1
|
Shakibania S, Patel T, Turczyn R, Biggs MJP, Krukiewicz K. Hybrid conducting polymer films promote neural outgrowth and neural-electrode integration in vitro. Bioelectrochemistry 2025; 165:108985. [PMID: 40250210 DOI: 10.1016/j.bioelechem.2025.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/31/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
The increase incidence of neurological disorders arising from an aging population has accelerated research into electrical medicine approaches as promising pretreatments options. Achieving chronic therapeutic electrical stimulation is dependent on an optimal charge delivery capacity of a stimulating device. In particular, instability at the electrode-tissue interface is frequently derived from a physicomechanical mismatch in the mechanical properties of the rigid, smooth surface of metallic electrodes and the soft nature of neural tissues, leading to perielectrode scarring, a subsequent reduction in charge transfer capability and decreased stimulation efficacy. This study explores the modification of neural electrodes using electroactive materials to enhance their performance. Specifically, applying sequentially two different conducting polymers, namely polyaniline and poly(3,4-ethylenedioxythiophene), which induced a significant increase in the active surface area of an electrode, moderate hydrophilicity (49 ± 7o), capacitance (19.9 mC/cm2), low impedance (165 ± 6 Ω at 1 kHz), and a fibrillar morphology. Cell culture studies with rat-derived embryonic ventral mesencephalon cells revealed that hybrid conducting polymer coatings supported neural outgrowth and cell adhesion in vitro.
Collapse
Affiliation(s)
- Sara Shakibania
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Taral Patel
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Gliwice, Poland
| | - Roman Turczyn
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland
| | - Manus J P Biggs
- The Centre for Research in Medical Devices (CÚRAM), University of Galway, Ireland.
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
2
|
Gonthier A, Botvinick EL, Grosberg A, Mohraz A. Effect of Porous Substrate Topographies on Cell Dynamics: A Computational Study. ACS Biomater Sci Eng 2023; 9:5666-5678. [PMID: 37713253 PMCID: PMC10565724 DOI: 10.1021/acsbiomaterials.3c01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Controlling cell-substrate interactions via the microstructural characteristics of biomaterials offers an advantageous path for modulating cell dynamics, mechanosensing, and migration, as well as for designing immune-modulating implants, all without the drawbacks of chemical-based triggers. Specifically, recent in vivo studies have suggested that a porous implant's microscale curvature landscape can significantly impact cell behavior and ultimately the immune response. To investigate such cell-substrate interactions, we utilized a 3D computational model incorporating the minimum necessary physics of cell migration and cell-substrate interactions needed to replicate known in vitro behaviors. This model specifically incorporates the effect of membrane tension, which was found to be necessary to replicate in vitro cell behavior on curved surfaces. Our simulated substrates represent two classes of porous materials recently used in implant studies, which have markedly different microscale curvature distributions and pore geometries. We found distinct differences between the overall migration behaviors, shapes, and actin polymerization dynamics of cells interacting with the two substrates. These differences were correlated to the shape energy of the cells as they interacted with the porous substrates, in effect interpreting substrate topography as an energetic landscape interrogated by cells. Our results demonstrate that microscale curvature directly influences cell shape and migration and, therefore, is likely to influence cell behavior. This supports further investigation of the relationship between the surface topography of implanted materials and the characteristic immune response, a complete understanding of which would broadly advance principles of biomaterial design.
Collapse
Affiliation(s)
- Alyse
R. Gonthier
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Elliot L. Botvinick
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Beckman
Laser Institute and Medical Clinic, University
of California, Irvine, Irvine, California 92697, United States
- Department
of Surgery,University of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Anna Grosberg
- Department
of Biomedical Engineering, University of
California, Irvine, Irvine, California 92697, United States
- Center
for Complex Biological Systems, University
of California, Irvine, Irvine, California 92697, United States
- Edwards
Lifesciences
Foundation Cardiovascular Innovation & Research Center, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- The
NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California 92697, United States
- Sue
and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| | - Ali Mohraz
- Department
of Materials Science & Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
3
|
A Three-Dimensional Engineered Cardiac In Vitro Model: Controlled Alignment of Cardiomyocytes in 3D Microphysiological Systems. Cells 2023; 12:cells12040576. [PMID: 36831243 PMCID: PMC9954012 DOI: 10.3390/cells12040576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Cardiomyocyte alignment in myocardium tissue plays a significant role in the physiological, electrical, and mechanical functions of the myocardium. It remains, however, difficult to align cardiac cells in a 3D in vitro heart model. This paper proposes a simple method to align cells using microfabricated Polydimethylsiloxane (PDMS) grooves with large dimensions (of up to 350 µm in width), similar to the dimensions of trabeculae carneae, the smallest functional unit of the myocardium. Two cell groups were used in this work; first, H9c2 cells in combination with Nor10 cells for proof of concept, and second, neonatal cardiac cells to investigate the functionality of the 3D model. This model compared the patterned and nonpatterned 3D constructs, as well as the 2D cell cultures, with and without patterns. In addition to alignment, we assessed the functionality of our proposed 3D model by comparing beating rates between aligned and non-aligned structures. In order to assess the practicality of the model, the 3D aligned structures should be demonstrated to be detachable and alignable. This evaluation is crucial to the use of this 3D functional model in future studies related to drug screening, building blocks for tissue engineering, and as a heart-on-chip by integrating microfluidics.
Collapse
|
4
|
Bharti S, Anant PS, Kumar A. Nanotechnology in stem cell research and therapy. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:6. [DOI: 10.1007/s11051-022-05654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
|
5
|
Zhang D, Sheng Y, Piano N, Jakuszeit T, Cozens E, Dong L, Buell AK, Pollet A, Lei IM, Wang W, Terentjev E, Huang YYS. Cancer cell migration on straight, wavy, loop and grid microfibre patterns. Biofabrication 2022; 14. [PMID: 34991078 DOI: 10.1088/1758-5090/ac48e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022]
Abstract
Cell migration plays an important role in physiological and pathological processes where the fibrillar morphology of extracellular matrices (ECM) could regulate the migration dynamics. To mimic the morphological characteristics of fibrillar matrix structures, low-voltage continuous electrospinning was adapted to construct straight, wavy, looped and gridded fibre patterns made of polystyrene (of fibre diameter ca. 3 μm). Cells were free to explore their different shapes in response to the directly-adhered fibre, as well as to the neighbouring patterns. For all the patterns studied, analysing cellular migration dynamics of MDA-MB-231 (a highly migratory breast cancer cell line) demonstrated two interesting findings: first, although cells dynamically adjust their shapes and migration trajectories in response to different fibrillar environments, their average step speed is minimally affected by the fibre global pattern; secondly, a switch in behaviour was observed when the pattern features approach the upper limit of the cell body's minor axis, reflecting that cells' ability to divert from an existing fibre track is limited by the size along the cell body's minor axis. It is therefore concluded that the upper limit of cell body's minor axis might act as a guide for the design of microfibre patterns for different purposes of cell migration.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yaqi Sheng
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Nicholas Piano
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Theresa Jakuszeit
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Edward Cozens
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Lingqing Dong
- School of Medicine, Zhejiang University, The Affiliated Stomatology Hospital., Hangzhou, Zhejiang, 310058, CHINA
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 227, 061 2800 Kgs. Lyngby, Lyngby, 2800, DENMARK
| | - Andreas Pollet
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, Eindhoven, Noord-Brabant, 5600 MB, NETHERLANDS
| | - Iek Man Lei
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Wenyu Wang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Eugene Terentjev
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CAMBRIDGE CB3 0HE, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
6
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
7
|
Electromechanical Stimulation of 3D Cardiac Microtissues in a Heart-on-Chip Model. Methods Mol Biol 2021; 2373:133-157. [PMID: 34520011 DOI: 10.1007/978-1-0716-1693-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Modeling human cardiac tissues in vitro is essential to elucidate the biological mechanisms related to the heart physiopathology, possibly paving the way for new treatments. Organs-on-chips have emerged as innovative tools able to recreate tissue-specific microenvironments, guiding the development of miniaturized models and offering the opportunity to directly analyze functional readouts. Here we describe the fabrication and operational procedures for the development of a heart-on-chip model, reproducing cardiac biomimetic microenvironment. The device provides 3D cardiac microtissue with a synchronized electromechanical stimulation to support the tissue development. We additionally describe procedures for characterizing tissue evolution and functionality through immunofluorescence, real time qPCR, calcium imaging and microtissue contractility investigations.
Collapse
|
8
|
Kasiviswanathan U, Balavigneswaran CK, Kumar C, Poddar S, Jit S, Sharma N, Mahto SK. Aluminium Oxide Thin-Film Based In Vitro Cell-Substrate Sensing Device for Monitoring Proliferation of Myoblast Cells. IEEE Trans Nanobioscience 2021; 20:331-337. [PMID: 33755569 DOI: 10.1109/tnb.2021.3068318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We demonstrate cell-substrate interaction on aluminium oxide thin-film in metal-insulator-metal structure followed by the change in dielectric characteristics of Al2O3 as a function of progression of cellular growth. The theoretical calculation of the fabricated biosensor reveals that the changes in the intrinsic elemental parameters are mainly attributed to the cell-induced behavioural changes.
