1
|
Borteiro C, Laufer G, Gobel N, Arleo M, Kolenc F, Cortizas S, Barrasso DA, de Sá RO, Soutullo A, Ubilla M, Martínez-Debat C. Widespread occurrence of the amphibian chytrid panzootic lineage in Uruguay is constrained by climate. DISEASES OF AQUATIC ORGANISMS 2024; 158:123-132. [PMID: 38813853 DOI: 10.3354/dao03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease among the main causes of amphibian declines worldwide. However, Bd studies on Neotropical amphibians from temperate areas are scarce. We present a comprehensive survey of Bd in Uruguay, in temperate central eastern South America, carried out between 2006 and 2014. Skin swabs of 535 specimens of 21 native and exotic frogs were tested by PCR. We used individual-level data to examine the relationship between infection, climatic variables, and their effects on body condition and the number of prey items found in stomach contents. Infection was widespread in free-ranging anurans with an overall prevalence of 41.9%, detected in 15 native species, wild American bullfrogs Aquarana catesbeiana, and captive specimens of Ceratophrys ornata and Xenopus laevis. Three haplotypes of the Bd ITS region were identified in native amphibians, all belonging to the global panzootic lineage (BdGPL), of which only one was present in exotic hosts. Despite high infection frequencies in different anurans, we found no evidence of morbidity or mortality attributable to chytridiomycosis, and we observed no discernible impact on body condition or consumed prey. Climatic conditions at the time of our surveys suggested that the chance of infection is associated with monthly mean temperature, mean humidity, and total precipitation. Temperatures below 21°C combined with moderate humidity and pronounced rainfall may increase the likelihood of infection. Multiple haplotypes of BdGPL combined with high frequencies of infection suggest an enzootic pattern in native species, underscoring the need for continued monitoring.
Collapse
Affiliation(s)
- Claudio Borteiro
- Sección Herpetología, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
| | - Gabriel Laufer
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
- Vida Silvestre Uruguay, Montevideo 11100, Uruguay
| | - Noelia Gobel
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
- Vida Silvestre Uruguay, Montevideo 11100, Uruguay
| | - Mailén Arleo
- Sección Bioquímica, Departamento de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Francisco Kolenc
- Sección Herpetología, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
| | - Sofía Cortizas
- Grupo de Agroecología, Sustentabilidad y Medio Ambiente, Universidad Tecnológica del Uruguay, Durazno 97000, Uruguay
| | - Diego A Barrasso
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), and Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia 'San Juan Bosco' (UNPSJB), Puerto Madryn 9120, Chubut, Argentina
| | - Rafael O de Sá
- Department of Biology, University of Richmond, Richmond, Virginia 23173, USA
| | - Alvaro Soutullo
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Punta del Este 20100, Universidad de la República, Uruguay
| | - Martin Ubilla
- Departamento de Paleontología-ICG, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Claudio Martínez-Debat
- Sección Bioquímica, Departamento de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| |
Collapse
|
2
|
Hird C, Flanagan E, Franklin CE, Cramp RL. Cold-induced skin darkening does not protect amphibian larvae from UV-associated DNA damage. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:272-281. [PMID: 38197718 DOI: 10.1002/jez.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Amphibian declines are sometimes correlated with increasing levels of ultraviolet radiation (UVR). While disease is often implicated in declines, environmental factors such as temperature and UVR play an important role in disease epidemiology. The mutagenic effects of UVR exposure on amphibians are worse at low temperatures. Amphibians from cold environments may be more susceptible to increasing UVR. However, larvae of some species demonstrate cold acclimation, reducing UV-induced DNA damage at low temperatures. Understanding of the mechanisms underpinning this response is lacking. We reared Limnodynastes peronii larvae in cool (15°C) or warm (25°C) waters before acutely exposing them to 1.5 h of high intensity (80 µW cm-2 ) UVBR. We measured the color of larvae and mRNA levels of a DNA repair enzyme. We reared larvae at 25°C in black or white containers to elicit a skin color response, and then measured DNA damage levels in the skin and remaining carcass following UVBR exposure. Cold-acclimated larvae were darker and displayed lower levels of DNA damage than warm-acclimated larvae. There was no difference in CPD-photolyase mRNA levels between cold- and warm-acclimated larvae. Skin darkening in larvae did not reduce their accumulation of DNA damage following UVR exposure. Our results showed that skin darkening does not explain cold-induced reductions in UV-associated DNA damage in L. peronii larvae. Beneficial cold-acclimation is more likely underpinned by increased CPD-photolyase abundance and/or increased photolyase activity at low temperatures.
Collapse
Affiliation(s)
- Coen Hird
- School of the Environment, The University of Queensland, Brisbane (Magandjin), Queensland, Australia
| | - Emer Flanagan
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane (Magandjin), Queensland, Australia
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, Brisbane (Magandjin), Queensland, Australia
| |
Collapse
|
3
|
Vicente-Santos A, Willink B, Nowak K, Civitello DJ, Gillespie TR. Host-pathogen interactions under pressure: A review and meta-analysis of stress-mediated effects on disease dynamics. Ecol Lett 2023; 26:2003-2020. [PMID: 37804128 PMCID: PMC10874615 DOI: 10.1111/ele.14319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
Human activities have increased the intensity and frequency of natural stressors and created novel stressors, altering host-pathogen interactions and changing the risk of emerging infectious diseases. Despite the ubiquity of such anthropogenic impacts, predicting the directionality of outcomes has proven challenging. Here, we conduct a review and meta-analysis to determine the primary mechanisms through which stressors affect host-pathogen interactions and to evaluate the impacts stress has on host fitness (survival and fecundity) and pathogen infectivity (prevalence and intensity). We assessed 891 effect sizes from 71 host species (representing seven taxonomic groups) and 78 parasite taxa from 98 studies. We found that infected and uninfected hosts had similar sensitivity to stressors and that responses varied according to stressor type. Specifically, limited resources compromised host fecundity and decreased pathogen intensity, while abiotic environmental stressors (e.g., temperature and salinity) decreased host survivorship and increased pathogen intensity, and pollution increased mortality but decreased pathogen prevalence. We then used our meta-analysis results to develop susceptible-infected theoretical models to illustrate scenarios where infection rates are expected to increase or decrease in response to resource limitations or environmental stress gradients. Our results carry implications for conservation and disease emergence and reveal areas for future work.
