassari, Italy
| | - Nicoletta D'Avino
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Andrea Felici
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Benedetto Morandi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Sara Spina
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Marco Gobbi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati" (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
11
|
Gray Wolf ( Canis lupus italicus) and Red Fox ( Vulpes vulpes) Parasite Survey in Anthropized and Natural Areas of Central Italy. Vet Sci 2023; 10:vetsci10020108. [PMID: 36851412 PMCID: PMC9963820 DOI: 10.3390/vetsci10020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal nematodes and protozoa and other parasite occurrences were evaluated in free-ranging wolf (Canis lupus italicus) and red fox (Vulpes vulpes) populations from natural and anthropized areas of Central Italy. Analyzed fecal samples were collected from 60 foxes and 40 wolves in the anthropized areas, and 41 foxes and 39 wolves in the natural areas. In foxes, hookworm infections (p < 0.0001) were more frequently recorded in the anthropized environment, while coccidia (p < 0.05) and Cryptosporidium spp. (p < 0.0001) were more frequent in the natural area. In wolves, a higher frequency of hookworms (p < 0.0001) was observed in natural areas, while coccidia were more common in the anthropized area (p < 0.05). Moreover, in the natural environment, trichuroid nematodes (p < 0.0001) were significantly more frequent in wolves than in foxes, while Cryptosporidium (p < 0.001) and Giardia duodenalis (p < 0.001) were more common in foxes. In the anthropic area, the occurrence of hookworms was found to be significantly higher in foxes (p < 0.0001), while trichuroid nematodes were more common in wolves (p < 0.0001). The obtained data are indicative of a different diffusion of specific parasite taxa in wolves and foxes living in the natural and/or anthropized environments examined herein.
Collapse
|
12
|
Maestrini M, Berrilli F, Di Rosso A, Coppola F, Guadano Procesi I, Mariacher A, Felicioli A, Perrucci S. Zoonotic Giardia duodenalis Genotypes and Other Gastrointestinal Parasites in a Badger Population Living in an Anthropized Area of Central Italy. Pathogens 2022; 11:pathogens11080906. [PMID: 36015027 PMCID: PMC9416481 DOI: 10.3390/pathogens11080906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
The Eurasian badger (Meles meles) is widespread in Italy and occupies different habitats. The occurrence and species of gastrointestinal parasites were evaluated in a free-ranging badger population living in a highly anthropic area in central Italy. A total of 43 fecal samples were examined using the flotation test, the Mini-FLOTAC and Baermann techniques, and a rapid immunoassay for the detection of Giardia duodenalis and Cryptosporidium spp. fecal antigens. Molecular investigations were also performed that aimed at identifying Giardia genotypes. Overall, 37/43 samples (86%) were found positive. Specifically, 48.8% (21 samples) were positive for G.duodenalis, 23.2% (10/43) for Cryptosporidium spp., and 7% (3/43) for coccidian oocysts. Strongyloides sp. nematode larvae were detected in 3/43 samples (7%). Ascarid (1/43, 2.3%), capillariid (1/43, 2.3%), and strongyle-type eggs (76.7%, 33/43) were also identified. Among the 11 readable sequences of samples that were positive for G. duodenalis by end-point PCR (18/21), the zoonotic assemblage A sub-assemblage AII and mixed assemblage A and B were identified. This is the first report of zoonotic G. duodenalis genotypes in the Eurasian badger. Moreover, most of identified parasites have zoonotic potential and/or potential impact on the population health of wild badgers and other wild and domestic animals.
