1
|
López-Mejía A, Briseño-Díaz P, Robles-Flores M. The role of hypoxia-inducible factor-3α in human disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:120007. [PMID: 40513617 DOI: 10.1016/j.bbamcr.2025.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 06/06/2025] [Accepted: 06/10/2025] [Indexed: 06/16/2025]
Abstract
Hypoxia-inducible factors (HIFs) are master regulators of cellular adaptation to hypoxia in both disease and normal physiological conditions. HIFs consist of two subunits: the oxygen-sensitive alpha (α) and the constitutively expressed beta (β). The three oxygen-dependent alpha subunits-HIF-1α, HIF-2α, and HIF-3α-encoded by distinct genes are crucial for regulating cellular responses to hypoxia in various vertebrates, including humans. Much of our understanding of HIFs is based on studies on HIF-1α and HIF-2α subunits. Recent studies have shown that, although HIF-3α is the least studied member, it may also play essential roles in the development of human diseases, including cancer, cardiovascular and respiratory diseases, metabolic disorders, and other pathological processes. In this review, we focus on how HIF-3α overexpression is associated with various human diseases, aiming to better understand its role in human pathophysiology and its potential use as a therapeutic target.
Collapse
Affiliation(s)
- Alejandro López-Mejía
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Paola Briseño-Díaz
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Martha Robles-Flores
- Department of Biochemistry, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
2
|
Alvarado-Ortiz E, Castañeda-Patlán MC, Moreno-Londoño AP, Tinajero-Rodríguez JM, Briseño-Díaz P, Sarabia-Sánchez MA, Vargas M, Ortiz-Sánchez E, Robles-Flores M. Non-canonical Wnt co-receptors ROR1/ROR2 are differentially regulated by hypoxia in colon cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119968. [PMID: 40268059 DOI: 10.1016/j.bbamcr.2025.119968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
ROR1 and ROR2 co-receptors are transducers of non-canonical Wnt responses that promote an aggressive phenotype in several cancer types, including colon cancer. It has been demonstrated that hypoxia promotes tumor progression through the action of Hypoxia Inducible Factors (HIFs). An in silico analysis revealed that ROR2 is overexpressed in the advanced clinical stages of colon cancer. In line with this, ROR1 and ROR2 were found to be only expressed in malignant colon cells compared to non-malignant ones. The blockade of either ROR1 or ROR2 impaired colon cancer cells' colony formation abilities and the migration capacity of them. Additionally, the silencing of the ROR2 co-receptor blocked the metastatic ability of colon cancer cells in a xenografted mice model. We found that while silencing HIF-1α did not significantly reduce ROR1 or ROR2 expression, inhibiting HIF-2α and HIF-3α expression greatly decreased the protein levels of both co-receptors in colon cancer cells. The HIF-1α subunit expression is induced in acute hypoxia, whereas HIF-2α and HIF-3α show higher activity in chronic hypoxia, which may be functionally relevant since hypoxia induced a decrease in the constitutive active β-catenin transcriptional activity in SW480 cells. While both ROR1 and ROR2 stimulate proliferation and migration under normoxic conditions, the exposure of cells to hypoxia increased the expression of ROR1 or ROR2, depending on the Wnt cellular context, Thus, our results indicate that hypoxia partially represses β-catenin transcriptional activity and activates non-canonical Wnt signaling by regulating ROR1/ROR2 expression to induce an aggressive migrating and metastatic phenotype in colon cancer cells.
Collapse
Affiliation(s)
- Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | | - Paola Briseño-Díaz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miguel Angel Sarabia-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miguel Vargas
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
3
|
Liu C, Liu C, Liu GJ, Wang MM, Jiao Y, Sun YJ, Guo H, Wang L, Lu YX, Chen Y, Ding YH. BE-43547A 2 exerts hypoxia-selective inhibition on human pancreatic cancer cells through targeting eEF1A1 and disrupting its association with FoxO1. Acta Pharmacol Sin 2025; 46:1433-1444. [PMID: 39837983 PMCID: PMC12032368 DOI: 10.1038/s41401-024-01461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Hypoxia is a key feature of the tumor microenvironment that leads to the failure of many chemotherapies and induces more aggressive and resistant cancer phenotypes. Up to date, there are very few compounds and treatments that can target hypoxia. BE-43547A2 from Streptomyces sp. was one of the most hypoxia-selective compounds against PANC-1, MCF-7, and K562 cell lines. In this study, we investigated the molecular mechanism underlying the hypoxia selectivity of BE-43547A2 in human pancreatic cancer cells. We showed that BE-43547A2 displayed hypoxia-selective cytotoxicity in five pancreatic cancer cells (PANC-1, Capan-2, MIA PaCa-2, AsPC-1, and PaTu8988T) with IC50 values under hypoxia considerably lower than those under normoxia. We demonstrated that BE-43547A2 is directly bound to eEF1A1 protein in PaTu8988T cells under hypoxia. Furthermore, we revealed that hypoxia significantly elevated the expression levels of HIF1α, FoxO1, and eEF1A1 in the five pancreatic cancer cells; eEF1A1 interacted with FoxO1 in the cytoplasm, which was disrupted by BE-43547A2 followed by the nuclear translocation of FoxO1 and ultimate inhibition of JAK/STAT3 signaling pathway under hypoxia. This study reveals that BE-43547A2, targeting eEF1A1, disrupts its interaction with FoxO1 in human pancreatic cancer cells under hypoxia. This compound could serve as a potential hypoxia-selective therapy.
Collapse
Affiliation(s)
- Can Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Can Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Guang-Ju Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | | | - Yan Jiao
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Yuan-Jun Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Hui Guo
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Liang Wang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Ya-Xin Lu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China.
| | - Ya-Hui Ding
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Sustainable Chemical Transformations, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300350, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Niazi V, Ghafouri-Fard S. Effect of hypoxia on extracellular vesicles in malignant and non-malignant conditions. Cancer Treat Res Commun 2025; 43:100924. [PMID: 40209539 DOI: 10.1016/j.ctarc.2025.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Extracellular vesicles (EVs) are produced by virtually all types of cells and can be detected in nearly all extracellular places. These particles mediate intercellular communication and transfer their cargo to the recipient cells, inducing a variety of processes in these cells through transmission of several biomolecules such as miRNAs, lncRNAs, other transcripts and a variety of proteins. It has been documented that size, quantity, and expression of biomolecules in the EVs are influenced by the level of oxygen. In fact, hypoxia can affect several cellular processes through modulation of the cargo of these vesicles. Hypoxic exosomes derived from tumor cells have several protumoral effects on the recipient cells, including enhancement of proliferation, migration, and invasion in other tumoral cells, induction of metastasis in distant organs, stimulation of angiogenesis in the endothelial cells, and modulation of macrophage polarization. Hypoxic EVs also contribute to several non-malignant diseases. This review summarizes the effect of hypoxia on EVs cargo in malignant and nonmalignant diseases of different organs.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran; School of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kyurkchiyan S, Petkova V, Stancheva G, Stancheva I, Dimitrov S, Dobriyanova V, Popova D, Kaneva R, M Popov T. Co-expression of miRNA players in advanced laryngeal carcinoma - Insights into the roles of miR-93-5p, miR-145-5p, and miR-210-3p. BIOMOLECULES & BIOMEDICINE 2025; 25:1052-1062. [PMID: 39412136 PMCID: PMC11984375 DOI: 10.17305/bb.2024.10947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 04/04/2025]
Abstract
Advanced laryngeal squamous cell carcinoma (LSCC) is the second most prevalent type of head and neck squamous cell carcinoma (HNSCC). Identifying microRNAs (miRNAs) related to key regulatory molecules or mechanisms could offer an alternative approach to developing new treatment strategies. The aim of our study is to evaluate significant correlations among deregulated miRNAs in advanced laryngeal carcinoma and to analyze, in silico, their strength of association, targets, and the most deregulated pathways. Several miRNAs demonstrated promising co-expression results, specifically miR-93-5p, miR-145-5p, and miR-210-3p. Their expressions were explored and further validated in a large set of in vivo advanced LSCC samples, which were subsequently used for bioinformatics and enrichment analyses. Our results highlight the significant roles of miR-93-5p, miR-145-5p, and miR-210-3p in regulating major pathways linked to the cell cycle via epithelial-to-mesenchymal transition (EMT), PI3K/Akt signaling, hypoxia, metabolism, apoptosis, angiogenesis, and metastasis. The associations between the expressions of these miRNAs and patients' clinical features could be central to the progression of advanced LSCC. Overall, our study provides important insights into the co-expression and regulatory networks of miR-93-5p, miR-145-5p, and miR-210-3p in advanced laryngeal carcinoma, underscoring their potential as therapeutic targets or biomarkers for this aggressive cancer. Further research is needed to elucidate the specific mechanisms through which these miRNAs contribute to the pathogenesis and progression of laryngeal carcinoma.
Collapse
Affiliation(s)
- Silva Kyurkchiyan
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Veronika Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Gergana Stancheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Iglika Stancheva
- Department of Ear, Nose and Throat Diseases, University Multiprofile Hospital for Active Treatment “Tsaritsa Yoanna - ISUL,” Medical University of Sofia, Sofia, Bulgaria
| | - Stoyan Dimitrov
- Department of Ear, Nose and Throat Diseases, University Multiprofile Hospital for Active Treatment “Tsaritsa Yoanna - ISUL,” Medical University of Sofia, Sofia, Bulgaria
| | - Venera Dobriyanova
- Department of Ear, Nose and Throat Diseases, University Multiprofile Hospital for Active Treatment “Tsaritsa Yoanna - ISUL,” Medical University of Sofia, Sofia, Bulgaria
| | - Diana Popova
- Department of Ear, Nose and Throat Diseases, University Multiprofile Hospital for Active Treatment “Tsaritsa Yoanna - ISUL,” Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Todor M Popov
- Department of Ear, Nose and Throat Diseases, University Multiprofile Hospital for Active Treatment “Tsaritsa Yoanna - ISUL,” Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
6
|
Wang P, Zhang XP, Liu F, Wang W. Progressive Deactivation of Hydroxylases Controls Hypoxia-Inducible Factor-1α-Coordinated Cellular Adaptation to Graded Hypoxia. RESEARCH (WASHINGTON, D.C.) 2025; 8:0651. [PMID: 40171017 PMCID: PMC11960303 DOI: 10.34133/research.0651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 04/03/2025]
Abstract
Graded hypoxia is a common microenvironment in malignant solid tumors. As a central regulator in the hypoxic response, hypoxia-inducible factor-1 (HIF-1) can induce multiple cellular processes including glycolysis, angiogenesis, and necroptosis. How cells exploit the HIF-1 pathway to coordinate different processes to survive hypoxia remains unclear. We developed an integrated model of the HIF-1α network to elucidate the mechanism of cellular adaptation to hypoxia. By numerical simulations and bifurcation analysis, we found that HIF-1α is progressively activated with worsening hypoxia due to the sequential deactivation of the hydroxylases prolyl hydroxylase domain enzymes and factor inhibiting HIF (FIH). Bistable switches control the activation and deactivation processes. As a result, glycolysis, immunosuppression, angiogenesis, and necroptosis are orderly elicited in aggravating hypoxia. To avoid the excessive accumulation of lactic acid during glycolysis, HIF-1α induces monocarboxylate transporter and carbonic anhydrase 9 sequentially to export intracellular hydrogen ions, facilitating tumor cell survival. HIF-1α-induced miR-182 facilitates vascular endothelial growth factor production to promote angiogenesis under moderate hypoxia. The imbalance between accumulation and removal of lactic acid in severe hypoxia may result in acidosis and induce cell necroptosis. In addition, the deactivation of FIH results in the destabilization of HIF-1α in anoxia. Collectively, HIF-1α orchestrates the adaptation of tumor cells to hypoxia by selectively inducing its targets according to the severity of hypoxia. Our work may provide clues for tumor therapy by targeting the HIF-1 pathway.
