1
|
Wen C, Zhang X, Kantapan J, Yu Z, Yuan L, Liu S, Li H, Liang S, Wei Y, Luo G, Xiao W, Dechsupa N, Lü M. Pentagalloyl glucose targets the JAK1/JAK3-STAT3 pathway to inhibit cancer stem cells and epithelial-mesenchymal transition in 5-fluorouracil-resistant colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156773. [PMID: 40378534 DOI: 10.1016/j.phymed.2025.156773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) resistance to 5-fluorouracil (5-FU), primarily driven by cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT), remains a major clinical challenge, necessitating novel therapeutic strategies. PURPOSE This study aims to evaluate the therapeutic potential of pentagalloyl glucose (PGG), a bioactive compound derived from Bouea macrophylla seeds, in overcoming 5-FU resistance in CRC. METHOD Anti-tumor effects of PGG were investigated using two- and three-dimensional (2D and 3D) cell culture models and subcutaneous xenograft and metastatic mouse models. Transcriptome sequencing, western blotting, and pharmacological inhibitors were employed to elucidate the underlying molecular mechanisms. RESULTS PGG demonstrated potent anti-CSC activity; suppressed EMT-driven invasion and metastasis; and induced apoptosis in 2D monolayers, 3D spheroid models, and xenograft tumor models. Mechanistically, PGG selectively inhibited the JAK1/JAK3-STAT3 signaling pathway, considerably reducing STAT3 phosphorylation. This disruption downregulated the expression of CSC markers (CD133 and CD44), EMT regulators (N-cadherin and vimentin), and anti-apoptotic proteins (Bcl-2), effectively sensitizing 5-FU-resistant CRC to therapy. CONCLUSION PGG inhibit dual-target of CSCs and EMT via JAK1/JAK3-STAT3 signaling pathway in 5-FU-resistant CRC, providing a novel therapeutic approach to overcome chemoresistance.
Collapse
Affiliation(s)
- Chengli Wen
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Xu Zhang
- Department of Gastroenterology, Honghuagang District People's Hospital of Zunyi City, Zunyi 563000, China.
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China.
| | - Liping Yuan
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Department of Gastroenterology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang 615000, China.
| | - Sha Liu
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; The Clinical Medicine Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Hao Li
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Sicheng Liang
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Wanmeng Xiao
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; The Clinical Medicine Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Muhan Lü
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Ganjibakhsh M, Tkachenko Y, Knutsen RH, Kozel BA. Toward a rational therapeutic for elastin related disease: Key considerations for elastin based regenerative medicine strategies. Matrix Biol 2025; 138:8-21. [PMID: 40158781 DOI: 10.1016/j.matbio.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Elastin is a connective tissue protein, produced from the ELN gene, that provides elasticity and recoil to tissues that stretch, such as the large arteries of the body, lung parenchyma, skin, ligaments and elastic cartilages. It is produced as a soluble monomer, tropoelastin, that when cross-linked in the extracellular space generates a polymer that is extraordinarily stable, with a predicted half-life of >70 years. Although data suggest ongoing elastin transcription, it is rare to see new elastin deposited outside of its tight developmental window. Consequently, elastin-related disease comes about primarily in one of three scenarios: (1) inadequate elastin deposition, (2) production of poor-quality elastic fibers, or (3) increased destruction of previously deposited elastin. By understanding the pathways controlling elastin production and maintenance, we can design new therapeutics to thwart those abnormal processes. In this review, we will summarize the diseases arising from genetic and environmental alteration of elastin (Williams syndrome, supravalvar aortic stenosis, autosomal dominant cutis laxa, and ELN-related vascular and connective tissue dysfunction) and then describe the mechanisms controlling elastin production and maintenance that might be manipulated to generate novel therapeutics aimed at these conditions. We will end by summarizing existing therapeutic strategies targeting these disease mechanisms before outlining future approaches that may better solve the challenges associated with elastin based regenerative medicine.
Collapse
Affiliation(s)
- Meysam Ganjibakhsh
- Institute of Genomic Medicine, Abigail Wexler Research Institute, Nationwide Children's Hospital, OH 43205, USA
| | - Yanina Tkachenko
- Institute of Genomic Medicine, Abigail Wexler Research Institute, Nationwide Children's Hospital, OH 43205, USA
| | - Russell H Knutsen
- Institute of Genomic Medicine, Abigail Wexler Research Institute, Nationwide Children's Hospital, OH 43205, USA
| | - Beth A Kozel
- Institute of Genomic Medicine, Abigail Wexler Research Institute, Nationwide Children's Hospital, OH 43205, USA; Department of Pediatrics, The Ohio State University, OH 43210, USA.
| |
Collapse
|
3
|
Zu HL, Zhuang PP, Peng Y, Peng C, Peng C, Zhu ZJ, Yao Y, Yue J, Wang QS, Zhou WH, Wang HY. Dual-Drug Nanomedicine Assembly with Synergistic Anti-Aneurysmal Effects via Inflammation Suppression and Extracellular Matrix Stabilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402141. [PMID: 38953313 DOI: 10.1002/smll.202402141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Abdominal aortic aneurysm (AAA) represents a critical cardiovascular condition characterized by localized dilation of the abdominal aorta, carrying a significant risk of rupture and mortality. Current treatment options are limited, necessitating novel therapeutic approaches. This study investigates the potential of a pioneering nanodrug delivery system, RAP@PFB, in mitigating AAA progression. RAP@PFB integrates pentagalloyl glucose (PGG) and rapamycin (RAP) within a metal-organic-framework (MOF) structure through a facile assembly process, ensuring remarkable drug loading capacity and colloidal stability. The synergistic effects of PGG, a polyphenolic antioxidant, and RAP, an mTOR inhibitor, collectively regulate key players in AAA pathogenesis, such as macrophages and smooth muscle cells (SMCs). In macrophages, RAP@PFB efficiently scavenges various free radicals, suppresses inflammation, and promotes M1-to-M2 phenotype repolarization. In SMCs, it inhibits apoptosis and calcification, thereby stabilizing the extracellular matrix and reducing the risk of AAA rupture. Administered intravenously, RAP@PFB exhibits effective accumulation at the AAA site, demonstrating robust efficacy in reducing AAA progression through multiple mechanisms. Moreover, RAP@PFB demonstrates favorable biosafety profiles, supporting its potential translation into clinical applications for AAA therapy.
Collapse
Affiliation(s)
- Hong Lin Zu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Pei Pei Zhuang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Ying Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Chao Peng
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Cheng Peng
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zi Jia Zhu
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Ye Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Jie Yue
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qing Shan Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Wen Hu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Hai Yang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| |
Collapse
|
4
|
Marrone G, Di Lauro M, Izzo F, Cornali K, Masci C, Vita C, Occhiuto F, Di Daniele N, De Lorenzo A, Noce A. Possible Beneficial Effects of Hydrolyzable Tannins Deriving from Castanea sativa L. in Internal Medicine. Nutrients 2023; 16:45. [PMID: 38201875 PMCID: PMC10780656 DOI: 10.3390/nu16010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Hydrolyzable tannins (HTs) deriving from chestnuts have demonstrated, through numerous studies, the ability to exert multiple beneficial effects, including antioxidant and antimicrobial effects, on the lipid metabolism and cancer cells. The latter effect is very fascinating, since different polyphenols deriving from chestnuts were able to synergistically induce the inhibition of cancerous cells through multiple pathways. Moreover, the main mechanisms by which tannins induce antioxidant functions include: the reduction in oxidative stress, the ability to scavenge free radicals, and the modulation of specific enzymes, such as superoxide dismutase. HTs have also been shown to exert significant antimicrobial activity by suppressing microbial growth. The actions on the lipid metabolism are several, among which is the inhibition of lipid accumulation. Thus, tannins seem to induce a cardioprotective effect. In fact, through various mechanisms, such as the relaxation of the vascular smooth muscle, HTs were proven to be efficient against arterial hypertension. Therefore, the great number of studies in this field prove the growing interest on the utilization of natural bioactive compounds, such as HTs deriving from natural sources or obtained by circular economy models, as potential nutraceuticals or adjuvants therapies.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Francesco Izzo
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Claudia Masci
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
| | - Chiara Vita
- QuMAP (Quality of Goods and Product Reliability), University of Florence, PIN, 59100 Prato, Italy;
- Department of Economics, Management and Business Law, University of Bari “Aldo Moro”, Piazza Umberto I, 70121 Bari, Italy
| | - Francesco Occhiuto
- Ph.D. School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
- Fondazione Leonardo per le Scienze Mediche Onlus, Policlinico Abano, 35031 Abano Terme, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.I.); (K.C.); (C.M.); (N.D.D.)
