1
|
Miebach M, Faivre L, Schubert D, Jameson P, Remus‐Emsermann M. Nonpathogenic leaf-colonizing bacteria elicit pathogen-like responses in a colonization density-dependent manner. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10137. [PMID: 38482131 PMCID: PMC10934995 DOI: 10.1002/pei3.10137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 11/02/2024]
Abstract
Leaves are colonized by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognized as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray inoculated with six diverse leaf-colonizing bacteria. The transcriptomic changes in leaves were tracked over time and significant changes in ethylene marker (ARL2) expression were observed only 2-4 days after spray inoculation. Whole-transcriptome sequencing revealed that 4 days after inoculation, leaf transcriptional changes to colonization by nonpathogenic and pathogenic bacteria differed in strength but not in the type of response. Inoculation of plants with different densities of the nonpathogenic bacterium Williamsia sp. Leaf354 showed that high bacterial titers resulted in disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defense. An in silico epigenetic analysis of the data was congruent with the transcriptomic analysis. These findings suggest (1) that plant responses are not rapid after spray inoculation, (2) that plant responses only differ in strength, and (3) that plants respond to high titers of nonpathogenic bacteria with pathogen-like responses.
Collapse
Affiliation(s)
- Moritz Miebach
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
| | - Léa Faivre
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| | - Daniel Schubert
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| | - Paula Jameson
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Mitja Remus‐Emsermann
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| |
Collapse
|
2
|
Elyamine AM, Wang H, Oummu-Kulthum MAH, Raissa S, Nahdhoit AR, Meng S, Tao P, Hu Z. Mangroves leaves phyllosphere bacteria community and its ability to survive under pyrene stress during the acclimation process. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105920. [PMID: 36931048 DOI: 10.1016/j.marenvres.2023.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Plants in general and mangroves in particular can harbor hyper-diverse microorganisms in their different compartments including the phyllosphere area. This study used the leaves of three mangrove species; black mangrove (Avicenia germinans), red mangrove (Rhizophora mangle) and mangrove apple (Sonneratia alba) in order to evaluate the phyllosphere epiphytic bacterial community on their leaves surface and assess the ability of some epiphytic bacteria to tolerate and survive under pyrene stress. Through the 16S rRNA genes sequencing, 380203, 405203 and 344863 OTUs were identified respectively in the leaves of mangroves apple, black and red mangroves. The identified OTUs was positively correlated with leaves-wax (p < 0.05, r2 = 0.904), nitrogen (r2 = 0.72), phosphorus content (r2 = 0.62) and the water factor (r2 = 0.93). It was however highly and negatively correlated with the canopy cover (r2 = 0.93). The pyrene degradation rate in the mineral salt medium (MSM) containing pyrene as external stress was different in each mangrove species and varied depending on various factors. Therefore, through the succession culture in MSM, several bacteria strain belonging to Rhizobiales and Enterobacteres were found to be abundant in red mangroves. Bacteria belonging to Bacilliales and Sphingobacteriales were more abundant in mangroves apples and bacteria from Xanthomonadales and Sphingomonadales were more presents in back mangroves. The important finding was to reveal that the black mangrove at the non-submerged substrate, recorded the highest number of OTU, coinciding with its highest leaf's nitrogen and phosphorus content and most importantly, its highest rate of pyrene degradation. The general result of this study join previous research results and get place in the mangrove agenda, as part of a better understanding insight into the role of plant identity in driving the phyllosphere epiphytic microbial community structures in mangrove ecosystems.
Collapse
Affiliation(s)
- Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou City, Guangdong, 515063, China; Department of Life Science, Faculty of Science and Technology, University of Comoros, Moroni, 269, Comoros
| | - Han Wang
- Huanhuai University, Zhumadian, 46000, China
| | | | - Sailine Raissa
- Department of Life Science, Faculty of Science and Technology, University of Comoros, Moroni, 269, Comoros
| | - Ahamada Rachid Nahdhoit
- Institute of Graduate Studies, Fundamental and Industrial Microbiology, Istanbul University, 34134, Vezneciler Faith, Istanbul, Turkey
| | - Shanshan Meng
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou City, Guangdong, 515063, China
| | - Peng Tao
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou City, Guangdong, 515063, China
| | - Zhong Hu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou City, Guangdong, 515063, China.
