1
|
Ye CF, Wu JD, Li LR, Sun SG, Wang YG, Jiang TA, Long X, Zhao J. Co-inhibition of RAGE and TLR4 sensitizes pancreatic cancer to irreversible electroporation in mice by disrupting autophagy. Acta Pharmacol Sin 2025; 46:1757-1771. [PMID: 39953172 PMCID: PMC12098883 DOI: 10.1038/s41401-025-01487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Irreversible electroporation (IRE) is a local ablative treatment for patients with pancreatic cancer. During the IRE procedure, high-intensity electric pulses are released intratumorally to disrupt plasma membranes and induce cell death. Since the intensity of the pulsed electric field (PEF) can be decreased by the tumor microenvironment, some cancer cells are subjected to a sublethal PEF and may survive to cause tumor recurrence later. Autophagy activation induced by anticancer therapies is known to promote treatment resistance. In this study, we investigated whether autophagy is activated in residual cancer cells after IRE and assessed the roles it plays during tumor recurrence. Subcutaneous KPC-A548 or Panc02 murine pancreatic cancer cell line xenograft mouse models were established; once the tumors reached 7 mm in one dimension, the tumor-bearing mice were subjected to IRE. For in vitro sublethal PEF treatment, the pancreatic cancer cell suspension was in direct contact with the electrodes and pulsed at room temperature. We showed that autophagy was activated in surviving residual cells, as evidenced by increased expression of LC3 and p62. Suppression of autophagy with hydroxychloroquine (60 mg/kg, daily intraperitoneal injection) markedly increased the efficacy of IRE. We demonstrated that autophagy activation can be attributed to increased expression of high-mobility group box 1 (HMGB1); co-inhibition of two HMGB1 receptors, receptor for advanced glycosylation end products (RAGE) and Toll-like receptor 4 (TLR4), suppressed autophagy activation by upregulating the PI3K/AKT/p70 ribosomal S6 protein kinase (p70S6K) axis and sensitized pancreatic cancer cells to PEF. We prepared a polymeric micelle formulation (M-R/T) encapsulating inhibitors of both RAGE and TLR4. The combination of IRE and M-R/T (equivalent to RAGE inhibitor at 10.4 mg/kg and TLR4 inhibitor at 5.7 mg/kg, intravenous or intraperitoneal injection every other day) significantly promoted tumor apoptosis, suppressed cell cycle progression, and prolonged animal survival in pancreatic tumor models. This study suggests that disruption of HMGB1-mediated autophagy with nanomedicine is a promising strategy to enhance the response of pancreatic cancer to IRE.
Collapse
Affiliation(s)
- Cui-Fang Ye
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-di Wu
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Rong Li
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shu-Guo Sun
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Gang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tian-An Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xin Long
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Khuu L, Pillay A, Prichard A, Allen LAH. Effects of the pan-caspase inhibitor Q-VD-OPh on human neutrophil lifespan and function. PLoS One 2025; 20:e0316912. [PMID: 39775346 PMCID: PMC11706505 DOI: 10.1371/journal.pone.0316912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Human neutrophils are abundant, short-lived leukocytes that turn over at a rate of approximately 1011 cells/day via a constitutive apoptosis program. Certain growth factors, inflammatory mediators and infectious agents can delay apoptosis or induce neutrophils to die by other mechanisms. Nonetheless, a large body of data demonstrates that apoptosis of untreated neutrophils typically ensues within 24 hours of cell isolation and in vitro culture. At the molecular level apoptosis is driven by executioner caspase-3, and during this process cell proinflammatory capacity and host defense functions are downregulated. We undertook the current study to determine the extent to which human neutrophil viability and function could be prolonged by treatment with the non-toxic, irreversible, pan-caspase inhibitor Q-VD-OPh. Our data demonstrate that a single 10 μM dose of this drug was sufficient to markedly prolong cell lifespan. Specifically, we show that apoptosis was prevented for at least 5 days as indicated by analysis of nuclear morphology, DNA fragmentation, and phosphatidylserine externalization together with measurements of procaspase-3 processing and caspase activity. Conversely, mitochondrial depolarization declined despite abundant Myeloid Cell Leukemia 1 (MCL-1). At the same time, glutathione levels were maintained and Q-VD-OPh prevented age-associated increases mitochondrial oxidative stress. Regarding functional capacity, we show that phagocytosis, NADPH oxidase activity, chemotaxis, and degranulation were maintained following Q-VD-OPh treatment, albeit to somewhat different extents. Thus, a single 10 μM dose of Q-VD-OPh can sustain human neutrophil viability and function for at least 5 days.