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
5
|
Gupta S, Banavath HN, Tejavath KK. Pharmacoinformatic screening of phytoconstituent and evaluation of its anti-PDAC effect using in vitro studies. J Biomol Struct Dyn 2023; 41:10627-10641. [PMID: 36510680 DOI: 10.1080/07391102.2022.2155701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
With no prominent treatment for pancreatic ductal adenocarcinoma (PDAC) in conventional chemotherapy, recent studies have focused on uniting conventional and traditional medicines including plant phytoconstituents. Herein, we used pharmacoinformatic studies to identify potent phytoconstituent as ligand having inhibition activities against canonical anticancer targets, and evaluated its effect on PDAC cell lines. SwissTargetPrediction and SuperPred tools were utilized to segregate protein targets of ligand in humans, following which FunRich was applied to garner its targets in PDAC. STRING analysis predicted protein-protein interactions and dynamic simulation studies confirmed stability of ligand-protein complex. For in vitro cytotoxic potential, ligand treatment at different concentrations was given to PDAC cell lines both alone and combined with gemcitabine, followed by evaluation of effects on migration. Differential gene expression was checked using PCR for evaluating mechanism of cytotoxicity. Results showed pentagalloylglucose (PGG) with highest docking and MMGBSA scores for Cyclooxygenase 2 (Cox2) inhibition site. SwissTargetPrediction and SuperPred analysis detected 40 targets of PGG in PDAC. Simulation data showed stability of protein-ligand complex. In in vitro experiments Mia-PaCa-2 was more sensitive to PGG than Panc-1. PGG successfully inhibited migration both alone and in combination with gemcitabine. Additionally, PGG treatment induced apoptosis in both the cell lines; but showed antagonism when combined with gemcitabine. In conclusion, our report demonstrates PGG has good binding with Cox2 and showed anti-PDAC activity by inhibiting migration and inducing apoptosis, thus it can be used as a therapy option. But further studies are required to confirm its behaviour as a combination therapy drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Hemanth Naick Banavath
- Department of Sports Bio-Sciences, School of Sports Science MYAS-CURAJ, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
6
|
Patil VS, Harish DR, Charla R, Vetrivel U, Jalalpure SS, Bhandare VV, Deshpande SH, Hegde HV, Roy S. Structural insights into modeling of hepatitis B virus reverse transcriptase and identification of its inhibitors from potential medicinal plants of Western Ghats: an in silico and in vitro study. J Biomol Struct Dyn 2023; 42:11731-11749. [PMID: 37811543 DOI: 10.1080/07391102.2023.2264400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
The present study was proposed to model full-length HBV-RT and investigate the intermolecular interactions of known inhibitor and libraries of phytocompounds to probe the potential natural leads by in silico and in vitro studies. Homology modeling of RT was performed by Phyre2 and Modeller and virtual screening of ligands implemented through POAP pipeline. Molecular dynamics (MD) simulation (100 ns) and MM-GBSA calculations were performed using Schrodinger Desmond and Prime, respectively. Phytocompounds probable host protein targets gene set pathway enrichment and network analysis were executed by KEGG database and Cytoscape software. Prioritized plant extracts/enriched fraction LC-MS analysis was performed and along with pure compound, RT inhibitory activity, time-dependent HBsAg and HBeAg secretion, and intracellular HBV DNA, and pgRNA by qRT-PCR was performed in HepG2.2.15 cell line. Among the screened chemical library of 268 phytocompounds from 18 medicinal plants, 15 molecules from Terminalia chebula (6), Bidens pilosa (5), and Centella asiatica (4)) were identified as potential inhibitors of YMDD and RT1 motif of HBV-RT. MD simulation demonstrated stable interactions of 15 phytocompounds with HBV-RT, of which 1,2,3,4,6-Pentagalloyl Glucose (PGG) was identified as lead molecule. Out of 15 compounds, 11 were predicted to modulate 39 proteins and 15 molecular pathways associated with HBV infection. TCN and TCW (500 µg/mL) showed potent RT inhibition, decreased intracellular HBV DNA, and pgRNA, and time-dependent inhibition of HBsAg and HBeAg levels compared to PGG and Tenofovir Disoproxil Fumarate. We propose that the identified lead molecules from T. chebula as promising and cost-effective moieties for the management of HBV infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | | | - Rajitha Charla
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Umashankar Vetrivel
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, Karnataka, India
| | - Vishwambhar Vishnu Bhandare
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra, India
| | - Sanjay H Deshpande
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Belagavi, Karnataka, India
| |
Collapse
|
7
|
Cheng SWK, Eagleton M, Echeverri S, Munoz JG, Holden AH, Hill AA, Krievins D, Ramaiah V. A pilot study to evaluate a novel localized treatment to stabilize small- to medium-sized infrarenal abdominal aortic aneurysms. J Vasc Surg 2023; 78:929-935.e1. [PMID: 37330148 DOI: 10.1016/j.jvs.2023.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE There is no proven therapy to reduce growth rates of small- to medium-sized abdominal aortic aneurysms (AAAs). Ex vivo and animal studies have demonstrated that a novel stabilizing agent, 1,2,3,4,6-pentagalloyl glucose (PGG), delivered locally to the aneurysm sac, can bind to elastin and collagen to re-establish strength and resist enzymatic degradation. We aimed to demonstrate that a one-time administration of PGG solution to the aneurysm wall is safe and potentially effective to slow the growth of small- to medium-sized AAAs. METHODS Patients with small- to medium-sized infrarenal AAAs (maximum diameter <5.5 cm) were recruited. Via transfemoral access, a 14F or 16F dual-balloon delivery catheter was introduced into the aneurysm sac. A single, 3-minute, localized endoluminal infusion of PGG was delivered via a 'weeping' balloon to the aneurysm wall. Independent core laboratory measurements of maximum aneurysm sac diameter and sac volume measurements based on computed tomography angiography (CTA) were used for assessments at 1, 6, 12, 24, and 36 months. The primary endpoints were technical success and safety (major adverse events at 30 days). The secondary endpoint was growth stabilization, defined as freedom from aneurysm sac enlargement (diameter increase >5 mm per year or volume increase of >10% per year). RESULTS Twenty patients (19 male) were enrolled at five centers from May 2019 to June 2022 (mean age, 67.8 years; range, 50-87 years). All procedures were technically successful. The safety profile was consistent with standard interventional procedures. Four patients demonstrated transient elevations of liver enzymes levels that returned to normal by 30 days with no clinical symptoms. Through November 2022, follow-up CTA data is available on the first 11 patients. The average changes in maximum aneurysm diameter from baseline to 6, 12, 24, and 36 months were 0.2 mm, 1.1 mm, 1.2 mm, and 0.8 mm, respectively, and the average changes in volume were 2.0%, 9.6%, 18.1%, and 11.6%, respectively. At 12 months, none of the aneurysms showed growth >5.0 mm, and three had volume growth >10%. CONCLUSIONS The early results of this first-in-human, small cohort study demonstrated that a single, localized PGG administration to patients with small- to medium-sized infrarenal AAAs is safe. Longer term follow-up on all 20 treated patients is needed to better assess the potential impact on aneurysm growth.
Collapse
Affiliation(s)
- Stephen W K Cheng
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | | | | | | - Andrew H Holden
- Associate Professor Radiology, Director of Northern Region Interventional Radiology Service, Auckland University School of Medicine, Auckland City Hospital, Auckland, New Zealand
| | | | - Dainis Krievins
- Pauls Stradins Clinical University Hospital, University of Latvia Faculty of Medicine, Riga, Latvia
| | | |
Collapse
|
8
|
Puertas-Umbert L, Almendra-Pegueros R, Jiménez-Altayó F, Sirvent M, Galán M, Martínez-González J, Rodríguez C. Novel pharmacological approaches in abdominal aortic aneurysm. Clin Sci (Lond) 2023; 137:1167-1194. [PMID: 37559446 PMCID: PMC10415166 DOI: 10.1042/cs20220795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a severe vascular disease and a major public health issue with an unmet medical need for therapy. This disease is featured by a progressive dilation of the abdominal aorta, boosted by atherosclerosis, ageing, and smoking as major risk factors. Aneurysm growth increases the risk of aortic rupture, a life-threatening emergency with high mortality rates. Despite the increasing progress in our knowledge about the etiopathology of AAA, an effective pharmacological treatment against this disorder remains elusive and surgical repair is still the unique available therapeutic approach for high-risk patients. Meanwhile, there is no medical alternative for patients with small aneurysms but close surveillance. Clinical trials assessing the efficacy of antihypertensive agents, statins, doxycycline, or anti-platelet drugs, among others, failed to demonstrate a clear benefit limiting AAA growth, while data from ongoing clinical trials addressing the benefit of metformin on aneurysm progression are eagerly awaited. Recent preclinical studies have postulated new therapeutic targets and pharmacological strategies paving the way for the implementation of future clinical studies exploring these novel therapeutic strategies. This review summarises some of the most relevant clinical and preclinical studies in search of new therapeutic approaches for AAA.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| | | | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Neuroscience Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marc Sirvent
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Angiología y Cirugía Vascular del Hospital Universitari General de Granollers, Granollers, Barcelona, Spain
| | - María Galán
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - José Martínez-González
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Cristina Rodríguez
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares, ISCIII, Madrid, Spain
| |
Collapse
|
9
|
Simionescu D, Tharayil N, Leonard E, Carlyle W, Schwarz A, Ning K, Carsten C, Garcia JCC, Carter A, Owens C, Simionescu A. Binding of Pentagalloyl Glucose to Aortic Wall Proteins: Insights from Peptide Mapping and Simulated Docking Studies. Bioengineering (Basel) 2023; 10:936. [PMID: 37627822 PMCID: PMC10451288 DOI: 10.3390/bioengineering10080936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pentagalloyl glucose (PGG) is currently being investigated as a non-surgical treatment for abdominal aortic aneurysms (AAAs); however, the molecular mechanisms of action of PGG on the AAA matrix components and the intra-luminal thrombus (ILT) still need to be better understood. To assess these interactions, we utilized peptide fingerprinting and molecular docking simulations to predict the binding of PGG to vascular proteins in normal and aneurysmal aorta, including matrix metalloproteinases (MMPs), cytokines, and fibrin. We performed PGG diffusion studies in pure fibrin gels and human ILT samples. PGG was predicted to bind with high affinity to most vascular proteins, the active sites of MMPs, and several cytokines known to be present in AAAs. Finally, despite potential binding to fibrin, PGG was shown to diffuse readily through thrombus at physiologic pressures. In conclusion, PGG can bind to all the normal and aneurysmal aorta protein components with high affinity, potentially protecting the tissue from degradation and exerting anti-inflammatory activities. Diffusion studies showed that thrombus presence in AAAs is not a barrier to endovascular treatment. Together, these results provide a deeper understanding of the clinical potential of PGG as a non-surgical treatment of AAAs.