Collapse
Affiliation(s)
- Ping Wang
- Kuang Yaming Honors School,
Nanjing University, Nanjing 210023, China
- Key Laboratory of High Performance Scientific Computation, School of Science,
Xihua University, Chengdu 610039, China
| | - Xiao-Peng Zhang
- Kuang Yaming Honors School,
Nanjing University, Nanjing 210023, China
- Institute of Brain Sciences,
Nanjing University, Nanjing 210093, China
| | - Feng Liu
- Institute of Brain Sciences,
Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructures and Department of Physics,
Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Institute of Brain Sciences,
Nanjing University, Nanjing 210093, China
- National Laboratory of Solid State Microstructures and Department of Physics,
Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Yan D, He Q, Wang C, Li T, Yi X, Yu H, Wu W, Yang H, Wang W, Ma L. miR-135b: A Potential Biomarker for Pathological Diagnosis and Biological Therapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70002. [PMID: 40034060 DOI: 10.1002/wrna.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs found in eukaryotes with post-transcriptional regulatory functions. A variety of miRNAs is differentially expressed in cancer tissues and thus can be used as biomarkers. microRNA-135b-5p (miR-135b) has been shown to be involved in the pathological processes of a variety of neoplastic and non-neoplastic diseases. Under different conditions, miR-135b has different tumor suppressive and carcinogenic effects. miR-135b regulates the development of cancer, including metabolism, proliferation, apoptosis, invasion, fibrosis, angiogenesis, immunomodulation, and drug resistance. miR-135b can be used as a new biomarker for tumor diagnosis and prognosis, which has the potential for clinical guidance. This article reviews the relevant research on miR-135B in the field of tumors, including the biogenesis background of miR-135b, the expression of miR-135b in tumors, and the related targets and signaling pathways of miR-135b mediating tumor progression in order to sort out and explore the clinical transformation value of miR-135b.
Collapse
Affiliation(s)
- Dezhi Yan
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunjian Wang
- Department of Hematology, Peking University International Hospital, Beijing, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xueping Yi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Haisheng Yu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Wu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hanyun Yang
- Faculty of Health Sciences for Occupational Therapy, Curtin University, West Australia, Australia
| | - Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Liang Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
John A, Almulla N, Elboughdiri N, Gacem A, Yadav KK, Abass AM, Alam MW, Wani AW, Bashir SM, Rab SO, Kumar A, Wani AK. Non-coding RNAs in Cancer: Mechanistic insights and therapeutic implications. Pathol Res Pract 2025; 266:155745. [PMID: 39637712 DOI: 10.1016/j.prp.2024.155745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Non-coding RNAs have gathered significant attention for their unique roles in biological regulation. Across a broad spectrum of developmental processes and diseases, particularly in human malignancies, ncRNAs play pivotal roles in regulatory mechanisms. MicroRNAs, long noncoding RNAs, and small nucleolar RNAs stand out among the diverse forms of ncRNAs that have been implicated in cancer. MiRNAs, classified as short non-coding RNAs, modulate gene expression by binding to messenger RNA molecules, thereby inhibiting their translation. Altered miRNA expression has been associated with the onset and progression of various malignancies, including lung, breast, and prostate cancer. In contrast, lncRNAs, characterized as longer ncRNAs, exert control over gene expression through various mechanisms, such as chromatin remodelling and gene silencing. This review offers a comprehensive examination of the numerous ncRNAs that have emerged as crucial regulators of gene expression, playing implicated roles in the initiation and progression of diverse cancers.
Collapse
Affiliation(s)
- Arjumand John
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Aout, Skikda 1955, Algeria
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai - 602105, Tamil Nadu, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq
| | - Anass M Abass
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia.
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, Punjab 144411, India
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, Abha, Saudi Arabia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia; Department of Technical Sciences, Western Caspian University, Baku, Azerbaijan; Department of Mechanical Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India.
| |
Collapse
|
9
|
McDermott A, Tavassoli A. Hypoxia-inducible transcription factors: architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2025; 16:86-117. [PMID: 39470609 PMCID: PMC11970764 DOI: 10.1080/21541264.2024.2417475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play a pivotal role as master regulators of tumor survival and growth, controlling a wide array of cellular processes in response to hypoxic stress. Clinical data correlates upregulated HIF-1 and HIF-2 levels with an aggressive tumor phenotype and poor patient outcome. Despite extensive validation as a target in cancer, pharmaceutical targeting of HIFs, particularly the interaction between α and βsubunits that forms the active transcription factor, has proved challenging. Nonetheless, many indirect inhibitors of HIFs have been identified, targeting diverse parts of this pathway. Significant strides have also been made in the development of direct inhibitors of HIF-2, exemplified by the FDA approval of Belzutifan for the treatment of metastatic clear cell renal carcinoma. While efforts to target HIF-1 using various therapeutic modalities have shown promise, no clinical candidates have yet emerged. This review aims to provide insights into the intricate and extensive role played by HIFs in cancer, and the ongoing efforts to develop therapeutic agents against this target.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Liu C, Qu D, Li C, Pu W, Li J, Cai L. miR-448-3p/miR-1264-3p Participates in Intermittent Hypoxic Response in Hippocampus by Regulating Fam76b/hnRNPA2B1. CNS Neurosci Ther 2025; 31:e70239. [PMID: 39912396 PMCID: PMC11799915 DOI: 10.1111/cns.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/10/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Intermittent hypoxia (IH), as a key pathogenic factor of obstructive sleep apnea syndrome (OSAS), can cause many diseases, such as increased inflammation and oxidative stress, diabetes, cardiovascular disease, and Alzheimer's disease (AD). The response of cells to hypoxia involves multiple levels of regulatory mechanisms, including transcriptional regulation of gene expression, regulation of mRNA stability, post-transcriptional regulation, and post-translational modification regulation. AIMS The regulation of miRNA and alternative splicing (AS) in neuronal response to intermittent hypoxia deserve further study. MATERIALS & METHODS By establishing a mouse model of intermittent hypoxia, we conducted functional studies on key miRNAs and splicing factor using methods such as miRNA sequencing, bioinformatics, and molecular biology. RESULTS In the mouse hippocampus, intermittent hypoxia altered the expression of many miRNAs, with miR-448-3p and miR-1264-3p changing over the course of more than three time periods. Interestingly, the expression of Fam76b, the common target gene of these two miRNAs, also changed under intermittent hypoxia. Further studies showed that Fam76b may regulate the ratio of Nbr1 and Dph3 transcripts in response to hypoxia by affecting the localization of hnRNPA2B1 protein within cells. DISCUSSION Research into intermittent hypoxia-induced disorders, including Alzheimer's disease and other neurodegenerative diseases, might benefit from a better understanding of the regulatory mechanisms of miRNA and alternative splicing in hypoxic response at the animal and cell levels. CONCLUSION This study demonstrates that intermittent hypoxia alters the expression of miR-448-3p and miR-1264-3p, as well as the localization of the splicing factor hnRNPA2B1 in the cell nucleus. These findings enhance our understanding of the molecular mechanisms of neuronal responses to hypoxia and hold potential implications for treating hypoxia-related diseases like Alzheimer's disease.
Collapse
Affiliation(s)
- Chuncheng Liu
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| | - Donghui Qu
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| | - Chaoxun Li
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
| | - Wenhua Pu
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| | - Jun Li
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| | - Lu Cai
- School of Life Science and TechnologyInner Mongolia University of Science & TechnologyBaotouChina
- Inner Mongolia Key Laboratory of Life Health and BioinformaticsBaotouChina
| |
Collapse
|
11
|
Xie D, Li G, Zheng Z, Zhang X, Wang S, Jiang B, Li X, Wang X, Wu G. The molecular code of kidney cancer: A path of discovery for gene mutation and precision therapy. Mol Aspects Med 2025; 101:101335. [PMID: 39746268 DOI: 10.1016/j.mam.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Renal cell carcinoma (RCC) is a malignant tumor with highly heterogeneous and complex molecular mechanisms. Through systematic analysis of TCGA, COSMIC and other databases, 24 mutated genes closely related to RCC were screened, including VHL, PBRM1, BAP1 and SETD2, which play key roles in signaling pathway transduction, chromatin remodeling and DNA repair. The PI3K/AKT/mTOR signaling pathway is particularly important in the pathogenesis of RCC. Mutations in genes such as PIK3CA, MTOR and PTEN are closely associated with metabolic abnormalities and tumor cell proliferation. Clinically, mTOR inhibitors and VEGF-targeted drugs have shown significant efficacy in personalized therapy. Abnormal regulation of metabolic reprogramming, especially glycolysis and glutamine metabolic pathways, provides tumor cells with continuous energy supply and survival advantages, and GLS1 inhibitors have shown promising results in preclinical studies. This paper also explores the potential of immune checkpoint inhibitors in combination with other targeted drugs, as well as the promising application of nanotechnology in drug delivery and targeted therapy. In addition, unique molecular mechanisms are revealed and individualized therapeutic strategies are explored for specific subtypes such as TFE3, TFEB rearrangement type and SDHB mutant type. The review summarizes the common gene mutations in RCC and their molecular mechanisms, emphasizes their important roles in tumor diagnosis, treatment and prognosis, and looks forward to the application prospects of multi-pathway targeted therapy, metabolic targeted therapy, immunotherapy and nanotechnology in RCC treatment, providing theoretical support and clinical guidance for individualized treatment and new drug development.
Collapse
Affiliation(s)
- Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Zunwen Zheng
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China.
| |
Collapse
|
12
|
Shi Y, Gilkes DM. HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects. Cell Mol Life Sci 2025; 82:44. [PMID: 39825916 PMCID: PMC11741981 DOI: 10.1007/s00018-024-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance. HIF-1 and HIF-2 are well known and widely described. Although these proteins share a high degree of homology, HIF-1 and HIF-2 have non-redundant roles in cancer. In this review, we summarize the similarities and differences between HIF-1α and HIF-2α in their structure, expression, and DNA binding. We also discuss the canonical and non-canonical regulation of HIF-1α and HIF-2α under hypoxic and normal conditions. Finally, we outline recent strategies aimed at targeting HIF-1α and/or HIF-2α.
Collapse
Affiliation(s)
- Yi Shi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Sun L, Huang N, Yang C, Feng J, Chen H, Feng W, Gao Z, Wang B, Wang J. Hirudin-Based Treatment of Diabetes-Induced Erectile Dysfunction Through Inhibition of the HIF-1α to Regulate RhoA/ROCK Signaling Pathway: An In Vivo Animal Experiment. Am J Mens Health 2025; 19:15579883241310763. [PMID: 39936394 PMCID: PMC11815967 DOI: 10.1177/15579883241310763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 02/13/2025] Open
Abstract
Diabetes-induced erectile dysfunction (DIED) is a type of refractory erectile dysfunction which can be clinically treated using the traditional Chinese medicine leech whose main ingredient is hirudin. Oxidative stress can damage vascular endothelial cells, affect blood circulation, and induce fibrosis of smooth muscle cells. This study assessed the efficacy of hirudin in treating DIED before exploring its potential mechanism of action. DIED was induced in rats using streptozotocin, while experimental apomorphine was used to screen for erectile dysfunction models. The rats were then divided into four groups: a blank control group (NC group), a model group (M group), a hirudin group (H group), and an inhibitor group (YC group). After 2 weeks, the serum levels of malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) were determined. The histological features and HIF-1α/RhoA/ROCK signaling pathway-related proteins of the penile corpus cavernosum were detected. Erectile function improved in the H and YC groups without significantly affecting body weight and blood glucose levels, with histopathological analysis also showing improvement in penile structure in these groups. In addition, the expression of HIF-1α/RhoA/ROCK signaling pathway-related proteins was lower in the penile cavernous tissue of rats in the H and YC groups (p < .05), with the serum levels of NO and SOD also being higher in these groups (p < .05). The serum level of MDA decreased in the YC and H groups (p < .05). In this study, only animal experiments were conducted to investigate the regulation of Rho/ROCK pathway by HIF-1α. Cellular studies of the underlying mechanisms are lacking.