Collapse
|
9
|
Kumar R, Gulia K. The convergence of nanotechnology‐stem cell, nanotopography‐mechanobiology, and biotic‐abiotic interfaces: Nanoscale tools for tackling the top killer, arteriosclerosis, strokes, and heart attacks. NANO SELECT 2021. [DOI: 10.1002/nano.202000192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rajiv Kumar
- NIET National Institute of Medical Science Rajasthan India
| | - Kiran Gulia
- Materials and Manufacturing School of Engineering University of Wolverhampton Wolverhampton England, UK
| |
Collapse
|
10
|
Chen N, Luo B, Patil AC, Wang J, Gammad GGL, Yi Z, Liu X, Yen SC, Ramakrishna S, Thakor NV. Nanotunnels within Poly(3,4-ethylenedioxythiophene)-Carbon Nanotube Composite for Highly Sensitive Neural Interfacing. ACS NANO 2020; 14:8059-8073. [PMID: 32579337 DOI: 10.1021/acsnano.0c00672] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Neural electrodes are developed for direct communication with neural tissues for theranostics. Although various strategies have been employed to improve performance, creating an intimate electrode-tissue interface with high electrical fidelity remains a great challenge. Here, we report the rational design of a tunnel-like electrode coating comprising poly(3,4-ethylenedioxythiophene) (PEDOT) and carbon nanotubes (CNTs) for highly sensitive neural recording. The coated electrode shows a 50-fold reduction in electrochemical impedance at the biologically relevant frequency of 1 kHz, compared to the bare gold electrode. The incorporation of CNT significantly reinforces the nanotunnel structure and improves coating adhesion by ∼1.5 fold. In vitro primary neuron culture confirms an intimate contact between neurons and the PEDOT-CNT nanotunnel. During acute in vivo nerve recording, the coated electrode enables the capture of high-fidelity neural signals with low susceptibility to electrical noise and reveals the potential for precisely decoding sensory information through mechanical and thermal stimulation. These findings indicate that the PEDOT-CNT nanotunnel composite serves as an active interfacing material for neural electrodes, contributing to neural prosthesis and brain-machine interface.
Collapse
Affiliation(s)
- Nuan Chen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
- SINAPSE Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Baiwen Luo
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Anoop C Patil
- SINAPSE Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Jiahui Wang
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | | | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shih-Cheng Yen
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Nitish V Thakor
- SINAPSE Laboratory, Department of Biomedical Engineering, National University of Singapore, Singapore 117456, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Park KS, Kang SN, Kim DH, Kim HB, Im KS, Park W, Hong YJ, Han DK, Joung YK. Late endothelial progenitor cell-capture stents with CD146 antibody and nanostructure reduce in-stent restenosis and thrombosis. Acta Biomater 2020; 111:91-101. [PMID: 32434081 DOI: 10.1016/j.actbio.2020.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
The restoration of damaged endothelium is promising to reduce side effects, including restenosis and thrombosis, in the stent treatment for vascular diseases. Current technologies based on drug delivery for these complications still do not satisfy patients due to invariant recurrence rate. Recently, even if one approach was applied to clinical trial to develop the firstly commercialized stent employing circulating endothelial progenitor cells (EPCs) in blood vessels, it resulted in failure in clinical trial. Based on instruction of the failed case, we designed an advanced EPC-capture stent covered with anti-CD146 antibody (Ab) immobilized silicone nanofilament (SiNf) for the highly efficient and specific capture of not early but late stage of EPCs. In vitro cell capture test demonstrates enhanced capture efficiency and adhesion morphology of late EPCs on the modified substrate. The modified substrates could capture 8 times more late EPCs and even 3 times more mesenchymal stem cells (MSCs) as compared to unmodified one. A porcine model with high similarity to human reproduced in vivo results ideally translated from in vitro cell capture results. As restenosis indicators, lumen area, neointimal rate and stenosis area for modified stents were reduced at the range of 30-60% as compared to those for bare metal stent (BMS). Fibrin score indicating thrombosis was lowered less than half as comparing to that on BMS. These inspiring results are attributed to ~2-fold increased endothelial coverage, determined by immuno-histological staining. Taken together, the CD146 Ab-armed nanofilamentous stent could show great performance in the reduction of thrombosis and restenosis through re-endothelialization due to highly efficient specific cell capture. STATEMENT OF SIGNIFICANCE: Stents have been developed from simple metal stents to functionalized stents for past decades. However, they have still risks to relapse the occlusion in stented arteries. In this paper, we describe the fabrication and optimization of cell capturing stents to maximize the effective re-endothelialization through the serial coating of silicone nanofilaments and anti-CD146 antibody. The nanofilaments increase the amount of coated antibodies and provide the anchoring points of circulating angiogenic cells for strong focal adhesion. We demonstrate high immobilizing ability of circulating angiogenic cells (endotheliali progenitor cells and mesenchymal stem cells) in vitro under similar shear stress to coronary arteries (15 dyne/cm2). Also, we show accelerating re-endothelialization and the efficient prevention of restenosis in porcine coronary arteries in vivo.
Collapse
Affiliation(s)
- Kwang-Sook Park
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Nam Kang
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Dae Hwan Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Han-Byual Kim
- The Heart Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Kyung Seob Im
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Wooram Park
- Department of Biomedical Science, College of Life Sciences, CHA University, Gyeonggi 13488, Republic of Korea
| | - Young Joon Hong
- The Heart Center of Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, College of Life Sciences, CHA University, Gyeonggi 13488, Republic of Korea.
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
12
|
Brito Barrera Y, Hause G, Menzel M, Schmelzer C, Lehner E, Mäder K, Wölk C, Groth T. Engineering osteogenic microenvironments by combination of multilayers from collagen type I and chondroitin sulfate with novel cationic liposomes. Mater Today Bio 2020; 7:100071. [PMID: 32924006 PMCID: PMC7476072 DOI: 10.1016/j.mtbio.2020.100071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022] Open
Abstract
Cationic liposomes composed of a novel lipid (N-{6-amino-1-[N-(9Z) -octadec9-enylamino] -1-oxohexan-(2S) -2-yl} -N'- {2- [N, N-bis(2-aminoethyl) amino] ethyl} -2-hexadecylpropandiamide) (OO4) and dioleoylphosphatidylethanolamine (DOPE) possess high amounts of amino groups and are promising systems for lipofection. Moreover, these cationic liposomes can also be used as a polycationic entity in multilayer formation using layer-by-layer technique (LbL), which is a method to fabricate surface coatings by alternating adsorption of polyanions and polycations. Since liposomes are suitable for endocytosis by or fusion with cells, controlled release of their cargo on site is possible. Here, a polyelectrolyte multilayer (PEM) system was designed of chondroitin sulfate (CS) and collagen type I (Col I) by LbL technique with OO4/DOPE liposomes embedded in the terminal layers to create an osteogenic microenvironment. Both, the composition of PEM and cargo of the liposomes were used to promote osteogenic differentiation of C2C12 myoblasts as in vitro model. The internalization of cargo-loaded liposomes from the PEM into C2C12 cells was studied using lipophilic (Rhodamine-DOPE conjugate) and hydrophilic (Texas Red-labeled dextran) model compounds. Besides, the use of Col I and CS should mimic the extracellular matrix of bone for future applications such as bone replacement therapies. Physicochemical studies of PEM were done to characterize the layer growth, thickness, and topography. The adhesion of myoblast cells was also evaluated whereby the benefit of a cover layer of CS and finally Col I above the liposome layer was demonstrated. As proof of concept, OO4/DOPE liposomes were loaded with dexamethasone, a compound that can induce osteogenic differentiation. A successful induction of osteogenic differentiation of C2C12 cells with the novel designed liposome-loaded PEM system was shown. These findings indicate that designed OH4/DOPE loaded PEMs have a high potential to be used as drug delivery or transfection system for implant coating in the field of bone regeneration and other applications.