Collapse
Affiliation(s)
- Dan Simionescu
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (J.C.C.G.); (A.C.)
| | - Nishanth Tharayil
- Multi-User Analytical Lab (MUAL) & Metabolomic Core, Clemson University, Clemson, SC 29634, USA; (N.T.); (E.L.)
| | - Elizabeth Leonard
- Multi-User Analytical Lab (MUAL) & Metabolomic Core, Clemson University, Clemson, SC 29634, USA; (N.T.); (E.L.)
| | - Wenda Carlyle
- Nectero Medical Inc., Mesa, AZ 85281, USA; (W.C.); (A.S.); (K.N.)
| | - Alex Schwarz
- Nectero Medical Inc., Mesa, AZ 85281, USA; (W.C.); (A.S.); (K.N.)
| | - Kelvin Ning
- Nectero Medical Inc., Mesa, AZ 85281, USA; (W.C.); (A.S.); (K.N.)
| | | | - Juan Carlos Carrillo Garcia
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (J.C.C.G.); (A.C.)
| | - Alexander Carter
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (J.C.C.G.); (A.C.)
| | - Collin Owens
- Tissue Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (C.O.); (A.S.)
| | - Agneta Simionescu
- Tissue Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (C.O.); (A.S.)
| |
Collapse
|
10
|
Peng J, Liang G, Wen W, Qiu Z, Huang W, Wang Q, Xiao G. Penta-O-galloyl-β-d-glucose inhibits the formation of advanced glycation end-products (AGEs): A mechanistic investigation. Int J Biol Macromol 2023; 237:124161. [PMID: 36965563 DOI: 10.1016/j.ijbiomac.2023.124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
Penta-O-galloyl-β-d-glucose (PGG) was prepared from tannic acid methanolysis products based on HSCCC, and its protective effects and mechanism on the glucose-induced glycation were investigated for the first time. PGG was confirmed to exhibit strong anti-AGEs effects in bovine serum albumin (BSA)-glucose (Glu) and BSA-methylglyoxal (MGO) glycation systems. It was showed that PGG could inhibit the AGEs formation by blocking glycated intermediates (fructosamine and α-dicarbonyl compounds), eliminating radicals, and chelating metal-ions. In-depth mechanism analysis proved that PGG could prevent BSA from glycation by hindering the accumulation of amyloid fibrils, stabilizing the BSA secondary structures, and binding the partial glycation sites. Furthermore, PGG exhibited a prominent trapping capacities on the reactive intermediate MGO by generating PGG-mono-MGO adduct. This research indicated that PGG could be an effective agent to block Glu/MGO-triggered glycation and offered new insights into PGG as a functional ingredient in food materials for preventing diabetic syndrome.
Collapse
Affiliation(s)
- Jinming Peng
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guiqiang Liang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Wen
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zihui Qiu
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenye Huang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Gengsheng Xiao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
11
|
The matrix reloaded – addressing structural integrity of the aortic wall in aneurysmal disease. BIOMATERIALS AND BIOSYSTEMS 2023; 9:100072. [PMID: 36967726 PMCID: PMC10036219 DOI: 10.1016/j.bbiosy.2023.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Thoracic aortic aneurysms and dissections (TAADs) involve dilation of the aortic wall that can lead to tearing or rupture. Progressive extracellular matrix (ECM) degradation is common in TAAD, regardless of the underlying cause. TAAD treatments typically target cellular signaling pathways, rather than the ECM itself, due to the complex assembly process and long half-life of ECM proteins. Compounds that stabilize the ECM are proposed as an alternative TAAD therapy that addresses the underlying cause of aortic wall failure, namely compromised structural integrity. Compounds are discussed that revisit historical approaches to maintain and preserve structural integrity of biological tissues.
Collapse
|
12
|
Zhang Q, Cheng S, Xin Z, Deng H, Wang Y, Li Q, Wu G, Chen W. 1,2,3,4,6-O-Pentagalloylglucose Protects against Acute Lung Injury by Activating the AMPK/PI3K/Akt/Nrf2 Pathway. Int J Mol Sci 2022; 23:ijms232214423. [PMID: 36430900 PMCID: PMC9699101 DOI: 10.3390/ijms232214423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
An acute lung injury (ALI) is a serious lung disease with a high mortality rate, warranting the development of novel therapies. Previously, we reported that 1,2,3,4,6-O-pentagalloylglucose (PGG) could afford protection against ALI, however, the PGG-mediated protective effects remain elusive. Herein, PGG (60 and 30 mg/kg) markedly inhibited the lung wet/drug weight ratio and attenuated histological changes in the lungs (p < 0.05). A pretreatment with PGG (60 and 30 mg/kg) reduced the number of total leukocytes and the production of pro-inflammatory cytokines IL-6 and IL-1β in bronchoalveolar lavage fluid (p < 0.05). In addition, PGG (60 and 30 mg/kg) also attenuated oxidative stress by reducing the formation of formation and the depletion of superoxide dismutase to treat an ALI (p < 0.05). To further explore the PGG-induced mechanism against an ALI, we screened the PGG pathway using immunohistochemical analysis, immunofluorescence assays, and Western blotting (WB). WB revealed that the expression levels of adenosine monophosphate-activated protein kinase phosphorylation (p-AMPK), phosphoinositide 3-kinase (PI3K), protein kinase B phosphorylation (P-Akt), and nuclear factor erythroid 2-related factor (Nrf2) were significantly higher in the PGG group (60 and 30 mg/kg) than in the lipopolysaccharide group (p < 0.05); these findings were confirmed by the immunohistochemical and immunofluorescence results. Accordingly, PGG could be effective against an ALI by inhibiting inflammation and oxidative stress via AMPK/PI3K/Akt/Nrf2 signaling, allowing for the potential development of this as a natural drug against an ALI.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Sai Cheng
- Department of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhiming Xin
- Fujian Research Center of Drug’s Non-Clinical Safety Evaluation, Fujian Medical University, Fuzhou 350122, China
| | - Haohua Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ying Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Gangwei Wu
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350122, China
- Correspondence: (G.W.); (W.C.)
| | - Wei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Correspondence: (G.W.); (W.C.)
| |
Collapse
|
13
|
Crane RA, Grubb ES, Coward LU, Gorman GS. In vitro metabolic biomodulation of irinotecan to increase potency and reduce dose-limiting toxicity by inhibition of SN-38 glucuronide formation. Drug Metab Pers Ther 2022; 37:295-303. [PMID: 35257538 DOI: 10.1515/dmpt-2021-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Colorectal cancer continues to have one of the highest incidents of occurrence with a rising rate of diagnosis among people under the age of 50. Chemotherapy with irinotecan results in severe gastrointestinal dose-limiting toxicity that is caused by the glucuronidated form of the active metabolite (SN-38G). This study evaluates herbal compounds and analogs to biomodulate the metabolism of IR to decrease dose-limiting toxicity while increasing the amount of the active metabolite. METHODS In vitro metabolism using human liver microsomes was conducted with white willow bark (WWB) extract, select specific components of WWB, and analogues to evaluate biomodulation of the IR metabolism. Samples were analyzed using liquid chromatography-tandem mass spectrometry to measure metabolites between reactions with and without herbals components. RESULTS WWB showed an optimal decrease (>80%) in SN-38G and a corresponding increase in SN-38 levels (128%) at a concentration of near 200 μg/mL. Tannic acid produced a 75% decrease in SN-38G with a 130% increase in SN-38 at 10 μg/mL, whereas the treatment with beta-pentagalloyl glucose and various analogues decreased SN-38G by 70% and increased SN-38 by 20% at 10 μg/mL. CONCLUSIONS These results suggest naturally occurring compounds from WWB may have the potential to increase potency by increasing the conversion of IR to SN-38 and decrease dose-limiting toxicity of IR chemotherapy by reducing glucuronidation of SN-38.