Collapse
Affiliation(s)
- Amanda Vicente-Santos
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
| | - Beatriz Willink
- Department of Zoology, Stockholm University, Stockholm 106-91, Sweden
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- School of Biology, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Kacy Nowak
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - David J. Civitello
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Thomas R. Gillespie
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Crawshaw L, Buchanan T, Shirose L, Palahnuk A, Cai HY, Bennett AM, Jardine CM, Davy CM. Widespread occurrence of
Batrachochytrium dendrobatidis
in Ontario, Canada, and predicted habitat suitability for the emerging
Batrachochytrium salamandrivorans. Ecol Evol 2022; 12:e8798. [PMID: 35475183 PMCID: PMC9020443 DOI: 10.1002/ece3.8798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
Chytridiomycosis, caused by the fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, is associated with massive amphibian mortality events worldwide and with some species’ extinctions. Previous ecological niche models suggest that B. dendrobatidis is not well‐suited to northern, temperate climates, but these predictions have often relied on datasets in which northern latitudes are underrepresented. Recent northern detections of B. dendrobatidis suggest that these models may have underestimated the suitability of higher latitudes for this fungus. We used qPCR to test for B. dendrobatidis in 1,041 non‐invasive epithelial swab samples from 18 species of amphibians collected across 735,345 km2 in Ontario and Akimiski Island (Nunavut), Canada. We detected the pathogen in 113 samples (10.9%) from 11 species. Only one specimen exhibited potential clinical signs of disease. We used these data to produce six Species Distribution Models of B. dendrobatidis, which classified half of the study area as potential habitat for the fungus. We also tested each sample for B. salamandrivorans, an emerging pathogen that is causing alarming declines in European salamanders, but is not yet detected in North America. We did not detect B. salamandrivorans in any of the samples, providing a baseline for future surveillance. We assessed the potential risk of future introduction by comparing salamander richness to temperature‐dependent mortality, predicted by a previous exposure study. Areas with the highest species diversity and predicted mortality risk extended 60,530 km2 across southern Ontario, highlighting the potential threat B. salamandrivorans poses to northern Nearctic amphibians. Preventing initial introduction will require coordinated, transboundary regulation of trade in amphibians (including frogs that can carry and disperse B. salamandrivorans), and surveillance of the pathways of introduction (e.g., water and wildlife). Our results can inform surveillance for both pathogens and efforts to mitigate the spread of chytridiomycosis through wild populations.
Collapse
Affiliation(s)
- Lauren Crawshaw
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Tore Buchanan
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Leonard Shirose
- Canadian Wildlife Health Cooperative Department of Pathobiology University of Guelph Guelph ON Canada
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Amanda Palahnuk
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
| | - Hugh Y. Cai
- Animal Health Laboratory University of Guelph Guelph ON Canada
| | | | - Claire M. Jardine
- Canadian Wildlife Health Cooperative Department of Pathobiology University of Guelph Guelph ON Canada
- Department of Pathobiology University of Guelph Guelph ON Canada
| | - Christina M. Davy
- Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry Wildlife Research and Monitoring Section Trent University Peterborough ON Canada
- Department of Biology Trent University Peterborough ON Canada
| |
Collapse
|
5
|
Thumsová B, Donaire-Barroso D, El Mouden EH, Bosch J. Fatal chytridiomycosis in the Moroccan midwife toad Alytes maurus and potential distribution of Batrachochytrium dendrobatidis across Morocco. AFR J HERPETOL 2022. [DOI: 10.1080/21564574.2021.1998235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Barbora Thumsová
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
- Asociación Herpetológica Española (AHE), Madrid, Spain
| | | | - El Hassan El Mouden
- Laboratory of Water, Biodiversity and Climatic Change, Cadi Ayyad University, Marrakech, Morocco
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
- Biodiversity Research Institute, University of Oviedo-Principality of Asturias-CSIC, Mieres, Spain
| |
Collapse
|
6
|
Mayer M, Schlippe Justicia L, Shine R, Brown GP. Host defense or parasite cue: Skin secretions mediate interactions between amphibians and their parasites. Ecol Lett 2021; 24:1955-1965. [PMID: 34176205 DOI: 10.1111/ele.13832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/21/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
Amphibian skin secretions (substances produced by the amphibian plus microbiota) plausibly act as a first line of defense against parasite/pathogen attack, but may also provide chemical cues for pathogens. To clarify the role of skin secretions in host-parasite interactions, we conducted experiments using cane toads (Rhinella marina) and their lungworms (Rhabdias pseudosphaerocephala) from the range-core and invasion-front of the introduced anurans' range in Australia. Depending on the geographical area, toad skin secretions can reduce the longevity and infection success of parasite larvae, or attract lungworm larvae and enhance their infection success. These striking differences between the two regions were due both to differential responses of the larvae, and differential effects of the skin secretions. Our data suggest that skin secretions play an important role in host-parasite interactions in anurans, and that the arms race between a host and parasite can rapidly generate spatial variation in critical features of that interaction.
Collapse
Affiliation(s)
- Martin Mayer
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Lia Schlippe Justicia
- Department of Animal Biology, University of La Laguna, Tenerife, Canary Islands, Spain
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Sonn JM, Porter WP, Mathewson PD, Richards-Zawacki CL. Predictions of Disease Risk in Space and Time Based on the Thermal Physiology of an Amphibian Host-Pathogen Interaction. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.576065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases have been responsible for declines and extinctions in a growing number of species. Predicting disease variables like infection prevalence and mortality and how they vary in space and time will be critical to understanding how host-pathogen dynamics play out in natural environments and will help to inform management actions. The pandemic disease chytridiomycosis, caused by the fungal pathogen, Batrachochytrium dendrobatidis (Bd), has been implicated in declines in hundreds of amphibian species worldwide. We used field-collected measurements of host body temperatures and other physiological parameters to develop a mechanistic model of disease risk in a declining amphibian, the Northern cricket frog (Acris crepitans). We first used a biophysical model to predict host body temperatures across the species range in the eastern United States. We then used empirically derived relationships between host body temperature, infection prevalence and survival to predict where and when the risk of Bd-related declines is greatest. Our model predicts that pathogen prevalence is greatest, and survival of infected A. crepitans frogs is lowest, just prior to breeding when host body temperatures are low. Taken together, these results suggest that Bd poses the greatest threat to short-lived A. crepitans populations in the northern part of this host’s range and that disease-related recruitment failure may be common. Furthermore, our study demonstrates the utility of mechanistic modeling approaches for predicting disease outbreaks and dynamics in animal hosts.
Collapse
|
8
|
Meurling S, Kärvemo S, Chondrelli N, Cortazar Chinarro M, Åhlen D, Brookes L, Nyström P, Stenberg M, Garner TWJ, Höglund J, Laurila A. Occurrence of Batrachochytrium dendrobatidis in Sweden: higher infection prevalence in southern species. DISEASES OF AQUATIC ORGANISMS 2020; 140:209-218. [PMID: 32880378 DOI: 10.3354/dao03502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in amphibian populations. While Bd is widespread in southern and central Europe, its occurrence and distribution in northernmost Europe is mostly unknown. We surveyed for Bd in breeding anurans in Sweden by sampling 1917 amphibians from 101 localities and 3 regions in Sweden (southern, northern and central). We found that Bd was widespread in southern and central Sweden, occurring in all 9 investigated species and in 45.5% of the 101 localities with an overall prevalence of 13.8%. No infected individuals were found in the 4 northern sites sampled. The records from central Sweden represent the northernmost records of Bd in Europe. While the proportion of sites positive for Bd was similar between the southern and central regions, prevalence was much higher in the southern region. This was because southern species with a distribution mainly restricted to southernmost Sweden had a higher prevalence than widespread generalist species. The nationally red-listed green toad Bufotes variabilis and the fire-bellied toad Bombina bombina had the highest prevalence (61.4 and 48.9%, respectively). Across species, Bd prevalence was strongly positively, correlated with water temperature at the start of egg laying. However, no individuals showing visual signs of chytridiomycosis were found in the field. These results indicate that Bd is widespread and common in southern and central Sweden with southern species, breeding in higher temperatures and with longer breeding periods, having higher prevalence. However, the impact of Bd on amphibian populations in northernmost Europe remains unknown.