Collapse
Affiliation(s)
- Michela Maestrini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy
| | - Federica Berrilli
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessia Di Rosso
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy
| | - Isabel Guadano Procesi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alessia Mariacher
- Istituto Zooprofilattico Sperimentale delle Regioni Lazio e Toscana, 58100 Grosseto, Italy
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy
| | - Stefania Perrucci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge n. 2, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-2216949
| |
Collapse
|
13
|
Shams M, Khazaei S, Naserifar R, Shariatzadeh SA, Anvari D, Montazeri F, Pirestani M, Majidiani H. Global distribution of Echinococcus granulosus genotypes in domestic and wild canids: a systematic review and meta-analysis. Parasitology 2022; 149:1147-1159. [PMID: 35591776 PMCID: PMC11010506 DOI: 10.1017/s0031182022000658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Abstract
The current systematic review and meta-analysis demonstrate the genotypic distribution of canine echinococcosis worldwide. Studies published from the inception until 21 May 2021 were screened, relevant articles were selected and the random-effect model was used to draw forest plots with 95% confidence intervals (CIs). Totally, 44 articles were included, mostly examined dogs (37 records), followed by wolf (8 records), jackal (7 records), fox (3 records), pump fox (3 records) and coyote (1 record). Echinococcus granulosus sensu stricto (G1–G3) and G6/7 cluster of Echinococcus canadensis were the most common genotypes among canids. Most studies were conducted in Asia and Europe with 17 and 15 datasets, respectively. Exclusively, Iran possessed the highest number of studies (10 records). Meta-analysis showed that the pooled molecular prevalence of echinococcosis was 33.82% (95% CI 24.50–43.83%). Also, the highest and lowest prevalence of canine echinococcosis was calculated for South America (66.03%; 95% CI 25.67–95.85%) and Europe (19.01%; 95% CI 9.95–30.16%). Additionally, there were statistically significant differences between the global prevalence of echinococcosis in canines and publication year, continent, country, sample type, host and molecular test. These findings will elevate our knowledge on the poorly known canine echinococcosis worldwide.
Collapse
Affiliation(s)
- Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Sasan Khazaei
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razi Naserifar
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Seyyed Ali Shariatzadeh
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Anvari
- School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Fattaneh Montazeri
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Majidiani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
14
|
Molecular Detection and Phylogenetic Analysis of Canine Distemper Virus in Marsican Brown Bear (Ursus arctos marsicanus). Animals (Basel) 2022; 12:ani12141826. [PMID: 35883373 PMCID: PMC9311857 DOI: 10.3390/ani12141826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Marsican brown bear is a subspecies of Eurasian bear, that lives in a few areas of Central Italy, with an estimated population of only 50 animals. For this reason, it is considered one of the most threatened Italian mammals, and specific Conservation Plans are applied with the focus to fight the mortality causes, mainly related to human activities or illegal practices. On the contrary, few reports describing infectious or parasitic diseases in Marsican brown bears are available. Among pathogens, the canine distemper virus (CDV) is responsible for a contagious and multi-organ disease, able to infect a wide range of domestic and wild carnivores. In 2013 a fatal outbreak of distemper was registered in Central Italy, involving dogs, Apennine wolves, badgers, and foxes, but apparently without any consequences for the Marsican brown bears living in the same territories. In this paper, we describe the first CDV infection detected in a live-trapped bear. The identified strain resulted in similarities to CDV recovered from foxes and dogs of the same area. Even if no clinical signs referred to the disease have been detected in the monitored bear, the evidence of a viral pathogen potentially able to menace the conservation of the Marsican brown bear population highlights the importance of continuing observation activities. Abstract In this paper, we report the first molecular detection of the canine distemper virus in the Marsican brown bear (Ursus arctos marsicanus). Three subadults and one adult were live-trapped and checked for the main viral pathogens responsible for infectious diseases in this species. The four bears were found to be negative for all investigated viruses except for one, which resulted in a positive outcome for CDV by means of RT-PCR targeting fragments of viral N and H genes. The sequence analysis revealed the specificity of amplicons for the Europe Wildlife lineage of CDV, the same viral strain recovered from three foxes and two unvaccinated dogs coming from the same territories where the positive bear was captured. These results confirm the receptivity of Marsican brown bear for CDV, apparently without any pathological consequences for the positive animal, and suggest the presence in the studied area of a unique wild host-adapted lineage of the virus, able to spread in domestic animals, too. In this respect, continuous and specifically targeted surveillance systems are necessary in order to highlight any changes in the epidemiology of the infection in the territories where the Marsican brown bear lives, along with a more effective vaccination program for domestic dogs co-existing with this endangered species.
Collapse
|
15
|
Schilling AK, Mazzamuto MV, Romeo C. A Review of Non-Invasive Sampling in Wildlife Disease and Health Research: What's New? Animals (Basel) 2022; 12:1719. [PMID: 35804619 PMCID: PMC9265025 DOI: 10.3390/ani12131719] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In the last decades, wildlife diseases and the health status of animal populations have gained increasing attention from the scientific community as part of a One Health framework. Furthermore, the need for non-invasive sampling methods with a minimal impact on wildlife has become paramount in complying with modern ethical standards and regulations, and to collect high-quality and unbiased data. We analysed the publication trends on non-invasive sampling in wildlife health and disease research and offer a comprehensive review on the different samples that can be collected non-invasively. We retrieved 272 articles spanning from 1998 to 2021, with a rapid increase in number from 2010. Thirty-nine percent of the papers were focussed on diseases, 58% on other health-related topics, and 3% on both. Stress and other physiological parameters were the most addressed research topics, followed by viruses, helminths, and bacterial infections. Terrestrial mammals accounted for 75% of all publications, and faeces were the most widely used sample. Our review of the sampling materials and collection methods highlights that, although the use of some types of samples for specific applications is now consolidated, others are perhaps still underutilised and new technologies may offer future opportunities for an even wider use of non-invasively collected samples.