Collapse
Affiliation(s)
- Rachel A Crane
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Emery S Grubb
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Lori U Coward
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| | - Greg S Gorman
- McWhorter School of Pharmacy, Samford University, Birmingham, AL, USA
| |
Collapse
|
14
|
In Silico Analysis Using SARS-CoV-2 Main Protease and a Set of Phytocompounds to Accelerate the Development of Therapeutic Components against COVID-19. Processes (Basel) 2022. [DOI: 10.3390/pr10071397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
SARS-CoV-2, the virus that caused the widespread COVID-19 pandemic, is homologous to SARS-CoV. It would be ideal to develop antivirals effective against SARS-CoV-2. In this study, we chose one therapeutic target known as the main protease (Mpro) of SARS-CoV-2. A crystal structure (Id: 6LU7) from the protein data bank (PDB) was used to accomplish the screening and docking studies. A set of phytocompounds was used for the docking investigation. The nature of the interaction and the interacting residues indicated the molecular properties that are essential for significant affinity. Six compounds were selected, based on the docking as well as the MM-GBSA score. Pentagalloylglucose, Shephagenin, Isoacteoside, Isoquercitrin, Kappa-Carrageenan, and Dolabellin are the six compounds with the lowest binding energies (−12 to −8 kcal/mol) and show significant interactions with the target Mpro protein. The MMGBSA scores of these compounds are highly promising, and they should be investigated to determine their potential as Mpro inhibitors, beneficial for COVID-19 treatment. In this study, we highlight the crucial role of in silico technologies in the search for novel therapeutic components. Computational biology, combined with structural biology, makes drug discovery studies more rigorous and reliable, and it creates a scenario where researchers can use existing drug components to discover new roles as modulators or inhibitors for various therapeutic targets. This study demonstrated that computational analyses can yield promising findings in the search for potential drug components. This work demonstrated the significance of increasing in silico and wetlab research to generate improved structure-based medicines.
Collapse
|
15
|
Wanderley AG, Quintans Júnior LJ, Melo Coutinho HD, Guedes da Silva Almeida JR, De Menezes IRA. Editorial: Gastrointestinal and Liver Effects of Fruits and Their Synergism With Drug Therapy: Exploring Possible Mechanisms of Action. Front Pharmacol 2022; 13:940668. [PMID: 35847026 PMCID: PMC9284250 DOI: 10.3389/fphar.2022.940668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo—UNIFESP, São Paulo, Brazil
- *Correspondence: Irwin Rose Alencar De Menezes, ; Almir Gonçalves Wanderley,
| | - Lucindo José Quintans Júnior
- Department of Physiology, Federal University of Sergipe—UFS, Aracaju, Brazil
- *Correspondence: Irwin Rose Alencar De Menezes, ; Almir Gonçalves Wanderley,
| | | | | | - Irwin Rose Alencar De Menezes
- Department of Chemical Biology, Regional University of Cariri—URCA, Crato, Brazil
- *Correspondence: Irwin Rose Alencar De Menezes, ; Almir Gonçalves Wanderley,
| |
Collapse
|
16
|
Yang M, Ni L, Wang Y, Xuan Z, Wu H, Zhan W, Wan X, Wang J, Xu F. Screening bioactive compounds from Danggui-shaoyao-san for treating sodium retention in nephrotic syndrome using bio-affinity ultrafiltration. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115171. [PMID: 35259444 DOI: 10.1016/j.jep.2022.115171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui-shaoyao-san (DSS), a representative formula of Traditional Chinese Medicine (TCM) for promoting blood circulation and diuresis (Huo-Xue-Li-Shui) therapy, has been used to clinically nephrotic syndrome (NS) and relieve nephrotic edema. AIM OF THE STUDY To explore the effects and mechanisms of DSS in improving sodium retention and to identify the bioactive compounds from DSS. MATERIALS AND METHODS DSS prescriptions were disassembled into Yangxue-Huoxue (YXHX) and Jianpi-Lishui (JPLS). A nephrotic rat model was induced with puromycin aminonucleoside (PAN), and the effects on urinary sodium excretion, urinary plasmin(gen) content, and plasmin activity of DSS, YXHX, and JPLS extracts were assessed. The inhibitory effects on urokinase-type plasminogen activator (uPA) and plasmin activity of extracts were evaluated in vitro. Bio-affinity ultrafiltration and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (BAU-UPLC-Q/TOF-MS) were used to rapidly screen and qualitatively analyze the uPA/plasmin affinity compounds from DSS extract. Additionally, uPA/plasmin inhibition assays and molecular docking were used to verify the activity and affinity mechanisms of the potential bioactive compounds. RESULTS In vivo, DSS, YXHX, and JPLS prevented sodium retention in nephrotic rats. DSS and YXHX treatment decreased urinary plasmin activity but did not alter urinary plasmin(ogen) concentration, and their extracts showed strong uPA and plasmin inhibitory activity in vitro. These results suggested that uPA and plasmin are direct targets of DSS and YXHX in intervening NS sodium retention. Using BAU-UPLC-Q/TOF-MS, gallic acids, methyl gallate, albiflorin, and 1,2,3,4,6-O-pentagalloylglucose (PGG) were screened as uPA or plasmin affinity compounds. Among them, PGG was found to be a uPA and plasmin dual inhibitor, with an IC50 of 6.861 μM against uPA and an IC50 of 149.0 μM against plasmin. The molecular docking results of PGG with uPA and plasmin were consistent with the verification results. CONCLUSION Intervening in sodium retention by inhibiting uPA-mediated plasmin generation and plasmin activity in the kidneys could be possible mechanisms for DSS, as indicated by the results in PAN-induced nephrotic rats. We conclude that PGG is a potential bioactive compound responsible for the effect of DSS on natriuresis.
Collapse
Affiliation(s)
- Mo Yang
- Scientific Research & Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, PR China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, PR China.
| | - Lianghou Ni
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Huan Wu
- Scientific Research & Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, PR China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| | - Wenjing Zhan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China.
| | - Xinyu Wan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China.
| | - Fan Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, PR China.
| |
Collapse
|
17
|
Sang X, Ying J, Wan X, Han X, Shan Q, Lyu Q, Yang Q, Wang K, Hao M, Liu E, Cao G. Screening of Bioactive Fraction of Radix Paeoniae Alba and Enhancing Anti-Allergic Asthma by Stir-Frying Through Regulating PI3K/AKT Signaling Pathway. Front Pharmacol 2022; 13:863403. [PMID: 35431951 PMCID: PMC9009445 DOI: 10.3389/fphar.2022.863403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic asthma is a common respiratory inflammation disease. The crude Radix Paeoniae Alba (RPA) and its processed products have been used frequently as antipyretic and anti-inflammatory agents in traditional medicine. To evaluate the effect of honey and bran processing, different fractions of RPA were used for treating anti-allergic asthma in the ovalbumin (OVA)-induced mice model, and then, the most effective fraction of RPA and stir-frying Radix Paeoniae Alba with honey and bran (FRPA) for treating anti-allergic asthma were compared mutually for pharmacological effects. The results showed that the treatment of the dichloromethane fraction of RPA significantly improved the pathological condition of lung tissues, decreased the number of eosinophils and other cells in bronchoalveolar lavage fluid (BALF), and the increased the expression of various inflammatory factors. Furthermore, the study discovered that the lung pathological conditions, compared with the high dose of dichloromethane RPA fraction, could be ameliorated by high dose of dichloromethane FRPA fraction treatment. Moreover, the expression of inflammatory factors and the phosphorylation of the PI3K/AKT signaling pathway could be diminished by FRPA. Finally, the contents of compounds with a significant difference in the FRPA dichloromethane fraction were paeoniflorin, ethyl gallate, pentagalloylglucose, galloylpaeoniflorin, and others by UPLC/Q-TOF-MS analysis. These findings suggest that the dichloromethane fraction of FRPA has an enhancement effect on anti-allergic asthma and provide the experimental basis for exploring the processed mechanism of RPA.
Collapse
|
18
|
Mahmoud MF, Nabil M, Hasan RA, El-Shazly AM, El-Ansari MA, Sobeh M. Pentagalloyl Glucose, a Major Compound in Mango Seed Kernel, Exhibits Distinct Gastroprotective Effects in Indomethacin-Induced Gastropathy in Rats via Modulating the NO/eNOS/iNOS Signaling Pathway. Front Pharmacol 2022; 13:800986. [PMID: 35211013 PMCID: PMC8862146 DOI: 10.3389/fphar.2022.800986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric ulcers are a common health disorder that affect up to 10% of the world's population. The gastroprotective potential of pentagalloyl glucose (PGG) against indomethacin-induced ulcer in rats and the possible underlying mechanisms were investigated. Gastric ulceration was induced by indomethacin (single dose, 60 mg/kg). Pretreatment with PGG (100 or 200 mg/kg, orally) for 8 days prior to the administration of indomethacin furnished significant reductions in gastric mucosal lesions as well as a significant increase in mucus concentration. Also, PGG significantly declined the elevations in gastric mucosal MDA, TNF-α, IL-6, PECAM-1, VEGF, and iNOS expression. It also mitigated the decrease in GSH and GPx and eNOS expression observed with indomethacin. The protective effects furnished by PGG were comparable to that of famotidine. The obtained results suggested that the anti-ulcer effects of PGG are mediated by increasing mucus production, scavenging free radicals, decreasing inflammation, and attenuating the NO/NOS signaling in favor of eNOS. To sum up, PGG could provide a potential therapy for gastric ulcer after evaluating its efficacy and effectiveness.