Collapse
Key Words
- AFM, Atomic force microscopy
- C2C12 myoblasts
- CLSM, Confocal Laser Scanning Microscopy
- CS, chondroitin sulfate
- Col I, Collagen I
- DLS, Dynamic light scattering
- DMEM, Dulbecco’s modified Eagle’s medium
- DOPE, dioleoylphosphatidylethanolamine
- Dex, Dexamethasone
- ECM, Extracellular matrix
- GAG, Glycosaminoglycan
- LbL, Layer-by-Layer technique
- OO4, (N-{6-amino-1-[N-(9Z) -octadec9-enylamino] -1-oxohexan-(2S) -2-yl} -N’- {2- [N, N-bis(2-aminoethyl) amino] ethyl} -2-hexadecylpropandiamide)
- PBS, Phosphate-buffered saline
- PEI, Polyethylenimine
- PEM, Polyelectrolyte multilayer
- SEM, Scanning electron microscopy
- SPR, Surface plasmon resonance
- TEM, Transmission electron microscopy
- WCA, Water contact angle
- cationic lipids
- chondroitin sulfate
- collagen I
- internalization
- osteogenic differentiation
- polyelectrolyte multilayer system
Collapse
Affiliation(s)
- Y.A. Brito Barrera
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle−Wittenberg, Heinrich Damerow Strasse 4, 06120, Halle (Saale), Germany
| | - G. Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - M. Menzel
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Strasse 1, 06120, Halle (Saale), Germany
| | - C.E.H. Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), Walter-Hülse-Strasse 1, 06120, Halle (Saale), Germany
| | - E. Lehner
- Department Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle−Wittenberg, Kurt-Mothes Straße 3, 06120, Halle (Saale), Germany
| | - K. Mäder
- Department Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle−Wittenberg, Kurt-Mothes Straße 3, 06120, Halle (Saale), Germany
| | - C. Wölk
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317, Leipzig, Germany
| | - T. Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle−Wittenberg, Heinrich Damerow Strasse 4, 06120, Halle (Saale), Germany
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, D-06099, Halle (Saale), Germany
| |
Collapse
|
13
|
Tisler M, Alkmin S, Chang HY, Leet J, Bernau K, Sandbo N, Campagnola PJ. Analysis of fibroblast migration dynamics in idiopathic pulmonary fibrosis using image-based scaffolds of the lung extracellular matrix. Am J Physiol Lung Cell Mol Physiol 2020; 318:L276-L286. [PMID: 31774302 PMCID: PMC7052674 DOI: 10.1152/ajplung.00087.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a profound remodeling of the collagen in the extracellular matrix (ECM), where the fibers become both denser and more highly aligned. However, it is unknown how this reconfiguration of the collagen matrix affects disease progression. Here, we investigate the role of specific alterations in collagen fiber organization on cell migration dynamics by using biomimetic image-based collagen scaffolds representing normal and fibrotic lung, where the designs are derived directly from high-resolution second harmonic generation microscopy images. The scaffolds are fabricated by multiphoton-excited (MPE) polymerization, where the process is akin to three-dimensional printing, except that it is performed at much greater resolution (∼0.5 microns) and with collagen and collagen analogs. These scaffolds were seeded with early passaged primary human normal and IPF fibroblasts to enable the decoupling of the effect of cell-intrinsic characteristics (normal vs. IPF) versus ECM structure (normal vs. IPF) on migration dynamics. We found that the highly aligned IPF collagen structure promoted enhanced cell elongation and F-actin alignment along with increased cell migration speed and straightness relative to the normal tissues. Collectively, the data are consistent with an enhanced contact guidance mechanism on the aligned IPF matrix. Although cell intrinsic effects were observed, the aligned collagen matrix morphology had a larger effect on these metrics. Importantly, these biomimetic models of the lung cannot be synthesized by conventional fabrication methods. We suggest that the MPE image-based fabrication method will enable additional hypothesis-based testing studies of cell-matrix interactions in the context of tissue fibrosis.
Collapse
Affiliation(s)
- Marisa Tisler
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Samuel Alkmin
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hsin-Yu Chang
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jon Leet
- 2Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ksenija Bernau
- 2Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nathan Sandbo
- 2Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul J. Campagnola
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
14
|
De Martino S, Zhang W, Klausen L, Lou HY, Li X, Alfonso FS, Cavalli S, Netti PA, Santoro F, Cui B. Dynamic Manipulation of Cell Membrane Curvature by Light-Driven Reshaping of Azopolymer. NANO LETTERS 2020; 20:577-584. [PMID: 31846332 PMCID: PMC7207080 DOI: 10.1021/acs.nanolett.9b04307] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Local curvatures on the cell membrane serve as signaling hubs that promote curvature-dependent protein interactions and modulate a variety of cellular processes including endocytosis, exocytosis, and the actin cytoskeleton. However, precisely controlling the location and the degree of membrane curvature in live cells has not been possible until recently, where studies show that nanofabricated vertical structures on a substrate can imprint their shapes on the cell membrane to induce well-defined curvatures in adherent cells. Nevertheless, the intrinsic static nature of these engineered nanostructures prevents dynamic modulation of membrane curvatures. In this work, we engineer light-responsive polymer structures whose shape can be dynamically modulated by light and thus change the induced-membrane curvatures on-demand. Specifically, we fabricate three-dimensional azobenzene-based polymer structures that change from a vertical pillar to an elongated vertical bar shape upon green light illumination. We observe that U2OS cells cultured on azopolymer nanostructures rapidly respond to the topographical change of the substrate underneath. The dynamically induced high membrane curvatures at bar ends promote local accumulation of actin fibers and actin nucleator Arp2/3 complex. The ability to dynamically manipulate the membrane curvature and analyze protein response in real-time provides a new way to study curvature-dependent processes in live cells.
Collapse
Affiliation(s)
- Selene De Martino
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Piazzale Tecchio, 80, 80125 Napoli, Italy
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Wei Zhang
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Lasse Klausen
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Hsin-Ya Lou
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Xiao Li
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Felix S. Alfonso
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Corresponding Authors:.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
- Corresponding Authors:.
| |
Collapse
|
15
|
Alkmin S, Brodziski R, Simon H, Hinton D, Goldsmith RH, Patankar M, Campagnola P. Migration dynamics of ovarian epithelial cells on micro-fabricated image-based models of normal and malignant stroma. Acta Biomater 2019; 100:92-104. [PMID: 31568876 DOI: 10.1016/j.actbio.2019.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
Abstract
A profound remodeling of the collagen in the extracellular matrix (ECM) occurs in human ovarian cancer but it is unknown how this affects migration dynamics and ultimately tumor growth. Here, we investigate the influence of collagen morphology on ovarian cell migration through the use of second harmonic generation (SHG) image-based models of ovarian tumors. The scaffolds are fabricated by multiphoton excited (MPE) polymerization, where the process is akin to 3D printing except it achieves much greater resolution (∼0.5 µm) and utilizes collagen and collagen analogs. We used this technique to create scaffolds with complex 3D submicron features representing the collagen fiber morphology in normal stroma, high risk stroma, benign tumors, and high grade ovarian tumors. We found the highly aligned malignant stromal structure promoted enhanced motility and also increased cell and f-Actin alignment relative to the other tissues. However, using models based on fiber crimping characteristics, we found cells seeded on linear fibers based on normal stromal models yielded the highest degree of alignment but least motility. These results show that both the fiber properties themselves and as well as their overall alignment govern the resulting migration dynamics. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology. STATEMENT OF SIGNIFICANCE: The extracellular matrix collagen in ovarian cancer is highly remodeled but the consequences on cell function remain unknown. It is important to understand the operative cell matrix interactions, as this could lead to better prognostics and better prediction of therapeutic efficacy. We probe migration dynamics using high resolution (∼0.5 µm) multiphoton excited fabrication to synthesize scaffolds whose designs are derived directly from Second Harmonic Generation microscope images of the collagen in normal ovarian tissues as well as benign and malignant tumors. Collectively our results show the importance of the matrix morphology (fiber shape and alignment) on driving cell motility, cell shape and f-Actin alignment. These collagen-based models have complex fiber morphology and cannot be created by conventional fabrication technologies.
Collapse
|
16
|
Forth J, Kim PY, Xie G, Liu X, Helms BA, Russell TP. Building Reconfigurable Devices Using Complex Liquid-Fluid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806370. [PMID: 30828869 DOI: 10.1002/adma.201806370] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Liquid-fluid interfaces provide a platform both for structuring liquids into complex shapes and assembling dimensionally confined, functional nanomaterials. Historically, attention in this area has focused on simple emulsions and foams, in which surface-active materials such as surfactants or colloids stabilize structures against coalescence and alter the mechanical properties of the interface. In recent decades, however, a growing body of work has begun to demonstrate the full potential of the assembly of nanomaterials at liquid-fluid interfaces to generate functionally advanced, biomimetic systems. Here, a broad overview is given, from fundamentals to applications, of the use of liquid-fluid interfaces to generate complex, all-liquid devices with a myriad of potential applications.