Collapse
Affiliation(s)
- Sara Meurling
- Animal Ecology/ Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zimkus BM, Baláž V, Belasen AM, Bell RC, Channing A, Doumbia J, Fokam EB, Gonwouo LN, Greenbaum E, Gvoždík V, Hirschfeld M, Jackson K, James TY, Kusamba C, Larson JG, Mavoungou LB, Rödel MO, Zassi-Boulou AG, Penner J. Chytrid Pathogen (Batrachochytrium dendrobatidis) in African Amphibians: A Continental Analysis of Occurrences and Modeling of Its Potential Distribution. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Breda M. Zimkus
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Vojtech Baláž
- University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Biology and Wildlife Diseases, 612 42 Brno, Czech Republic
| | - Anat M. Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Rayna C. Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Alan Channing
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Joseph Doumbia
- ONG EnviSud Guinée Commune Ratoma 030BP:558 4720 Conakry, Guinée
| | - Eric B. Fokam
- Department of Zoology and Animal Physiology, University of Buea, 00237, Cameroon
| | - LeGrand N. Gonwouo
- Laboratory of Zoology, Faculty of Sciences, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Mareike Hirschfeld
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Kate Jackson
- Department of Biology, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chifundera Kusamba
- Centre de Recherche en Sciences Naturelles, Département de Biologie, Lwiro, The Democratic Republic of the Congo
| | - Joanna G. Larson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lise-Bethy Mavoungou
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Cité Scientifique (Ex-ORSTOM), 2400, République du Congo
| | - Mark-Oliver Rödel
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Ange-Ghislain Zassi-Boulou
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Cité Scientifique (Ex-ORSTOM), 2400, République du Congo
| | - Johannes Penner
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| |
Collapse
|
10
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
11
|
Hao T, Guillera-Arroita G, May TW, Lahoz-Monfort JJ, Elith J. Using Species Distribution Models For Fungi. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Pérez-Gonzalez JL, Rada M, Vargas-Salinas F, Rueda-Solano LA. The Tadpoles of Two Atelopus Species (Anura: Bufonidae) from the Sierra Nevada de Santa Marta, Colombia, with Notes on their Ecology and Comments on the Morphology of Atelopus Larvae. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2020. [DOI: 10.2994/sajh-d-17-00093.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- José Luis Pérez-Gonzalez
- Grupo de Investigación en Biodiversidad y Ecología Aplicada, Facultad de Ciencias Básicas, Universidad del Magdalena, Santa Marta, Colombia
| | - Marco Rada
- Departamento de Zoologia, Instituto de Biociências; Universidade de São Paulo, Rua do Matão, trav. 14, 321, Cidade Universitaria, CEP 05508–090. São Paulo, Brazil
| | - Fernando Vargas-Salinas
- Grupo de investigación en Evolución, Ecología y Conservación, Programa de Biología, Facultad de Ciencias Básicas y Tecnologías, Universidad del Quindío, Armenia, Colombia
| | - Luis Alberto Rueda-Solano
- Grupo de Investigación en Biodiversidad y Ecología Aplicada, Facultad de Ciencias Básicas, Universidad del Magdalena, Santa Marta, Colombia
| |
Collapse
|
13
|
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN, Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE, Kosch TA, La Marca E, Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA, Mendelson J, Palacios-Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel MO, Rovito SM, Soto-Azat C, Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M, Zamudio KR, Canessa S. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 2019; 363:1459-1463. [PMID: 30923224 DOI: 10.1126/science.aav0379] [Citation(s) in RCA: 626] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/06/2019] [Indexed: 12/18/2022]
Abstract
Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.
Collapse
Affiliation(s)
- Ben C Scheele
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia. .,National Environmental Science Programme, Threatened Species Recovery Hub, Canberra, ACT 2601, Australia.,One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Lee Berger
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Wouter Beukema
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Aldemar A Acevedo
- Programa de Doctorado en Ciencias Biológicas, Laboratorio de Biología Evolutiva, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile.,Grupo de Investigación en Ecología y Biogeografía, Universidad de Pamplona, Barrio El Buque, Km 1, Vía a Bucaramanga, Pamplona, Colombia
| | - Patricia A Burrowes
- Department of Biology, University of Puerto Rico, P.O. Box 23360, San Juan, Puerto Rico
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Ignacio De la Riva
- Museo Nacional de Ciencias Naturales-CSIC, C/ José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Sandra V Flechas
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.,Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Sede Venado de Oro, Paseo Bolívar 16-20, Bogotá, Colombia
| | - Claire N Foster
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia
| | - Patricia Frías-Álvarez
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society London, Regents Park, London NW1 4RY, UK.,Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Brian Gratwicke
- Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC 20008, USA
| | - Juan M Guayasamin
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Investigaciones Biológicas y Ambientales BIOSFERA, Laboratorio de Biología Evolutiva, Campus Cumbayá, Quito, Ecuador.,Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Ingeniería en Biodiversidad y Cambio Climático, Facultad de Medio Ambiente, Universidad Tecnológica Indoamérica, Calle Machala y Sabanilla, Quito, Ecuador.,Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Mareike Hirschfeld
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, Berlin 10115, Germany
| | - Jonathan E Kolby
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia.,Honduras Amphibian Rescue and Conservation Center, Lancetilla Botanical Garden and Research Center, Tela, Honduras.,The Conservation Agency, Jamestown, RI 02835, USA
| | - Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC 3030, Australia.,AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North 4442, New Zealand
| | - Enrique La Marca
- School of Geography, Faculty of Forestry Engineering and Environmental Sciences, University of Los Andes, Merida, Venezuela
| | - David B Lindenmayer
- Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia.,National Environmental Science Programme, Threatened Species Recovery Hub, Canberra, ACT 2601, Australia
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Raúl Maneyro
- Laboratorio de Sistemática e Historia Natural de Vertebrados. Facultad de Ciencias, Universidad de la República. Igua 4225, CP 11400, Montevideo, Uruguay
| | - Cait A McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joseph Mendelson
- Zoo Atlanta, Atlanta, GA 30315, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Gabriela Parra-Olea
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | | | - Mark-Oliver Rödel
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, Berlin 10115, Germany
| | - Sean M Rovito
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato CP36824, México
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Ché Weldon
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Steven M Whitfield
- Zoo Miami, Conservation and Research Department, Miami, FL 33177, USA.,Florida International University School of Earth, Environment, and Society, 11200 SW 8th St., Miami, FL 33199, USA
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Stefano Canessa
- Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
14
|
Verbrugghe E, Adriaensen C, Martel A, Vanhaecke L, Pasmans F. Growth Regulation in Amphibian Pathogenic Chytrid Fungi by the Quorum Sensing Metabolite Tryptophol. Front Microbiol 2019; 9:3277. [PMID: 30671052 PMCID: PMC6331427 DOI: 10.3389/fmicb.2018.03277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
Amphibians face many threats leading to declines and extinctions, but the chytrid fungal skin pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) have been identified as the causative factors leading to one of the greatest disease-driven losses of amphibian biodiversity worldwide. Infection may lead to different clinical outcomes, and lethal infections are commonly associated with unrestricted, exponential fungal growth in the amphibian epidermis. Mechanisms underpinning Bd and Bsal growth in the amphibian host are poorly understood. Here, we describe a quorum sensing mechanism that allows cell-to-cell communication by Bd and Bsal in order to regulate fungal densities and infection strategies. Addition of chytrid culture supernatant to chytrid cultures resulted in a concentration-dependent growth reduction and using dialysis, small metabolites were shown to be the causative factor. U-HPLC-MS/MS and in vitro growth tests identified the aromatic alcohol tryptophol as a key metabolite in regulating fungal growth. We determined tryptophol kinetics in both Bd and Bsal and confirmed the autostimulatory mode of action of this quorum sensing metabolite. Finally, we linked expression of genes that might be involved in tryptophol production, with in vitro and in vivo chytrid growth. Our results show that Bd and Bsal fungi use tryptophol to act as multicellular entities in order to regulate their growth.