Collapse
Affiliation(s)
- Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed Nabil
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
- Pharmacology Department, Faculty of Pharmacy, Deraya University, New Mina, Egypt
| | - Rehab A. Hasan
- Department of Histology, Faculty of Medicine for Girls, Al Azhar University, Cairo, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed A. El-Ansari
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo, Egypt
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| |
Collapse
|
19
|
Golledge J, Thanigaimani S, Phie J. A Systematic Review and Meta-Analysis of the Effect of Pentagalloyl Glucose Administration on Aortic Expansion in Animal Models. Biomedicines 2021; 9:1442. [PMID: 34680560 PMCID: PMC8533208 DOI: 10.3390/biomedicines9101442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The aim of this systematic review was to pool evidence from studies testing if pentagalloyl glucose (PGG) limited aortic expansion in animal models of abdominal aortic aneurysm (AAA). METHODS The review was conducted according to the PRISMA guidelines and registered with PROSPERO. The primary outcome was aortic expansion assessed by direct measurement. Secondary outcomes included aortic expansion measured by ultrasound and aortic diameter at study completion. Sub analyses examined the effect of PGG delivery in specific forms (nanoparticles, periadventitial or intraluminal), and at different times (from the start of AAA induction or when AAA was established), and tested in different animals (pigs, rats and mice) and AAA models (calcium chloride, periadventitial, intraluminal elastase or angiotensin II). Meta-analyses were performed using Mantel-Haenszel's methods with random effect models and reported as mean difference (MD) and 95% confidence intervals (CIs). Risk of bias was assessed with a customized tool. RESULTS Eleven studies reported in eight publications involving 214 animals were included. PGG significantly reduced aortic expansion measured by direct observation (MD: -66.35%; 95% CI: -108.44, -24.27; p = 0.002) but not ultrasound (MD: -32.91%; 95% CI: -75.16, 9.33; p = 0.127). PGG delivered intravenously within nanoparticles significantly reduced aortic expansion, measured by both direct observation (MD: -116.41%; 95% CI: -132.20, -100.62; p < 0.001) and ultrasound (MD: -98.40%; 95% CI: -113.99, -82.81; p < 0.001). In studies measuring aortic expansion by direct observation, PGG administered topically to the adventitia of the aorta (MD: -28.41%; 95% CI -46.57, -10.25; p = 0.002), studied in rats (MD: -56.61%; 95% CI: -101.76, -11.46; p = 0.014), within the calcium chloride model (MD: -56.61%; 95% CI: -101.76, -11.46; p = 0.014) and tested in established AAAs (MD: -90.36; 95% CI: -135.82, -44.89; p < 0.001), significantly reduced aortic expansion. The findings of other analyses were not significant. The risk of bias of all studies was high. CONCLUSION There is inconsistent low-quality evidence that PGG inhibits aortic expansion in animal models.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia; (S.T.); (J.P.)
- The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD 4810, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4810, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia; (S.T.); (J.P.)
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4810, Australia
| | - James Phie
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4810, Australia; (S.T.); (J.P.)
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4810, Australia
| |
Collapse
|
20
|
Arnold F, Muzzio N, Patnaik SS, Finol EA, Romero G. Pentagalloyl Glucose-Laden Poly(lactide- co-glycolide) Nanoparticles for the Biomechanical Extracellular Matrix Stabilization of an In Vitro Abdominal Aortic Aneurysm Model. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25771-25782. [PMID: 34030437 DOI: 10.1021/acsami.1c05344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The suppression of abdominal aortic aneurysm (AAA) growth by nonsurgical therapy is currently not an option, and AAA is considered an irreversible destructive disease. The formation and development of AAA is associated with the progressive deterioration of the aortic wall. Infiltrated macrophages and resident vascular smooth muscle cells oversecrete matrix metalloproteinases (MMPs), which cause the loss of crucial aortic extracellular matrix (ECM) components, thus weakening the aortic wall. Stabilization of the aortic ECM could enable the development of novel therapeutic options for preventing and reducing AAA progression. In the present work, we studied the biochemical and biomechanical interactions of pentagalloyl glucose (PGG) on mouse C2C12 myoblast cells. PGG is a naturally occurring ECM-stabilizing polyphenolic compound that has been studied in various applications, including vascular health, with promising results. With its known limitations of systemic administration, we also studied the administration of PGG when encapsulated within poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). Treatment with collagenase and elastase enzymes was used to mimic a pathway of degenerative effects seen in the pathogenesis of human AAA. PGG and PLGA(PGG) NPs were added to enzyme-treated cells in either a suppressive or preventative scenario. Biomolecular interactions were analyzed through cell viability, cell adhesion, reactive oxygen species (ROS) production, and MMP-2 and MMP-9 secretion. Biomechanical properties were studied through atomic force microscopy and quartz crystal microbalance with dissipation. Our results suggest that PGG or PLGA(PGG) NPs caused minor to no cytotoxic effects on the C2C12 cells. Both PGG and PLGA(PGG) NPs showed reduction in ROS and MMP-2 secretion if administered after enzymatic ECM degradation. A quantitative comparison of Young's moduli showed a significant recovery in the elastic properties of the cells treated with PGG or PLGA(PGG) NPs after enzymatic ECM degradation. This work provides preliminary support for the use of a pharmacological therapy for AAA treatment.
Collapse
Affiliation(s)
- Frances Arnold
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Sourav S Patnaik
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Ender A Finol
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
21
|
Wang X, Parasaram V, Dhital S, Nosoudi N, Hasanain S, Lane BA, Lessner SM, Eberth JF, Vyavahare NR. Systemic delivery of targeted nanotherapeutic reverses angiotensin II-induced abdominal aortic aneurysms in mice. Sci Rep 2021; 11:8584. [PMID: 33883612 PMCID: PMC8060294 DOI: 10.1038/s41598-021-88017-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/25/2021] [Indexed: 01/04/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) disease causes dilation of the aorta, leading to aortic rupture and death if not treated early. It is the 14th leading cause of death in the U.S. and 10th leading cause of death in men over age 55, affecting thousands of patients. Despite the prevalence of AAA, no safe and efficient pharmacotherapies exist for patients. The deterioration of the elastic lamina in the aneurysmal wall is a consistent feature of AAAs, making it an ideal target for delivering drugs to the AAA site. In this research, we conjugated nanoparticles with an elastin antibody that only targets degraded elastin while sparing healthy elastin. After induction of aneurysm by 4-week infusion of angiotensin II (Ang II), two biweekly intravenous injections of pentagalloyl glucose (PGG)-loaded nanoparticles conjugated with elastin antibody delivered the drug to the aneurysm site. We show that targeted delivery of PGG could reverse the aortic dilation, ameliorate the inflammation, restore the elastic lamina, and improve the mechanical properties of the aorta at the AAA site. Therefore, simple iv therapy of PGG loaded nanoparticles can be an effective treatment option for early to middle stage aneurysms to reverse disease progression and return the aorta to normal homeostasis.
Collapse
Affiliation(s)
- Xiaoying Wang
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA
| | - Vaideesh Parasaram
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA
| | - Nasim Nosoudi
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA.,Biomedical Engineering, College of Engineering & Computer Sciences, Marshall University, Huntington, WV, USA
| | - Shahd Hasanain
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, USA
| | - Brooks A Lane
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, USA
| | - Susan M Lessner
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, USA
| | - John F Eberth
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, USA
| | - Naren R Vyavahare
- Department of Bioengineering, Clemson University, 501 Rhodes Engineering Research Center, Clemson, SC, 29634, USA.
| |
Collapse
|
22
|
Antal DS, Ardelean F, Jijie R, Pinzaru I, Soica C, Dehelean C. Integrating Ethnobotany, Phytochemistry, and Pharmacology of Cotinus coggygria and Toxicodendron vernicifluum: What Predictions can be Made for the European Smoketree? Front Pharmacol 2021; 12:662852. [PMID: 33953688 PMCID: PMC8092975 DOI: 10.3389/fphar.2021.662852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The smoketree (Cotinus coggygria) is a historically known medicinal plant from Southeast Europe. Its ethnomedicinal use in skin and mucosal lesions is commonly accepted across countries. Other utilizations reported locally include fever reduction, cardiac diseases, hypertension, urinary diseases, cough, asthma, hemorrhoids, diabetes, numbness of arm, liver disease, and cancer. Departing from the smoketree's traditional uses, this review summarizes investigations on the phytochemistry and bioactivity of the plant. In vitro and in vivo experiments supporting wound-healing, anti-inflammatory, antibacterial, cytotoxic, antioxidative, hepatoprotective, and antidiabetic effects are presented. Metabolites from smoketree that are responsible for the main pharmacological effects of smoketree are pointed out. Furthermore, the review performs a comparison between C. coggygria and the lacquer tree (Toxicodendron vernicifluum). The latter is a comprehensively studied species used in Asian phytotherapy, with whom the European smoketree shares a consistent pool of secondary metabolites. The comparative approach aims to open new perspectives in the research of smoketree and anticipates an optimized use of C. coggygria in therapy. It also points out the relevance of a chemosystematic approach in the field of medicinal plants research.