Collapse
Affiliation(s)
- Lisa Khuu
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Alisha Pillay
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
| | - Allan Prichard
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Lee-Ann H. Allen
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, United States of America
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
3
|
Qin P, Li Q, Zu Q, Dong R, Qi Y. Natural products targeting autophagy and apoptosis in NSCLC: a novel therapeutic strategy. Front Oncol 2024; 14:1379698. [PMID: 38628670 PMCID: PMC11019012 DOI: 10.3389/fonc.2024.1379698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant type. The roles of autophagy and apoptosis in NSCLC present a dual and intricate nature. Additionally, autophagy and apoptosis interconnect through diverse crosstalk molecules. Owing to their multitargeting nature, safety, and efficacy, natural products have emerged as principal sources for NSCLC therapeutic candidates. This review begins with an exploration of the mechanisms of autophagy and apoptosis, proceeds to examine the crosstalk molecules between these processes, and outlines their implications and interactions in NSCLC. Finally, the paper reviews natural products that have been intensively studied against NSCLC targeting autophagy and apoptosis, and summarizes in detail the four most retrieved representative drugs. This paper clarifies good therapeutic effects of natural products in NSCLC by targeting autophagy and apoptosis and aims to promote greater consideration by researchers of natural products as candidates for anti-NSCLC drug discovery.
Collapse
Affiliation(s)
- Peiyi Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qingchen Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ruxue Dong
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Xiao Y, Cheng Y, Liu WJ, Liu K, Wang Y, Xu F, Wang DM, Yang Y. Effects of neutrophil fate on inflammation. Inflamm Res 2023; 72:2237-2248. [PMID: 37925664 DOI: 10.1007/s00011-023-01811-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Neutrophils are important participants in the innate immune response. They rapidly and efficiently identify and clear infectious agents by expressing large numbers of membrane receptors. Upon tissue injury or pathogen invasion, neutrophils are the first immune cells to reach the site of injury and participate in the inflammatory response. MATERIALS AND METHODS A thorough search on PubMed related to neutrophil death or clearance pathways was performed. CONCLUSION Inflammatory response and tissue damage can be aggravated when neutrophils are not removed rapidly from the site of injury. Recent studies have shown that neutrophils can be cleared through a variety of pathways, including non-inflammatory and inflammatory death, as well as reverse migration. Non-inflammatory death pathways include apoptosis and autophagy. Inflammatory death pathways include necroptosis, pyroptosis and NETosis. This review highlights the basic properties of neutrophils and the impact of their clearance pathways on the inflammatory response.
Collapse
Affiliation(s)
- Yuan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yang Cheng
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wen-Jie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Kun Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yan Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feng Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - De-Ming Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Yang
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Zhang Z, Jin L, Liu L, Zhou M, Zhang X, Zhang L. The intricate relationship between autoimmunity disease and neutrophils death patterns: a love-hate story. Apoptosis 2023; 28:1259-1284. [PMID: 37486407 DOI: 10.1007/s10495-023-01874-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Autoimmune diseases are pathological conditions that result from the misidentification of self-antigens in immune system, leading to host tissue damage and destruction. These diseases can affect different organs and systems, including the blood, joints, skin, and muscles. Despite the significant progress made in comprehending the underlying pathogenesis, the complete mechanism of autoimmune disease is still not entirely understood. In autoimmune diseases, the innate immunocytes are not functioning properly: they are either abnormally activated or physically disabled. As a vital member of innate immunocyte, neutrophils and their modes of death are influenced by the microenvironment of different autoimmune diseases due to their short lifespan and diverse death modes. Related to neutrophil death pathways, apoptosis is the most frequent cell death form of neutrophil non-lytic morphology, delayed or aberrant apoptosis may contribute to the development anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). In addition, NETosis, necroptosis and pyroptosis which are parts of lytic morphology exacerbate disease progression through various mechanisms in autoimmune diseases. This review aims to summarize recent advancements in understanding neutrophil death modes in various autoimmune diseases and provide insights into the development of novel therapeutic approaches for autoimmune diseases.