Collapse
Affiliation(s)
- Elin Verbrugghe
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Connie Adriaensen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
15
|
Smith HK, Pasmans F, Dhaenens M, Deforce D, Bonte D, Verheyen K, Lens L, Martel A. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS One 2018; 13:e0199295. [PMID: 30020936 PMCID: PMC6051575 DOI: 10.1371/journal.pone.0199295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
Recently emerged fungal diseases, Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are an increasing threat to amphibians worldwide. In Europe, the threat of Bsal to salamander populations is demonstrated by the rapid decline of fire salamander populations in Germany, the Netherlands and Belgium. Although most European urodelans are susceptible to infection in infection trials, recent evidence suggests marked interspecific differences in the course of infection, with potentially far reaching implications for salamander conservation. As a salamander's skin is the first line of defense against such pathogens, interspecific differences in innate immune function of the skin may explain differential susceptibility. Here we investigate if compounds present on a salamander's skin can kill Bsal spores and if there is variation among species. We used a non-invasive assay to compare killing ability of salamander mucosomes of four different species (captive and wild Salamandra salamandra and captive Ichtyosaura alpestris, Cynops pyrrhogaster and Lissotriton helveticus) by exposing Bsal zoospores to salamander mucosomes and determining spore survival. In all samples, zoospores were killed when exposed to mucosomes. Moreover, we saw a significant variation in this Bsal killing ability of mucosomes between different salamander host species. Our results indicate that mucosomes of salamanders might provide crucial skin protection against Bsal, and could explain why some species are more susceptible than others. This study represents a step towards better understanding host species variation in innate immune function and disease susceptibility in amphibians.
Collapse
Affiliation(s)
- Hannah Keely Smith
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Faculty of Pharmaceutical Science, Ottergemsesteenweg, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Ghent University, Faculty of Pharmaceutical Science, Ottergemsesteenweg, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat, Ghent, Belgium
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Geraardsberge Steenweg, Gontrode, Belgium
| | - Luc Lens
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K. L. Ledeganckstraat, Ghent, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology & Avian Diseases, Ghent University, Salisburylaan, Merelbeke, Belgium
- * E-mail:
| |
Collapse
|
16
|
Rojas RR, Fouquet A, Ron SR, Hernández-Ruz EJ, Melo-Sampaio PR, Chaparro JC, Vogt RC, de Carvalho VT, Pinheiro LC, Avila RW, Farias IP, Gordo M, Hrbek T. A Pan-Amazonian species delimitation: high species diversity within the genus Amazophrynella (Anura: Bufonidae). PeerJ 2018; 6:e4941. [PMID: 30013824 PMCID: PMC6042491 DOI: 10.7717/peerj.4941] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/21/2018] [Indexed: 11/20/2022] Open
Abstract
Amphibians are probably the most vulnerable group to climate change and climate-change associate diseases. This ongoing biodiversity crisis makes it thus imperative to improve the taxonomy of anurans in biodiverse but understudied areas such as Amazonia. In this study, we applied robust integrative taxonomic methods combining genetic (mitochondrial 16S, 12S and COI genes), morphological and environmental data to delimit species of the genus Amazophrynella (Anura: Bufonidae) sampled from throughout their pan-Amazonian distribution. Our study confirms the hypothesis that the species diversity of the genus is grossly underestimated. Our analyses suggest the existence of eighteen linages of which seven are nominal species, three Deep Conspecific Lineages, one Unconfirmed Candidate Species, three Uncategorized Lineages, and four Confirmed Candidate Species and described herein. We also propose a phylogenetic hypothesis for the genus and discuss its implications for historical biogeography of this Amazonian group.
Collapse
Affiliation(s)
- Rommel R Rojas
- Laboratory of Evolution and Animal Genetics, Department of Genetics, ICB, Universidade Federal do Amazonas, Brazil
| | - Antoine Fouquet
- Laboratoire Ecologie, Evolution et Interactions des Systèmes Amazoniens, Centre de recherche de Montabo, Cayenne, French Guiana
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Emil José Hernández-Ruz
- Laboratório de Zoologia, Faculdade de Ciências Biológicas, Campus Universitário de Altamira, Universidade Federal do Pará, Altamira, Para, Brazil
| | - Paulo R Melo-Sampaio
- Departamento de Vertebrados, Museu Nacional, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juan C Chaparro
- Coleccion de anfibios y reptiles, Museo de la Biodiversidad, Cusco, Peru.,Museo de Historia Natural, Universidad Nacional de San Antonio Abad, Cusco, Peru
| | - Richard C Vogt
- CEQUA, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil
| | - Vinicius Tadeu de Carvalho
- Laboratory of Evolution and Animal Genetics, Department of Genetics, ICB, Universidade Federal do Amazonas, Brazil.,Departamento de Ciências Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, Crato, Ceara, Brazil
| | | | - Robson W Avila
- Departamento de Ciências Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, Crato, Ceara, Brazil
| | - Izeni Pires Farias
- Laboratory of Evolution and Animal Genetics, Department of Genetics, ICB, Universidade Federal do Amazonas, Brazil
| | - Marcelo Gordo
- Departamento de Biologia, ICB, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Tomas Hrbek
- Laboratory of Evolution and Animal Genetics, Department of Genetics, ICB, Universidade Federal do Amazonas, Brazil
| |
Collapse
|
17
|
Flechas SV, Paz A, Crawford AJ, Sarmiento C, Acevedo AA, Arboleda A, Bolívar-García W, Echeverry-Sandoval CL, Franco R, Mojica C, Muñoz A, Palacios-Rodríguez P, Posso-Terranova AM, Quintero-Marín P, Rueda-Solano LA, Castro-Herrera F, Amézquita A. Current and predicted distribution of the pathogenic fungusBatrachochytrium dendrobatidisin Colombia, a hotspot of amphibian biodiversity. Biotropica 2017. [DOI: 10.1111/btp.12457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sandra V. Flechas
- Department of Biological Sciences; Universidad de los Andes; Bogotá AA 4976 Colombia
| | - Andrea Paz
- Department of Biological Sciences; Universidad de los Andes; Bogotá AA 4976 Colombia
- Department of Biology; Graduate Center; City University of New York; New York NY 10016 USA
| | - Andrew J. Crawford
- Department of Biological Sciences; Universidad de los Andes; Bogotá AA 4976 Colombia
- Smithsonian Tropical Research Institute; Apartado 0843-03092 Panama City Republic of Panama
- Círculo Herpetológico de Panamá; Apartado 0824-00122 Panama City Republic of Panama
| | - Carolina Sarmiento
- Department of Biological Sciences; Universidad de los Andes; Bogotá AA 4976 Colombia
- Smithsonian Tropical Research Institute; Apartado 0843-03092 Panama City Republic of Panama
| | - Aldemar A. Acevedo