Collapse
Affiliation(s)
- Joe Forth
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
| | - Xubo Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, 120 Governors Drive, Conte Center for Polymer Research, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
17
|
Zhang R, Mankoci S, Walters N, Gao H, Zhang H, Hou X, Qin H, Ren Z, Zhou X, Doll GL, Martini A, Sahai N, Dong Y, Ye C. Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel-titanium alloy. J Biomed Mater Res B Appl Biomater 2018; 107:1854-1863. [PMID: 30550636 DOI: 10.1002/jbm.b.34278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/06/2023]
Abstract
Nickel-titanium (NiTi) alloy is an attractive material for biomedical implant applications. In this study, the effects of laser shock peening (LSP) on the biocompatibility, corrosion resistance, ion release rate and hardness of NiTi were characterized. The cell culture study indicated that the LSP-treated NiTi samples had lower cytotoxicity and higher cell survival rate than the untreated samples. Specifically, the cell survival rate increased from 88 ± 1.3% to 93 ± 1.1% due to LSP treatment. LSP treatment was shown to significantly decrease the initial Ni ion release rate compared with that of the untreated samples. Electrochemical tests indicated that LSP improved the corrosion resistance of the NiTi alloy in simulated body fluid, with a decrease in the corrosion current density from 1.41 ± 0.20 μA/cm2 to 0.67 ± 0.24 μA/cm2 . Immersion tests showed that calcium deposition was significantly enhanced by LSP. In addition, the hardness of NiTi alloy increased from 226 ± 3 HV before LSP to 261 ± 3 HV after LSP. These results demonstrated that LSP is a promising surface modification method that can be used to improve the mechanical properties, corrosion resistance and biocompatibility of NiTi alloy for biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1854-1863, 2019.
Collapse
Affiliation(s)
- Ruixia Zhang
- Department of Mechanical Engineering, University of Akron, Akron, Ohio, 44325
| | - Steven Mankoci
- Department of Polymer Science, University of Akron, Akron, Ohio, 44325
| | - Nicholas Walters
- Department of Mechanical Engineering, University of California - Merced, Merced, California, 95343
| | - Hongyu Gao
- Department of Mechanical Engineering, University of California - Merced, Merced, California, 95343
| | - Hao Zhang
- Department of Mechanical Engineering, University of Akron, Akron, Ohio, 44325
| | - Xiaoning Hou
- Department of Mechanical Engineering, University of Akron, Akron, Ohio, 44325
| | - Haifeng Qin
- Timken Engineered Surfaces Laboratories, University of Akron, Akron, Ohio, 44325
| | - Zhencheng Ren
- Department of Mechanical Engineering, University of Akron, Akron, Ohio, 44325
| | - Xianfeng Zhou
- Department of Mechanical Engineering, University of Akron, Akron, Ohio, 44325.,Department of Polymer Science, University of Akron, Akron, Ohio, 44325.,School of Polymer Science and Engineering, Qingdao University of Science and Engineering, Qingdao, 266042, China
| | - Gary L Doll
- Timken Engineered Surfaces Laboratories, University of Akron, Akron, Ohio, 44325
| | - Ashlie Martini
- Department of Mechanical Engineering, University of California - Merced, Merced, California, 95343
| | - Nita Sahai
- Department of Polymer Science, University of Akron, Akron, Ohio, 44325.,Department of Geosciences, University of Akron, Akron, Ohio, 44325.,Integrated Bioscience Program, University of Akron, Akron, Ohio, 44325
| | - Yalin Dong
- Department of Mechanical Engineering, University of Akron, Akron, Ohio, 44325
| | - Chang Ye
- Department of Mechanical Engineering, University of Akron, Akron, Ohio, 44325
| |
Collapse
|
18
|
Marrella A, Tedeschi G, Giannoni P, Lagazzo A, Sbrana F, Barberis F, Quarto R, Puglisi F, Scaglione S. "Green-reduced" graphene oxide induces in vitro an enhanced biomimetic mineralization of polycaprolactone electrospun meshes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1044-1053. [PMID: 30274035 DOI: 10.1016/j.msec.2018.08.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/22/2018] [Accepted: 08/26/2018] [Indexed: 12/11/2022]
Abstract
A novel green method for graphene oxide (GO) reduction via ascorbic acid has been adopted to realize bio-friendly reduced graphene oxide (RGO)/polycaprolactone (PCL) nanofibrous meshes, as substrates for bone tissue engineering applications. PCL fibrous mats enriched with either RGO or GO (0.25 wt%) were fabricated to recapitulate the fibrillar structure of the bone extracellular matrix (ECM) and the effects of RGO incorporation on the structural proprieties, biomechanics and bioactivity of the nano-composites meshes were evaluated. RGO/PCL fibrous meshes displayed superior mechanical properties (i.e. Young's Modulus and ultimate tensile strength) besides supporting noticeably improved cell adhesion, spreading and proliferation of fibroblasts and osteoblast-like cell lines. Furthermore, RGO-based electrospun substrates enhanced in vitro calcium deposition in the ECM produced by osteoblast-like cells, which was paralleled, in human mesenchymal stem cells grown onto the same substrates, by an increased expression of the osteogenic markers mandatory for mineralization. In this respect, the capability of graphene-based materials to adsorb osteogenic factors cooperates synergically with the rougher surface of RGO/PCL-based materials, evidenced by AFM analysis, to ignite mineralization of the neodeposited matrix and to promote the osteogenic commitment of the cultured cell in the surrounding microenvironment.
Collapse
Affiliation(s)
- Alessandra Marrella
- CNR - National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy; Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy
| | - Giacomo Tedeschi
- CNR - National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genova, Via all' Opera Pia 13, 16145 Genoa, Italy
| | - Paolo Giannoni
- Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via all'Opera Pia 15, 16145 Genoa, Italy
| | | | - Fabrizio Barberis
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, via all'Opera Pia 15, 16145 Genoa, Italy
| | - Rodolfo Quarto
- Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Puglisi
- Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy
| | - Silvia Scaglione
- CNR - National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy.
| |
Collapse
|
19
|
Khlusov IA, Dekhtyar Y, Sharkeev YP, Pichugin VF, Khlusova MY, Polyaka N, Tyulkin F, Vendinya V, Legostaeva EV, Litvinova LS, Shupletsova VV, Khaziakhmatova OG, Yurova KA, Prosolov KA. Nanoscale Electrical Potential and Roughness of a Calcium Phosphate Surface Promotes the Osteogenic Phenotype of Stromal Cells. MATERIALS 2018; 11:ma11060978. [PMID: 29890754 PMCID: PMC6024922 DOI: 10.3390/ma11060978] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 06/07/2018] [Indexed: 12/31/2022]
Abstract
Mesenchymal stem cells (MSCs) and osteoblasts respond to the surface electrical charge and topography of biomaterials. This work focuses on the connection between the roughness of calcium phosphate (CP) surfaces and their electrical potential (EP) at the micro- and nanoscales and the possible role of these parameters in jointly affecting human MSC osteogenic differentiation and maturation in vitro. A microarc CP coating was deposited on titanium substrates and characterized at the micro- and nanoscale. Human adult adipose-derived MSCs (hAMSCs) or prenatal stromal cells from the human lung (HLPSCs) were cultured on the CP surface to estimate MSC behavior. The roughness, nonuniform charge polarity, and EP of CP microarc coatings on a titanium substrate were shown to affect the osteogenic differentiation and maturation of hAMSCs and HLPSCs in vitro. The surface EP induced by the negative charge increased with increasing surface roughness at the microscale. The surface relief at the nanoscale had an impact on the sign of the EP. Negative electrical charges were mainly located within the micro- and nanosockets of the coating surface, whereas positive charges were detected predominantly at the nanorelief peaks. HLPSCs located in the sockets of the CP surface expressed the osteoblastic markers osteocalcin and alkaline phosphatase. The CP multilevel topography induced charge polarity and an EP and overall promoted the osteoblast phenotype of HLPSCs. The negative sign of the EP and its magnitude at the micro- and nanosockets might be sensitive factors that can trigger osteoblastic differentiation and maturation of human stromal cells.
Collapse
Affiliation(s)
- Igor A Khlusov
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Yuri Dekhtyar
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Yurii P Sharkeev
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| | - Vladimir F Pichugin
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
| | - Marina Y Khlusova
- Department of Pathophysiology, Siberian State Medical University, Tomsk 634050, Russia.
| | - Nataliya Polyaka
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Fedor Tyulkin
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Viktorija Vendinya
- Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Riga LV-1658, Latvia.
| | - Elena V Legostaeva
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| | - Larisa S Litvinova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Valeria V Shupletsova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Olga G Khaziakhmatova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Kristina A Yurova
- Basic Laboratory of Immunology and Cell Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia.
| | - Konstantin A Prosolov
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia.