Collapse
Affiliation(s)
- Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China.
- Anti-Inflammatory Immune Drugs Collaborative Innovation Center, Hefei, Anhui Province, China.
| |
Collapse
|
6
|
Li Y, Tan R, Li R, Tian R, Liu Z, Wang X, Chen E, Pan T, Qu H. PKM2/STAT1-mediated PD-L1 upregulation on neutrophils during sepsis promotes neutrophil organ accumulation by serving an anti-apoptotic role. J Inflamm (Lond) 2023; 20:16. [PMID: 37131151 PMCID: PMC10155438 DOI: 10.1186/s12950-023-00341-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Delayed neutrophil apoptosis during sepsis may impact neutrophil organ accumulation and tissue immune homeostasis. Elucidating the mechanisms underlying neutrophil apoptosis may help identify potential therapeutic targets. Glycolysis is critical to neutrophil activities during sepsis. However, the precise mechanisms through which glycolysis regulates neutrophil physiology remain under-explored, especially those involving the non-metabolic functions of glycolytic enzymes. In the present study, the impact of programmed death ligand-1 (PD-L1) on neutrophil apoptosis was explored. The regulatory effect of the glycolytic enzyme, pyruvate kinase M2 (PKM2), whose role in septic neutrophils remains unaddressed, on neutrophil PD-L1 expression was also explored. METHODS Peripheral blood neutrophils were isolated from patients with sepsis and healthy controls. PD-L1 and PKM2 levels were determined by flow cytometry and Western blotting, respectively. Dimethyl sulfoxide (DMSO)-differentiated HL-60 cells were stimulated with lipopolysaccharide (LPS) as an in vitro simulation of septic neutrophils. Cell apoptosis was assessed by annexin V/propidium iodide (annexin V/PI) staining, as well as determination of protein levels of cleaved caspase-3 and myeloid cell leukemia-1 (Mcl-1) by Western blotting. An in vivo model of sepsis was constructed by intraperitoneal injection of LPS (5 mg/kg) for 16 h. Pulmonary and hepatic neutrophil infiltration was assessed by flow cytometry or immunohistochemistry. RESULTS PD-L1 level was elevated on neutrophils under septic conditions. Administration of neutralizing antibodies against PD-L1 partially reversed the inhibitory effect of LPS on neutrophil apoptosis. Neutrophil infiltration into the lung and liver was also reduced in PD-L1-/- mice 16 h after sepsis induction. PKM2 was upregulated in septic neutrophils and promoted neutrophil PD-L1 expression both in vitro and in vivo. In addition, PKM2 nuclear translocation was increased after LPS stimulation, which promoted PD-L1 expression by directly interacting with and activating signal transducer and activator of transcription 1 (STAT1). Inhibition of PKM2 activity or STAT1 activation also led to increased neutrophil apoptosis. CONCLUSION In this study, a PKM2/STAT1-mediated upregulation of PD-L1 on neutrophils and the anti-apoptotic effect of upregulated PD-L1 on neutrophils during sepsis were identified, which may result in increased pulmonary and hepatic neutrophil accumulation. These findings suggest that PKM2 and PD-L1 could serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Yinjiaozhi Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Zhaojun Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Erzhen Chen
- Department of Emergency Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
AlNafea HM, Korish AA. The interplay between hypovitaminosis D and the immune dysfunction in the arteriovenous thrombotic complications of the sever coronavirus disease 2019 (COVID-19) infection. Blood Coagul Fibrinolysis 2023; 34:129-137. [PMID: 36966750 PMCID: PMC10089932 DOI: 10.1097/mbc.0000000000001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/11/2023] [Indexed: 03/28/2023]
Abstract