- Grupo de Investigación en Ecología y Biogeografía (GIEB); Universidad de Pamplona; Pamplona Colombia
| | | | | | | | - Rosmery Franco
- Grupo de Investigación en Ecología y Biogeografía (GIEB); Universidad de Pamplona; Pamplona Colombia
| | - Cindy Mojica
- Grupo de Investigación en Ecología Animal; Universidad del Valle; Cali Colombia
| | | | - Pablo Palacios-Rodríguez
- Department of Biological Sciences; Universidad de los Andes; Bogotá AA 4976 Colombia
- Universidad Tecnológica del Chocó ‘Diego Luis Córdoba’; Quibdó Colombia
| | | | | | | | - Fernando Castro-Herrera
- Departamento de Ciencias Fisiológicas; Facultad de Salud; Universidad del Valle; Cali Colombia
| | - Adolfo Amézquita
- Department of Biological Sciences; Universidad de los Andes; Bogotá AA 4976 Colombia
| |
Collapse
|
18
|
Lampo M, Señaris C, García CZ. Population dynamics of the critically endangered toad Atelopus cruciger and the fungal disease chytridiomycosis. PLoS One 2017; 12:e0179007. [PMID: 28570689 PMCID: PMC5453621 DOI: 10.1371/journal.pone.0179007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 11/29/2022] Open
Abstract
Harlequin toads (Atelopus) are among the most severely impacted amphibians by the emergence of chytridiomycosis, a fungal disease caused by the pathogen Batrachochytrium dendrobatidis (Bd). Many species disappeared while others suffered drastic contractions of their geographic distribution to lower altitudes. A diminished virulence of Bd in warm habitats was proposed to explain the survival of lowland populations of harlequin toads (i.e. thermal refuge hypothesis). To understand the mechanisms that allow some populations to reach an endemic equilibrium with this pathogen, we estimated demographic and epidemiological parameters at one remnant population of Atelopus cruciger in Venezuela using mark-recapture data from 2007–2013. We demonstrated that Bd is highly virulent for A. cruciger, increasing the odds of dying of infected adults four times in relation to uninfected ones and reducing the life expectancy of reproductive toads to a few weeks. Despite an estimated annual loss of 18% of the reproductive population due to Bd-induced mortality, this population has persisted in an endemic equilibrium for the last decade through the large recruitment of healthy adults every year. Given the high vulnerability of harlequin toads to Bd in lowland populations, thermal refuges need to be redefined as habitats of reduced transmission rather than attenuated virulence.
Collapse
Affiliation(s)
- Margarita Lampo
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Kilómetro 11 Carretera Panamericana, Caracas, Venezuela
- * E-mail:
| | - Celsa Señaris
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Kilómetro 11 Carretera Panamericana, Caracas, Venezuela
| | - Carmen Zulay García
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Kilómetro 11 Carretera Panamericana, Caracas, Venezuela
| |
Collapse
|
19
|
Rebollar EA, Woodhams DC, LaBumbard B, Kielgast J, Harris RN. Prevalence and pathogen load estimates for the fungus Batrachochytrium dendrobatidis are impacted by ITS DNA copy number variation. DISEASES OF AQUATIC ORGANISMS 2017; 123:213-226. [PMID: 28322208 DOI: 10.3354/dao03097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ribosomal gene complex is a multi-copy region that is widely used for phylogenetic analyses of organisms from all 3 domains of life. In fungi, the copy number of the internal transcribed spacer (ITS) is used to detect abundance of pathogens causing diseases such as chytridiomycosis in amphibians and white nose syndrome in bats. Chytridiomycosis is caused by the fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), and is responsible for declines and extinctions of amphibians worldwide. Over a decade ago, a qPCR assay was developed to determine Bd prevalence and pathogen load. Here, we demonstrate the effect that ITS copy number variation in Bd strains can have on the estimation of prevalence and pathogen load. We used data sets from different amphibian species to simulate how ITS copy number affects prevalence and pathogen load. In addition, we tested 2 methods (gBlocks® synthetic standards and digital PCR) to determine ITS copy number in Bd strains. Our results show that assumptions about the ITS copy number can lead to under- or overestimation of Bd prevalence and pathogen load. The use of synthetic standards replicated previously published estimates of ITS copy number, whereas dPCR resulted in estimates that were consistently lower than previously published estimates. Standardizing methods will assist with comparison across studies and produce reliable estimates of prevalence and pathogen load in the wild, while using the same Bd strain for exposure experiments and zoospore standards in qPCR remains the best method for estimating parameters used in epidemiological studies.
Collapse
Affiliation(s)
- Eria A Rebollar
- Biology Department, James Madison University, 951 Carrier Dr., MSC 7801, Harrisonburg, Virginia 22807, USA
| | | | | | | | | |
Collapse
|
20
|
Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures. PLoS One 2016; 11:e0160746. [PMID: 27513565 PMCID: PMC4981458 DOI: 10.1371/journal.pone.0160746] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 07/25/2016] [Indexed: 11/19/2022] Open
Abstract
Projected changes in climate conditions are emerging as significant risk factors to numerous species, affecting habitat conditions and community interactions. Projections suggest species range shifts in response to climate change modifying environmental suitability and is supported by observational evidence. Both pathogens and their hosts can shift ranges with climate change. We consider how climate change may influence the distribution of the emerging infectious amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen associated with worldwide amphibian population losses. Using an expanded global Bd database and a novel modeling approach, we examined a broad set of climate metrics to model the Bd-climate niche globally and regionally, then project how climate change may influence Bd distributions. Previous research showed that Bd distribution is dependent on climatic variables, in particular temperature. We trained a machine-learning model (random forest) with the most comprehensive global compilation of Bd sampling records (~5,000 site-level records, mid-2014 summary), including 13 climatic variables. We projected future Bd environmental suitability under IPCC scenarios. The learning model was trained with combined worldwide data (non-region specific) and also separately per region (region-specific). One goal of our study was to estimate of how Bd spatial risks may change under climate change based on the best available data. Our models supported differences in Bd-climate relationships among geographic regions. We projected that Bd ranges will shift into higher latitudes and altitudes due to increased environmental suitability in those regions under predicted climate change. Specifically, our model showed a broad expansion of areas environmentally suitable for establishment of Bd on amphibian hosts in the temperate zones of the Northern Hemisphere. Our projections are useful for the development of monitoring designs in these areas, especially for sensitive species and those vulnerable to multiple threats.