Collapse
Affiliation(s)
- Diana Simona Antal
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Florina Ardelean
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Robert Jijie
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Iulia Pinzaru
- Department of Toxicology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| | - Cristina Dehelean
- Department of Toxicology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
23
|
Anderson JL, Niedert EE, Patnaik SS, Tang R, Holloway RL, Osteguin V, Finol EA, Goergen CJ. Animal Model Dependent Response to Pentagalloyl Glucose in Murine Abdominal Aortic Injury. J Clin Med 2021; 10:E219. [PMID: 33435461 PMCID: PMC7827576 DOI: 10.3390/jcm10020219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a local dilation of the aorta and are associated with significant mortality due to rupture and treatment complications. There is a need for less invasive treatments to prevent aneurysm growth and rupture. In this study, we used two experimental murine models to evaluate the potential of pentagalloyl glucose (PGG), which is a polyphenolic tannin that binds to and crosslinks elastin and collagen, to preserve aortic compliance. Animals underwent surgical aortic injury and received 0.3% PGG or saline treatment on the adventitial surface of the infrarenal aorta. Seventeen mice underwent topical elastase injury, and 14 mice underwent topical calcium chloride injury. We collected high-frequency ultrasound images before surgery and at 3-4 timepoints after. There was no difference in the in vivo effective maximum diameter due to PGG treatment for either model. However, the CaCl2 model had significantly higher Green-Lagrange circumferential cyclic strain in PGG-treated animals (p < 0.05). While ex vivo pressure-inflation testing showed no difference between groups in either model, histology revealed reduced calcium deposits in the PGG treatment group with the CaCl2 model. These findings highlight the continued need for improved understanding of PGG's effects on the extracellular matrix and suggest that PGG may reduce arterial calcium accumulation.
Collapse
Affiliation(s)
- Jennifer L. Anderson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Elizabeth E. Niedert
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Sourav S. Patnaik
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Renxiang Tang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Riley L. Holloway
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| | - Vangelina Osteguin
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Ender A. Finol
- Department of Mechanical Engineering, University of Texas, San Antonio, TX 78249, USA; (S.S.P.); (V.O.); (E.A.F.)
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; (J.L.A.); (E.E.N.); (R.T.); (R.L.H.)
| |
Collapse
|
24
|
Effect of Jakyakgamcho-Tang Extracts on H 2O 2-Induced C2C12 Myoblasts. Molecules 2021; 26:molecules26010215. [PMID: 33406609 PMCID: PMC7795328 DOI: 10.3390/molecules26010215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is a major contributor to muscle aging and loss of muscle tissue. Jakyakgamcho-tang (JGT) has been used in traditional Eastern medicine to treat muscle pain. Here, we compared the total phenolic and flavonoid contents in 30% ethanol and water extracts of JGT and tested the preventive effects against oxidative stress (hydrogen peroxide)-induced cell death in murine C2C12 skeletal muscle cells. The total phenolic content and total flavonoid content in 30% ethanol extracts of JGT were higher than those of water extracts of JGT. Ethanol extracts of JGT (JGT-E) had stronger antioxidant activities of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2′-diphenyl-1-picrylhydrazyl-scavenging activity (DPPH) than water extracts of JGT (JGT-W). JGT-E contained 19–53% (1.8 to 4.9-fold) more active compounds (i.e., albiflorin, liquiritin, pentagalloylglucose, isoliquiritin apioside, isoliquiritin, liquiritigenin, and glycyrrhizin) than JGT-W. The ethanol extracts of JGT inhibited hydrogen peroxide-induced cell death and intracellular reactive oxygen species generation more effectively than the water extract of JGT in a dose-dependent manner. For the first time, these results suggest that ethanol extract of JGT is relatively more efficacious at protecting against oxidative stress-induced muscle cell death.
Collapse
|
25
|
Pavey SN, Cocciolone AJ, Marty AG, Ismail HN, Hawes JZ, Wagenseil JE. Pentagalloyl glucose (PGG) partially prevents arterial mechanical changes due to elastin degradation. EXPERIMENTAL MECHANICS 2021; 61:41-51. [PMID: 33746235 PMCID: PMC7968080 DOI: 10.1007/s11340-020-00625-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BACKGROUND Elastic fibers are composed primarily of the protein elastin and they provide reversible elasticity to the large arteries. Degradation of elastic fibers is a common histopathology in aortic aneurysms. Pentagalloyl glucose (PGG) has been shown to bind elastin and stabilize elastic fibers in some in vitro studies and in vivo models of abdominal aortic aneurysms, however its effects on native arteries are not well described. OBJECTIVE Perform detailed studies of the biomechanical effects of PGG on native arteries and the preventative capabilities of PGG for elastin degraded arteries. METHODS We treated mouse carotid arteries with PGG, elastase (ELA), and PGG+ELA and compared the wall structure, solid mechanics, and fluid transport properties to untreated (UNT) arteries. RESULTS We found that PGG alone decreased compliance compared to UNT arteries, but did not affect any other structural or biomechanical measures. Mild (30 sec) ELA treatment caused collapse and fragmentation of the elastic lamellae, plastic deformation, decreased compliance, increased modulus, and increased hydraulic conductance of the arterial wall compared to UNT. PGG+ELA treatment partially protected from all of these changes, in particular the plastic deformation. PGG mechanical protection varied considerably across PGG+ELA samples and appeared to correlate with the structural changes. CONCLUSIONS Our results provide important considerations for the effects of PGG on native arteries and a baseline for further biomechanical studies on preventative elastic fiber stabilization.
Collapse
Affiliation(s)
- S N Pavey
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - A J Cocciolone
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - A Gutierrez Marty
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - H N Ismail
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - J Z Hawes
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| | - J E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
26
|
Patil VA, Masters KS. Engineered Collagen Matrices. Bioengineering (Basel) 2020; 7:E163. [PMID: 33339157 PMCID: PMC7765577 DOI: 10.3390/bioengineering7040163] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Collagen is the most abundant protein in mammals, accounting for approximately one-third of the total protein in the human body. Thus, it is a logical choice for the creation of biomimetic environments, and there is a long history of using collagen matrices for various tissue engineering applications. However, from a biomaterial perspective, the use of collagen-only scaffolds is associated with many challenges. Namely, the mechanical properties of collagen matrices can be difficult to tune across a wide range of values, and collagen itself is not highly amenable to direct chemical modification without affecting its architecture or bioactivity. Thus, many approaches have been pursued to design scaffold environments that display critical features of collagen but enable improved tunability of physical and biological characteristics. This paper provides a brief overview of approaches that have been employed to create such engineered collagen matrices. Specifically, these approaches include blending of collagen with other natural or synthetic polymers, chemical modifications of denatured collagen, de novo creation of collagen-mimetic chains, and reductionist methods to incorporate collagen moieties into other materials. These advancements in the creation of tunable, engineered collagen matrices will continue to enable the interrogation of novel and increasingly complex biological questions.
Collapse
Affiliation(s)
| | - Kristyn S. Masters
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
27
|
High Capability of Pentagalloylglucose (PGG) in Inhibiting Multiple Types of Membrane Ionic Currents. Int J Mol Sci 2020; 21:ijms21249369. [PMID: 33316951 PMCID: PMC7763472 DOI: 10.3390/ijms21249369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Pentagalloyglucose (PGG, penta-O-galloyl-β-d-glucose; 1,2,3,4,6-pentagalloyl glucose), a pentagallic acid ester of glucose, is recognized to possess anti-bacterial, anti-oxidative and anti-neoplastic activities. However, to what extent PGG or other polyphenolic compounds can perturb the magnitude and/or gating of different types of plasmalemmal ionic currents remains largely uncertain. In pituitary tumor (GH3) cells, we found out that PGG was effective at suppressing the density of delayed-rectifier K+ current (IK(DR)) concentration-dependently. The addition of PGG could suppress the density of proton-activated Cl− current (IPAC) observed in GH3 cells. The IC50 value required for the inhibitory action of PGG on IK(DR) or IPAC observed in GH3 cells was estimated to be 3.6 or 12.2 μM, respectively, while PGG (10 μM) mildly inhibited the density of the erg-mediated K+ current or voltage-gated Na+ current. The presence of neither chlorotoxin, hesperetin, kaempferol, morin nor iberiotoxin had any effects on IPAC density, whereas hydroxychloroquine or 4-[(2-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5yl)oxy] butanoic acid suppressed current density effectively. The application of PGG also led to a decrease in the area of voltage-dependent hysteresis of IPAC elicited by long-lasting isosceles-triangular ramp voltage command, suggesting that hysteretic strength was lessened in its presence. In human cardiac myocytes, the exposure to PGG also resulted in a reduction of ramp-induced IK(DR) density. Taken literally, PGG-perturbed adjustment of ionic currents could be direct and appears to be independent of its anti-oxidative property.