Thromboembolic complications including cerebrovascular accidents, pulmonary embolism, myocardial infarction, deep vein thrombosis and disseminating intravascular coagulopathy are serious encounters in sever coronavirus disease 2019 (COVID-19) infected patients. This worsens the prognosis and may lead to death or life long morbidities. The laboratory finding of the disturbed haemostasias and the hyperinflammatory response are almost invariably present in COVID-19 patients. Multiple treatment modalities are utilized by the healthcare professionals to overcome the cytokine storm, oxidative stress, endothelial dysfunction, and coagulopathy in these patients. The combined actions of vitamin D (VitD) as a steroid hormone with anti-inflammatory, immunomodulatory, and antithrombotic properties increase the potential of the possible involvement of hypovitaminosis D in the thromboembolic complications of COVID-19 infection, and stimulated researchers and physicians to administer VitD therapy to prevent the infection and/or overcome the disease complications. The current review highlighted the immunomodulatory, anti-inflammatory, antioxidative and hemostatic functions of VitD and its interrelation with the renin-angiotensin-aldosterone system (RAAS) pathway and the complement system. Additionally, the association of VitD deficiency with the incidence and progression of COVID-19 infection and the associated cytokine storm, oxidative stress, hypercoagulability, and endothelial dysfunction were emphasized. Normalizing VitD levels by daily low dose therapy in patients with hypovitaminosis D below (25 nmol/l) is essential for a balanced immune response and maintaining the health of the pulmonary epithelium. It protects against upper respiratory tract infections and decreases the complications of COVID-19 infections. Understanding the role of VitD and its associated molecules in the protection against the coagulopathy, vasculopathy, inflammation, oxidative stress and endothelial dysfunction in COVID-19 infection could lead to new therapeutic strategies to prevent, treat, and limit the complications of this deadly virus infection.
Collapse
Affiliation(s)
- Haifa M. AlNafea
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University
| | - Aida A. Korish
- Physiology Department (29), College of Medicine, King Saud University Medical City (KSUMC), King Saud university, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Xia J, Tian Y, Shao Z, Li C, Ding M, Qi Y, Xu X, Dai K, Wu C, Yao W, Hao C. MALAT1-miR-30c-5p-CTGF/ATG5 axis regulates silica-induced experimental silicosis by mediating EMT in alveolar epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114392. [PMID: 36508811 DOI: 10.1016/j.ecoenv.2022.114392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Epithelial-mesenchymal transdifferentiation of alveolar type Ⅱ epithelial cells is a vital source of pulmonary myofibroblasts, and myofibroblasts formation is recognized as an important phase in the pathological process of silicosis. miR-30c-5p has been determined to be relevant in the activation of the epithelial-mesenchymal transition (EMT) in numerous disease processes. However, elucidating the role played by miR-30c-5p in the silicosis-associated EMT process remains a great challenge. In this work, based on the establishment of mouse silicosis and A549 cells EMT models, miR-30c-5p was interfered with in vivo and in vitro models to reveal its effects on EMT and autophagy. Moreover, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), connective tissue growth factor (CTGF), autophagy-related gene 5 (ATG5), and autophagy were further interfered with in the A549 cells models to uncover the possible molecular mechanism through which miR-30c-5p inhibits silicosis associated EMT. The results demonstrated the targeted binding of miR-30c-5p to CTGF, ATG5, and MALAT1, and showed that miR-30c-5p could prevent EMT in lung epithelial cells by acting on CTGF and ATG5-associated autophagy, thereby inhibiting the silicosis fibrosis process. Furthermore, we also found that lncRNA MALAT1 might competitively absorb miR-30c-5p and affect the EMT of lung epithelial cells. In a word, interfering with miR-30c-5p and its related molecules (MALAT1, CTGF, and ATG5-associated autophagy) may provide a reference point for the application of silicosis intervention-related targets.