| |
Collapse
|
3
|
Gupta R, Elkabetz D, Leibman-Markus M, Sayas T, Schneider A, Jami E, Kleiman M, Bar M. Cytokinin drives assembly of the phyllosphere microbiome and promotes disease resistance through structural and chemical cues. THE ISME JOURNAL 2022; 16:122-137. [PMID: 34272494 PMCID: PMC8692462 DOI: 10.1038/s41396-021-01060-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/24/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
The plant hormone cytokinin (CK) is an important developmental regulator, promoting morphogenesis and delaying differentiation and senescence. From developmental processes, to growth, to stress tolerance, CKs are central in plant life. CKs are also known to mediate plant immunity and disease resistance, and several classes of microbes can also produce CKs, affecting the interaction with their plant hosts. While host species and genotype can be a driving force in shaping the plant microbiome, how plant developmental hormones such as CK can shape the microbiome is largely uninvestigated. Here, we examined the relationship between CK and the phyllosphere microbiome, finding that CK acts as a selective force in microbiome assembly, increasing richness, and promoting the presence of Firmicutes. CK-mediated immunity was found to partially depend on the microbial community, and bacilli isolated from previously described CK-rich plant genotypes, which overexpress a CK biosynthesis gene or have increased CK sensitivity, induced plant immunity, and promoted disease resistance. Using a biomimetic system, we investigated the relationship between the leaf microstructure, which is differentially patterned upon changes in CK content or signaling, and the growth of different phyllosphere microbes. We found that leaf structures derived from CK-rich plant genotypes support bacilli in the biomimetic system. CK was able to promote the growth, swarming, and biofilm formation of immunity inducing bacillus isolates in vitro. Overall, our results indicate that host genotype and hormonal profiles can act as a strong selective force in microbiome assembly, underlying differential immunity profiles, and pathogen resistance as a result.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorin Elkabetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Tali Sayas
- Department of Vegetable and Field crops, Plant Sciences Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Anat Schneider
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Elie Jami
- Department of Ruminant Science, Animal Science Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Kleiman
- Department of Vegetable and Field crops, Plant Sciences Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Agro-NanoTechnology and Advanced Materials Center, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
4
|
Kusstatscher P, Wicaksono WA, Bergna A, Cernava T, Bergau N, Tissier A, Hause B, Berg G. Trichomes form genotype-specific microbial hotspots in the phyllosphere of tomato. ENVIRONMENTAL MICROBIOME 2020; 15:17. [PMID: 33902724 PMCID: PMC8067393 DOI: 10.1186/s40793-020-00364-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/29/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND The plant phyllosphere is a well-studied habitat characterized by low nutrient availability and high community dynamics. In contrast, plant trichomes, known for their production of a large number of metabolites, are a yet unexplored habitat for microbes. We analyzed the phyllosphere as well as trichomes of two tomato genotypes (Solanum lycopersicum LA4024, S. habrochaites LA1777) by targeting bacterial 16S rRNA gene fragments. RESULTS Leaves, leaves without trichomes, and trichomes alone harbored similar abundances of bacteria (108-109 16S rRNA gene copy numbers per gram of sample). In contrast, bacterial diversity was found significantly increased in trichome samples (Shannon index: 4.4 vs. 2.5). Moreover, the community composition was significantly different when assessed with beta diversity analysis and corresponding statistical tests. At the bacterial class level, Alphaproteobacteria (23.6%) were significantly increased, whereas Bacilli (8.6%) were decreased in trichomes. The bacterial family Sphingomonadacea (8.4%) was identified as the most prominent, trichome-specific feature; Burkholderiaceae and Actinobacteriaceae showed similar patterns. Moreover, Sphingomonas was identified as a central element in the core microbiome of trichome samples, while distinct low-abundant bacterial families including Hymenobacteraceae and Alicyclobacillaceae were exclusively found in trichome samples. Niche preferences were statistically significant for both genotypes and genotype-specific enrichments were further observed. CONCLUSION Our results provide first evidence of a highly specific trichome microbiome in tomato and show the importance of micro-niches for the structure of bacterial communities on leaves. These findings provide further clues for breeding, plant pathology and protection as well as so far unexplored natural pathogen defense strategies.
Collapse
Affiliation(s)
- Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Alessandro Bergna
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Nick Bergau
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
5
|
Miebach M, Schlechter RO, Clemens J, Jameson PE, Remus-Emsermann MN. Litterbox-A gnotobiotic Zeolite-Clay System to Investigate Arabidopsis-Microbe Interactions. Microorganisms 2020; 8:E464. [PMID: 32218313 PMCID: PMC7232341 DOI: 10.3390/microorganisms8040464] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/21/2022] Open
Abstract
Plants are colonised by millions of microorganisms representing thousands of species withvarying effects on plant growth and health. The microbial communities found on plants arecompositionally consistent and their overall positive effect on the plant is well known. However,the effects of individual microbiota members on plant hosts and vice versa, as well as the underlyingmechanisms, remain largely unknown. Here, we describe "Litterbox", a highly controlled system toinvestigate plant-microbe interactions. Plants were grown gnotobiotically, otherwise sterile, onzeolite-clay, a soil replacement that retains enough moisture to avoid subsequent watering.Litterbox-grown plants resemble greenhouse-grown plants more closely than agar-grown plantsand exhibit lower leaf epiphyte densities (106 cfu/g), reflecting natural conditions. Apolydimethylsiloxane (PDMS) sheet was used to cover the zeolite, significantly lowering thebacterial load in the zeolite and rhizosphere. This reduced the likelihood of potential systemicresponses in leaves induced by microbial rhizosphere colonisation. We present results of exampleexperiments studying the transcriptional responses of leaves to defined microbiota members andthe spatial distribution of bacteria on leaves. We anticipate that this versatile and affordable plantgrowth system will promote microbiota research and help in elucidating plant-microbe interactionsand their underlying mechanisms.
Collapse
Affiliation(s)
- Moritz Miebach
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8053, New Zealand; (M.M.); (R.O.S.); (J.C.); (P.E.J.)
| | - Rudolf O. Schlechter
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8053, New Zealand; (M.M.); (R.O.S.); (J.C.); (P.E.J.)
- Biomolecular Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8053, New Zealand
| | - John Clemens
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8053, New Zealand; (M.M.); (R.O.S.); (J.C.); (P.E.J.)
| | - Paula E. Jameson
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8053, New Zealand; (M.M.); (R.O.S.); (J.C.); (P.E.J.)
| | - Mitja N.P. Remus-Emsermann
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8053, New Zealand; (M.M.); (R.O.S.); (J.C.); (P.E.J.)