Collapse
Affiliation(s)
- Longji Sun
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Nianwen Huang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Yang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junlong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Chen
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weidong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zixiang Gao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Ntekoumes D, Song J, Liu H, Amelung C, Guan Y, Gerecht S. Acute Three-Dimensional Hypoxia Regulates Angiogenesis. Adv Healthc Mater 2025; 14:e2403860. [PMID: 39623803 PMCID: PMC11729260 DOI: 10.1002/adhm.202403860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Indexed: 01/15/2025]
Abstract
Hypoxia elicits a multitude of tissue responses depending on the severity and duration of the exposure. While chronic hypoxia is shown to impact development, regeneration, and cancer, the understanding of the threats of acute (i.e., short-term) hypoxia is limited mainly due to its transient nature. Here, a novel gelatin-dextran (Gel-Dex) hydrogel is established that decouples hydrogel formation and oxygen consumption and thus facilitates 3D sprouting from endothelial spheroids and, subsequently, induces hypoxia "on-demand." The Gel-Dex platform rapidly achieves acute moderate hypoxic conditions without compromising its mechanical properties. Acute exposure to hypoxia leads to increased endothelial cell migration and proliferation, promoting the total length and number of vascular sprouts. This work finds that the enhanced angiogenic response is mediated by reactive oxygen species, independently of hypoxia-inducible factors. Reactive oxygen species-dependent matrix metalloproteinases activity mediated angiogenic sprouting is observed following acute hypoxia. Overall, the Gel-Dex hydrogel offers a novel platform to study how "on-demand" acute moderate hypoxia impacts angiogenesis, with broad applicability to the development of novel sensing technologies.
Collapse
Affiliation(s)
- Dimitris Ntekoumes
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Haohao Liu
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Connor Amelung
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Ya Guan
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| |
Collapse
|
15
|
Pawlik MT, Rinneberg G, Koch A, Meyringer H, Loew TH, Kjellberg A. Is there a rationale for hyperbaric oxygen therapy in the patients with Post COVID syndrome? : A critical review. Eur Arch Psychiatry Clin Neurosci 2024; 274:1797-1817. [PMID: 39545965 PMCID: PMC11579208 DOI: 10.1007/s00406-024-01911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The SARS-CoV-2 pandemic has resulted in 762 million infections worldwide from 2020 to date, of which approximately ten percent are suffering from the effects after infection in 2019 (COVID-19) [1, 40]. In Germany, it is now assumed that at least one million people suffer from post-COVID condition with long-term consequences. These have been previously reported in diseases like Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS). Symptoms show a changing variability and recent surveys in the COVID context indicate that 10-30 % of outpatients, 50 to 70% of hospitalised patients suffer from sequelae. Recent data suggest that only 13% of all ill people were completely free of symptoms after recovery [3, 9]. Current hypotheses consider chronic inflammation, mitochondrial dysfunction, latent viral persistence, autoimmunity, changes of the human microbiome or multilocular sequelae in various organ system after infection. Hyperbaric oxygen therapy (HBOT) is applied since 1957 for heart surgery, scuba dive accidents, CO intoxication, air embolisms and infections with anaerobic pathogens. Under hyperbaric pressure, oxygen is physically dissolved in the blood in higher concentrations and reaches levels four times higher than under normobaric oxygen application. Moreover, the alternation of hyperoxia and normoxia induces a variety of processes at the cellular level, which improves oxygen supply in areas of locoregional hypoxia. Numerous target gene effects on new vessel formation, anti-inflammatory and anti-oedematous effects have been demonstrated [74]. The provision of intermittently high, local oxygen concentrations increases repair and regeneration processes and normalises the predominance of hyperinflammation. At present time only one prospective, randomized and placebo-controlled study exists with positive effects on global cognitive function, attention and executive function, psychiatric symptoms and pain interference. In conclusion, up to this date HBO is the only scientifically proven treatment in a prospective randomized controlled trial to be effective for cognitive improvement, regeneration of brain network and improvement of cardiac function. HBOT may have not only theoretical but also potential impact on targets of current pathophysiology of Post COVID condition, which warrants further scientific studies in patients.
Collapse
Affiliation(s)
- M T Pawlik
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany.
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany.
| | - G Rinneberg
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - A Koch
- Institute of Experimental Medicine, Christian-Albrechts-University of Kiel c/o German Naval Medical Institute, Kronshagen, Germany
| | - H Meyringer
- Department of Anesthesiology and Intensive Care Medicine, Caritas-Hospital St. Joseph, University of Regensburg, Regensburg, Germany
| | - T H Loew
- Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - A Kjellberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Perioperative Medicine and Intensive Care, Medical Unit Intensive Care and Thoracic surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
17
|
Cecchi R, Camatti J, Bonasoni MP, Clemente GM, Nicolì S, Campanini N, Mozzoni P. HIF-1α expression by immunohistochemistry and mRNA-210 levels by real time polymerase chain reaction in post-mortem cardiac tissues: A pilot study. Leg Med (Tokyo) 2024; 71:102508. [PMID: 39137459 DOI: 10.1016/j.legalmed.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION The postmortem diagnosis of acute myocardial ischemia (AMI) represents a challenging issue in forensic practice. Immunohistochemical studies and gene expression studies are becoming a promising field of research in forensic pathology. The present study aims to evaluate HIF-1α expression through immunohistochemistry (IHC), and mRNA-210 level using real-time polymerase chain reaction (RT-PCR), in order to define if HIF-1α and mRNA-210 in post-mortem myocardium could be adopted in the diagnosis of AMI. MATERIALS AND METHODS Thirty-five deceased individuals, who underwent forensic autopsy at the Legal Medicine Service of the University of Parma, between 2010 and 2018, were investigated. The cohort was divided into two groups according to the cause of death (sudden deaths caused by AMI vs control cases). Cardiac specimens were collected during autopsy, then samples were processed for morphological evaluation using haematoxylin-eosin staining, for IHC, and for RT-PCR. HIF-1α expression and mRNA-210 levels were investigated. RESULTS Statistical evaluation demonstrated statistically significant differences in terms of number of IHC positive vessels, leukocytes, and cardiomyocytes between the two groups. Moreover, in the majority of cases, immunostaining positivity was observed only in myocardial and subendocardial samples. With reference to mRNA-210, the difference between the two groups proved to be statistically significant. CONCLUSIONS The present study indicates that HIF-1α and mRNA-210 in post-mortem cardiac specimens could represent appropriate biomarkers in the diagnosis of AMI. The current study was primarily limited by the scarcity of the cohort, so further research is required to confirm these preliminary observations.
Collapse
|
18
|
Escobar Moreno JD, Fajardo Castiblanco JL, Riaño Rodriguez LC, Barrios Ospina PM, Zabala Bello CA, Muñoz Roa EN, Rivera Escobar HM. miRNAs Involvement in Modulating Signalling Pathways Involved in Ros-Mediated Oxidative Stress in Melanoma. Antioxidants (Basel) 2024; 13:1326. [PMID: 39594467 PMCID: PMC11591318 DOI: 10.3390/antiox13111326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/28/2024] Open
Abstract
Reactive oxygen species (ROS) are intermediates in oxidation-reduction reactions with the capacity to modify biomolecules and temporarily or permanently alter cell behaviour through signalling pathways under physiological and pathophysiological conditions where there is an imbalance between oxidative factors and the antioxidant response of the organism, a phenomenon known as oxidative stress. Evidence suggests that the differential modulation of ROS-mediated oxidative stress occurs in the pathogenesis and progression of melanoma, and that this imbalance in redox homeostasis appears to be functionally linked to microRNA (miRNA o miRs)-mediated non-mutational epigenetic reprogramming involving genes and transcription factors. The relationship between ROS-mediated stress control, tumour microenvironment, and miRNA expression in melanoma is not fully understood. The aim of this review is to analyse the involvement of miRNAs in the modulation of the signalling pathways involved in ROS-mediated oxidative stress in melanoma. It is hoped that these considerations will contribute to the understanding of the mechanisms associated with a potential epigenetic network regulation, where the modulation of oxidative stress is consolidated as a common factor in melanoma, and therefore, a potential footprint poorly documented.
Collapse
Affiliation(s)
- José Daniel Escobar Moreno
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
| | - José Luis Fajardo Castiblanco
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
| | - Laura Camila Riaño Rodriguez
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
| | - Paula Marcela Barrios Ospina
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
| | - Carlos Andrés Zabala Bello
- Laboratory of Animal Cytogenetics, Faculty of Veterinary Medicine and Animal Science, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Esther Natalia Muñoz Roa
- PhD Program in Biological Sciences, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Hernán Mauricio Rivera Escobar
- Semillero de Investigación de Medicina (SIMED), Basic and Translational Research Group (GIBAT), Faculty of Medicine, Universidad El Bosque, Bogotá 110121, Colombia; (J.D.E.M.); (J.L.F.C.); (L.C.R.R.); (P.M.B.O.)
- Department of Interdisciplinary Studies—DEI, Instituto de Educación a Distancia—IDEAD, BIOPESA Research Group, University of Tolima, Ibagué 730006, Colombia
| |
Collapse
|
19
|
Zhang L, Qiang W, Li MQ, Wang SJ, Jia W, Wang R, Bai SW, Wang QF, Wang HY. A drug delivery system of HIF-1α siRNA nanoparticles loaded by mesenchymal stem cells on choroidal neovascularization. Nanomedicine (Lond) 2024; 19:2171-2185. [PMID: 39225143 PMCID: PMC11485800 DOI: 10.1080/17435889.2024.2393075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: To assess mesenchymal stem cells (MSCs) as carriers for HIF-1α siRNA-loaded nanoparticles (NPs) for targeted therapy of experimental choroidal neovascularization (CNV).Materials & methods: A poly (lactic-co-glycolic acid) (PLGA)-core/lipid-shell hybrid NP was designed. The transfection efficacy of MSCs with the hybrid NPs was assessed. Mice were intravenously injected with MSCs after laser photocoagulation and CNV was assessed at 7 days post-injection.Results & conclusion: The transfection efficiency of hybrid NPs into MSCs was 72.7%. HIF-1α mRNA expression in 661w cells co-cultured with MSC-hybrid-siRNA NPs was significantly lower. Intravenous delivery of MSC-hybrid-siRNA NPs greatly reduced CNV area and length. Intravenous injection of MSC-hybrid-siRNA NPs achieved therapeutic efficacy in reducing CNV area. The MSC-mediated homing enabled targeted inhibition of ocular angiogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Wei Qiang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Mu-Qiong Li
- Department of Pharmaceutical Chemistry & Analysis Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Si-Jia Wang
- Institute of Biomedical Photonics & Sensors, School of Life Science & Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi Province, China
| | - Wei Jia
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Ru Wang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Shu-Wei Bai
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| | - Qian-Feng Wang
- Medical College of Optometry & Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong Province, China
| | - Hai-Yan Wang
- Xi'an Key Laboratory of Digital Medical Technology of Ophthalmologic Imaging, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi, China
| |
Collapse
|
20
|
Ariyeloye S, Kämmerer S, Klapproth E, Wielockx B, El-Armouche A. Intertwined regulators: hypoxia pathway proteins, microRNAs, and phosphodiesterases in the control of steroidogenesis. Pflugers Arch 2024; 476:1383-1398. [PMID: 38355819 PMCID: PMC11310285 DOI: 10.1007/s00424-024-02921-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Oxygen sensing is of paramount importance for maintaining cellular and systemic homeostasis. In response to diminished oxygen levels, the hypoxia-inducible factors (HIFs) orchestrate various biological processes. These pivotal transcription factors have been identified as key regulators of several biological events. Notably, extensive research from our group and others has demonstrated that HIF1α exerts an inverse regulatory effect on steroidogenesis, leading to the suppression of crucial steroidogenic enzyme expression and a subsequent decrease in steroid levels. These steroid hormones occupy pivotal roles in governing a myriad of physiological processes. Substantial or prolonged fluctuations in steroid levels carry detrimental consequences across multiple organ systems and underlie various pathological conditions, including metabolic and immune disorders. MicroRNAs serve as potent mediators of multifaceted gene regulatory mechanisms, acting as influential epigenetic regulators that modulate a broad spectrum of gene expressions. Concomitantly, phosphodiesterases (PDEs) play a crucial role in governing signal transduction. PDEs meticulously manage intracellular levels of both cAMP and cGMP, along with their respective signaling pathways and downstream targets. Intriguingly, an intricate interplay seems to exist between hypoxia signaling, microRNAs, and PDEs in the regulation of steroidogenesis. This review highlights recent advances in our understanding of the role of microRNAs during hypoxia-driven processes, including steroidogenesis, as well as the possibilities that exist in the application of HIF prolyl hydroxylase (PHD) inhibitors for the modulation of steroidogenesis.