Collapse
Affiliation(s)
- Anna-Katarina Schilling
- Previously Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Maria Vittoria Mazzamuto
- Haub School of Environment and Natural Resources, University of Wyoming, 1000 E. University Ave., Laramie, WY 82072, USA;
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
16
|
Giardia duodenalis in Wildlife: Exploring Genotype Diversity in Italy and across Europe. Pathogens 2022; 11:pathogens11010105. [PMID: 35056053 PMCID: PMC8777849 DOI: 10.3390/pathogens11010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Fragmented data are so far available on genotype diversity of G. duodenalis in wildlife in different countries in Europe, in particular, in Italy. In the present study, G. duodenalis sequences obtained from different Italian wild animals [12 porcupines (Hystrix cristata), 4 wild boars (Sus scrofa), 1 wolf (Canis lupus italicus), 6 Alpine chamois (Rupicapra rupicapra rupicapra)] were compared with those available from wild host species in Europe to add new data on the geographic distribution of Giardia assemblages/sub-assemblages and their transmission patterns among natural hosts. Thirty-eight sequences were obtained by MLG analysis (SSU-rRNA, bg, gdh, and tpi genes) and subsequently compared by phylogenetic and network analyses with those from wild species monitored in the last decades in Europe. The results revealed the presence of potentially zoonotic (A-AI, A-AII from wild boar; B from porcupine) and host-adapted (D from wolf; E, A-AIII from chamois) assemblages and sub-assemblages and represent the first report for Italian wild boar. The analysis did not find any evidence of spatial or host segregation for specific genetic variants, mostly shared between different hosts from different European countries. However, conflicting evidence was found in genotypic assignment, advocating for data improvement and new genomic approaches.
Collapse
|
17
|
Rayner K, Sullivan M, Sims C, Cowen S. A pain in the neck: weak links are not a reliable release mechanism for radio-collars. AUSTRALIAN MAMMALOGY 2022. [DOI: 10.1071/am20065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Collars are an attachment method commonly used to mount data collection devices on wildlife. Removal of collars at the completion of a data collection period is a high priority for the purpose of animal welfare, but retrieval of collars can often be difficult. Weak links or other drop-off devices are used by researchers with the intention of improving collar retrieval rates, and for mitigation of animal welfare risks associated with collar entanglement. However, the design and effectiveness of such devices is not regularly reported in detail in the literature. We surveyed wildlife researchers to collate and communicate their experiences with weak links, and assess their attitudes towards collaring Australian mammals in the 35–5500 g weight range. Forty-five researchers responded to the survey, of whom 25 had used weak links in at least one study. There was very little consistency between the performances of weak links, with researchers finding them effective in less than half of the scenarios reported upon. Outcomes varied depending on the type of material used for the link, the species being collared, and the environmental conditions under which the collars were being deployed. We recommend (1) researchers test weak links prior to deployment; (2) users to not rely upon weak links as the primary method of collar retrieval; and (3) continued communication of design and outcomes of all radio-collars deployed including those with weak links.