Collapse
|
21
|
Moriguchi S, Tominaga A, Irwin KJ, Freake MJ, Suzuki K, Goka K. Predicting the potential distribution of the amphibian pathogen Batrachochytrium dendrobatidis in East and Southeast Asia. DISEASES OF AQUATIC ORGANISMS 2015; 113:177-185. [PMID: 25850395 DOI: 10.3354/dao02838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Batrachochytrium dendrobatidis (Bd) is the pathogen responsible for chytridiomycosis, a disease that is associated with a worldwide amphibian population decline. In this study, we predicted the potential distribution of Bd in East and Southeast Asia based on limited occurrence data. Our goal was to design an effective survey area where efforts to detect the pathogen can be focused. We generated ecological niche models using the maximum-entropy approach, with alleviation of multicollinearity and spatial autocorrelation. We applied eigenvector-based spatial filters as independent variables, in addition to environmental variables, to resolve spatial autocorrelation, and compared the model's accuracy and the degree of spatial autocorrelation with those of a model estimated using only environmental variables. We were able to identify areas of high suitability for Bd with accuracy. Among the environmental variables, factors related to temperature and precipitation were more effective in predicting the potential distribution of Bd than factors related to land use and cover type. Our study successfully predicted the potential distribution of Bd in East and Southeast Asia. This information should now be used to prioritize survey areas and generate a surveillance program to detect the pathogen.
Collapse
Affiliation(s)
- Sachiko Moriguchi
- Invasive Alien Species Research Team, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Hardy BM, Pope KL, Piovia-Scott J, Brown RN, Foley JE. Itraconazole treatment reduces Batrachochytrium dendrobatidis prevalence and increases overwinter field survival in juvenile Cascades frogs. DISEASES OF AQUATIC ORGANISMS 2015; 112:243-250. [PMID: 25590775 DOI: 10.3354/dao02813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The global spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to widespread extirpation of amphibian populations. During an intervention aimed at stabilizing at-risk populations, we treated wild-caught Cascades frogs Rana cascadae with the antifungal drug itraconazole. In fall 2012, we collected 60 recently metamorphosed R. cascadae from 1 of the 11 remnant populations in the Cascades Mountains (CA, USA). Of these, 30 randomly selected frogs were treated with itraconazole and the other 30 frogs served as experimental controls; all were released at the capture site. Bd prevalence was low at the time of treatment and did not differ between treated frogs and controls immediately following treatment. Following release, Bd prevalence gradually increased in controls but not in treated frogs, with noticeable (but still non-significant) differences 3 wk after treatment (27% [4/15] vs. 0% [0/13]) and strong differences 5 wk after treatment (67% [8/12] vs. 13% [1/8]). We did not detect any differences in Bd prevalence and load between experimental controls and untreated wild frogs during this time period. In spring 2013, we recaptured 7 treated frogs but none of the experimental control frogs, suggesting that over-winter survival was higher for treated frogs. The itraconazole treatment did appear to reduce growth rates: treated frogs weighed 22% less than control frogs 3 wk after treatment (0.7 vs. 0.9 g) and were 9% shorter than control frogs 5 wk after treatment (18.4 vs. 20.2 mm). However, for critically small populations, increased survival of the most at-risk life stage could prevent or delay extinction. Our results show that itraconazole treatment can be effective against Bd infection in wild amphibians, and therefore the beneficial effects on survivorship may outweigh the detrimental effects on growth.
Collapse
Affiliation(s)
- Bennett M Hardy
- Department of Wildlife, Humboldt State University, Arcata, California 95521, USA
| | | | | | | | | |
Collapse
|
23
|
Worthington TA, Brewer SK, Grabowski TB, Mueller J. Backcasting the decline of a vulnerable Great Plains reproductive ecotype: identifying threats and conservation priorities. GLOBAL CHANGE BIOLOGY 2014; 20:89-102. [PMID: 23873736 DOI: 10.1111/gcb.12329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
Conservation efforts for threatened or endangered species are challenging because the multi-scale factors that relate to their decline or inhibit their recovery are often unknown. To further exacerbate matters, the perceptions associated with the mechanisms of species decline are often viewed myopically rather than across the entire species range. We used over 80 years of fish presence data collected from the Great Plains and associated ecoregions of the United States, to investigate the relative influence of changing environmental factors on the historic and current truncated distributions of the Arkansas River shiner Notropis girardi. Arkansas River shiner represent a threatened reproductive ecotype considered especially well adapted to the harsh environmental extremes of the Great Plains. Historic (n = 163 records) and current (n = 47 records) species distribution models were constructed using a vector-based approach in MaxEnt by splitting the available data at a time when Arkansas River shiner dramatically declined. Discharge and stream order were significant predictors in both models; however, the shape of the relationship between the predictors and species presence varied between time periods. Drift distance (river fragment length available for ichthyoplankton downstream drift before meeting a barrier) was a more important predictor in the current model and indicated river segments 375-780 km had the highest probability of species presence. Performance for the historic and current models was high (area under the curve; AUC > 0.95); however, forecasting and backcasting to alternative time periods suggested less predictive power. Our results identify fragments that could be considered refuges for endemic plains fish species and we highlight significant environmental factors (e.g., discharge) that could be manipulated to aid recovery.
Collapse
Affiliation(s)
- Thomas A Worthington
- Oklahoma Cooperative Fish and Wildlife Research Unit, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | | | | |
Collapse
|
24
|
A SURVEY FORBATRACHOCHYTRIUM DENDROBATIDISIN ENDANGERED AND HIGHLY SUSCEPTIBLE VIETNAMESE SALAMANDERS (TYLOTOTRITONSPP.). J Zoo Wildl Med 2013; 44:627-33. [DOI: 10.1638/2012-0181r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Gower DJ, Doherty-Bone T, Loader SP, Wilkinson M, Kouete MT, Tapley B, Orton F, Daniel OZ, Wynne F, Flach E, Müller H, Menegon M, Stephen I, Browne RK, Fisher MC, Cunningham AA, Garner TWJ. Batrachochytrium dendrobatidis infection and lethal chytridiomycosis in caecilian amphibians (Gymnophiona). ECOHEALTH 2013; 10:173-83. [PMID: 23677560 DOI: 10.1007/s10393-013-0831-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 05/26/2023]
Abstract
Batrachochytrium dendrobatidis (Bd) is commonly termed the 'amphibian chytrid fungus' but thus far has been documented to be a pathogen of only batrachian amphibians (anurans and caudatans). It is not proven to infect the limbless, generally poorly known, and mostly soil-dwelling caecilians (Gymnophiona). We conducted the largest qPCR survey of Bd in caecilians to date, for more than 200 field-swabbed specimens from five countries in Africa and South America, representing nearly 20 species, 12 genera, and 8 families. Positive results were recovered for 58 specimens from Tanzania and Cameroon (4 families, 6 genera, 6+ species). Quantities of Bd were not exceptionally high, with genomic equivalent (GE) values of 0.052-17.339. In addition, we report the first evidence of lethal chytridiomycosis in caecilians. Mortality in captive (wild-caught, commercial pet trade) Geotrypetes seraphini was associated with GE scores similar to those we detected for field-swabbed, wild animals.