- Biomolecular Interaction Centre, University of Canterbury, 20 Kirkwood Avenue, Christchurch 8053, New Zealand
| |
Collapse
|
6
|
Tao SQ, Auer L, Morin E, Liang YM, Duplessis S. Transcriptome Analysis of Apple Leaves Infected by the Rust Fungus Gymnosporangium yamadae at Two Sporulation Stages. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:444-461. [PMID: 31765287 DOI: 10.1094/mpmi-07-19-0208-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apple rust disease caused by Gymnosporangium yamadae is one of the major threats to apple orchards. In this study, dual RNA-seq analysis was conducted to simultaneously monitor gene expression profiles of G. yamadae and infected apple leaves during the formation of rust spermogonia and aecia. The molecular mechanisms underlying this compatible interaction at 10 and 30 days postinoculation (dpi) indicate a significant reaction from the host plant and comprise detoxication pathways at the earliest stage and the induction of secondary metabolism pathways at 30 dpi. Such host reactions have been previously reported in other rust pathosystems and may represent a general reaction to rust infection. G. yamadae transcript profiling indicates a conserved genetic program in spermogonia and aecia that is shared with other rust fungi, whereas secretome prediction reveals the presence of specific secreted candidate effector proteins expressed during apple infection. Unexpectedly, the survey of fungal unigenes in the transcriptome assemblies of inoculated and mock-inoculated apple leaves reveals that G. yamadae infection may modify the fungal community composition in the apple phyllosphere at 30 dpi. Collectively, our results provide novel insights into the compatible apple-G. yamadae interaction and advance the knowledge of this heteroecious demicyclic rust fungus.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University
| | - Sébastien Duplessis
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
7
|
Host selection and stochastic effects influence bacterial community assembly on the microalgal phycosphere. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101489] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol 2019; 19:74. [PMID: 30961521 PMCID: PMC6454784 DOI: 10.1186/s12866-019-1446-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Subunits of ribosomal RNA genes (rDNAs) characterized by PCR-based protocols have been the proxy for studies in microbial taxonomy, phylogenetics, evolution and ecology. However, relevant factors have shown to interfere in the experimental outputs in a variety of systems. In this work, a 'theoretical' to 'actual' delta approach was applied to data on culturable mock bacterial communities (MBCs) to study the levels of losses in operational taxonomic units (OTUs) detectability. Computational and lab-bench strategies based on 16S rDNA amplification by 799F and U1492R primers were employed, using a fingerprinting method with highly improved detectability of fragments as a case-study tool. MBCs were of two major types: in silico MBCs, assembled with database-retrieved sequences, and in vitro MBCs, with AluI digestions of PCR data generated from culturable endophytes isolated from cacao trees. RESULTS Interfering factors for the 16 s rDNA amplifications, such as the type of template, direct and nested PCR, proportion of chloroplast DNA from a tropical plant source (Virola officinalis), and biased-amplification by the primers resulted in altered bacterial 16S rDNA amplification, both on MBCs and V. officinalis leaf-extracted DNA. For the theoretical data, the maximum number of fragments for in silico and in vitro cuts were not significantly different from each other. Primers' preferences for certain sequences were detected, depending on the MBCs' composition prior to PCR. The results indicated overall losses from 2.3 up to 8.2 times in the number of OTUs detected from actual AluI digestions of MBCs when compared to in silico and in vitro theoretical data. CONCLUSIONS Due to all those effects, the final amplification profile of the bacterial community assembled was remarkably simplified when compared to the expected number of detectable fragments known to be present in the MBC. From these findings, the scope of hypotheses generation and conclusions from experiments based on PCR amplifications of bacterial communities was discussed.
Collapse
|
9
|
Mioduchowska M, Czyż MJ, Gołdyn B, Kilikowska A, Namiotko T, Pinceel T, Łaciak M, Sell J. Detection of bacterial endosymbionts in freshwater crustaceans: the applicability of non-degenerate primers to amplify the bacterial 16S rRNA gene. PeerJ 2018; 6:e6039. [PMID: 30581663 PMCID: PMC6296333 DOI: 10.7717/peerj.6039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022] Open
Abstract
Bacterial endosymbionts of aquatic invertebrates remain poorly studied. This is at least partly due to a lack of suitable techniques and primers for their identification. We designed a pair of non-degenerate primers which enabled us to amplify a fragment of ca. 500 bp of the 16S rRNA gene from various known bacterial endosymbiont species. By using this approach, we identified four bacterial endosymbionts, two endoparasites and one uncultured bacterium in seven, taxonomically diverse, freshwater crustacean hosts from temporary waters across a wide geographical area. The overall efficiency of our new WOLBSL and WOLBSR primers for amplification of the bacterial 16S rRNA gene was 100%. However, if different bacterial species from one sample were amplified simultaneously, sequences were illegible, despite a good quality of PCR products. Therefore, we suggest using our primers at the first stage of bacterial endosymbiont identification. Subsequently, genus specific primers are recommended. Overall, in the era of next-generation sequencing our method can be used as a first simple and low-cost approach to identify potential microbial symbionts associated with freshwater crustaceans using simple Sanger sequencing. The potential to detected bacterial symbionts in various invertebrate hosts in such a way will facilitate studies on host-symbiont interactions and coevolution.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Michał Jan Czyż
- Research Centre of Quarantine, Invasive and Genetically Modified Organisms, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Bartłomiej Gołdyn
- Department of General Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Adrianna Kilikowska
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tadeusz Namiotko
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, Leuven, Belgium.,Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Małgorzata Łaciak
- Polish Academy of Sciences, Institute of Nature Conservation, Krakow, Poland
| | - Jerzy Sell
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Li Y, Wu X, Chen T, Wang W, Liu G, Zhang W, Li S, Wang M, Zhao C, Zhou H, Zhang G. Plant Phenotypic Traits Eventually Shape Its Microbiota: A Common Garden Test. Front Microbiol 2018; 9:2479. [PMID: 30459725 PMCID: PMC6232875 DOI: 10.3389/fmicb.2018.02479] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/28/2018] [Indexed: 01/22/2023] Open
Abstract
Plant genotype drives the development of plant phenotypes and the assembly of plant microbiota. The potential influence of the plant phenotypic characters on its microbiota is not well characterized and the co-occurrence interrelations for specific microbial taxa and plant phenotypic characters are poorly understood. We established a common garden experiment, which quantifies prokaryotic and fungal communities in the phyllosphere and rhizosphere of six spruce (Picea spp.) tree species, through Illumina amplicon sequencing. We tested for relationships between bacterial/archaeal and fungal communities and for the phenotypic characters of their plant hosts. Host phenotypic characters including leaf length, leaf water content, leaf water storage capacity, leaf dry mass per area, leaf nitrogen content, leaf phosphorous content, leaf potassium content, leaf δ13C values, stomatal conductance, net photosynthetic rate, intercellular carbon dioxide concentration, and transpiration rate were significantly correlated with the diversity and composition of the bacterial/archaeal and fungal communities. These correlations between plant microbiota and suites of host plant phenotypic characters suggest that plant genotype shape its microbiota by driving the development of plant phenotypes. This will advance our understanding of plant-microbe associations and the drivers of variation in plant and ecosystem function.