Collapse
Affiliation(s)
- Stephen Ariyeloye
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Erik Klapproth
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
21
|
Gola C, Maniscalco L, Iussich S, Morello E, Olimpo M, Martignani E, Accornero P, Giacobino D, Mazzone E, Modesto P, Varello K, Aresu L, De Maria R. Hypoxia-associated markers in the prognosis of oral canine melanoma. Vet Pathol 2024; 61:721-731. [PMID: 38613423 DOI: 10.1177/03009858241244853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Canine oral malignant melanoma (COMM) is the most common neoplasm in the oral cavity characterized by local invasiveness and high metastatic potential. Hypoxia represents a crucial feature of the solid tumor microenvironment promoting cancer progression and drug resistance. Hypoxia-inducible factor-1α (HIF-1α) and its downstream effectors, vascular endothelial growth factor A (VEGF-A), glucose transporter isoform 1 (GLUT1), C-X-C chemokine receptor type 4 (CXCR4), and carbonic anhydrase IX (CAIX), are the main regulators of the adaptive response to low oxygen availability. The prognostic value of these markers was evaluated in 36 COMMs using immunohistochemistry. In addition, the effects of cobalt chloride-mediated hypoxia were evaluated in 1 primary COMM cell line. HIF-1α expression was observed in the nucleus, and this localization correlated with the presence or enhanced expression of HIF-1α-regulated genes at the protein level. Multivariate analysis revealed that in dogs given chondroitin sulfate proteoglycan-4 (CSPG4) DNA vaccine, COMMs expressing HIF-1α, VEGF-A, and CXCR4 were associated with shorter disease-free intervals (DFI) compared with tumors that were negative for these markers (P = .03), suggesting hypoxia can influence immunotherapy response. Western blotting showed that, under chemically induced hypoxia, COMM cells accumulate HIF-1α and smaller amounts of CAIX. HIF-1α induction and stabilization triggered by hypoxia was corroborated by immunofluorescence, showing its nuclear translocation. These findings reinforce the role of an hypoxic microenvironment in tumor progression and patient outcome in COMM, as previously established in several human and canine cancers. In addition, hypoxic markers may represent promising prognostic markers, highlighting opportunities for their use in therapeutic strategies for COMMs.
Collapse
Affiliation(s)
- Cecilia Gola
- University of Surrey, Guildford, UK
- University of Turin, Grugliasco, Turin, Italy
| | | | | | | | | | | | | | | | | | - Paola Modesto
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Katia Varello
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Luca Aresu
- University of Turin, Grugliasco, Turin, Italy
| | | |
Collapse
|
22
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
23
|
Surinkaew S, Sun D, Kooltheat N, Boonhok R, Somsak V, Kumphune S. The cytoprotective effect of Gymnema inodorum leaf extract against hypoxia-induced cardiomyocytes injury. Heliyon 2024; 10:e35846. [PMID: 39170335 PMCID: PMC11337021 DOI: 10.1016/j.heliyon.2024.e35846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Ischemic heart disease stands out as a major global contributor to mortality, with the initiation of hypoxia, marked by reduced oxygen availability, disrupting the balance of reactive oxygen species (ROS), leading to cellular injury. Exploring antioxidants derived from medicinal plants is becoming more interesting as a potential alternative treatment, especially for mitigating myocardial injury. Thus, this study aimed to assess the cytoprotective efficacy of Gymnema inodorum leaf extract (GIE) in a rat cardiac myoblast, H9c2, subjected to an in vitro hypoxia. The cell viability, intracellular ROS production and the expression of inflammatory cytokines were quantified, and hypoxia-induced cell morphology changes were observed using confocal fluorescence microscopy. The results showed that GIE notably enhanced cell viability, preserving membrane integrity, when compared with the hypoxic group. Remarkably, GIE significantly reduced hypoxia-induced intracellular ROS production, attributable to its inherent antioxidant properties. Furthermore, GIE significantly reduced interleukin (IL)-1β, interleukin (IL)-6 mRNA expression level and tended to reduce tumor necrosis factor-α (TNF-α) mRNA expression. In conclusion, these findings underscore the potential of GIE in mitigating hypoxia-induced myocardial injury, highlighting its robust antioxidant and anti-inflammatory attributes.
Collapse
Affiliation(s)
- Sirirat Surinkaew
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Dali Sun
- Department of Electrical and Computer Engineering, Ritchie School of Engineering and Computer Science, University of Denver, Colorado, 80208, USA
| | - Nateelak Kooltheat
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Hematology and Transfusion Science Research Center, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rachasak Boonhok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sarawut Kumphune
- Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
24
|
Litwiniuk-Kosmala M, Makuszewska M, Niemczyk K, Bartoszewicz R, Wojtas B, Gielniewski B. Small RNA Deep Sequencing Uncovers microRNAs Associated with Hearing Loss in Vestibular Schwannoma. Laryngoscope 2024; 134:3778-3785. [PMID: 38459949 DOI: 10.1002/lary.31385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/24/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE To analyze the correlation between the miRNA expression profile in vestibular schwannoma (VS) tumor tissue and preoperative patient's hearing status, using the RNA-seq technique. METHODS Nineteen tumor samples were collected from patients operated for VS in a Tertiary Academic Center. Samples were classified into "good hearing" and "poor hearing" study group based on the results of audiometric studies. Tumor miRNA expression was analyzed using high-throughput RNA sequencing (RNA-seq) technique, using NovaSeq 6000 Illumina system. Functional analysis was performed with the use of DIANA miRpath v. 4.0 online tool. RESULTS The most overexpressed miRNAs in VS samples derived from poor hearing patients belonged to miR 449a/b, miR 15/16-1, and hypoxamiR families. Functional analysis showed that the differentially expressed miRNAs regulate cellular pathways associated with hypoxia, adherence junction functions, and signaling pathways such as Hippo, FOXO, MAPK, and Wnt signaling pathway. CONCLUSION Our study identified a specific miRNA expression profile in VS tumor tissues that correlates with hearing impairment. These results suggest potential new molecular mechanisms related to hearing loss in the course of VS. LEVEL OF EVIDENCE 3 (cohort study) Laryngoscope, 134:3778-3785, 2024.
Collapse
Affiliation(s)
| | - Maria Makuszewska
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Kazimierz Niemczyk
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Robert Bartoszewicz
- Department of Otorhinolaryngology, Head and Neck Surgery, Warsaw Medical University, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
25
|
Kyurkchiyan SG, Stancheva G, Petkova V, Hadzhiev Y, Dobriyanova V, Popova D, Kaneva R, Popov TM. Exploration of the association between HIF3α mRNA and lncRNA MALAT1 in laryngeal squamous cell carcinoma by correlation analysis. Oncol Lett 2024; 28:292. [PMID: 38737978 PMCID: PMC11082855 DOI: 10.3892/ol.2024.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/28/2024] [Indexed: 05/14/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a significant global health burden, for which there has been limited evidence of improved survival rates. Although the roles of hypoxia-inducible factor (HIF)1α and HIF2α have been well documented in hypoxia, the involvement of HIF3α, particularly in LSCC, has been inadequately explored. The present study aimed to investigate the correlation between HIFα subunits and the hypoxia-related long noncoding RNAs (lncRNAs) MALAT1 and HOTAIR in 63 patients diagnosed with LSCC. Total RNA was extracted from fresh-frozen laryngeal tumor and adjacent normal tissues, and was subjected to reverse transcription-quantitative PCR for target detection. Statistical analyses were conducted using SPSS software, with significance set at P<0.05. The present study is the first, to the best of our knowledge, to report a positive moderate monotonic correlation (rs=0.347) and moderately strong positive linear correlation (r=0.630) between HIF3α mRNA and lncRNA MALAT1 in LSCC. Regression analysis revealed a direct association between 39.6% of both variables. Additionally, a positive correlation was observed between lncRNAs MALAT1 and HOTAIR (rs=0.353); HIF2α mRNA and lncRNA MALAT1 (rs=0.431); HIF3α mRNA and lncRNA HOTAIR (rs=0.279); and HIF3α mRNA and HIF2α mRNA (rs=0.285). Notably, a significant negative correlation (rs=-0.341) was detected between HIF3α mRNA and HIF1α mRNA, potentially indicative of the HIF switch or negative regulation. In addition, the present study investigated the association between HIFα subunits and the clinicopathological characteristics of patients. The results revealed a notable association between HIF1α transcript levels and the location of LSCC; specifically, subglottic tumors exhibited elevated HIF1α levels compared with glottic and supraglottic LSCC. Furthermore, a significant association was identified between HIF3α transcript levels and patient age (P=0.032) and positive family history (P=0.047). In conclusion, the present findings suggested a pivotal role for HIF3α in LSCC development, potentially involving direct regulation of lncRNA MALAT1. However, further research is warranted to elucidate its precise mechanisms.
Collapse
Affiliation(s)
- Silva Garo Kyurkchiyan
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| | - Gergana Stancheva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| | - Veronika Petkova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| | - Yuliyan Hadzhiev
- Department of Ear and Nose Treatment, UMHAT ‘Tsaritsa Yoanna-ISUL’, Medical University, 1537 Sofia, Bulgaria
| | - Venera Dobriyanova
- Department of Ear and Nose Treatment, UMHAT ‘Tsaritsa Yoanna-ISUL’, Medical University, 1537 Sofia, Bulgaria
| | - Diana Popova
- Department of Ear and Nose Treatment, UMHAT ‘Tsaritsa Yoanna-ISUL’, Medical University, 1537 Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University, 1431 Sofia, Bulgaria
| | - Todor Miroslavov Popov
- Department of Ear and Nose Treatment, UMHAT ‘Tsaritsa Yoanna-ISUL’, Medical University, 1537 Sofia, Bulgaria
| |
Collapse
|
26
|
Arizmendi-Izazaga A, Navarro-Tito N, Jiménez-Wences H, Evaristo-Priego A, Priego-Hernández VD, Dircio-Maldonado R, Zacapala-Gómez AE, Mendoza-Catalán MÁ, Illades-Aguiar B, De Nova Ocampo MA, Salmerón-Bárcenas EG, Leyva-Vázquez MA, Ortiz-Ortiz J. Bioinformatics Analysis Reveals E6 and E7 of HPV 16 Regulate Metabolic Reprogramming in Cervical Cancer, Head and Neck Cancer, and Colorectal Cancer through the PHD2-VHL-CUL2-ELOC-HIF-1α Axis. Curr Issues Mol Biol 2024; 46:6199-6222. [PMID: 38921041 PMCID: PMC11202971 DOI: 10.3390/cimb46060370] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Human papillomavirus 16 (HPV 16) infection is associated with several types of cancer, such as head and neck, cervical, anal, and penile cancer. Its oncogenic potential is due to the ability of the E6 and E7 oncoproteins to promote alterations associated with cell transformation. HPV 16 E6 and E7 oncoproteins increase metabolic reprogramming, one of the hallmarks of cancer, by increasing the stability of hypoxia-induced factor 1 α (HIF-1α) and consequently increasing the expression levels of their target genes. In this report, by bioinformatic analysis, we show the possible effect of HPV 16 oncoproteins E6 and E7 on metabolic reprogramming in cancer through the E6-E7-PHD2-VHL-CUL2-ELOC-HIF-1α axis. We proposed that E6 and E7 interact with VHL, CUL2, and ELOC in forming the E3 ubiquitin ligase complex that ubiquitinates HIF-1α for degradation via the proteasome. Based on the information found in the databases, it is proposed that E6 interacts with VHL by blocking its interaction with HIF-1α. On the other hand, E7 interacts with CUL2 and ELOC, preventing their binding to VHL and RBX1, respectively. Consequently, HIF-1α is stabilized and binds with HIF-1β to form the active HIF1 complex that binds to hypoxia response elements (HREs), allowing the expression of genes related to energy metabolism. In addition, we suggest an effect of E6 and E7 at the level of PHD2, VHL, CUL2, and ELOC gene expression. Here, we propose some miRNAs targeting PHD2, VHL, CUL2, and ELOC mRNAs. The effect of E6 and E7 may be the non-hydroxylation and non-ubiquitination of HIF-1α, which may regulate metabolic processes involved in metabolic reprogramming in cancer upon stabilization, non-degradation, and translocation to the nucleus.