Collapse
Affiliation(s)
- David J Gower
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Riley K, Berry OF, Roberts JD. Do global models predicting environmental suitability for the amphibian fungus,Batrachochytrium dendrobatidis, have local value to conservation managers? J Appl Ecol 2013. [DOI: 10.1111/1365-2664.12091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Karen Riley
- School of Animal Biology M092; University of Western Australia; 35 Stirling Highway; Crawley; WA; 6009; Australia
| | - Oliver F. Berry
- School of Animal Biology M092; University of Western Australia; 35 Stirling Highway; Crawley; WA; 6009; Australia
| | - J. Dale Roberts
- School of Animal Biology; Centre for Evolutionary Biology and Centre of Excellence in Natural Resource Management; University of Western Australia; PO Box 5771; Albany; WA; 6330; Australia
| |
Collapse
|
27
|
Doherty-Bone TM, Gonwouo NL, Hirschfeld M, Ohst T, Weldon C, Perkins M, Kouete MT, Browne RK, Loader SP, Gower DJ, Wilkinson MW, Rödel MO, Penner J, Barej MF, Schmitz A, Plötner J, Cunningham AA. Batrachochytrium dendrobatidis in amphibians of Cameroon, including first records for caecilians. DISEASES OF AQUATIC ORGANISMS 2013; 102:187-194. [PMID: 23446968 DOI: 10.3354/dao02557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been hypothesised to be an indigenous parasite of African amphibians. In Cameroon, however, previous surveys in one region (in the northwest) failed to detect this pathogen, despite the earliest African Bd having been recorded from a frog in eastern Cameroon, plus one recent record in the far southeast. To reconcile these contrasting results, we present survey data from 12 localities across 6 regions of Cameroon from anurans (n = 1052) and caecilians (n = 85) of ca. 108 species. Bd was detected in 124 amphibian hosts at 7 localities, including Mt. Oku, Mt. Cameroon, Mt. Manengouba and lowland localities in the centre and west of the country. None of the hosts were observed dead or dying. Infected amphibian hosts were not detected in other localities in the south and eastern rainforest belt. Infection occurred in both anurans and caecilians, making this the first reported case of infection in the latter order (Gymnophiona) of amphibians. There was no significant difference between prevalence and infection intensity in frogs and caecilians. We highlight the importance of taking into account the inhibition of diagnostic qPCR in studies on Bd, based on all Bd-positive hosts being undetected when screened without bovine serum albumin in the qPCR mix. The status of Bd as an indigenous, cosmopolitan amphibian parasite in Africa, including Cameroon, is supported by this work. Isolating and sequencing strains of Bd from Cameroon should now be a priority. Longitudinal host population monitoring will be required to determine the effects, if any, of the infection on amphibians in Cameroon.
Collapse
Affiliation(s)
- T M Doherty-Bone
- Department of Life Sciences, The Natural History Museum, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Penner J, Adum GB, McElroy MT, Doherty-Bone T, Hirschfeld M, Sandberger L, Weldon C, Cunningham AA, Ohst T, Wombwell E, Portik DM, Reid D, Hillers A, Ofori-Boateng C, Oduro W, Plötner J, Ohler A, Leaché AD, Rödel MO. West Africa - a safe haven for frogs? A sub-continental assessment of the chytrid fungus (Batrachochytrium dendrobatidis). PLoS One 2013; 8:e56236. [PMID: 23426141 PMCID: PMC3572032 DOI: 10.1371/journal.pone.0056236] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 01/11/2013] [Indexed: 11/18/2022] Open
Abstract
A putative driver of global amphibian decline is the panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd). While Bd has been documented across continental Africa, its distribution in West Africa remains ambiguous. We tested 793 West African amphibians (one caecilian and 61 anuran species) for the presence of Bd. The samples originated from seven West African countries - Bénin, Burkina Faso, Côte d'Ivoire, Ghana, Guinea, Liberia, Sierra Leone - and were collected from a variety of habitats, ranging from lowland rainforests to montane forests, montane grasslands to humid and dry lowland savannahs. The species investigated comprised various life-history strategies, but we focused particularly on aquatic and riparian species. We used diagnostic PCR to screen 656 specimen swabs and histology to analyse 137 specimen toe tips. All samples tested negative for Bd, including a widespread habitat generalist Hoplobatrachus occipitalis which is intensively traded on the West African food market and thus could be a potential dispersal agent for Bd. Continental fine-grained (30 arc seconds) environmental niche models suggest that Bd should have a broad distribution across West Africa that includes most of the regions and habitats that we surveyed. The surprising apparent absence of Bd in West Africa indicates that the Dahomey Gap may have acted as a natural barrier. Herein we highlight the importance of this Bd-free region of the African continent - especially for the long-term conservation of several threatened species depending on fast flowing forest streams (Conraua alleni ("Vulnerable") and Petropedetes natator ("Near Threatened")) as well as the "Critically Endangered" viviparous toad endemic to the montane grasslands of Mount Nimba (Nimbaphrynoides occidentalis).
Collapse
Affiliation(s)
- Johannes Penner
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Davidson EW, Larsen A, Meins Palmer C. Potential influence of plant chemicals on infectivity of Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2012; 101:87-93. [PMID: 23135135 DOI: 10.3354/dao02505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We explored whether extracts of trees frequently found associated with amphibian habitats in Australia and Arizona, USA, may be inhibitory to the fungal pathogen Batrachochytrium dendrobatidis (Bd), which has been associated with global amphibian declines. We used salamanders Ambystoma tigrinum as the model system. Salamanders acquired significantly lower loads of Bd when exposed on leaves and extracts from the river red gum Eucalyptus camaldulensis, and loads were also low in some animals exposed on extracts of 2 oak species, Quercus emoryi and Q. turbinella. Some previously infected salamanders had their pathogen loads reduced, and some were fully cured, by placing them in leaf extracts, although some animals also self cured when housed in water alone. A significant number of animals cured of Bd infections 6 mo earlier were found to be resistant to reinfection. These results suggest that plants associated with amphibian habitats should be taken into consideration when explaining the prevalence of Bd in these habitats and that some amphibians may acquire resistance to the fungus if previously cured.
Collapse
Affiliation(s)
- Elizabeth W Davidson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA.
| | | | | |
Collapse
|
30
|
Flechas SV, Sarmiento C, Amézquita A. Bd on the beach: high prevalence of Batrachochytrium dendrobatidis in the lowland forests of Gorgona Island (Colombia, South America). ECOHEALTH 2012; 9:298-302. [PMID: 22669408 DOI: 10.1007/s10393-012-0771-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/26/2012] [Accepted: 05/01/2012] [Indexed: 06/01/2023]
Abstract
The amphibian chytrid fungus, Batrachochytrium dendrobatidis, Bd, has been implicated in the decimation and extinction of many amphibian populations worldwide, especially at mid and high elevations. Recent studies have demonstrated the presence of the pathogen in the lowlands from Australia and Central America. We extend here its elevational range by demonstrating its presence at the sea level, in the lowland forests of Gorgona Island, off the Pacific coast of Colombia. We conducted two field surveys, separated by four years, and diagnosed Bd by performing polymerase chain reactions on swab samples from the skin of five amphibian species. All species, including the Critically Endangered Atelopus elegans, tested positive for the pathogen, with prevalences between 3.9 % in A. elegans (in 2010) and 52 % in Pristimantis achatinus. Clinical signs of chytridiomycosis were not detected in any species. To our knowledge, this is the first report of B. dendrobatidis in tropical lowlands at sea level, where temperatures may exceed optimal growth temperatures of this pathogen. This finding highlights the need to understand the mechanisms allowing the interaction between frogs and pathogen in lowland ecosystems.