Collapse
|
28
|
Ebrahimi S, Vatani P, Amani A, Shamloo A. Drug delivery performance of nanocarriers based on adhesion and interaction for abdominal aortic aneurysm treatment. Int J Pharm 2020; 594:120153. [PMID: 33301866 DOI: 10.1016/j.ijpharm.2020.120153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Targeted drug delivery using nanocarriers (NCs) is one of the novel techniques that has recently been used to improve drug delivery to the Abdominal aortic aneurysm (AAA) disease. The purpose of this study is to evaluate the surface density of NCs (SDNC) adhered via ligand-receptor binding to the inner wall of AAA. For this purpose, fluid-structure interaction (FSI) analysis was first performed for the patient-specific and ideal AAA models. Then, by injecting NCs into the aortic artery, the values of SDNC adhered to and interacted with AAA wall were obtained. Two types of NCs, liposomes, and solid particles in four different diameters, were used to investigate the effect of the diameter and the type of NCs on the drug delivery. Additionally, the effect of the number of the injected NCs to the artery on the values of SDNC adhered to and interacted with AAA wall was investigated. The simulation results showed that the interaction and adhesion values of SDNC for Liposome nanoparticles were higher than the ones for the solid particles. Furthermore, as the diameter of NCs increases, the values of SDNC adhered to AAA wall increase, but the values of SDNC interacted with the inner wall of AAA decrease. In the low number of inserted NCs in the artery (1000 NCs), the interaction and adhesion values of SDNC were very slight, and by increasing the number of NCs inserted into the artery, the drug delivery was improved. By examining different AAA models, it was found that the complexity of the shape of AAA has a minor effect on the pattern of increase or decrease of the values of SDNC adhered to and interacted with AAA wall.This study's findings can improve the understanding of NCs design and propose the appropriate amount of their injection into various AAA models.
Collapse
Affiliation(s)
- Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Pouyan Vatani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Ali Amani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
29
|
Dettweiler M, Marquez L, Lin M, Sweeney-Jones AM, Chhetri BK, Zurawski DV, Kubanek J, Quave CL. Pentagalloyl glucose from Schinus terebinthifolia inhibits growth of carbapenem-resistant Acinetobacter baumannii. Sci Rep 2020; 10:15340. [PMID: 32948818 PMCID: PMC7501240 DOI: 10.1038/s41598-020-72331-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 01/29/2023] Open
Abstract
The rise of antibiotic resistance has necessitated a search for new antimicrobials with potent activity against multidrug-resistant gram-negative pathogens, such as carbapenem-resistant Acinetobacter baumannii (CRAB). In this study, a library of botanical extracts generated from plants used to treat infections in traditional medicine was screened for growth inhibition of CRAB. A crude extract of Schinus terebinthifolia leaves exhibited 80% inhibition at 256 µg/mL and underwent bioassay-guided fractionation, leading to the isolation of pentagalloyl glucose (PGG), a bioactive gallotannin. PGG inhibited growth of both CRAB and susceptible A. baumannii (MIC 64-256 µg/mL), and also exhibited activity against Pseudomonas aeruginosa (MIC 16 µg/mL) and Staphylococcus aureus (MIC 64 µg/mL). A mammalian cytotoxicity assay with human keratinocytes (HaCaTs) yielded an IC50 for PGG of 256 µg/mL. Mechanistic experiments revealed iron chelation as a possible mode of action for PGG's activity against CRAB. Passaging assays for resistance did not produce any resistant mutants over a period of 21 days. In conclusion, PGG exhibits antimicrobial activity against CRAB, but due to known pharmacological restrictions in delivery, translation as a therapeutic may be limited to topical applications such as wound rinses and dressings.
Collapse
Affiliation(s)
- Micah Dettweiler
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Michelle Lin
- Center for the Study of Human Health, Emory University, Atlanta, GA, USA
| | - Anne M Sweeney-Jones
- School of Chemistry and Biochemistry, Center for Microbial Dynamics and Infection, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Bhuwan Khatri Chhetri
- School of Chemistry and Biochemistry, Center for Microbial Dynamics and Infection, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Daniel V Zurawski
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Disease Research, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Julia Kubanek
- School of Chemistry and Biochemistry, Center for Microbial Dynamics and Infection, Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cassandra L Quave
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for the Study of Human Health, Emory University, Atlanta, GA, USA.
- Emory University Herbarium, Atlanta, GA, USA.
| |
Collapse
|
30
|
Schack AS, Stubbe J, Steffensen LB, Mahmoud H, Laursen MS, Lindholt JS. Intraluminal infusion of Penta-Galloyl Glucose reduces abdominal aortic aneurysm development in the elastase rat model. PLoS One 2020; 15:e0234409. [PMID: 32857766 PMCID: PMC7454949 DOI: 10.1371/journal.pone.0234409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/24/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND An abdominal aortic aneurysm (AAA) is a progressive chronic dilatation of the abdominal aorta with terminally rupture when the aortic wall is so weakened that aortic wall stress exceeds wall strength. No effective medical treatment exists so far. We aimed to test whether intraluminal admission of Penta-Galloyl Glucose (PGG) treatment in a rodent AAA model could hold the potential to inhibit aneurysmal progression. METHOD Male Sprague Dawley rats had either intraluminal elastase infused for AAA induction or saline to serve as controls. In two independent experimental series, elastase was used to induce AAA followed by an intraluminal PGG (directly or by a drug eluting balloon) treatment. All rats were followed for 28 days and euthanized. In both series, maximal infrarenal aortic diameter was measured at baseline and at termination as a measure of AAA size. In series 2, maximal internally AAA diameter was followed by ultrasound weekly. AAA tissues were analyzed for elastin integrity by millers stain, collagen deposition by masson trichrome staining. In other AAA tissue samples the mRNA level of CD45, lysyloxidase (LOX), lysyloxidase like protein 1 (LOXL1) were determined by qPCR. RESULTS Direct administration of PGG significantly reduced AAA expansion when compared to controls. PGG treatment resulted in a higher number and more preserved elastic fibers in the aneurysmal wall, while no significant difference was seen in the levels of CD45 and LOX mRNA levels. The drug eluting balloon (DEB) experiment showed no significant difference in AAA size observed neither macroscopically nor ultrasonically. Also the aneurysmal mRNA levels of CD45, LOX and LOXL1 were unchanged between groups. CONCLUSION A significant reduced expansion of AAAs was observed in the PGG group, suggesting PGG as a drug to inhibit aneurysmal progression, while administration through a DEB did not show a promising new way of administration.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Disease Models, Animal
- Disease Progression
- Elastic Tissue/drug effects
- Elastic Tissue/pathology
- Hydrolyzable Tannins/administration & dosage
- Infusions, Intralesional/instrumentation
- Infusions, Intralesional/methods
- Male
- Pancreatic Elastase/administration & dosage
- Protein-Lysine 6-Oxidase/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Asbjørn Sune Schack
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
- * E-mail:
| | - Jane Stubbe
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
- Department of Cardiovascular and Renal Research, Odense University Hospital, Odense, Denmark
| | - Lasse Bach Steffensen
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
| | - Hend Mahmoud
- Department of Cardiovascular and Renal Research, Odense University Hospital, Odense, Denmark
| | - Malene Skaarup Laursen
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Jes Sanddal Lindholt
- Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, Odense, Denmark
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
31
|
Xu XH, Yang X, Zheng CG, Cui Y. Recent advances in the design of cardiovascular materials for biomedical applications. Regen Med 2020; 15:1637-1645. [PMID: 32552423 DOI: 10.2217/rme-2019-0135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biomaterials dominate the field of cardiovascular therapeutics, a multitude of which have been used to repair and replace injured heart tissue. This field has evolved beyond the simple selection of compatible materials and now focuses on the rational design of controlled structures that integrate with the cardiovascular system. However, the compatibility of these materials with the blood presents a major limitation to their clinical application. In this context, surface modification strategies can enhance blood compatibility and several recent advances in this area have emerged. This review summarizes the recent applications of biomaterials in cardiovascular therapies, the improvements in their biocompatibility and the surface modification technologies that have the potential to improve clinical outcomes.