- Institute of Strength Physics and Materials Science of SB RAS, Tomsk 634055, Russia.
| |
Collapse
|
20
|
Gulati K, Hamlet SM, Ivanovski S. Tailoring the immuno-responsiveness of anodized nano-engineered titanium implants. J Mater Chem B 2018; 6:2677-2689. [PMID: 32254221 DOI: 10.1039/c8tb00450a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Owing to its biocompatibility and corrosion resistance, titanium is one of the most commonly used implantable biomaterials. Numerous in vitro and in vivo investigations have established that titanium surfaces with a nanoscale topography outperform conventional smooth or micro-rough surfaces in terms of achieving desirable bonding with bone (i.e. enhanced bioactivity). Among these nanoscale topographical modifications, ordered nanostructures fabricated via electrochemical anodization, especially titania nanotubes (TNTs), are particularly attractive. This is due to their ability to augment bioactivity, deliver drugs and the potential for easy/cost-effective translation into the current implant market. However, the potential of TNT-modified implants to modulate the host immune-inflammatory response, which is critical for achieving timely osseointegration, remains relatively unexplored. Such immunomodulatory effects may be achieved by modifying the physical and chemical properties of the TNTs. Furthermore, therapeutic/bioactive enhancements performed on these nano-engineered implants (such as antibacterial or osteogenic functions) are likely to illicit an immune response which needs to be appropriately controlled. The lack of sufficient in-depth studies with respect to immune cell responses to TNTs has created research gaps that must be addressed in order to facilitate the design of the next generation of immuno-modulatory titanium implants. This review article focuses on the chemical, topographical and mechanical features of TNT-modified implants that can be manipulated in order to achieve immuno-modulation, as well as providing an insight into how modulating the immune response can augment implant performance.
Collapse
Affiliation(s)
- Karan Gulati
- School of Dentistry, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia.
| | | | | |
Collapse
|
21
|
Wang B, Wang L, Li X, Liu Y, Zhang Z, Hedrick E, Safe S, Qiu J, Lu G, Wang S. Template-free fabrication of vertically-aligned polymer nanowire array on the flat-end tip for quantifying the single living cancer cells and nanosurface interaction. MANUFACTURING LETTERS 2018; 16:27-31. [DOI: 10.1016/j.mfglet.2018.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
22
|
Maza E, von Bilderling C, Cortez ML, Díaz G, Bianchi M, Pietrasanta LI, Giussi JM, Azzaroni O. Layer-by-Layer Assembled Microgels Can Combine Conflicting Properties: Switchable Stiffness and Wettability without Affecting Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3711-3719. [PMID: 29480725 DOI: 10.1021/acs.langmuir.8b00047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Responsive interfacial architectures of practical interest commonly require the combination of conflicting properties in terms of their demand upon material structure. Switchable stiffness, wettability, and permeability, key features for tissue engineering applications, are in fact known to be exclusively interdependent. Here, we present a nanoarchitectonic approach that decouples these divergent properties by the use of thermoresponsive microgels as building blocks for the construction of three-dimensional arrays of interconnected pores. Layer-by-layer assembled poly( N-isopropylacrylamide- co-methacrylic acid) microgel films were found to exhibit an increase in hydrophobicity, stiffness, and adhesion properties upon switching the temperature from below to above the lower critical solution temperature, whereas the permeability of redox probes through the film remained unchanged. Our findings indicate that the switch in hydrophilicity and nanomechanical properties undergone by the microgels does not compromise the porosity of the film, thus allowing the free diffusion of redox probes through the polymer-free volume of the submicrometer pores. This novel approach for decoupling conflicting properties provides a strategic route for creating tailorable scaffolds with unforeseen functionalities.
Collapse
Affiliation(s)
- Eliana Maza
- Instituto de Investigaciones Fisicoquímicas teóricas y Aplicadas (INIFTA) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP) , Diagonal 113 y 64 s/n , 1900 La Plata , Buenos Aires , Argentina
| | - Catalina von Bilderling
- Instituto de Investigaciones Fisicoquímicas teóricas y Aplicadas (INIFTA) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP) , Diagonal 113 y 64 s/n , 1900 La Plata , Buenos Aires , Argentina
| | - M Lorena Cortez
- Instituto de Investigaciones Fisicoquímicas teóricas y Aplicadas (INIFTA) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP) , Diagonal 113 y 64 s/n , 1900 La Plata , Buenos Aires , Argentina
| | - Gisela Díaz
- Instituto de Investigaciones Fisicoquímicas teóricas y Aplicadas (INIFTA) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP) , Diagonal 113 y 64 s/n , 1900 La Plata , Buenos Aires , Argentina
| | | | | | - Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas teóricas y Aplicadas (INIFTA) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP) , Diagonal 113 y 64 s/n , 1900 La Plata , Buenos Aires , Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas teóricas y Aplicadas (INIFTA) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP) , Diagonal 113 y 64 s/n , 1900 La Plata , Buenos Aires , Argentina
| |
Collapse
|
23
|
Santander-Borrego M, Chirila TV, Shadforth AMA, Whittaker AK, Blakey I. Effect of changes in the surface chemistry and topography of poly(2-hydroxyethyl methacrylate) on the in vitro attachment of human corneal epithelial cells. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517744572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miriem Santander-Borrego
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Traian V Chirila
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
- Queensland Eye Institute, South Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | | | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
- Queensland Eye Institute, South Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
- Queensland Eye Institute, South Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
24
|
Balta S, Aydogan C, Demir B, Geyik C, Ciftci M, Guler E, Odaci Demirkol D, Timur S, Yagci Y. Functional Surfaces Constructed with Hyperbranched Copolymers as Optical Imaging and Electrochemical Cell Sensing Platforms. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sebila Balta
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Cansu Aydogan
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Bilal Demir
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Caner Geyik
- Institute of Drug Abuse; Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova Izmir Turkey
| | - Mustafa Ciftci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
| | - Emine Guler
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Institute of Drug Abuse; Toxicology and Pharmaceutical Sciences; Ege University; 35100 Bornova Izmir Turkey
- Ege Life Sciences (EGE-LS); Cigli 35620 Izmir Turkey
| | - Dilek Odaci Demirkol
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
| | - Suna Timur
- Faculty of Science; Department of Biochemistry; Ege University; 35100 Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center; Ege University; Bornova 35100 Izmir Turkey
| | - Yusuf Yagci
- Faculty of Science and Letters; Department of Chemistry; Istanbul Technical University; Maslak 34469 Istanbul Turkey
- Faculty of Science; Chemistry Department; King Abdulaziz University; Jeddah 21589 Saudi Arabia
| |
Collapse
|
25
|
Estabridis HM, Jana A, Nain A, Odde DJ. Cell Migration in 1D and 2D Nanofiber Microenvironments. Ann Biomed Eng 2017; 46:392-403. [PMID: 29150767 PMCID: PMC5809563 DOI: 10.1007/s10439-017-1958-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.
Collapse
Affiliation(s)
- Horacio M Estabridis
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-132 Nils-Hasselmo Hall, Minneapolis, MN, 55455, USA
| | - Aniket Jana
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-132 Nils-Hasselmo Hall, Minneapolis, MN, 55455, USA.
| |
Collapse
|
26
|
Chen S, Zhang L, Zhao Y, Ke M, Li B, Chen L, Cai S. A perforated microhole-based microfluidic device for improving sprouting angiogenesis in vitro. BIOMICROFLUIDICS 2017; 11:054111. [PMID: 29085522 PMCID: PMC5634888 DOI: 10.1063/1.4994599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/01/2017] [Indexed: 05/15/2023]
Abstract
Microfluidic technology is an important research tool for investigating angiogenesis in vitro. Here, we fabricated a polydimethylsiloxane (PDMS) microfluidic device with five cross-shaped chambers using a coverslip molding method. Then, the perforated PDMS microhole arrays prepared by soft lithography were assembled in the device as barriers; a single microhole had a diameter of 100 μm. After injecting type I collagen into the middle gel chamber, we added a culture medium containing a vascular endothelial growth factor (VEGF) into the middle chamber. It would generate a linear concentration gradient of VEGF across the gel region from the middle chamber to the four peripheral chambers. Human umbilical vein endothelial cells (HUVECs) were then seeded on the microhole barrier. With VEGF stimulation, cells migrated along the inner walls of the microholes, formed annularly distributed cell clusters at the gel-barrier interface, and then three-dimensionally (3D) sprouted into the collagen scaffold. After 4 days of culture, we quantitatively analyzed the sprouting morphogenesis. HUVECs cultured on the microhole barrier had longer sprouts than HUVECs cultured without the barrier (controls). Furthermore, the initial distribution of sprouts was more regular and more connections of tube-like structures were generated when the microhole barrier was used. This study introduces a novel microfluidic device containing both microtopographic structures and 3D collagen. HUVECs cultured with the microhole barrier could form well-interconnected tube-like structures and are thus an ideal in vitro angiogenesis model.
Collapse
Affiliation(s)
- Sijia Chen
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liguang Zhang
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Zhao
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ming Ke
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | | | | - Shaoxi Cai
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
27
|
Kuznetsova D, Ageykin A, Koroleva A, Deiwick A, Shpichka A, Solovieva A, Kostjuk S, Meleshina A, Rodimova S, Akovanceva A, Butnaru D, Frolova A, Zagaynova E, Chichkov B, Bagratashvili V, Timashev P. Surface micromorphology of cross-linked tetrafunctional polylactide scaffolds inducing vessel growth and bone formation. Biofabrication 2017; 9:025009. [PMID: 28300041 DOI: 10.1088/1758-5090/aa6725] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the presented study, we have developed a synthetic strategy allowing a gradual variation of a polylactide arms' length, which later influences the micromorphology of the scaffold surface, formed by a two-photon polymerization technique. It has been demonstrated that the highest number of cells is present on the scaffolds with the roughest surface made of the polylactide with longer arms (PLA760), and osteogenic differentiation of mesenchymal stem cells is most pronounced on such scaffolds. According to the results of biological testing, the PLA760 scaffolds were implanted into a created cranial defect in a mouse for an in vivo assessment of the bone tissue formation. The in vivo experiments have shown that, by week 10, deposition of calcium phosphate particles occurs in the scaffold at the defect site, as well as, the formation of a new bone and ingrowth of blood vessels from the surrounding tissues. These results demonstrate that the cross-linked microstructured tetrafunctional polylactide scaffolds are promising microstructures for bone regeneration in tissue engineering.