Collapse
|
18
|
Integrated Use of Molecular Techniques to Detect and Genetically Characterise DNA Viruses in Italian Wolves ( Canis lupus italicus). Animals (Basel) 2021; 11:ani11082198. [PMID: 34438655 PMCID: PMC8388400 DOI: 10.3390/ani11082198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In our study, different quantitative and qualitative molecular techniques were used to detect and genetically characterise Carnivore protoparvovirus 1, Canine adenovirus type 1 and 2 (CAdV-1 and CAdV-2), and Canine circovirus (CanineCV) in Italian wolves (Canis lupus italicus) of the Italian Apennines. Carnivore protoparvoviruses were the most frequently detected viruses, followed by CanineCV and CAdV. All the wolves tested positive for at least one of the DNA viruses screened, and 47.8% of the subjects were coinfected with two or three viruses. From viral sequences analysis, close correlations emerged between the viruses identified in the wolves and those circulating in domestic dogs, suggesting that the same viruses infect wolves and domestic dogs. Further studies are needed to investigate if pathogens are transmitted between the two species. Abstract In this study, internal organs (tongue, intestine, and spleen) of 23 free-ranging Italian wolves (Canis lupus italicus) found dead between 2017 and 2019 were tested for Carnivore protoparvovirus 1, Canine adenovirus (CAdV), and Canine circovirus (CanineCV) using real-time PCR assays. Genetic characterisation of the identified viruses was carried out by amplification, sequencing, and analysis of the complete viral genome or informative viral genes. All the wolves tested positive for at least one of the DNA viruses screened, and 11/23 were coinfected. Carnivore protoparvoviruses were the most frequently detected viruses (21/23), followed by CanineCV (11/23) and CAdV (4/23). From the analysis of the partial VP2 gene of 13 carnivore protoparvoviruses, 12 were canine parvovirus type 2b, closely related to the strains detected in dogs and wild carnivores from Italy, and one was a feline panleukopenia-like virus. Of the four CAdV identified, two were CAdV-1 and two were CAdV-2. The complete genome of seven CanineCVs was sequenced and related to the CanineCV identified in dogs, wolves, and foxes worldwide. Close correlations emerged between the viruses identified in wolves and those circulating in domestic dogs. Further studies are needed to investigate if these pathogens may be potentially cross-transmitted between the two species.
Collapse
|
19
|
Tieri EE, Saletti MA, D'Angelo AR, Parisciani G, Pelini S, Cocco A, Di Teodoro G, Di Censo E, D'Alterio N, Latrofa MS, Otranto D, Pascucci I. Angiostrongylus vasorum in foxes ( Vulpes vulpes) and wolves ( Canis lupus italicus) from Abruzzo region, Italy. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:184-194. [PMID: 34136344 PMCID: PMC8182381 DOI: 10.1016/j.ijppaw.2021.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
In Europe wildlife animals such as the red fox (Vulpes vulpes) are considered the main reservoir for Angiostrongylus vasorum as well as a potential threat for domestic dog infection. Though this parasite is endemic in fox populations, data on A. vasorum infection in wolves (Canis lupus italicus) are still scant, having only recently been described in Northwestern Spain, in Italy, in Croatia and in Slovakia. Based on the rising number of cases of canine lungworm infection in Central Italy (Abruzzo region), the aim of the present study was to investigate the infection by A. vasorum in fox and wolf populations sharing the same geographical area of dogs. From October 2008 to November 2019, A. vasorum specimens were collected, through routine post-mortem examination, from 56 carcasses (44 foxes and 12 wolves). Adult parasites were searched for in the right side of the heart and in pulmonary artery of all carcasses. First stage of larvae (L1) was searched in faeces using the Baermann technique and in lungs by tissue impressions. Overall, 230 adult specimens were collected and identified on a morphological basis. To confirm the morphological identification, 4 adult specimens (n = 3 from fox, n = 1 from wolf) were molecularly identified as A. vasorum by amplification of partial fragment of nuclear 18S rRNA (~1700 bp) genes. The anatomo-pathological and parasitological examinations indicated the presence of A. vasorum in 33 foxes (75%) and in 8 wolves (66.7%). The level of prevalence of infested wolves was higher than the previous one reported in other European countries. Interestingly, the prevalence of infection in foxes herein recorded was higher than that described in dogs (8.9%) living in the same geographical area. This result may confirm the hypothesis that the spread of canine angiostrongylosis is linked to fox populations infection.
Collapse
Affiliation(s)
- Elga Ersilia Tieri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
- Corresponding author.