Collapse
Affiliation(s)
- Xun-Hong Xu
- Emergency Department, Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou 311700, Zhejiang Province, China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis & Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Cheng-Gen Zheng
- Department of Cardiology, Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou 311700, Zhejiang Province, China
| | - Yong Cui
- Department of Cardiothoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
32
|
Simionescu D, Casco M, Turner J, Rierson N, Yue J, Ning K. Chemical stabilization of the extracellular matrix attenuates growth of experimentally induced abdominal aorta aneurysms in a large animal model. JVS Vasc Sci 2020; 1:69-80. [PMID: 34617039 PMCID: PMC8489238 DOI: 10.1016/j.jvssci.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022] Open
Abstract
Objective The goal of the present study was to test the safety and efficacy of chemical stabilization of the arterial extracellular matrix as a novel nonoperative treatment of abdominal aortic aneurysms (AAAs) in a clinically relevant large animal model. Methods To achieve matrix stabilization, we used 1,2,3,4,6-pentagalloylglucose (PGG), a noncytotoxic polyphenolic agent capable of binding to and stabilizing elastin and collagen against the action of degrading enzymes. We first optimized the therapeutic PGG formulation and time of exposure by in vitro testing on porcine aortas using phenol histologic staining with iron chloride, elastic recoil assays, and PGG quantification as a function of tissue thickness. We then induced AAAs in 16 swine using sequential balloon angioplasty and elastase/collagenase and calcium chloride treatment of the infrarenal segment. We monitored AAA induction and development using digital subtraction angiography. At 2 weeks after induction, after the AAAs had reached ∼66% arterial expansion, the swine were randomly assigned to 2 groups. In the treatment group, we delivered PGG to the aneurysmal aorta endoluminally using a weeping balloon and evaluated the AAA diameters using digital subtraction angiography for another 10 weeks. The control swine did not receive any treatment. For the safety evaluation, we collected blood and performed comprehensive metabolic panels and complete blood counts every 2 to 3 weeks for all the animals. The swine were routinely monitored for neurologic and physical attributes such as behavior, inactivity, alertness, appetite, discomfort, and weight gain. After euthanasia and full necropsy, we analyzed the AAA tissue samples for PGG content, elastic recoil, and histologic features. Results In vitro, a single 2.5-minute intraluminal delivery of 0.3% PGG to the swine aorta was sufficient for PGG to diffuse through the entire thickness of the porcine arterial tissues and to bind with high affinity to the elastic lamellae, as seen by positive iron chloride staining, a reduction of elastic recoil, and an increase in PGG content. In vivo, the control swine AAA tissues were thickened and showed the typical aspects of AAA, including chronic inflammation, adventitial reactivity, smooth muscle cell proliferation, elastic lamellae degradation, and medial and adventitial calcification. Similar aspects were noted in the PGG-treated arteries, except for the lack of calcification and an apparent diminished hyperplasia. PGG treatment was effective in reducing AAA expansion and reversing the process of AAA dilation by reducing the aortic diameters to ≤30% by week 12 (P < .05). PGG was specifically localized to the aneurysmal segments as seen by histologic examination, the reduction of elastic recoil, and an increase in PGG content. PGG treatment did not affect the swine's neurologic or physical attributes, weight, blood chemistry, blood cells, or functionality of remote organs. The control, untreated swine exhibited progressive increases in AAA diameters up to a mean value of 104%. Conclusions Localized delivery of PGG to the aneurysmal aorta attenuated AAA growth and reversed the course of the disease in the swine AAA model. Such specificity for diseased tissue is unprecedented in nonoperative AAA treatment. This novel paradigm-shifting approach has the potential to revolutionize AAA management and save thousands of lives. Abdominal aorta aneurysm (AAA) is an asymptomatic chronic degenerative disease characterized by localized dilatation of the arterial wall caused by elastin and collagen degradation by proteases. We found that local delivery of 1,2,3,4,6-pentagalloylglucose (PGG) to a developing AAA in a swine animal model safely and effectively stabilized the vascular matrix, reduced AAA expansion, and promoted healing and AAA diameter reduction by limiting tissue degeneration. PGG is a noncytotoxic agent capable of rapid diffusion through arterial tissue and irreversible binding to elastin and collagen. PGG-mediated chemical stabilization of the aortic matrix could be used for safe nonoperative AAA management.
Collapse
Affiliation(s)
- Dan Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC
| | - Megan Casco
- Department of Bioengineering, Clemson University, Clemson, SC
| | | | | | - Jianing Yue
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | |
Collapse
|
33
|
Zhao J, Li P, Xia T, Wan X. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Crit Rev Biotechnol 2020; 40:667-688. [PMID: 32321331 DOI: 10.1080/07388551.2020.1752617] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diversity and complexity of secondary metabolites in tea plants contribute substantially to the popularity of tea, by determining tea flavors and their numerous health benefits. The most significant characteristics of tea plants are that they concentrate the complex plant secondary metabolites into one leaf: flavonoids, alkaloids, theanine, volatiles, and saponins. Many fundamental questions regarding tea plant secondary metabolism remain unanswered. This includes how tea plants accumulate high levels of monomeric galloylated catechins, unlike the polymerized flavan-3-ols in most other plants, as well as how they are evolved to selectively synthesize theanine and caffeine, and how tea plants properly transport and store these cytotoxic products and then reuse them in defense. Tea plants coordinate many metabolic pathways that simultaneously take place in young tea leaves in response to both developmental and environmental cues. With the available genome sequences of tea plants and high-throughput metabolomic tools as great platforms, it is of particular interest to launch metabolic genomics studies using tea plants as a model system. Plant metabolic genomics are to investigate all aspects of plant secondary metabolism at the genetic, genome, and molecular levels. This includes plant domestication and adaptation, divergence and convergence of secondary metaboloic pathways. The biosynthesis, transport, storage, and transcriptional regulation mechanisms of all metabolites are of core interest in the plant as a whole. This review highlights relevant contexts of metabolic genomics, outstanding questions, and strategies for answering them, with aim to guide future research for genetic improvement of nutrition quality for healthier plant foods.
Collapse
Affiliation(s)
- Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
34
|
Dhital S, Vyavahare NR. Nanoparticle-based targeted delivery of pentagalloyl glucose reverses elastase-induced abdominal aortic aneurysm and restores aorta to the healthy state in mice. PLoS One 2020; 15:e0227165. [PMID: 32218565 PMCID: PMC7100957 DOI: 10.1371/journal.pone.0227165] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/17/2020] [Indexed: 12/29/2022] Open
Abstract
AIM Abdominal aortic aneurysms (AAA) is a life-threatening weakening and expansion of the abdominal aorta due to inflammatory cell infiltration and gradual degeneration of extracellular matrix (ECM). There are no pharmacological therapies to treat AAA. We tested the hypothesis that nanoparticle (NP) therapy that targets degraded elastin and delivers anti-inflammatory, anti-oxidative, and ECM stabilizing agent, pentagalloyl glucose (PGG) will reverse advance stage aneurysm in an elastase-induced mouse model of AAA. METHOD AND RESULTS Porcine pancreatic elastase (PPE) was applied periadventitially to the infrarenal aorta in mice and AAA was allowed to develop for 14 days. Nanoparticles loaded with PGG (EL-PGG-NPs) were then delivered via IV route at 14-day and 21-day (10 mg/kg of body weight). A control group of mice received no therapy. The targeting of NPs to the AAA site was confirmed with fluorescent dye marked NPs and gold NPs. Animals were sacrificed at 28-d. We found that targeted PGG therapy reversed the AAA by decreasing matrix metalloproteinases MMP-9 and MMP-2, and the infiltration of macrophages in the medial layer. The increase in diameter of the aorta was reversed to healthy controls. Moreover, PGG treatment restored degraded elastic lamina and increased the circumferential strain of aneurysmal aorta to the healthy levels. CONCLUSION Our results support that site-specific delivery of PGG with targeted nanoparticles can be used to treat already developed AAA. Such therapy can reverse inflammatory markers and restore arterial homeostasis.
Collapse
Affiliation(s)
- Saphala Dhital
- Department of Bioengineering, Clemson University, Clemson, SC, United States of America
| | - Naren R. Vyavahare
- Department of Bioengineering, Clemson University, Clemson, SC, United States of America
| |
Collapse
|
35
|
Biomechanical Restoration Potential of Pentagalloyl Glucose after Arterial Extracellular Matrix Degeneration. Bioengineering (Basel) 2019; 6:bioengineering6030058. [PMID: 31277241 PMCID: PMC6783915 DOI: 10.3390/bioengineering6030058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to quantify pentagalloyl glucose (PGG) mediated biomechanical restoration of degenerated extracellular matrix (ECM). Planar biaxial tensile testing was performed for native (N), enzyme-treated (collagenase and elastase) (E), and PGG (P) treated porcine abdominal aorta specimens (n = 6 per group). An Ogden material model was fitted to the stress-strain data and finite element computational analyses of simulated native aorta and aneurysmal abdominal aorta were performed. The maximum tensile stress of the N group was higher than that in both E and P groups for both circumferential (43.78 ± 14.18 kPa vs. 10.03 ± 2.68 kPa vs. 13.85 ± 3.02 kPa; p = 0.0226) and longitudinal directions (33.89 ± 8.98 kPa vs. 9.04 ± 2.68 kPa vs. 14.69 ± 5.88 kPa; p = 0.0441). Tensile moduli in the circumferential direction was found to be in descending order as N > P > E (195.6 ± 58.72 kPa > 81.8 ± 22.76 kPa > 46.51 ± 15.04 kPa; p = 0.0314), whereas no significant differences were found in the longitudinal direction (p = 0.1607). PGG binds to the hydrophobic core of arterial tissues and the crosslinking of ECM fibers is one of the possible explanations for the recovery of biomechanical properties observed in this study. PGG is a beneficial polyphenol that can be potentially translated to clinical practice for preventing rupture of the aneurysmal arterial wall.
Collapse
|