Collapse
Affiliation(s)
- D Kuznetsova
- Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Nizhny Novgorod, 603005, Russia. Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Muthinja MJ, Ripp J, Hellmann JK, Haraszti T, Dahan N, Lemgruber L, Battista A, Schütz L, Fackler OT, Schwarz US, Spatz JP, Frischknecht F. Microstructured Blood Vessel Surrogates Reveal Structural Tropism of Motile Malaria Parasites. Adv Healthc Mater 2017; 6. [PMID: 28117558 DOI: 10.1002/adhm.201601178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/17/2016] [Indexed: 11/09/2022]
Abstract
Plasmodium sporozoites, the highly motile forms of the malaria parasite, are transmitted naturally by mosquitoes and traverse the skin to find, associate with, and enter blood capillaries. Research aimed at understanding how sporozoites select blood vessels is hampered by the lack of a suitable experimental system. Arrays of uniform cylindrical pillars can be used to study small cells moving in controlled environments. Here, an array system displaying a variety of pillars with different diameters and shapes is developed in order to investigate how Plasmodium sporozoites associate to the pillars as blood vessel surrogates. Investigating the association of sporozoites to pillars in arrays displaying pillars of different diameters reveals that the crescent-shaped parasites prefer to associate with and migrate around pillars with a similar curvature. This suggests that after transmission by a mosquito, malaria parasites may use a structural tropism to recognize blood capillaries in the dermis in order to gain access to the blood stream.
Collapse
Affiliation(s)
- Mendi J. Muthinja
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Johanna Ripp
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Janina K. Hellmann
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Tamas Haraszti
- DWI Leibniz Institute for Interactive Materials; Forkenbeckstrasse 50 Aachen 52056 Germany
- Department of Cellular Biophysics; Max Planck Institute for Medical Research; Department of Biophysical Chemistry; Heidelberg University; Jahnstrasse 29 69120 Heidelberg Germany
| | - Noa Dahan
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Leandro Lemgruber
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Anna Battista
- Theoretical Physics and BioQuant; Heidelberg University; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Lucas Schütz
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Oliver T. Fackler
- Integrative Virology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Ulrich S. Schwarz
- Theoretical Physics and BioQuant; Heidelberg University; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Joachim P. Spatz
- Department of Cellular Biophysics; Max Planck Institute for Medical Research; Department of Biophysical Chemistry; Heidelberg University; Jahnstrasse 29 69120 Heidelberg Germany
| | - Friedrich Frischknecht
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| |
Collapse
|
29
|
Staruch R, Griffin MF, Butler P. Nanoscale Surface Modifications of Orthopaedic Implants: State of the Art and Perspectives. Open Orthop J 2016; 10:920-938. [PMID: 28217214 PMCID: PMC5299555 DOI: 10.2174/1874325001610010920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/10/2015] [Accepted: 05/31/2016] [Indexed: 01/18/2023] Open
Abstract
Background: Orthopaedic implants such as the total hip or total knee replacement are examples of surgical interventions with postoperative success rates of over 90% at 10 years. Implant failure is associated with wear particles and pain that requires surgical revision. Improving the implant - bone surface interface is a key area for biomaterial research for future clinical applications. Current implants utilise mechanical, chemical or physical methods for surface modification. Methods: A review of all literature concerning the nanoscale surface modification of orthopaedic implant technology was conducted. Results: The techniques and fabrication methods of nanoscale surface modifications are discussed in detail, including benefits and potential pitfalls. Future directions for nanoscale surface technology are explored. Conclusion: Future understanding of the role of mechanical cues and protein adsorption will enable greater flexibility in surface control. The aim of this review is to investigate and summarise the current concepts and future directions for controlling the implant nanosurface to improve interactions.
Collapse
Affiliation(s)
- Rmt Staruch
- Department of Surgery & Interventional Science, University College London, London, England
| | - M F Griffin
- Department of Surgery & Interventional Science, University College London, London, England
| | - Pem Butler
- Department of Surgery & Interventional Science, University College London, London, England; University College London & The Royal Free Hospital, Pond Street, London, England
| |
Collapse
|
30
|
|
31
|
Yang GH, Kim M, Kim G. Additive-manufactured polycaprolactone scaffold consisting of innovatively designed microsized spiral struts for hard tissue regeneration. Biofabrication 2016; 9:015005. [PMID: 27917822 DOI: 10.1088/1758-5090/9/1/015005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Three-dimensional biomedical polycaprolactone scaffolds consisting of microsized spiral-like struts were fabricated using an additive manufacturing process. In this study, various processing parameters such as applied pressure, polymer viscosity, printing nozzle-to-stage distance, and nozzle moving speed were optimized to achieve a unique scaffold consisting of spiral-like struts. Various physical and biological analyses, including the morphological structure of spirals, mechanical properties, cell proliferation, and osteogenic activities, were performed to evaluate the effect of the spirals of the scaffold. Osteoblast-like cells (MG63) were used to identify the various in vitro cellular responses on the scaffolds. The spiral-like struts, having unique spiral angles, had a more significant effect on cell attachment, proliferation, and differentiation compared to normal struts. The results suggest that the scaffold consisting of spiral struts can be a potential biomedical device for various applications in tissue engineering.
Collapse
Affiliation(s)
- Gi Hoon Yang
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | | | | |
Collapse
|
32
|
Jana S, Lan Levengood SK, Zhang M. Anisotropic Materials for Skeletal-Muscle-Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:10588-10612. [PMID: 27865007 PMCID: PMC5253134 DOI: 10.1002/adma.201600240] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/27/2016] [Indexed: 05/19/2023]
Abstract
Repair of damaged skeletal-muscle tissue is limited by the regenerative capacity of the native tissue. Current clinical approaches are not optimal for the treatment of large volumetric skeletal-muscle loss. As an alternative, tissue engineering represents a promising approach for the functional restoration of damaged muscle tissue. A typical tissue-engineering process involves the design and fabrication of a scaffold that closely mimics the native skeletal-muscle extracellular matrix (ECM), allowing organization of cells into a physiologically relevant 3D architecture. In particular, anisotropic materials that mimic the morphology of the native skeletal-muscle ECM, can be fabricated using various biocompatible materials to guide cell alignment, elongation, proliferation, and differentiation into myotubes. Here, an overview of fundamental concepts associated with muscle-tissue engineering and the current status of muscle-tissue-engineering approaches is provided. Recent advances in the development of anisotropic scaffolds with micro- or nanoscale features are reviewed, and how scaffold topographical, mechanical, and biochemical cues correlate to observed cellular function and phenotype development is examined. Finally, some recent developments in both the design and utility of anisotropic materials in skeletal-muscle-tissue engineering are highlighted, along with their potential impact on future research and clinical applications.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Sheeny K. Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
33
|
Chien FC, Dai YH, Kuo CW, Chen P. Flexible nanopillars to regulate cell adhesion and movement. NANOTECHNOLOGY 2016; 27:475101. [PMID: 27775920 DOI: 10.1088/0957-4484/27/47/475101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Flexible polymer nanopillar substrates were used to systematically demonstrate cell alignment and migration guided by the directional formation of focal adhesions. The polymer nanopillar substrates were constructed to various height specifications to provide an extensive variation of flexibility; a rectangular arrangement created spatial confinement between adjacent nanopillars, providing less spacing in the horizontal and vertical directions. Three polymer nanopillar substrates with the diameter of 400 nm and the heights of 400, 800, and 1200 nm were fabricated. Super-resolution localization imaging and protein pair-distance analysis of vinculin proteins revealed that Chinese hamster ovary (CHO) cells formed mature focal adhesions on 1200 nm high nanopillar substrates by bending adjacent nanopillars to link dot-like adhesions. The spacing confinement of the adjacent nanopillars enhanced the orthogonal directionality of the formation tendency of the mature focal adhesions. The directional formation of the mature focal adhesions also facilitated the organization of actin filaments in the horizontal and vertical directions. Moreover, 78% of the CHO cells were aligned in these two directions, in conformity with the flexibility and nanotopographical cues of the nanopillars. Biased cell migration was observed on the 1200 nm high nanopillar substrates.