Collapse
Affiliation(s)
- Yunshi Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Xiukun Wu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Tuo Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China.,State Key Laboratory of Cryospheric Sciences, NIEER, CAS, Lanzhou, China
| | - Wanfu Wang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, China.,Conservation Institute, Dunhuang Academy, Dunhuang, China
| | - Guangxiu Liu
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Wei Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| | - Shiweng Li
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, China.,School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Minghao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Changming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China
| | - Huaizhe Zhou
- College of Computer, National University of Defense Technology, Changsha, China
| | - Gaosen Zhang
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources (NIEER), Chinese Academy of Sciences (CAS), Lanzhou, China.,Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, China
| |
Collapse
|
11
|
Wolfe ER, Younginger BS, LeRoy CJ. Fungal endophyte-infected leaf litter alters in-stream microbial communities and negatively influences aquatic fungal sporulation. OIKOS 2018. [DOI: 10.1111/oik.05619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Emily R. Wolfe
- The Evergreen State College; Olympia WA USA
- Dept of Biology; Portland State Univ.; PO Box 751 Portland OR 97207 USA
| | - Brett S. Younginger
- Dept of Biology; Portland State Univ.; PO Box 751 Portland OR 97207 USA
- Dept of Plant Pathology; Washington State Univ.; Pullman WA USA
| | | |
Collapse
|
12
|
Aydogan EL, Moser G, Müller C, Kämpfer P, Glaeser SP. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment. Front Microbiol 2018; 9:144. [PMID: 29487575 PMCID: PMC5816784 DOI: 10.3389/fmicb.2018.00144] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere), which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album. Leaves were collected from four control and four surface warmed (+2°C) plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Warming caused a significant higher relative abundance of members of the Gammaproteobacteria, Actinobacteria, and Firmicutes, and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes. Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae, especially Enterobacter and Erwinia, and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C) surface warming on the phyllosphere microbiota on plants. A reduction of beneficial bacteria and an enhancement of potential pathogenic bacteria in the phyllosphere of plants may indicate that this aspect of the ecosystem which has been largely neglected up till now, can be a potential risk for pathogen transmission in agro-ecosystems in the near future.
Collapse
Affiliation(s)
- Ebru L. Aydogan
- Institute for Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Gerald Moser
- Institute for Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
| | - Christoph Müller
- Institute for Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Peter Kämpfer
- Institute for Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Stefanie P. Glaeser
- Institute for Applied Microbiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Busta L, Hegebarth D, Kroc E, Jetter R. Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density. PLANTA 2017; 245:297-311. [PMID: 27730411 DOI: 10.1007/s00425-016-2603-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/29/2016] [Indexed: 05/20/2023]
Abstract
Wax coverage on developing Arabidopsis leaf epidermis cells is constant and thus synchronized with cell expansion. Wax composition shifts from fatty acid to alkane dominance, mediated by CER6 expression. Epidermal cells bear a wax-sealed cuticle to hinder transpirational water loss. The amount and composition of the cuticular wax mixture may change as organs develop, to optimize the cuticle for specific functions during growth. Here, morphometrics, wax chemical profiling, and gene expression measurements were integrated to study developing Arabidopsis thaliana leaves and, thus, further our understanding of cuticular wax ontogeny. Before 5 days of age, cells at the leaf tip ceased dividing and began to expand, while cells at the leaf base switched from cycling to expansion at day 13, generating a cell age gradient along the leaf. We used this spatial age distribution together with leaves of different ages to determine that, as leaves developed, their wax compositions shifted from C24/C26 to C30/C32 and from fatty acid to alkane constituents. These compositional changes paralleled an increase in the expression of the elongase enzyme CER6 but not of alkane pathway enzymes, suggesting that CER6 transcriptional regulation is responsible for both chemical shifts. Leaves bore constant numbers of trichomes between 5 and 21 days of age and, thus, trichome density was higher on young leaves. During this time span, leaves of the trichome-less gl1 mutant had constant wax coverage, while wild-type leaf coverage was initially high and then decreased, suggesting that high trichome density leads to greater apparent coverage on young leaves. Conversely, wax coverage on pavement cells remained constant over time, indicating that wax accumulation is synchronized with cell expansion throughout leaf development.