Collapse
Affiliation(s)
- Adán Arizmendi-Izazaga
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Adilene Evaristo-Priego
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Víctor Daniel Priego-Hernández
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Roberto Dircio-Maldonado
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| | - Ana Elvira Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Miguel Ángel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Mónica Ascención De Nova Ocampo
- Escuela Nacional de Medicina y Homeopatía, Programa Institucional de Biomedicina Molecular, Instituto Politécnico Nacional, Guillermo Massieu Helguera No. 239 Col. Fracc. La Escalera-Ticomán, Ciudad de Mexico C.P. 07320, Mexico;
| | - Eric Genaro Salmerón-Bárcenas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México C.P. 07360, Mexico;
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico; (A.A.-I.); (A.E.-P.); (V.D.P.-H.); (A.E.Z.-G.); (M.Á.M.-C.); (B.I.-A.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Colonia La Haciendita, Chilpancingo C.P. 39090, Guerrero, Mexico;
| |
Collapse
|
27
|
Si J, Guo J, Zhang X, Li W, Zhang S, Shang S, Zhang Q. Hypoxia-induced activation of HIF-1alpha/IL-1beta axis in microglia promotes glioma progression via NF-κB-mediated upregulation of heparanase expression. Biol Direct 2024; 19:45. [PMID: 38863009 PMCID: PMC11165725 DOI: 10.1186/s13062-024-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Glioma is a common tumor that occurs in the brain and spinal cord. Hypoxia is a crucial feature of the tumor microenvironment. Tumor-associated macrophages/microglia play a crucial role in the advancement of glioma. This study aims to illuminate the detailed mechanisms by which hypoxia regulates microglia and, consequently, influences the progression of glioma. METHODS The glioma cell viability and proliferation were analyzed by cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay. Wound healing assay and transwell assay were implemented to detect glioma cell migration and invasion, respectively. Enzyme-linked immunosorbent assay was conducted to detect protein levels in cell culture medium. The protein levels in glioma cells and tumor tissues were evaluated using western blot analysis. The histological morphology of tumor tissue was determined by hematoxylin-eosin staining. The protein expression in tumor tissues was determined using immunohistochemistry. Human glioma xenograft in nude mice was employed to test the influence of hypoxic microglia-derived interleukin-1beta (IL-1β) and heparanase (HPSE) on glioma growth in vivo. RESULTS Hypoxic HMC3 cells promoted proliferation, migration, and invasion abilities of U251 and U87 cells by secreting IL-1β, which was upregulated by hypoxia-induced activation of hypoxia inducible factor-1alpha (HIF-1α). Besides, IL-1β from HMC3 cells promoted glioma progression and caused activation of nuclear factor-κB (NF-κB) and upregulation of HPSE in vivo. We also confirmed that IL-1β facilitated HPSE expression in U251 and U87 cells by activating NF-κB. Hypoxic HMC3 cells-secreted IL-1β facilitated the proliferation, migration, and invasion of U251 and U87 cells via NF-κB-mediated upregulation of HPSE expression. Finally, we revealed that silencing HPSE curbed the proliferation and metastasis of glioma in mice. CONCLUSION Hypoxia-induced activation of HIF-1α/IL-1β axis in microglia promoted glioma progression via NF-κB-mediated upregulation of HPSE expression.
Collapse
Affiliation(s)
- Jinchao Si
- Department of Neurology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Jingya Guo
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Xu Zhang
- Department of General Practice, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, China
| | - Wei Li
- Department of Physiology, School of Basic Medicine, Zhengzhou University, Zhengzhou, 450066, China
| | - Shen Zhang
- Department of Neuroelectrophysiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Shuyu Shang
- Department of Physiology, Medical College, HuangHe Science and Technology University, Zhengzhou, 450064, China
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan Province, 450007, China.
| |
Collapse
|
28
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
29
|
Valencia-Cervantes J, Sierra-Vargas MP. Regulation of Cancer-Associated miRNAs Expression under Hypoxic Conditions. Anal Cell Pathol (Amst) 2024; 2024:5523283. [PMID: 38766303 PMCID: PMC11101257 DOI: 10.1155/2024/5523283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression. This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.
Collapse
Affiliation(s)
- Jesús Valencia-Cervantes
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Estancias Posdoctorales por México 2022 (1), Consejo Nacional de Humanidades, Ciencias y Tecnologías CONAHCYT, Mexico City 03940, Mexico
| | - Martha Patricia Sierra-Vargas
- Departamento de Investigación en Toxicología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
- Subdirección de Investigación Clínica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
30
|
Ammar AY, Minisy FM, Shawki HH, Mansour M, Hemeda SA, El Nahas AF, Sherif AH, Oishi H. Exposure to a Low-Oxygen Environment Causes Implantation Failure and Transcriptomic Shifts in Mouse Uteruses and Ovaries. Biomedicines 2024; 12:1016. [PMID: 38790978 PMCID: PMC11118081 DOI: 10.3390/biomedicines12051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Hypoxia is a condition in which tissues of the body do not receive sufficient amounts of oxygen supply. Numerous studies have elucidated the intricate roles of hypoxia and its involvement in both physiological and pathological conditions. This study aimed to clarify the impact of a forced low-oxygen environment in early pregnancy by exposing mice to low-oxygen conditions for 24-72 h after fertilization. The treatment resulted in the complete failure of blastocyst implantation, accompanied by vascular hyperpermeability in the uterus. A transcriptome analysis of the uterus revealed remarkable alterations in gene expression between control normoxic- and hypoxic-treatment groups. These alterations were characterized by the differentially expressed genes categorized into the immune responses and iron coordination. Furthermore, exposure to a low-oxygen environment caused apoptosis in the corpus luteum within the ovary and a reduction in progesterone secretion. Consequently, diminished plasma progesterone levels were considered to contribute to implantation failure in combination with the activation of the hypoxic pathway in the uterus. Additionally, previous studies have demonstrated the impact of hypoxic reactions on blastocyst development and the pre-implantation process in the endometrium. Our findings suggest that the corpus luteum exhibits elevated susceptibility to hypoxia, thereby elucidating a critical aspect of its physiological response.
Collapse
Affiliation(s)
- Asmaa Y. Ammar
- Biotechnology Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Kafrelsheikh 12619, Egypt;
- Genetics Laboratory, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21544, Egypt; (S.A.H.); (A.F.E.N.)
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| | - Fatma M. Minisy
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| | - Hossam H. Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| | | | - Shabaan A. Hemeda
- Genetics Laboratory, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21544, Egypt; (S.A.H.); (A.F.E.N.)
| | - Abeer F. El Nahas
- Genetics Laboratory, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21544, Egypt; (S.A.H.); (A.F.E.N.)
| | - Ahmed H. Sherif
- Fish Disease Department, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Kafrelsheikh 12619, Egypt
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan;
| |
Collapse
|
31
|
Garmaa G, Bunduc S, Kói T, Hegyi P, Csupor D, Ganbat D, Dembrovszky F, Meznerics FA, Nasirzadeh A, Barbagallo C, Kökény G. A Systematic Review and Meta-Analysis of microRNA Profiling Studies in Chronic Kidney Diseases. Noncoding RNA 2024; 10:30. [PMID: 38804362 PMCID: PMC11130806 DOI: 10.3390/ncrna10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasing health burden. Evidence suggests the importance of miRNA in diagnosing CKD, yet the reports are inconsistent. This study aimed to determine novel miRNA biomarkers and potential therapeutic targets from hypothesis-free miRNA profiling studies in human and murine CKDs. Comprehensive literature searches were conducted on five databases. Subgroup analyses of kidney diseases, sample types, disease stages, and species were conducted. A total of 38 human and 12 murine eligible studies were analyzed using Robust Rank Aggregation (RRA) and vote-counting analyses. Gene set enrichment analyses of miRNA signatures in each kidney disease were conducted using DIANA-miRPath v4.0 and MIENTURNET. As a result, top target genes, Gene Ontology terms, the interaction network between miRNA and target genes, and molecular pathways in each kidney disease were identified. According to vote-counting analysis, 145 miRNAs were dysregulated in human kidney diseases, and 32 were dysregulated in murine CKD models. By RRA, miR-26a-5p was significantly reduced in the kidney tissue of Lupus nephritis (LN), while miR-107 was decreased in LN patients' blood samples. In both species, epithelial-mesenchymal transition, Notch, mTOR signaling, apoptosis, G2/M checkpoint, and hypoxia were the most enriched pathways. These miRNA signatures and their target genes must be validated in large patient cohort studies.
Collapse
Affiliation(s)
- Gantsetseg Garmaa
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
| | - Stefania Bunduc
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
- Fundeni Clinical Institute, Fundeni Street 258, 022328 Bucharest, Romania
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Tamás Kói
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Péter Hegyi
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szikra utca 8, 6725 Szeged, Hungary
| | - Dariimaa Ganbat
- Department of Pathology, School of Medicine, Mongolian National University of Medical Sciences, Ulan-Bator 14210, Mongolia;
- Department of Public Health, Graduate School of Medicine, International University of Health and Welfare, Tokyo 107-840, Japan
| | - Fanni Dembrovszky
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross út 22-24, 1085 Budapest, Hungary
| | - Fanni Adél Meznerics
- Center for Translational Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary; (S.B.); (T.K.); (P.H.); (D.C.); (F.D.); (F.A.M.)
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Mária utca 41, 1085 Budapest, Hungary
| | - Ailar Nasirzadeh
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
| | - Cristina Barbagallo
- Section of Biology and Genetics “G. Sichel”, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Gábor Kökény
- Institute of Translational Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary; (G.G.); (A.N.)