Collapse
Affiliation(s)
- Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | | | | | | |
Collapse
|
34
|
Maybeck V, Schnitker J, Li W, Heuschkel M, Offenhäusser A. An evaluation of extracellular MEA versus optogenetic stimulation of cortical neurons. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Chen L, Xie Z, Gan T, Wang Y, Zhang G, Mirkin CA, Zheng Z. Biomimicking Nano-Micro Binary Polymer Brushes for Smart Cell Orientation and Adhesion Control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3400-6. [PMID: 27184011 DOI: 10.1002/smll.201600634] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/09/2016] [Indexed: 05/04/2023]
Abstract
A new biomimetic surface named nano-micro binary polymer brushes is fabricated by large-area bench-top dip-pen nanodisplacement lithography technique. It is composed of gelatin-modified poly(glycidyl methacrylate) nanolines which are spaced by microstripes of poly(N-isopropylacrylamide). Cells are not only adhered and oriented well on the re-used surface, but also detachable from the surface with well-preserved extracellular matrix and aligned morphology.
Collapse
Affiliation(s)
- Lina Chen
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Zhuang Xie
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Tiansheng Gan
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Zijian Zheng
- Nanotechnology Centre, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, China
| |
Collapse
|
36
|
Chen C, Zhang T, Zhang Q, Chen X, Zhu C, Xu Y, Yang J, Liu J, Sun D. Biointerface by Cell Growth on Graphene Oxide Doped Bacterial Cellulose/Poly(3,4-ethylenedioxythiophene) Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10183-10192. [PMID: 27054801 DOI: 10.1021/acsami.6b01243] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Highly biocompatible advanced materials with excellent electroactivity are increasingly meaningful to biointerfaces and the development of biomedicine. Herein, bacterial cellulose/poly(3,4-ethylene dioxythiophene)/graphene oxide (BC/PEDOT/GO) composite nanofibers were synthesized through the in situ interfacial polymerization of PEDOT with the doping of GO. The abundant free carboxyl and hydroxy groups offer the BC/PEDOT/GO film active functional groups for surface modification. We demonstrate the use of this composite nanofiber for the electrical stimulation of PC12 neural cells as this resultant nanofiber scaffold could closely mimic the structure of the native extracellular matrix (ECM) with a promoting cell orientation and differentiation after electrical stimulation of PC12 cells. It is expected that this biocompatible BC/PEDOT/GO material will find potential applications in biological and regenerative medicine.
Collapse
Affiliation(s)
- Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Ting Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Qi Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University , 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Xiao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Chunlin Zhu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Yunhua Xu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
- Lianyungang Normal College , Lianyungang, Jiangsu, China
| | - Jiazhi Yang
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| |
Collapse
|
37
|
Shimomura S, Matsuno H, Ohta T, Kawahara S, Tanaka K. Initial Adhesion of Fibroblasts on Thin Rubber Scaffolds. CHEM LETT 2016. [DOI: 10.1246/cl.160061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | - Seiichi Kawahara
- Department of Materials Science and Technology, Nagaoka University of Technology
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| |
Collapse
|
38
|
Moyen E, Hama A, Ismailova E, Assaud L, Malliaras G, Hanbücken M, Owens RM. Nanostructured conducting polymers for stiffness controlled cell adhesion. NANOTECHNOLOGY 2016; 27:074001. [PMID: 26790487 DOI: 10.1088/0957-4484/27/7/074001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED We propose a facile and reproducible method, based on ultra thin porous alumina membranes, to produce cm(2) ordered arrays of nano-pores and nano-pillars on any kind of substrates. In particular our method enables the fabrication of conducting polymers nano-structures, such as poly[3,4-ethylenedioxythiophene]:poly[styrene sulfonate] ( PEDOT PSS). Here, we demonstrate the potential interest of those templates with controlled cell adhesion studies. The triggering of the eventual fate of the cell (proliferation, death, differentiation or migration) is mediated through chemical cues from the adsorbed proteins and physical cues such as surface energy, stiffness and topography. Interestingly, as well as through material properties, stiffness modifications can be induced by nano-topography, the ability of nano-pillars to bend defining an effective stiffness. By controlling the diameter, length, depth and material of the nano-structures, one can possibly tune the effective stiffness of a (nano) structured substrate. First results indicate a possible change in the fate of living cells on such nano-patterned devices, whether they are made of conducting polymer (soft material) or silicon (hard material).
Collapse
Affiliation(s)
- Eric Moyen
- Centre Microélectronique de Provence, Department of Bioelectronics, Ecole Nationale Supérieure des Mines de Saint Etienne, 880 route de Mimet, F-13541 Gardanne, France. CNRS-Aix-Marseille University, CINaM, F-13288 Marseille, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Kweon S, Song KH, Park H, Choi JC, Doh J. Dynamic Micropatterning of Cells on Nanostructured Surfaces Using a Cell-friendly Photoresist. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4266-4274. [PMID: 26760679 DOI: 10.1021/acsami.6b00318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cellular dynamics under complex topographical microenvironments are important for many biological processes in development and diseases, but systematic investigation has been limited due to the lack of technology. Herein, we developed a new dynamic cell patterning method based on a cell-friendly photoresist polymer that allows in situ control of cell dynamics on nanostructured surfaces. Using this method, we quantitatively compared the spreading dynamics of cells on nanostructured surfaces to those on flat surfaces. Furthermore, we investigated how cells behaved when they simultaneously encountered two topographically distinct surfaces during spreading. This method will allow many exciting opportunities in the fundamental study of cellular dynamics.
Collapse
Affiliation(s)
- SoonHo Kweon
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Kwang Hoon Song
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - HyoungJun Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Jong-Cheol Choi
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Junsang Doh
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio) and ‡Department of Mechanical Engineering, Pohang University of Science and Technology , San31, Hyoja-dong, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
40
|
Is cell viability always directly related to corrosion resistance of stainless steels? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:439-43. [PMID: 26952444 DOI: 10.1016/j.msec.2016.01.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/22/2015] [Accepted: 01/29/2016] [Indexed: 11/24/2022]
Abstract
It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals.
Collapse
|
41
|
Tabatabaei M, Wallace GQ, Caetano FA, Gillies ER, Ferguson SSG, Lagugné-Labarthet F. Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy. Chem Sci 2015; 7:575-582. [PMID: 28791107 PMCID: PMC5519955 DOI: 10.1039/c5sc03332b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022] Open
Abstract
Controlled analyte and cell positioning is enabled on a plasmonic platform with patterned fluorocarbon polymer thin films for SERS-based glycan sensing.
The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (C4F8) thin films on a plasmonic platform fabricated by nanosphere lithography (NSL). This provides the possibility to probe biomolecules of interest in the vicinity of cells using plasmon-mediated surface enhanced spectroscopies. In this context, we demonstrate the surface enhanced biosensing of glycan expression in different cell lines by surface enhanced Raman spectroscopy (SERS) on these plasmonic platforms functionalized with 4-mercaptophenylboronic acid (4-MPBA) as the Raman reporter. These cell lines include human embryonic kidney (HEK 293), C2C12 mouse myoblasts, and HeLa (Henrietta Lacks) cervical cancer cells. A distinct glycan expression is observed for cancer cells compared to other cell lines by confocal SERS mapping. This suggests the potential application of these versatile SERS platforms for differentiating cancerous from non-cancerous cells.
Collapse
Affiliation(s)
- Mohammadali Tabatabaei
- Department of Chemistry and Center for Advanced Materials and Biomaterials , University of Western Ontario , London , ON , Canada N6A 5B7 . ; ; Tel: +1 519 661 2111 ext. 81006
| | - Gregory Q Wallace
- Department of Chemistry and Center for Advanced Materials and Biomaterials , University of Western Ontario , London , ON , Canada N6A 5B7 . ; ; Tel: +1 519 661 2111 ext. 81006
| | - Fabiana A Caetano
- J. Allyn Taylor Centre for Cell Biology , Robarts Research Institute , Department of Physiology and Pharmacology , University of Western Ontario , 100 Perth Drive St. , London , ON , Canada N6A 5K8
| | - Elizabeth R Gillies
- Department of Chemistry and Center for Advanced Materials and Biomaterials , University of Western Ontario , London , ON , Canada N6A 5B7 . ; ; Tel: +1 519 661 2111 ext. 81006.,Department of Chemical and Biochemical Engineering , The University of Western Ontario , 1151 Richmond Street , London , Ontario , Canada N6A 5B9
| | - Stephen S G Ferguson
- J. Allyn Taylor Centre for Cell Biology , Robarts Research Institute , Department of Physiology and Pharmacology , University of Western Ontario , 100 Perth Drive St. , London , ON , Canada N6A 5K8
| | - François Lagugné-Labarthet
- Department of Chemistry and Center for Advanced Materials and Biomaterials , University of Western Ontario , London , ON , Canada N6A 5B7 . ; ; Tel: +1 519 661 2111 ext. 81006
| |
Collapse
|
42
|
Micro- and nanodevices integrated with biomolecular probes. Biotechnol Adv 2015; 33:1727-43. [PMID: 26363089 PMCID: PMC4948648 DOI: 10.1016/j.biotechadv.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 12/28/2022]
Abstract
Understanding how biomolecules, proteins and cells interact with their surroundings and other biological entities has become the fundamental design criterion for most biomedical micro- and nanodevices. Advances in biology, medicine, and nanofabrication technologies complement each other and allow us to engineer new tools based on biomolecules utilized as probes. Engineered micro/nanosystems and biomolecules in nature have remarkably robust compatibility in terms of function, size, and physical properties. This article presents the state of the art in micro- and nanoscale devices designed and fabricated with biomolecular probes as their vital constituents. General design and fabrication concepts are presented and three major platform technologies are highlighted: microcantilevers, micro/nanopillars, and microfluidics. Overview of each technology, typical fabrication details, and application areas are presented by emphasizing significant achievements, current challenges, and future opportunities.