Collapse
Affiliation(s)
- Lucas Busta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Daniela Hegebarth
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Edward Kroc
- Department of Statistics, University of British Columbia, 3182 Earth Sciences Building, 2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Educational and Counselling Psychology, and Special Education, University of British Columbia, 2125 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
14
|
Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The Phyllosphere: Microbial Jungle at the Plant–Climate Interface. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032238] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Arndt Hampe
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
| | | | - Ursula Sauer
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Stéphane Compant
- Bioresources Unit, Department of Health and Environment, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Cindy E. Morris
- INRA, Unité de Recherche de Pathologie Végétale, 84143 Montfavet, France
| |
Collapse
|
15
|
Using a Control to Better Understand Phyllosphere Microbiota. PLoS One 2016; 11:e0163482. [PMID: 27669159 PMCID: PMC5036865 DOI: 10.1371/journal.pone.0163482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/10/2016] [Indexed: 11/26/2022] Open
Abstract
An important data gap in our understanding of the phyllosphere surrounds the origin of the many microbes described as phyllosphere communities. Most sampling in phyllosphere research has focused on the collection of microbiota without the use of a control, so the opportunity to determine which taxa are actually driven by the biology and physiology of plants as opposed to introduced by environmental forces has yet to be fully realized. To address this data gap, we used plastic plants as inanimate controls adjacent to live tomato plants (phyllosphere) in the field with the hope of distinguishing between bacterial microbiota that may be endemic to plants as opposed to introduced by environmental forces. Using 16S rRNA gene amplicons to study bacterial membership at four time points, we found that the vast majority of all species-level operational taxonomic units were shared at all time-points. Very few taxa were unique to phyllosphere samples. A higher taxonomic diversity was consistently observed in the control samples. The high level of shared taxonomy suggests that environmental forces likely play a very important role in the introduction of microbes to plant surfaces. The observation that very few taxa were unique to the plants compared to the number that were unique to controls was surprising and further suggests that a subset of environmentally introduced taxa thrive on plants. This finding has important implications for improving our approach to the description of core phytobiomes as well as potentially helping us better understand how foodborne pathogens may become associated with plant surfaces.
Collapse
|
16
|
Laforest-Lapointe I, Messier C, Kembel SW. Tree phyllosphere bacterial communities: exploring the magnitude of intra- and inter-individual variation among host species. PeerJ 2016; 4:e2367. [PMID: 27635335 PMCID: PMC5012278 DOI: 10.7717/peerj.2367] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/25/2016] [Indexed: 11/20/2022] Open
Abstract
Background The diversity and composition of the microbial community of tree leaves (the phyllosphere) varies among trees and host species and along spatial, temporal, and environmental gradients. Phyllosphere community variation within the canopy of an individual tree exists but the importance of this variation relative to among-tree and among-species variation is poorly understood. Sampling techniques employed for phyllosphere studies include picking leaves from one canopy location to mixing randomly selected leaves from throughout the canopy. In this context, our goal was to characterize the relative importance of intra-individual variation in phyllosphere communities across multiple species, and compare this variation to inter-individual and interspecific variation of phyllosphere epiphytic bacterial communities in a natural temperate forest in Quebec, Canada. Methods We targeted five dominant temperate forest tree species including angiosperms and gymnosperms: Acer saccharum, Acer rubrum, Betula papyrifera, Abies balsamea and Picea glauca. For one randomly selected tree of each species, we sampled microbial communities at six distinct canopy locations: bottom-canopy (1–2 m height), the four cardinal points of mid-canopy (2–4 m height), and the top-canopy (4–6 m height). We also collected bottom-canopy leaves from five additional trees from each species. Results Based on an analysis of bacterial community structure measured via Illumina sequencing of the bacterial 16S gene, we demonstrate that 65% of the intra-individual variation in leaf bacterial community structure could be attributed to the effect of inter-individual and inter-specific differences while the effect of canopy location was not significant. In comparison, host species identity explains 47% of inter-individual and inter-specific variation in leaf bacterial community structure followed by individual identity (32%) and canopy location (6%). Discussion Our results suggest that individual samples from consistent positions within the tree canopy from multiple individuals per species can be used to accurately quantify variation in phyllosphere bacterial community structure. However, the considerable amount of intra-individual variation within a tree canopy ask for a better understanding of how changes in leaf characteristics and local abiotic conditions drive spatial variation in the phyllosphere microbiome.
Collapse
Affiliation(s)
- Isabelle Laforest-Lapointe
- Centre d'étude de la forêt, Montreal, Canada; Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Christian Messier
- Centre d'étude de la forêt, Montreal, Canada; Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec, Canada; ISFORT - Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, Quebec, Canada
| | - Steven W Kembel
- Centre d'étude de la forêt, Montreal, Canada; Sciences Biologiques, Université du Québec à Montréal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:627-37. [PMID: 26849835 DOI: 10.1111/plb.12441] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/01/2016] [Indexed: 05/13/2023]
Abstract
The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice.
Collapse
Affiliation(s)
- S Venkatachalam
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - K Ranjan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - R Prasanna
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - B Ramakrishnan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - S Thapa
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| | - A Kanchan
- Division of Microbiology, ICAR - Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|
18
|
Horn H, Keller A, Hildebrandt U, Kämpfer P, Riederer M, Hentschel U. Draft genome of the Arabidopsis thaliana phyllosphere bacterium, Williamsia sp. ARP1. Stand Genomic Sci 2016; 11:8. [PMID: 26779305 PMCID: PMC4715301 DOI: 10.1186/s40793-015-0122-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
The Gram-positive actinomycete Williamsia sp. ARP1 was originally isolated from the Arabidopsis thaliana phyllosphere. Here we describe the general physiological features of this microorganism together with the draft genome sequence and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our knowledge, this is only the second reported genome from the genus Williamsia and the first sequenced strain from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the phyllosphere habitat.