Collapse
|
31
|
Brutyn M, D'Herde K, Dhaenens M, Van Rooij P, Verbrugghe E, Hyatt AD, Croubels S, Deforce D, Ducatelle R, Haesebrouck F, Martel A, Pasmans F. Batrachochytrium dendrobatidis zoospore secretions rapidly disturb intercellular junctions in frog skin. Fungal Genet Biol 2012; 49:830-7. [PMID: 22903040 DOI: 10.1016/j.fgb.2012.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/28/2012] [Accepted: 07/21/2012] [Indexed: 11/30/2022]
Abstract
Global amphibian declines are in part driven by the chytrid fungus Batrachochytrium dendrobatidis, causing superficial dermatomycosis with epidermal hyperplasia and hyperkeratosis in infected amphibians. The susceptibility to chytridiomycosis and the severity of epidermal lesions in amphibians with chytridiomycosis are not consistent across species or even among individuals. Severe infections cause death of the animal most likely through disturbance of ion homeostasis. The mechanism by which this superficial skin infection results in epidermal lesions has so far eluded precise definition. It was the aim of this study to unravel how B. dendrobatidis causes alterations that affect skin integrity. Exposure of Xenopus laevis skin to B. dendrobatidis zoospore supernatant using skin explants and Ussing chambers caused rapid disruption of intercellular junctions, demonstrated using histology and transmission electron microscopy. The loss of intercellular junctions led to detachment-induced cell apoptosis, or anoikis. The zoospore supernatant induced neither apoptosis nor necrosis in isolated primary keratinocytes of X. laevis. This supports the idea that the loss of cell contacts triggered apoptosis in the skin explants. Mass spectrometric analysis of the protein composition of the supernatant revealed a complex mixture, including several new virulence associated proteins, such as proteases, biofilm-associated proteins and a carotenoid ester lipase. Protease and lipase activity of the supernatant was confirmed with a protease and lipase assay. In conclusion, B. dendrobatidis zoospores produce a complex mixture of proteins that quickly disturbs epidermal intercellular junctions leading to anoikis in the anuran skin. The role of the identified proteins in this process remains to be determined.
Collapse
Affiliation(s)
- Melanie Brutyn
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Van Rooij P, Martel A, D'Herde K, Brutyn M, Croubels S, Ducatelle R, Haesebrouck F, Pasmans F. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent. PLoS One 2012; 7:e41481. [PMID: 22911798 PMCID: PMC3401113 DOI: 10.1371/journal.pone.0041481] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/21/2012] [Indexed: 02/05/2023] Open
Abstract
Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis, a fungal skin disease in amphibians and driver of worldwide amphibian declines. We focussed on the early stages of infection by Bd in 3 amphibian species with a differential susceptibility to chytridiomycosis. Skin explants of Alytes muletensis, Litoria caerulea and Xenopus leavis were exposed to Bd in an Ussing chamber for 3 to 5 days. Early interactions of Bd with amphibian skin were observed using light microscopy and transmission electron microscopy. To validate the observations in vitro, comparison was made with skin from experimentally infected frogs. Additional in vitro experiments were performed to elucidate the process of intracellular colonization in L. caerulea. Early interactions of Bd with amphibian skin are: attachment of zoospores to host skin, zoospore germination, germ tube development, penetration into skin cells, invasive growth in the host skin, resulting in the loss of host cell cytoplasm. Inoculation of A. muletensis and L. caerulea skin was followed within 24 h by endobiotic development, with sporangia located intracellularly in the skin. Evidence is provided of how intracellular colonization is established and how colonization by Bd proceeds to deeper skin layers. Older thalli develop rhizoid-like structures that spread to deeper skin layers, form a swelling inside the host cell to finally give rise to a new thallus. In X. laevis, interaction of Bd with skin was limited to an epibiotic state, with sporangia developing upon the skin. Only the superficial epidermis was affected. Epidermal cells seemed to be used as a nutrient source without development of intracellular thalli. The in vitro data agreed with the results obtained after experimental infection of the studied frog species. These data suggest that the colonization strategy of B. dendrobatidis is host dependent, with the extent of colonization most likely determined by inherent characteristics of the host epidermis.
Collapse
Affiliation(s)
- Pascale Van Rooij
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Peel AJ, Hartley M, Cunningham AA. Qualitative risk analysis of introducing Batrachochytrium dendrobatidis to the UK through the importation of live amphibians. DISEASES OF AQUATIC ORGANISMS 2012; 98:95-112. [PMID: 22436458 DOI: 10.3354/dao02424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The international amphibian trade is implicated in the emergence and spread of the amphibian fungal disease chytridiomycosis, which has resulted in amphibian declines and extinctions globally. The establishment of the causal pathogen, Batrachochytrium dendrobatidis (Bd), in the UK could negatively affect the survival of native amphibian populations. In recognition of the ongoing threat that it poses to amphibians, Bd was recently included in the World Organisation for Animal Health Aquatic Animal Health Code, and therefore is in the list of international notifiable diseases. Using standardised risk analysis guidelines, we investigated the likelihood that Bd would be introduced to and become established in wild amphibians in the UK through the importation of live amphibians. We obtained data on the volume and origin of the amphibian trade entering the UK and detected Bd infection in amphibians being imported for the pet and private collection trade and also in amphibians already held in captive pet, laboratory and zoological collections. We found that current systems for recording amphibian trade into the UK underestimate the volume of non-European Union trade by almost 10-fold. We identified high likelihoods of entry, establishment and spread of Bd in the UK and the resulting major overall impact. Despite uncertainties, we determined that the overall risk estimation for the introduction of Bd to the UK through the importation of live amphibians is high and that risk management measures are required, whilst ensuring that negative effects on legal trade are minimised.
Collapse
Affiliation(s)
- Alison J Peel
- Institute of Zoology, Zoological Society of London, Regents Park, London NW1 4RY, UK.
| | | | | |
Collapse
|
34
|
ANGETTER LEASU, LÖTTERS STEFAN, RÖDDER DENNIS. Climate niche shift in invasive species: the case of the brown anole. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01780.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Van Rooij P, Martel A, Nerz J, Voitel S, Van Immerseel F, Haesebrouck F, Pasmans F. Detection of Batrachochytrium dendrobatidis in Mexican bolitoglossine salamanders using an optimal sampling protocol. ECOHEALTH 2011; 8:237-243. [PMID: 21912986 DOI: 10.1007/s10393-011-0704-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 05/31/2023]
Abstract
The role of the chytrid fungus Batrachochytrium dendrobatidis (Bd), which is the causal agent of chytridiomycosis, in the declines of Central American bolitoglossine salamanders is unknown. Here we establish a swabbing protocol to maximize the detection probability of Bd in salamanders. We then used this protocol to examine captive and wild Mexican bolitoglossine salamanders of 14 different species for the presence of Bd. Of the seven body parts sampled, the pelvic region, hindlimbs, forelimbs, and the ventral side of the tail had the most Bd per surface area and thus might provide the best sampling regions of salamanders to detect Bd infections. Sixteen out of 33 (48%) of the dead captive salamanders had Bd infections and epidermal hyperkeratosis, whereas none of the 28 clinically healthy captive animals were infected. Nine out of 17 (53%) of the wild salamanders carried low zoospore loads of Bd but had no clinical signs of disease. The high prevalence of Bd in dead captive salamanders, its absence in clinically healthy living ones and its presence in wild salamanders is consistent with Bd being involved in recent bolitoglossine population declines, but further studies would be required to draw a causal link.
Collapse
Affiliation(s)
- Pascale Van Rooij
- Laboratory of Bacteriology and Mycology, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|