- International Nephrology Research and Training Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| |
Collapse
|
32
|
Papadopoulos KI, Papadopoulou A, Aw TC. Anexelekto (AXL) no more: microRNA-155 (miR-155) controls the "Uncontrolled" in SARS-CoV-2. Hum Cell 2024; 37:582-592. [PMID: 38472734 DOI: 10.1007/s13577-024-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
AXL is the gene that encodes the Anexelekto (AXL) receptor tyrosine kinase that demonstrates significant roles in various cellular processes, including cell growth, survival, and migration. Anexelekto is a Greek word meaning excessive and uncontrolled, semantically implying the crucial involvement of AXL in cancer and immune biology, and in promoting cancer metastasis. AXL overexpression appears to drive epithelial to mesenchymal transition, tumor angiogenesis, decreased antitumor immune response, and resistance to therapeutic agents. Recently, AXL has been reported to play important roles in several viral infections, including SARS-CoV-2. We have previously outlined the importance of microRNAs (miRNAs, miRs) and especially miR-155 in SARS-CoV-2 pathophysiology through regulation of the Renin-Angiotensin Aldosterone System (RAAS) and influence on several aspects of host innate immunity. MiRNAs are negative regulators of gene expression, decreasing the stability of target RNAs or limiting their translation and, enthrallingly, miR-155 is also involved in AXL homeostasis-both endogenously and pharmaceutically using repurposed drugs (e.g., metformin)-highlighting thrifty evolutionary host innate immunity mechanisms that successfully can thwart viral entry and replication. Cancer, infections, and immune system disturbances will increasingly involve miRNA diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- K I Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd, Wangthonglang, Bangkok, 10310, Thailand.
| | - A Papadopoulou
- Feelgood Lund, Occupational and Environmental Health Services, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - T C Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
33
|
Kyurkchiyan SG, Stancheva G, Petkova V, Panova S, Dobriyanova V, Stancheva I, Marinov V, Zahariev Z, Kaneva RP, Popov TM. Peritumor Mucosa in Advanced Laryngeal Carcinoma Exhibits an Aberrant Proangiogenic Signature Distinctive from the Expression Pattern in Adjacent Tumor Tissue. Cells 2024; 13:633. [PMID: 38607072 PMCID: PMC11011860 DOI: 10.3390/cells13070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
The field cancerization theory is an important paradigm in head and neck carcinoma as its oncological repercussions affect treatment outcomes in diverse ways. The aim of this study is to assess the possible interconnection between peritumor mucosa and the process of tumor neoangiogenesis. Sixty patients with advanced laryngeal carcinoma were enrolled in this study. The majority of patients express a canonical HIF-upregulated proangiogenic signature with almost complete predominancy of HIF-1α overexpression and normal expression levels of the HIF-2α isoform. Remarkably, more than 60% of the whole cohort also exhibited an HIF-upregulated proangiogenic signature in the peritumoral benign mucosa. Additionally, the latter subgroup had a distinctly shifted phenotype towards HIF-2α upregulation compared to the one in tumor tissue, i.e., a tendency towards an HIF switch is observed in contrast to the dominated by HIF-1α tumor phenotype. ETS-1 displays stable and identical significant overexpression in both the proangiogenic phenotypes present in tumor and peritumoral mucosa. In the current study, we report for the first time the existence of an abnormal proangiogenic expression profile present in the peritumoral mucosa in advanced laryngeal carcinoma when compared to paired distant laryngeal mucosa. Moreover, we describe a specific phenotype of this proangiogenic signature that is significantly different from the one present in tumor tissue as we delineate both phenotypes, quantitively and qualitatively. This finding is cancer heterogeneity, per se, which extends beyond the "classical" borders of the malignancy, and it is proof of a strong interconnection between field cancerization and one of the classical hallmarks of cancer-the process of tumor neoangiogenesis.
Collapse
Affiliation(s)
- Silva G. Kyurkchiyan
- Molecular Medicine Center, Medical University—Sofia, 1463 Sofia, Bulgaria; (S.G.K.); (R.P.K.)
| | - Gergana Stancheva
- Molecular Medicine Center, Medical University—Sofia, 1463 Sofia, Bulgaria; (S.G.K.); (R.P.K.)
| | - Veronika Petkova
- Molecular Medicine Center, Medical University—Sofia, 1463 Sofia, Bulgaria; (S.G.K.); (R.P.K.)
| | - Stiliana Panova
- Molecular Medicine Center, Medical University—Sofia, 1463 Sofia, Bulgaria; (S.G.K.); (R.P.K.)
| | | | - Iglika Stancheva
- Department of ENT, Medical University—Sofia, 1463 Sofia, Bulgaria
| | - Venelin Marinov
- Department of ENT, Medical University—Sofia, 1463 Sofia, Bulgaria
| | - Zahari Zahariev
- Department of ENT, Medical University—Sofia, 1463 Sofia, Bulgaria
| | - Radka P. Kaneva
- Molecular Medicine Center, Medical University—Sofia, 1463 Sofia, Bulgaria; (S.G.K.); (R.P.K.)
| | - Todor M. Popov
- Department of ENT, Medical University—Sofia, 1463 Sofia, Bulgaria
| |
Collapse
|
34
|
Xiao J, Guo X, Wang Z. Crosstalk between hypoxia-inducible factor-1α and short-chain fatty acids in inflammatory bowel disease: key clues toward unraveling the mystery. Front Immunol 2024; 15:1385907. [PMID: 38605960 PMCID: PMC11007100 DOI: 10.3389/fimmu.2024.1385907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
The human intestinal tract constitutes a complex ecosystem, made up of countless gut microbiota, metabolites, and immune cells, with hypoxia being a fundamental environmental characteristic of this ecology. Under normal physiological conditions, a delicate balance exists among these complex "residents", with disruptions potentially leading to inflammatory bowel disease (IBD). The core pathology of IBD features a disrupted intestinal epithelial barrier, alongside evident immune and microecological disturbances. Central to these interconnected networks is hypoxia-inducible factor-1α (HIF-1α), which is a key regulator in gut cells for adapting to hypoxic conditions and maintaining gut homeostasis. Short-chain fatty acids (SCFAs), as pivotal gut metabolites, serve as vital mediators between the host and microbiota, and significantly influence intestinal ecosystem. Recent years have seen a surge in research on the roles and therapeutic potential of HIF-1α and SCFAs in IBD independently, yet reviews on HIF-1α-mediated SCFAs regulation of IBD under hypoxic conditions are scarce. This article summarizes evidence of the interplay and regulatory relationship between SCFAs and HIF-1α in IBD, pivotal for elucidating the disease's pathogenesis and offering promising therapeutic strategies.
Collapse
Affiliation(s)
- Jinyin Xiao
- Graduate School, Hunan University of Traditional Chinese Medicine, Changsha, China
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xiajun Guo
- Department of Geriatric, the First People’s Hospital of Xiangtan City, Xiangtan, China
| | - Zhenquan Wang
- Department of Anorectal, the Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
35
|
Duan Z, Tao J, Liu W, Liu Y, Fang S, Yang Y, Liu X, Deng X, Song Y, Wang S. Correlation of IVIM/DKI Parameters with Hypoxia Biomarkers in Fibrosarcoma Murine Models: Direct Control of MRI and Pathological Sections. Acad Radiol 2024; 31:1014-1023. [PMID: 37714721 DOI: 10.1016/j.acra.2023.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/01/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate whether intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) parameters correlate with hypoxia biomarkers, namely hypoxia inducible factor-1ɑ (HIF-1ɑ), carbonic anhydrase IX (CAIX), and pimonidazole (PIMO), in fibrosarcoma (FS) murine models. MATERIALS AND METHODS A model of 30 FS nude mice was established. All mice underwent magnetic resonance imaging (MRI) scans after which the IVIM (standard apparent diffusion coefficient [standard ADC], pure diffusion coefficient [D], pseudo-diffusion coefficient [D*], and perfusion fraction [f]) and DKI parameters (mean diffusion [MD], mean kurtosis [MK]) were obtained. Based on an MRI-pathology controlled method, correlations between each MRI parameter and hypoxia biomarkers were assessed by Pearson or Spearman tests. An independent sample t-test or Wilcoxon's rank sum test, and receiver operating characteristic curves were used to identify whether MRI parameters could differentiate between high and low expressions of hypoxia biomarkers. RESULTS The IVIM/DKI parameters showed varying degrees of correlation with HIF-1α, CAIX, and PIMO expression. Among them, the D, f, and MK values could confirm HIF-1α expression, while D, f, and MK values could assess CAIX expression. Finally, standard D and MK values could evaluate PIMO expression levels. CONCLUSION IVIM and DKI parameters can be used to reflect hypoxic biomarkers of FS and have the potential to detect tumor hypoxia.
Collapse
Affiliation(s)
- Zhiqing Duan
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.)
| | - Juan Tao
- Department of Pathology, The Second Hospital, Dalian Medical University, Dalian, China (J.T.)
| | - Wenyu Liu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.)
| | - Yajie Liu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.)
| | - Shaobo Fang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.)
| | - Yanyu Yang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.)
| | - Xiaoge Liu
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.)
| | - Xiyang Deng
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.)
| | - Yutong Song
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.)
| | - Shaowu Wang
- Department of Radiology, The Second Hospital, Dalian Medical University, Dalian 116027, Liaoning Province, China (Z.D., W.L., Y.L., S.F., Y.Y., X.L., X.D., Y.S., S.W.).
| |
Collapse
|
36
|
Reddy S, Hu D, Zhao M, Ichimura S, Barnes EA, Cornfield DN, Alejandre Alcázar MA, Spiekerkoetter E, Fajardo G, Bernstein D. MicroRNA-34a-Dependent Attenuation of Angiogenesis in Right Ventricular Failure. J Am Heart Assoc 2024; 13:e029427. [PMID: 38293915 PMCID: PMC11056115 DOI: 10.1161/jaha.123.029427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND The right ventricle (RV) is at risk in patients with complex congenital heart disease involving right-sided obstructive lesions. We have shown that capillary rarefaction occurs early in the pressure-loaded RV. Here we test the hypothesis that microRNA (miR)-34a, which is induced in RV hypertrophy and RV failure (RVF), blocks the hypoxia-inducible factor-1α-vascular endothelial growth factor (VEGF) axis, leading to the attenuated angiogenic response and increased susceptibility to RV failure. METHODS AND RESULTS Mice underwent pulmonary artery banding to induce RV hypertrophy and RVF. Capillary rarefaction occurred immediately. Although hypoxia-inducible factor-1α expression increased (0.12±0.01 versus 0.22±0.03, P=0.05), VEGF expression decreased (0.61±0.03 versus 0.22±0.05, P=0.01). miR-34a expression was most upregulated in fibroblasts (4-fold), but also in cardiomyocytes and endothelial cells (2-fold). Overexpression of miR-34a in endothelial cells increased cell senescence (10±3% versus 22±2%, P<0.05) by suppressing sirtulin 1 expression, and decreased tube formation by 50% via suppression of hypoxia-inducible factor-1α, VEGF A, VEGF B, and VEGF receptor 2. miR-34a was induced by stretch, transforming growth factor-β1, adrenergic stimulation, and hypoxia in cardiac fibroblasts and cardiomyocytes. In mice with RVF, locked nucleic acid-antimiR-34a improved RV shortening fraction and survival half-time and restored capillarity and VEGF expression. In children with congenital heart disease-related RVF, RV capillarity was decreased and miR-34a increased 5-fold. CONCLUSIONS In summary, miR-34a from fibroblasts, cardiomyocytes, and endothelial cells mediates capillary rarefaction by suppressing the hypoxia-inducible factor-1α-VEGF axis in RV hypertrophy/RVF, raising the potential for anti-miR-34a therapeutics in patients with at-risk RVs.