Collapse
Affiliation(s)
- Hannes Horn
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany ; GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Alexander Keller
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, D-97074 Germany
| | - Ulrich Hildebrandt
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
| | - Markus Riederer
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany
| | - Ute Hentschel
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, D-97082 Würzburg, Germany ; GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology and Christian-Albrechts University of Kiel, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| |
Collapse
|
19
|
Iguchi H, Yurimoto H, Sakai Y. Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria. Microorganisms 2015; 3:137-51. [PMID: 27682083 PMCID: PMC5023238 DOI: 10.3390/microorganisms3020137] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 01/19/2023] Open
Abstract
Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO2, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs) and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrophs in the genus Methylobacterium are abundant in the phyllosphere and have the ability to promote the growth of some plants. Methanotrophs also inhabit the phyllosphere, and methanotrophs with high methane oxidation activities have been found on aquatic plants. Both plant and environmental factors are involved in shaping the methylotroph community on plants. Methanotrophic activity can be enhanced by heterotrophic bacteria that provide growth factors (e.g., cobalamin). Information regarding the biological interaction of methylotrophs with other organisms will facilitate a better understanding of the carbon cycle that is driven by methylotrophs.
Collapse
Affiliation(s)
- Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
20
|
Williams TR, Marco ML. Phyllosphere microbiota composition and microbial community transplantation on lettuce plants grown indoors. mBio 2014; 5:e01564-14. [PMID: 25118240 PMCID: PMC4145687 DOI: 10.1128/mbio.01564-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED The aerial surfaces of plants, or phyllosphere, are microbial habitats important to plant and human health. In order to accurately investigate microbial interactions in the phyllosphere under laboratory conditions, the composition of the phyllosphere microbiota should be representative of the diversity of microorganisms residing on plants in nature. We found that Romaine lettuce grown in the laboratory contained 10- to 100-fold lower numbers of bacteria than age-matched, field-grown lettuce. The bacterial diversity on laboratory-grown plants was also significantly lower and contained relatively higher proportions of Betaproteobacteria as opposed to the Gammaproteobacteria-enriched communities on field lettuce. Incubation of field-grown Romaine lettuce plants in environmental growth chambers for 2 weeks resulted in bacterial cell densities and taxa similar to those on plants in the field but with less diverse bacterial populations overall. In comparison, the inoculation of laboratory-grown Romaine lettuce plants with either freshly collected or cryopreserved microorganisms recovered from field lettuce resulted in the development of a field-like microbiota on the lettuce within 2 days of application. The survival of an inoculated strain of Escherichia coli O157:H7 was unchanged by microbial community transfer; however, the inoculation of E. coli O157:H7 onto those plants resulted in significant shifts in the abundance of certain taxa. This finding was strictly dependent on the presence of a field-associated as opposed to a laboratory-associated microbiota on the plants. Phyllosphere microbiota transplantation in the laboratory will be useful for elucidating microbial interactions on plants that are important to agriculture and microbial food safety. IMPORTANCE The phyllosphere is a habitat for a variety of microorganisms, including bacteria with significant relevance to plant and human health. Some indigenous epiphytic bacteria might affect the persistence of human food-borne pathogens in the phyllosphere. However, studies on human pathogens are typically performed on plants grown indoors. This study compares the phyllosphere microbiota on Romaine lettuce plants grown in a Salinas Valley, CA, field to that on lettuce plants grown in environmental chambers. We show that phyllosphere microbiota from laboratory-grown plants is distinct from that colonizing plants grown in the field and that the field microbiota can be successfully transferred to plants grown indoors. The microbiota transplantation method was used to examine alterations to the phyllosphere microbiota after Escherichia coli O157:H7 inoculation on lettuce plants in a controlled environment. Our findings show the importance and validity of phyllosphere microbiota transplantation for future phyllosphere microbiology research.
Collapse
Affiliation(s)
- Thomas R Williams
- Department of Food Science & Technology, University of California, Davis, California, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, California, USA
| |
Collapse
|
21
|
Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 2014; 10:e1004283. [PMID: 24743269 PMCID: PMC3990490 DOI: 10.1371/journal.pgen.1004283] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/18/2014] [Indexed: 12/12/2022] Open
Abstract
The identity of plant host genetic factors controlling the composition of the plant microbiota and the extent to which plant genes affect associated microbial populations is currently unknown. Here, we use a candidate gene approach to investigate host effects on the phyllosphere community composition and abundance. To reduce the environmental factors that might mask genetic factors, the model plant Arabidopsis thaliana was used in a gnotobiotic system and inoculated with a reduced complexity synthetic bacterial community composed of seven strains representing the most abundant phyla in the phyllosphere. From a panel of 55 plant mutants with alterations in the surface structure, cell wall, defense signaling, secondary metabolism, and pathogen recognition, a small number of single host mutations displayed an altered microbiota composition and/or abundance. Host alleles that resulted in the strongest perturbation of the microbiota relative to the wild-type were lacs2 and pec1. These mutants affect cuticle formation and led to changes in community composition and an increased bacterial abundance relative to the wild-type plants, suggesting that different bacteria can benefit from a modified cuticle to different extents. Moreover, we identified ein2, which is involved in ethylene signaling, as a host factor modulating the community's composition. Finally, we found that different Arabidopsis accessions exhibited different communities, indicating that plant host genetic factors shape the associated microbiota, thus harboring significant potential for the identification of novel plant factors affecting the microbiota of the communities. The leaves of plants are inhabited by a diverse community of microorganisms. These leaf inhabitants influence their hosts with respect to growth and resistance to abiotic and biotic stresses. Recent studies revealed that the bacterial communities associated with leaves undergo selection, resulting in conserved microbial communities. However, the factors that are involved in structuring of bacterial communities are not well understood. In order to uncover host genetic factors that determine the community composition and to exclude confounding environmental effects, we inoculated Arabidopsis thaliana with a synthetic bacterial community under controlled conditions We screened a panel of Arabidopsis mutants defective in various traits for alterations in community structure and abundance and were able to show that cuticle synthesis and ethylene perception affect the bacterial community. In addition, we identified plant ecotypes with drastic differences in the community composition. Our system can thus be used to identify additional host genes and to broaden insights into plant microbe interactions, potentially providing a basis for applied plant protection through the identification of traits that enhance growth of plant probiotic bacteria.