Collapse
|
43
|
Popelka Š, Studenovská H, Abelová L, Ardan T, Studený P, Straňák Z, Klíma J, Dvořánková B, Kotek J, Hodan J, Rypáček F. A frame-supported ultrathin electrospun polymer membrane for transplantation of retinal pigment epithelial cells. Biomed Mater 2015; 10:045022. [DOI: 10.1088/1748-6041/10/4/045022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Kim I, Lee HY, Kim H, Lee E, Jeong DW, Kim JJ, Park SH, Ha Y, Na J, Chae Y, Yi S, Choi HJ. Enhanced Neurite Outgrowth by Intracellular Stimulation. NANO LETTERS 2015; 15:5414-5419. [PMID: 26177864 DOI: 10.1021/acs.nanolett.5b01810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Electrical stimulation through direct electrical activation has been widely used to recover the function of neurons, primarily through the extracellular application of thin film electrodes. However, studies using extracellular methods show limited ability to reveal correlations between the cells and the electrical stimulation due to interference from external sources such as membrane capacitance and culture medium. Here, we demonstrate long-term intracellular electrical stimulation of undamaged pheochromocytoma (PC-12) cells by utilizing a vertical nanowire electrode array (VNEA). The VNEA was prepared by synthesizing silicon nanowires on a Si substrate through a vapor-liquid-solid (VLS) mechanism and then fabricating them into electrodes with semiconductor nanodevice processing. PC-12 cells were cultured on the VNEA for 4 days with intracellular electrical stimulation and then a 2-day stabilization period. Periodic scanning via two-photon microscopy confirmed that the electrodes pierced the cells without inducing damage. Electrical stimulation through the VNEA enhances cellular differentiation and neurite outgrowth by about 50% relative to extracellular stimulation under the same conditions. VNEA-mediated stimulation also revealed that cellular differentiation and growth in the cultures were dependent on the potential used to stimulate them. Intracellular stimulation using nanowires could pave the way for controlled cellular differentiation and outgrowth studies in living cells.
Collapse
Affiliation(s)
| | - Hye Yeong Lee
- ⊥Department of Neurosurgery, Spine, and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | | | | | - Du-Won Jeong
- ¶Department of Physics, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Ju-Jin Kim
- ¶Department of Physics, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | - Yoon Ha
- ⊥Department of Neurosurgery, Spine, and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | | | | | - Seong Yi
- ⊥Department of Neurosurgery, Spine, and Spinal Cord Institute, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | | |
Collapse
|
45
|
Geng Y, Wang Z. Review of cellular mechanotransduction on micropost substrates. Med Biol Eng Comput 2015; 54:249-71. [PMID: 26245253 DOI: 10.1007/s11517-015-1343-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 07/07/2015] [Indexed: 01/09/2023]
Abstract
As physical entities, living cells can sense and respond to various stimulations within and outside the body through cellular mechanotransduction. Any deviation in cellular mechanotransduction will not only undermine the orchestrated regulation of mechanical responses, but also lead to the breakdown of their physiological function. Therefore, a quantitative study of cellular mechanotransduction needs to be conducted both in experiments and in computational simulations to investigate the underlying mechanisms of cellular mechanotransduction. In this review, we present an overview of the current knowledge and significant progress in cellular mechanotransduction via micropost substrates. In the aspect of experimental studies, we summarize significant experimental progress and place an emphasis on the coupled relationship among cellular spreading, focal adhesion and contractility as well as the influence of substrate properties on force-involved cellular behaviors. In the other aspect of computational investigations, we outline a coupled framework including the biochemically motivated stress fiber model and thermodynamically motivated adhesion model and present their predicted biomechanical responses and then compare predicted simulation results with experimental observations to further explore the mechanisms of cellular mechanotransduction. At last, we discuss the future perspectives both in experimental technologies and in computational models, as well as facing challenges in the area of cellular mechanotransduction.
Collapse
Affiliation(s)
- Yuxu Geng
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
| | - Zhanjiang Wang
- State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
46
|
Ovarian Cancer Cell Adhesion/Migration Dynamics on Micro-Structured Laminin Gradients Fabricated by Multiphoton Excited Photochemistry. Bioengineering (Basel) 2015; 2:139-159. [PMID: 28952475 PMCID: PMC5597181 DOI: 10.3390/bioengineering2030139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023] Open
Abstract
Haptotaxis, i.e., cell migration in response to adhesive gradients, has been previously implicated in cancer metastasis. A better understanding of cell migration dynamics and their regulation could ultimately lead to new drug targets, especially for cancers with poor prognoses, such as ovarian cancer. Haptotaxis has not been well-studied due to the lack of biomimetic, biocompatible models, where, for example, microcontact printing and microfluidics approaches are primarily limited to 2D surfaces and cannot produce the 3D submicron features to which cells respond. Here we used multiphoton excited (MPE) phototochemistry to fabricate nano/microstructured gradients of laminin (LN) as 2.5D models of the ovarian basal lamina to study the haptotaxis dynamics of a series of ovarian cancer cells. Using these models, we found that increased LN concentration increased migration speed and also alignment of the overall cell morphology and their cytoskeleton along the linear axis of the gradients. Both these metrics were enhanced on LN compared to BSA gradients of the same design, demonstrating the importance of both topographic and ECM cues on the adhesion/migration dynamics. Using two different gradient designs, we addressed the question of the roles of local concentration and slope and found that the specific haptotactic response depends on the cell phenotype and not simply the gradient design. Moreover, small changes in concentration strongly affected the migration properties. This work is a necessary step in studying haptotaxis in more complete 3D models of the tumor microenvironment for ovarian and other cancers.
Collapse
|
47
|
Sun J, Xiao Y, Wang S, Slepian MJ, Wong PK. Advances in Techniques for Probing Mechanoregulation of Tissue Morphogenesis. ACTA ACUST UNITED AC 2015; 20:127-37. [DOI: 10.1177/2211068214554802] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Mashinchian O, Turner LA, Dalby MJ, Laurent S, Shokrgozar MA, Bonakdar S, Imani M, Mahmoudi M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond) 2015; 10:829-47. [DOI: 10.2217/nnm.14.225] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stem cells are increasingly studied because of their potential to underpin a range of novel therapies, including regenerative strategies, cell type-specific therapy and tissue repair, among others. Bionanomaterials can mimic the stem cell environment and modulate stem cell differentiation and proliferation. New advances in these fields are presented in this review. This work highlights the importance of topography and elasticity of the nano-/micro-environment, or niche, for the initiation and induction of stem cell differentiation and proliferation.
Collapse
Affiliation(s)
- Omid Mashinchian
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, PO Box 14177–55469, Tehran, Iran
| | - Lesley-Anne Turner
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Joseph Black Building, Institute of Biomedical & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Sophie Laurent
- Department of General, Organic & Biomedical Chemistry, NMR & Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium
- CMMI – Center for Microscopy & Molecular Imaging, Rue Adrienne Bolland, 8, B-6041 Gosselies, Belgium
| | | | - Shahin Bonakdar
- National Cell Bank, Pasteur Institute of Iran, PO Box 13169–43551, Tehran, Iran
| | - Mohammad Imani
- Novel Drug Delivery Systems Department, Iran Polymer & Petrochemical Institute (IPPI), PO Box 14965/115, Tehran, Iran
| | - Morteza Mahmoudi
- Department of Nanotechnology & Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155–6451, Tehran, Iran
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305–5101, USA
| |
Collapse
|
49
|
Jesion I, Skibniewski M, Skibniewska E, Strupiński W, Szulc-Dąbrowska L, Krajewska A, Pasternak I, Kowalczyk P, Pińkowski R. Graphene and carbon nanocompounds: biofunctionalization and applications in tissue engineering. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1009726] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
50
|
Zhao X, Lin Y, Wang Q. Virus-based scaffolds for tissue engineering applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:534-47. [DOI: 10.1002/wnan.1327] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/30/2014] [Accepted: 11/08/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
| | - Qian Wang
- Department of Chemistry and Biochemistry; University of South Carolina; Columbia SC USA
| |
Collapse
|