Collapse
Affiliation(s)
- Sushma Reddy
- Department of Pediatrics (Cardiology) and Cardiovascular InstituteStanford UniversityStanfordCA
| | - Dong‐Qing Hu
- Department of Pediatrics (Cardiology) and Cardiovascular InstituteStanford UniversityStanfordCA
| | - Mingming Zhao
- Department of Pediatrics (Cardiology) and Cardiovascular InstituteStanford UniversityStanfordCA
| | - Shoko Ichimura
- Department of Pediatrics (Cardiology) and Cardiovascular InstituteStanford UniversityStanfordCA
| | | | | | | | | | - Giovanni Fajardo
- Department of Pediatrics (Cardiology) and Cardiovascular InstituteStanford UniversityStanfordCA
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology) and Cardiovascular InstituteStanford UniversityStanfordCA
| |
Collapse
|
37
|
Liu D, Wang L, Ha W, Li K, Shen R, Wang D. HIF-1α: A potential therapeutic opportunity in renal fibrosis. Chem Biol Interact 2024; 387:110808. [PMID: 37980973 DOI: 10.1016/j.cbi.2023.110808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
Renal fibrosis is a common outcome of various renal injuries, leading to structural destruction and functional decline of the kidney, and is also a critical prognostic indicator and determinant in renal diseases therapy. Hypoxia is induced in different stress and injuries in kidney, and the hypoxia inducible factors (HIFs) are activated in the context of hypoxia in response and regulation the hypoxia in time. Under stress and hypoxia conditions, HIF-1α increases rapidly and regulates intracellular energy metabolism, cell proliferation, apoptosis, and inflammation. Through reprogramming cellular metabolism, HIF-1α can directly or indirectly induce abnormal accumulation of metabolites, changes in cellular epigenetic modifications, and activation of fibrotic signals. HIF-1α protein expression and activity are regulated by various posttranslational modifications. The drugs targeting HIF-1α can regulate the downstream cascade signals by inhibiting HIF-1α activity or promoting its degradation. As the renal fibrosis is affected by renal diseases, different diseases may trigger different mechanisms which will affect the therapy effect. Therefore, comprehensive analysis of the role and contribution of HIF-1α in occurrence and progression of renal fibrosis, and determination the appropriate intervention time of HIF-1α in the process of renal fibrosis are important ideas to explore effective treatment strategies. This study reviews the regulation of HIF-1α and its mediated complex cascade reactions in renal fibrosis, and lists some drugs targeting HIF-1α that used in preclinical studies, to provide new insight for the study of the renal fibrosis mechanism.
Collapse
Affiliation(s)
- Disheng Liu
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Lu Wang
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Wuhua Ha
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Kan Li
- The First Hospital of Lanzhou University, Lanzhou University, Gansu, 730000, China
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
38
|
Meng W, Ye H, Ma Z, Liu L, Zhang T, Han Q, Xiang Z, Xia Y, Ke Y, Guan X, Shi Q, Ataullakhanov FI, Panteleev M. Perfluorocarbon Nanoparticles Incorporating Ginkgolide B: Artificial O 2 Carriers with Antioxidant Activity and Antithrombotic Effect. ChemMedChem 2024; 19:e202300312. [PMID: 37970644 DOI: 10.1002/cmdc.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 11/17/2023]
Abstract
Ischemic stroke primarily leads to insufficient oxygen delivery in ischemic area. Prompt reperfusion treatment for restoration of oxygen is clinically suggested but mediates more surging reactive oxygen species (ROS) generation and oxidative damage, known as ischemia-reperfusion injury (IRI). Therefore, the regulation of oxygen content is a critical point to prevent cerebral ischemia induced pathological responses and simultaneously alleviate IRI triggered by the sudden oxygen restoration. In this work, we constructed a perfluorocarbon (PFC)-based artificial oxygen nanocarrier (PFTBA-L@GB), using an ultrasound-assisted emulsification method, alleviates the intracerebral hypoxic state in ischemia stage and IRI after reperfusion. The high oxygen solubility of PFC allows high oxygen efficacy. Furthermore, PFC has the adhesion affinity to platelets and prevents the overactivation of platelet. The encapsulated payload, ginkgolide B (GB) exerts its anti-thrombosis by antagonism on platelet activating factor and antioxidant effect by upregulation of antioxidant molecular pathway. The versatility of the present strategy provides a practical approach to build a simple, safe, and relatively effective oxygen delivery agent to alleviate hypoxia, promote intracerebral oxygenation, anti-inflammatory, reduce intracerebral oxidative stress damage and thrombosis and caused by stroke.
Collapse
Affiliation(s)
- Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tianci Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Ke
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fazly I Ataullakhanov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow, 119991, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| |
Collapse
|
39
|
Li Y, Song D, Yu Z, Zhang Y, Liu Z, Yan T. Effect and mechanism of hypoxia on differentiation of porcine-induced pluripotent stem cells into vascular endothelial cells. In Vitro Cell Dev Biol Anim 2024; 60:9-22. [PMID: 38148354 DOI: 10.1007/s11626-023-00833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
Pigs are similar to humans in organ size and physiological function, and are considered as good models for studying cardiovascular diseases. The study of porcine-induced pluripotent stem cells (piPSC) differentiating into vascular endothelial cells (EC) is expected to open up a new way of obtaining high-quality seed cells. Given that the hypoxic environment has an important role in the differentiation process of vascular EC, this work intends to establish a hypoxia-induced differentiation system of piPSC into vascular EC. There is evidence that the hypoxia microenvironment in the initial stage could significantly improve differentiation efficiency. Further study suggests that the hypoxia culture system supports a combined effect of hypoxia inducible factors and their associated regulatory molecules, such as HIF-1α, VEGFA, FGF2, LDH-A, and PDK1, which can efficiently promote the lineage-specific differentiation of piPSC into EC. Most notably, the high level of ETV2 after 4 d of hypoxic treatment indicates that it possibly plays an important role in the promoting process of EC differentiation. The research is expected to help the establishment of new platforms for piPSC directional induction research, so as to obtain adequate seed cells with ideal phenotype and functionality.
Collapse
Affiliation(s)
- Yimei Li
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Danyang Song
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuoran Yu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
40
|
Markey GE, Ryan S, Furuta GT, Menard-Katcher C, McNamee EN, Masterson JC. Hypoxia-inducible microRNA-155 negatively regulates epithelial barrier in eosinophilic esophagitis by suppressing tight junction claudin-7. FASEB J 2024; 38:e23358. [PMID: 38050671 PMCID: PMC10699209 DOI: 10.1096/fj.202301934r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
MicroRNA (miRNA)-mediated mRNA regulation directs many homeostatic and pathological processes, but how miRNAs coordinate aberrant esophageal inflammation during eosinophilic esophagitis (EoE) is poorly understood. Here, we report a deregulatory axis where microRNA-155 (miR-155) regulates epithelial barrier dysfunction by selectively constraining tight junction CLDN7 (claudin-7). MiR-155 is elevated in the esophageal epithelium of biopsies from patients with active EoE and in cell culture models. MiR-155 localization using in situ hybridization (ISH) in patient biopsies and intra-epithelial compartmentalization of miR-155 show expression predominantly within the basal epithelia. Epithelial miR-155 activity was evident through diminished target gene expression in 3D organotypic cultures, particularly in relatively undifferentiated basal cell states. Mechanistically, generation of a novel cell line with enhanced epithelial miR-155 stable overexpression induced a functionally deficient epithelial barrier in 3D air-liquid interface epithelial cultures measured by transepithelial electrical resistance (TEER). Histological assessment of 3D esophageal organoid cultures overexpressing miR-155 showed notable dilated intra-epithelial spaces. Unbiased RNA-sequencing analysis and immunofluorescence determined a defect in epithelial barrier tight junctions and revealed a selective reduction in the expression of critical esophageal tight junction molecule, claudin-7. Together, our data reveal a previously unappreciated role for miR-155 in mediating epithelial barrier dysfunction in esophageal inflammation.
Collapse
Affiliation(s)
- Gary E Markey
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Sinéad Ryan
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Glenn T Furuta
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Calies Menard-Katcher
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| | - Eoin N McNamee
- Mucosal Immunology Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | - Joanne C Masterson
- Allergy, Inflammation & Remodelling Research Laboratory, Kathleen Lonsdale Institute for Human Health Research, Department of Biology, National University of Ireland Maynooth, Co. Kildare, Ireland
- Gastrointestinal Eosinophilic Diseases Program, Digestive Health Institute, Children’s Hospital Colorado, Department of Pediatrics, University of Colorado School of Medicine, CO, USA
| |
Collapse
|
41
|
Soundararajan L, Warrier S, Dharmarajan A, Bhaskaran N. Predominant factors influencing reactive oxygen species in cancer stem cells. J Cell Biochem 2024; 125:3-21. [PMID: 37997702 DOI: 10.1002/jcb.30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
Reactive oxygen species (ROS) and its related signaling pathways and regulating molecules play a major role in the growth and development of cancer stem cells. The concept of ROS and cancer stem cells (CSCs) has been gaining much attention since the past decade and the evidence show that these CSCs possess robust self-renewal and tumorigenic potential and are resistant to conventional chemo- and radiotherapy and believed to be responsible for tumor progression, metastasis, and recurrence. It seems reasonable to say that cancer can be cured only if the CSCs are eradicated. ROS are Janus-faced molecules that can regulate cellular physiology as well as induce cytotoxicity, depending on the magnitude, duration, and site of generation. Unlike normal cancer cells, CSCs expel ROS efficiently by upregulating ROS scavengers. This unique redox regulation in CSCs protects them from ROS-mediated cell death and nullifies the effect of radiation, leading to chemoresistance and radioresistance. However, how these CSCs control ROS production by scavenging free radicals and how they maintain low levels of ROS is a challenging to understand and these attributes make CSCs as prime therapeutic targets. Here, we summarize the mechanisms of redox regulation in CSCs, with a focus on therapy resistance, its various pathways and microRNAs regulation, and the potential therapeutic implications of manipulating the ROS levels to eradicate CSCs. A better understanding of these molecules, their interactions in the CSCs may help us to adopt proper control and treatment measures.
Collapse
Affiliation(s)
- Loshini Soundararajan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Sudha Warrier
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
- Stem Cell and Cancer Biology laboratory, Curtin University, Perth, Western Australia, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Natarajan Bhaskaran
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Faculty of Biomedical Sciences and Technology, Chennai, Tamil Nādu, India
| |
Collapse
|
42
|
Lian M, Mortoglou M, Uysal-Onganer P. Impact of Hypoxia-Induced miR-210 on Pancreatic Cancer. Curr Issues Mol Biol 2023; 45:9778-9792. [PMID: 38132457 PMCID: PMC10742176 DOI: 10.3390/cimb45120611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Pancreatic cancer (PC) poses significant clinical challenges, with late-stage diagnosis and limited therapeutic options contributing to its dismal prognosis. A hallmark feature of PC is the presence of a profoundly hypoxic tumour microenvironment, resulting from various factors such as fibrotic stroma, rapid tumour cell proliferation, and poor vascularization. Hypoxia plays a crucial role in promoting aggressive cancer behaviour, therapeutic resistance, and immunosuppression. Previous studies have explored the molecular mechanisms behind hypoxia-induced changes in PC, focusing on the role of hypoxia-inducible factors (HIFs). Among the myriad of molecules affected by hypoxia, microRNA-210 (miR-210) emerges as a central player. It is highly responsive to hypoxia and regulated by HIF-dependent and HIF-independent pathways. miR-210 influences critical cellular processes, including angiogenesis, metastasis, and apoptosis, all of which contribute to PC progression and resistance to treatment. Understanding these pathways provides insights into potential therapeutic targets. Furthermore, investigating the role of miR-210 and its regulation in hypoxia sheds light on the potential development of early diagnostic strategies, which are urgently needed to improve outcomes for PC patients. This review delves into the complexities of PC and introduces the roles of hypoxia and miR-210 in the progression of PC.
Collapse
Affiliation(s)
| | | | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; (M.L.); (M.M.)
| |
Collapse
|
43
|
Huang J, Xu Z, Jiao J, Li Z, Li S, Liu Y, Li Z, Qu G, Wu J, Zhao Y, Chen K, Li J, Pan Y, Wu X, Ren J. Microfluidic intestinal organoid-on-a-chip uncovers therapeutic targets by recapitulating oxygen dynamics of intestinal IR injury. Bioact Mater 2023; 30:1-14. [PMID: 37534235 PMCID: PMC10391666 DOI: 10.1016/j.bioactmat.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 07/01/2023] [Indexed: 08/04/2023] Open
Abstract
Increasing evidence demonstrates that mammals have different reactions to hypoxia with varied oxygen dynamic patterns. It takes ∼24 h for tri-gas incubator to achieve steady cell hypoxia, which fails to recapitulate ultrafast oxygen dynamics of intestinal ischemia/reperfusion (IR) injury. Inspired from the structure of native intestinal villi, we engineered an intestinal organoid chip embedded with engineered artificial microvessels based on co-axial microfluidic technology by using pH-responsive ZIF-8/sodium alginate scaffold. The chip was featured on: (i) eight times the oxygen exchange efficiency compared with the conventional device, tri-gas incubator, (ii) implantation of intestinal organoid reproducing all types of intestinal epithelial cells, and (iii) bio-responsiveness to hypoxia and reoxygenation (HR) by presenting metabolism disorder, inflammatory reaction, and cell apoptosis. Strikingly, it was found for the first time that Olfactomedin 4 (Olfm4) was the most significantly down-regulated gene under a rapid HR condition by sequencing the RNA from the organoids. Mechanistically, OLFM4 played protective functions on HR-induced cell inflammation and tissue damage by inhibiting the NF-kappa B signaling activation, thus it could be used as a therapeutic target. Altogether, this study overcomes the issue of mismatched oxygen dynamics between in vitro and in vivo, and sets an example of next-generation multisystem-interactive organoid chip for finding precise therapeutic targets of IR injury.