Collapse
Affiliation(s)
| | | | - Martin Ackermann
- Department of Environmental Sciences, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Dubendorf, Switzerland
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Reisberg EE, Hildebrandt U, Riederer M, Hentschel U. Distinct phyllosphere bacterial communities on Arabidopsis wax mutant leaves. PLoS One 2013; 8:e78613. [PMID: 24223831 PMCID: PMC3818481 DOI: 10.1371/journal.pone.0078613] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/13/2013] [Indexed: 02/01/2023] Open
Abstract
The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria.
Collapse
Affiliation(s)
- Eva E. Reisberg
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Ulrich Hildebrandt
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Markus Riederer
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
| | - Ute Hentschel
- University of Würzburg, Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, Würzburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Müller T, Ruppel S. Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 2013; 87:2-17. [PMID: 24003903 PMCID: PMC3906827 DOI: 10.1111/1574-6941.12198] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/28/2022] Open
Abstract
Most microorganisms of the phyllosphere are nonculturable in commonly used media and culture conditions, as are those in other natural environments. This review queries the reasons for their ‘noncultivability’ and assesses developments in phyllospere microbiology that have been achieved cultivation independently over the last 4 years. Analyses of total microbial communities have revealed a comprehensive microbial diversity. 16S rRNA gene amplicon sequencing and metagenomic sequencing were applied to investigate plant species, location and season as variables affecting the composition of these communities. In continuation to culture-based enzymatic and metabolic studies with individual isolates, metaproteogenomic approaches reveal a great potential to study the physiology of microbial communities in situ. Culture-independent microbiological technologies as well advances in plant genetics and biochemistry provide methodological preconditions for exploring the interactions between plants and their microbiome in the phyllosphere. Improving and combining cultivation and culture-independent techniques can contribute to a better understanding of the phyllosphere ecology. This is essential, for example, to avoid human–pathogenic bacteria in plant food.
Collapse
Affiliation(s)
- Thomas Müller
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Institute of Landscape Biogeochemistry, Müncheberg, Germany
| | | |
Collapse
|
24
|
Ottesen AR, Gonzalez A, Bell R, Arce C, Rideout S, Allard M, Evans P, Strain E, Musser S, Knight R, Brown E, Pettengill JB. Co-enriching microflora associated with culture based methods to detect Salmonella from tomato phyllosphere. PLoS One 2013; 8:e73079. [PMID: 24039862 PMCID: PMC3767688 DOI: 10.1371/journal.pone.0073079] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/16/2013] [Indexed: 11/19/2022] Open
Abstract
The ability to detect a specific organism from a complex environment is vitally important to many fields of public health, including food safety. For example, tomatoes have been implicated numerous times as vehicles of foodborne outbreaks due to strains of Salmonella but few studies have ever recovered Salmonella from a tomato phyllosphere environment. Precision of culturing techniques that target agents associated with outbreaks depend on numerous factors. One important factor to better understand is which species co-enrich during enrichment procedures and how microbial dynamics may impede or enhance detection of target pathogens. We used a shotgun sequence approach to describe taxa associated with samples pre-enrichment and throughout the enrichment steps of the Bacteriological Analytical Manual's (BAM) protocol for detection of Salmonella from environmental tomato samples. Recent work has shown that during efforts to enrich Salmonella (Proteobacteria) from tomato field samples, Firmicute genera are also co-enriched and at least one co-enriching Firmicute genus (Paenibacillus sp.) can inhibit and even kills strains of Salmonella. Here we provide a baseline description of microflora that co-culture during detection efforts and the utility of a bioinformatic approach to detect specific taxa from metagenomic sequence data. We observed that uncultured samples clustered together with distinct taxonomic profiles relative to the three cultured treatments (Universal Pre-enrichment broth (UPB), Tetrathionate (TT), and Rappaport-Vassiliadis (RV)). There was little consistency among samples exposed to the same culturing medias, suggesting significant microbial differences in starting matrices or stochasticity associated with enrichment processes. Interestingly, Paenibacillus sp. (Salmonella inhibitor) was significantly enriched from uncultured to cultured (UPB) samples. Also of interest was the sequence based identification of a number of sequences as Salmonella despite indication by all media, that samples were culture negative for Salmonella. Our results substantiate the nascent utility of metagenomic methods to improve both biological and bioinformatic pathogen detection methods.