| | - Maria Antonietta Saletti
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
| | - Anna Rita D'Angelo
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
| | - Gabriella Parisciani
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
| | - Sandro Pelini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
| | - Giovanni Di Teodoro
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
| | - Erica Di Censo
- Azienda Sanitaria Locale di Pescara, via Renato Paolini 47, 65124, Pescara, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
| | - Maria Stefania Latrofa
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Strada Provinciale per Casamassina Km 3, 70010, Valenzano, BA), Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Strada Provinciale per Casamassina Km 3, 70010, Valenzano, BA), Italy
- Faculty of Veterinary Sciences, Bu-Ali Sina University, District 2, Hamedan, Iran
| | - Ilaria Pascucci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale” (IZSAM), Campo Boario, 64100, Teramo, Italy
| |
Collapse
|
20
|
Macchioni F, Coppola F, Furzi F, Gabrielli S, Baldanti S, Boni CB, Felicioli A. Taeniid cestodes in a wolf pack living in a highly anthropic hilly agro-ecosystem. Parasite 2021; 28:10. [PMID: 33544075 PMCID: PMC7863970 DOI: 10.1051/parasite/2021008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/24/2021] [Indexed: 11/29/2022] Open
Abstract
The Italian wolf population in human-modified landscapes has increased greatly in the last few decades. Anthropisation increases the risk of transmission of many zoonotic infections and in this context, control of taeniid cestode species needs to be addressed from a One Health perspective. Predator-prey interactions are at the root of taeniid cestode transmission, and the wolf plays a key role in the maintenance and transmission of taeniids. To date, all available data on the taeniids of wolves in Italy refer to populations living in a wild habitat. Between 2018 and 2019, we investigated taeniids in a wolf pack living in a highly anthropic hilly agro-ecosystem. Thirty-eight faecal samples were collected and analysed, 4 of which were also genetically characterised for individual wolves and belonged to three different animals. Samples collected were analysed microscopically and by molecular analysis in order to identify the taeniid species. Taeniid eggs were detected in 34.2% (13/38) of samples. Within samples positive to taeniid eggs only Echinococcus granulosus s.s. and Taenia hydatigena were identified in 26.3% and 10.5% of the samples, respectively. On microscopic examination, Capillaria spp., Ancylostomatidae and Toxocara canis eggs, Crenosoma vulpis larvae, and coccidian oocysts were also found. The combination of low biodiversity of taeniid species with a high occurrence of E. granulosus s.s. recorded in this study could be the consequence of a deeper link occurring between wolves and livestock in human-modified landscapes than in wild settings.
Collapse
Affiliation(s)
- Fabio Macchioni
- Department of Veterinary Sciences, University of Pisa Viale delle Piagge 2 56124 Pisa Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa Viale delle Piagge 2 56124 Pisa Italy
| | - Federica Furzi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Simona Gabrielli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Piazzale Aldo Moro 5 00185 Rome Italy
| | - Samuele Baldanti
- Department of Veterinary Sciences, University of Pisa Viale delle Piagge 2 56124 Pisa Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa Viale delle Piagge 2 56124 Pisa Italy
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa Viale delle Piagge 2 56124 Pisa Italy
| |
Collapse
|
21
|
Di Francesco CE, Smoglica C, Angelucci S. Infectious Diseases and Wildlife Conservation Medicine: The Case of the Canine Distemper in European Wolf Population. Animals (Basel) 2020; 10:ani10122426. [PMID: 33352915 PMCID: PMC7766025 DOI: 10.3390/ani10122426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Canine distemper is a contagious infectious disease, caused by canine distemper virus (CDV) belonging to Morbillivirus genus, Paramyxoviridae family, representing a serious threat for domestic and wild carnivores [...]
Collapse
Affiliation(s)
- Cristina E. Di Francesco
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64110 Teramo, Italy; (C.S.); (S.A.)
- Correspondence:
| | - Camilla Smoglica
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64110 Teramo, Italy; (C.S.); (S.A.)
| | - Simone Angelucci
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano D’Accio, 64110 Teramo, Italy; (C.S.); (S.A.)
- Majella National Park, Caramanico Terme, 65023 Pescara, Italy
| |
Collapse
|
22
|
Smoglica C, Di Francesco CE, Angelucci S, Antonucci A, Innocenti M, Marsilio F. Occurrence of the tetracycline resistance gene tetA(P) in Apennine wolves (Canis lupus italicus) from different human-wildlife interfaces. J Glob Antimicrob Resist 2020; 23:184-185. [PMID: 33022422 DOI: 10.1016/j.jgar.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- Camilla Smoglica
- University of Teramo, Faculty of Veterinary Medicine, Loc. Piano D'Accio, 64100 Teramo, Italy.
| | - Cristina E Di Francesco
- University of Teramo, Faculty of Veterinary Medicine, Loc. Piano D'Accio, 64100 Teramo, Italy.
| | | | | | - Marco Innocenti
- Majella National Park, Via Badia 28, Sulmona, AQ 67039, Italy
| | - Fulvio Marsilio
- University of Teramo, Faculty of Veterinary Medicine, Loc. Piano D'Accio, Teramo 64100, Italy.
| |
Collapse
|