Collapse
Affiliation(s)
- Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ziyan Xu
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Jiao Jiao
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Sicheng Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Ye Liu
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ze Li
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Guiwen Qu
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jie Wu
- General Clinical Research Center, Nanjing Benq Hospital, Nanjing Medical University, Nanjing, 210019, China
| | - Yun Zhao
- General Clinical Research Center, Nanjing Benq Hospital, Nanjing Medical University, Nanjing, 210019, China
| | - Kang Chen
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yichang Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
- School of Medicine, Nanjing University, Nanjing, 210093, China
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
- School of Medicine, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
44
|
Malik N, Kundu A, Gupta Y, Irshad K, Arora M, Goswami S, Mahajan S, Sarkar C, Suri V, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Protumorigenic role of the atypical cadherin FAT1 by the suppression of PDCD10 via RelA/miR221-3p/222-3p axis in glioblastoma. Mol Carcinog 2023; 62:1817-1831. [PMID: 37606187 DOI: 10.1002/mc.23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NFκB-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.
Collapse
Affiliation(s)
- Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Archismita Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
45
|
Liu L, Wang Y, Hong L, Bragazzi NL, Dai H, Chen H. Obstructive Sleep Apnea and Hypertensive Heart Disease: From Pathophysiology to Therapeutics. Rev Cardiovasc Med 2023; 24:342. [PMID: 39077075 PMCID: PMC11272867 DOI: 10.31083/j.rcm2412342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 07/31/2024] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent episodes of complete or partial obstruction of the upper airway that lead to intermittent hypoxemia, negative intrathoracic pressure, hypercapnia, and sleep disturbances. While OSA is recognized as a significant risk factor for cardiovascular disease, it's relationship with hypertensive heart disease (HHD) remains underappreciated. HHD is a condition characterized by the pathological hypertrophy of the left ventricle, a consequence of elevated arterial hypertension. Interestingly, both OSA and HHD share similar underlying mechanisms including hypertension, left ventricular hypertrophy, myocardial fibrosis, oxidative stress, and inflammation, which ultimately contribute to the progression of HHD. This review aims to shed light on the potential role of OSA in HHD pathogenesis, summarizing current OSA treatment options. It is hoped that this review will encourage a renewed clinical focus on HHD and underscore the need for further OSA research, particularly in the context of screening and treating HHD patients.
Collapse
Affiliation(s)
- Lu Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, China
| | - Yi Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, China
| | - Liqiong Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, China
| | - Nicola Luigi Bragazzi
- Human Nutrition Unit, Department of Food and Drugs, Medical School, University of Parma, 43125 Parma, Italy
| | - Haijiang Dai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, China
| | - Huimin Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, China
| |
Collapse
|
46
|
Zhang R, Miao Z, Liu Y, Zhang X, Yang Q. A positive feedback loop between miR-574-3p and HIF-1α in promoting angiogenesis under hypoxia. Microvasc Res 2023; 150:104589. [PMID: 37481161 DOI: 10.1016/j.mvr.2023.104589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
In our previous report, we presented evidence supporting the role of miR-574-3p in downregulating the expression of cullin 2 (CUL2) in gastric cancer (GC) cells. Expanding on those findings, the present study aims to confirm the direct interaction between miR-574-3p and the 3' untranslated region (3'UTR) of CUL2, which leads to the suppression of CUL2 expression and destabilization of the VCBCR complex. Based on these discoveries, we propose a novel pathway involving miR-574-3p, HIF-1α, and VEGF that contributes to angiogenesis. Through a series of meticulous experiments, we successfully validate this hypothesis. Specifically, our observations indicate that overexpression of miR-574-3p in GC cells induces an upregulation of HIF-1α and VEGF, resulting in enhanced proliferation, migration, invasion, and tube formation of HUVEC cells. Furthermore, employing a mouse model, we demonstrate that miR-574-3p facilitates the recruitment of endothelial cells towards matrigel xenografts. Additionally, we note a parallel increase in miR-574-3p and HIF-1α levels across multiple cell lines (including AGS, SGC-7901, Hela, and 293T cells) subjected to hypoxic conditions (2 % O2 or CoCl2 treatment), as well as in the myocardial muscles of sodium nitrite-induced hypoxic mice. Further investigations reveal that HIF-1α upregulates miR-574-3p expression by directly binding to the miR-574 promoter. Collectively, these findings strongly support the existence of a positive feedback loop between miR-574-3p and HIF-1α, which facilitates angiogenesis under hypoxic conditions.
Collapse
Affiliation(s)
- Renwen Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yan Liu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
47
|
Vatte S, Ugale R. HIF-1, an important regulator in potential new therapeutic approaches to ischemic stroke. Neurochem Int 2023; 170:105605. [PMID: 37657765 DOI: 10.1016/j.neuint.2023.105605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Ischemic stroke is a leading cause of disability and mortality worldwide due to the narrow therapeutic window of the only approved therapies like intravenous thrombolysis and thrombectomy. Hypoxia inducible factor-1α (HIF-1α) is a sensitive regulator of oxygen homeostasis, and its expression is rapidly induced after hypoxia/ischemia. It plays an extensive role in the pathophysiology of stroke by regulating multiple pathways including glucose metabolism, angiogenesis, neuronal survival, neuroinflammation and blood brain barrier regulation. Here, we give a brief overview of the HIF-1α-targeting strategies currently under investigation and summarise recent research on how HIF-1α is regulated in various brain cells, including neurons and microglia, at various stages in ischemic stroke. The roles of HIF-1 in stroke varies with ischemic time and degree of ischemia, are still up for debate. More focus has been placed on prospective HIF-1α targeting drugs, such as HIF-1α activator, HIF-1α stabilizers, and natural compounds. In this review, we have highlighted the regulation of HIF-1α in the novel therapeutic approaches for treatment of stroke.
Collapse
Affiliation(s)
- Sneha Vatte
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, India.
| |
Collapse
|
48
|
Caetano-Pinto P, Stahl SH. Renal Organic Anion Transporters 1 and 3 In Vitro: Gone but Not Forgotten. Int J Mol Sci 2023; 24:15419. [PMID: 37895098 PMCID: PMC10607849 DOI: 10.3390/ijms242015419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Organic anion transporters 1 and 3 (OAT1 and OAT3) play a crucial role in kidney function by regulating the secretion of multiple renally cleared small molecules and toxic metabolic by-products. Assessing the activity of these transporters is essential for drug development purposes as they can significantly impact drug disposition and safety. OAT1 and OAT3 are amongst the most abundant drug transporters expressed in human renal proximal tubules. However, their expression is lost when cells are isolated and cultured in vitro, which is a persistent issue across all human and animal renal proximal tubule cell models, including primary cells and cell lines. Although it is well known that the overall expression of drug transporters is affected in vitro, the underlying reasons for the loss of OAT1 and OAT3 are still not fully understood. Nonetheless, research into the regulatory mechanisms of these transporters has provided insights into the molecular pathways underlying their expression and activity. In this review, we explore the regulatory mechanisms that govern the expression and activity of OAT1 and OAT3 and investigate the physiological changes that proximal tubule cells undergo and that potentially result in the loss of these transporters. A better understanding of the regulation of these transporters could aid in the development of strategies, such as introducing microfluidic conditions or epigenetic modification inhibitors, to improve their expression and activity in vitro and to create more physiologically relevant models. Consequently, this will enable more accurate assessment for drug development and safety applications.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Simone H. Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 310 Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK;
| |
Collapse
|
49
|
Ni W, Zhang H, Mei Z, Hongyi Z, Wu Y, Xu W, Ma Y, Yang W, Liang Y, Gu T, Su Y, Fan S, Shen S, Hu Z. An inducible long noncoding RNA, LncZFHX2, facilitates DNA repair to mediate osteoarthritis pathology. Redox Biol 2023; 66:102858. [PMID: 37633048 PMCID: PMC10472307 DOI: 10.1016/j.redox.2023.102858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
Cartilage homeostasis is essential for chondrocytes to maintain proper phenotype and metabolism. Because adult articular cartilage is avascular, chondrocytes must survive in low oxygen conditions, and changing oxygen tension can significantly affect metabolism and proteoglycan synthesis in these cells. However, whether long noncoding RNA participate in cartilage homeostasis under hypoxia has not been reported yet. Here, we first identified LncZFHX2 as a lncRNA upregulated under physiological hypoxia in cartilage, specifically by HIF-1α. LncZFHX2 knockdown simultaneously accelerated cellular senescence, targeted multiple components of extracellular matrix metabolism, and increased DNA damage in chondrocytes. Through a series of in vitro and in vivo experiments, we identified that LncZFHX2 performed a novel function that regulated RIF1 expression through forming a transcription complex with KLF4 and promoting chondrocyte DNA repair. Moreover, chondrocyte-conditional knockout of LncZFHX2 accelerated injury-induced cartilage degeneration in vivo. In conclusion, we identified a hypoxia-activated DNA repair pathway that maintains matrix homeostasis in osteoarthritis cartilage.
Collapse
Affiliation(s)
- Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Haitao Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Zixuan Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Zhou Hongyi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Wenbin Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Wentao Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yi Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Tianyuan Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yingfeng Su
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Ziang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang Province, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
50
|
Wang RH, Lin YK, Xie HK, Li H, Li M, He D. Exploring the synergistic pharmacological mechanism of Huoxiang Drink against irritable bowel syndrome by integrated data mining and network pharmacology. Medicine (Baltimore) 2023; 102:e35220. [PMID: 37773835 PMCID: PMC10545357 DOI: 10.1097/md.0000000000035220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder, characterized by abdominal pain, bloating, and changes in bowel habits. Huoxiang Drink (HD), derived from traditional Chinese medicine, has been reported to effectively treat digestive disorders caused by external cold and internal dampness. However, the pharmaceutical targets and mechanisms for HD against IBS remain unclear. Data mining, bioinformatics analysis, and network pharmacology were employed to explore the potential pharmacological mechanisms of HD against IBS. In this study, we screened 50 core targets to investigate the pharmacological mechanisms of HD against IBS. Enrichment analysis revealed that HD may participate in various signaling pathways, especially the inflammation-related tumor necrosis factor, signaling pathway and hypoxia-inducible factor signaling pathway. Molecular docking results confirmed that MOL000098 (Quercetin), MOL000006 (Luteolin), MOL005828 (Nobiletin), MOL005916 (Irisolidone), and MOL004328 (Naringenin), as key active ingredients in HD, bound to core targets (tumor protein P53, tumor necrosis factor, matrix metalloproteinases 9, and vascular endothelial growth factor-A) for topical treatment of IBS. This study suggested that HD offered a potential therapeutic strategy against IBS. Our findings may facilitate the efficient screening of active ingredients in HD and provide a theoretical basis for further validating the clinical therapeutic effects of HD on treating IBS.
Collapse
Affiliation(s)
- Ruo-Hui Wang
- Department of ICU, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Ke Lin
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Kai Xie
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- Harbin Traditional Chinese Medicine Hospital, Harbin, China
| | - Mu Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dong He
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|