Collapse
Affiliation(s)
- Andrea R. Ottesen
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| | - Antonio Gonzalez
- Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
- Biofrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - Rebecca Bell
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| | - Caroline Arce
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| | - Steven Rideout
- Virginia Tech, Virginia Agricultural Experiment Station, Painter, Virginia, United States of America
| | - Marc Allard
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| | - Peter Evans
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| | - Errol Strain
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| | - Steven Musser
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, United States of America
- Howard Hughes Medical Institute, Boulder, Colorado, United States of America
| | - Eric Brown
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| | - James B. Pettengill
- Molecular Methods and Subtyping Branch, Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland, United States of America
| |
Collapse
|
25
|
Williams TR, Moyne AL, Harris LJ, Marco ML. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 2013; 8:e68642. [PMID: 23844230 PMCID: PMC3699665 DOI: 10.1371/journal.pone.0068642] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/30/2013] [Indexed: 01/28/2023] Open
Abstract
The developmental and temporal succession patterns and disturbance responses of phyllosphere bacterial communities are largely unknown. These factors might influence the capacity of human pathogens to persist in association with those communities on agriculturally-relevant plants. In this study, the phyllosphere microbiota was identified for Romaine lettuce plants grown in the Salinas Valley, CA, USA from four plantings performed over 2 years and including two irrigation methods and inoculations with an attenuated strain of Escherichia coli O157:H7. High-throughput DNA pyrosequencing of the V5 to V9 variable regions of bacterial 16S rRNA genes recovered in lettuce leaf washes revealed that the bacterial diversity in the phyllosphere was distinct for each field trial but was also strongly correlated with the season of planting. Firmicutes were generally most abundant in early season (June) plantings and Proteobacteria comprised the majority of bacteria recovered later in the year (August and October). Comparisons within individual field trials showed that bacterial diversity differed between sprinkler (overhead) and drip (surface) irrigated lettuce and increased over time as the plants grew. The microbiota were also distinct between control and E. coli O157:H7-inoculated plants and between E. coli O157:H7-inoculated plants with and without surviving pathogen cells. The bacterial inhabitants of the phyllosphere therefore appear to be affected by seasonal, irrigation, and biological factors in ways that are relevant for assessments of fresh produce food safety.
Collapse
Affiliation(s)
- Thomas R. Williams
- Department of Food Science & Technology, University of California, Davis, California, United States of America
| | - Anne-Laure Moyne
- Department of Food Science & Technology, University of California, Davis, California, United States of America
- Western Center for Food Safety, University of California, Davis, California, United States of America
| | - Linda J. Harris
- Department of Food Science & Technology, University of California, Davis, California, United States of America
- Western Center for Food Safety, University of California, Davis, California, United States of America
| | - Maria L. Marco
- Department of Food Science & Technology, University of California, Davis, California, United States of America
| |
Collapse
|
26
|
Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 2013; 8:e56329. [PMID: 23457551 PMCID: PMC3574144 DOI: 10.1371/journal.pone.0056329] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Diverse communities of bacteria inhabit plant leaves and roots and those bacteria play a crucial role for plant health and growth. Arabidopsis thaliana is an important model to study plant pathogen interactions, but little is known about its associated bacterial community under natural conditions. We used 454 pyrosequencing to characterize the bacterial communities associated with the roots and the leaves of wild A. thaliana collected at 4 sites; we further compared communities on the outside of the plants with communities in the endophytic compartments. We found that the most heavily sequenced bacteria in A. thaliana associated community are related to culturable species. Proteobacteria, Actinobacteria, and Bacteroidetes are the most abundant phyla in both leaf and root samples. At the genus level, sequences of Massilia and Flavobacterium are prevalent in both samples. Organ (leaf vs root) and habitat (epiphytes vs endophytes) structure the community. In the roots, richness is higher in the epiphytic communities compared to the endophytic compartment (P = 0.024), while the reverse is true for the leaves (P = 0.032). Interestingly, leaf and root endophytic compartments do not differ in richness, diversity and evenness, while they differ in community composition (P = 0.001). The results show that although the communities associated with leaves and roots share many bacterial species, the associated communities differ in structure.
Collapse
Affiliation(s)
- Natacha Bodenhausen
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew W. Horton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
27
|
Buschhaus C, Jetter R. Composition and physiological function of the wax layers coating Arabidopsis leaves: β-amyrin negatively affects the intracuticular water barrier. PLANT PHYSIOLOGY 2012; 160:1120-9. [PMID: 22885935 PMCID: PMC3461534 DOI: 10.1104/pp.112.198473] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/07/2012] [Indexed: 05/19/2023]
Abstract
Plants prevent dehydration by coating their aerial, primary organs with waxes. Wax compositions frequently differ between species, organs, and developmental stages, probably to balance limiting nonstomatal water loss with various other ecophysiological roles of surface waxes. To establish structure-function relationships, we quantified the composition and transpiration barrier properties of the gl1 mutant leaf waxes of Arabidopsis (Arabidopsis thaliana) to the necessary spatial resolution. The waxes coating the upper and lower leaf surfaces had distinct compositions. Moreover, within the adaxial wax, the epicuticular layer contained more wax and a higher relative quantity of alkanes, whereas the intracuticular wax had a higher percentage of alcohols. The wax formed a barrier against nonstomatal water loss, where the outer layer contributed twice as much resistance as the inner layer. Based on this detailed description of Arabidopsis leaf waxes, structure-function relationships can now be established by manipulating one cuticle component and assessing the effect on cuticle functions. Next, we ectopically expressed the triterpenoid synthase gene AtLUP4 (for lupeol synthase4 or β-amyrin synthase) to compare water loss with and without added cuticular triterpenoids in Arabidopsis leaf waxes. β-Amyrin accumulated solely in the intracuticular wax, constituting up to 4% of this wax layer, without other concomitant changes of wax composition. This triterpenoid accumulation caused a significant reduction in the water barrier effectiveness of the intracuticular wax.
Collapse
|