Collapse
Affiliation(s)
- Jiarui Xia
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Yangyang Tian
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Zheng Shao
- The Third Affiliated Hospital of Zhengzhou University, Henan, PR China
| | - Chao Li
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Mingcui Ding
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Yuanmeng Qi
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Xiao Xu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Kai Dai
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Chenchen Wu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China
| | - Wu Yao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China.
| | - Changfu Hao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No. 100 Science Avenue 5, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
9
|
Autophagy Protects against Eosinophil Cytolysis and Release of DNA. Cells 2022; 11:cells11111821. [PMID: 35681515 PMCID: PMC9180302 DOI: 10.3390/cells11111821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/08/2023] Open
Abstract
The presence of eosinophils in the airway is associated with asthma severity and risk of exacerbations. Eosinophils deposit their damaging products in airway tissue, likely by degranulation and cytolysis. We previously showed that priming blood eosinophils with IL3 strongly increased their cytolysis on aggregated IgG. Conversely, IL5 priming did not result in significant eosinophil cytolysis in the same condition. Therefore, to identify critical events protecting eosinophils from cell cytolysis, we examined the differential intracellular events between IL5- and IL3-primed eosinophils interacting with IgG. We showed that both IL3 and IL5 priming increased the eosinophil adhesion to IgG, phosphorylation of p38, and production of reactive oxygen species (ROS), and decreased the phosphorylation of cofilin. However, autophagic flux as measured by the quantification of SQSTM1-p62 and lipidated-MAP1L3CB over time on IgG, with or without bafilomycin-A1, was higher in IL5-primed compared to IL3-primed eosinophils. In addition, treatment with bafilomycin-A1, an inhibitor of granule acidification and autophagolysosome formation, enhanced eosinophil cytolysis and DNA trap formation in IL5-primed eosinophils. Therefore, this study suggests that increased autophagy in eosinophils protects from cytolysis and the release of DNA, and thus limits the discharge of damaging intracellular eosinophilic contents.
Collapse
|
10
|
Qu Y, Cao J, Wang D, Wang S, Li Y, Zhu Y. 14,15-Epoxyeicosatrienoic Acid Protect Against Glucose Deprivation and Reperfusion-Induced Cerebral Microvascular Endothelial Cells Injury by Modulating Mitochondrial Autophagy via SIRT1/FOXO3a Signaling Pathway and TSPO Protein. Front Cell Neurosci 2022; 16:888836. [PMID: 35558879 PMCID: PMC9086968 DOI: 10.3389/fncel.2022.888836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Neurovascular system plays a vital role in controlling the blood flow into brain parenchymal tissues. Additionally, it also facilitates the metabolism in neuronal biological activities. Cerebral microvascular endothelial cells (MECs) are involved in mediating progression of the diseases related to cerebral vessels, including stroke. Arachidonic acid can be transformed into epoxyeicosatrienoic acids (EETs) under the catalysis by cytochrome P450 epoxygenase. We have reported that EETs could protect neuronal function. In our research, the further role of 14,15-EET in the protective effects of cerebral MECs and the potential mechanisms involved in oxygen glucose deprivation and reperfusion (OGD/R) were elucidated. In our study, we intervened the SIRT1/FOXO3a pathway and established a TSPO knock down model by using RNA interference technique to explore the cytoprotective role of 14,15-EET in OGD/R injury. Cerebral MECs viability was remarkably reduced after OGD/R treatment, however, 14,15-EET could reverse this effect. To further confirm whether 14,15-EET was mediated by SIRT1/FOXO3a signaling pathway and translocator protein (TSPO) protein, we also detected autophagy-related proteins, mitochondrial membrane potential, apoptosis indicators, oxygen free radicals, etc. It was found that 14,15-EET could regulate the mitophagy induced by OGD/R. SIRT1/FOXO3a signaling pathway and TSPO regulation were related to the protective role of 14,15-EET in cerebral MECs. Moreover, we also explored the potential relationship between SIRT1/FOXO3a signaling pathway and TSPO protein. Our study revealed the protective role and the potential mechanisms of 14,15-EET in cerebral MECs under OGD/R condition.
Collapse
Affiliation(s)
- Youyang Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinlu Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yulan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Ni L, Wei Y, Pan J, Li X, Xu B, Deng Y, Yang T, Liu W. Shedding New Light on Methylmercury-induced Neurotoxicity Through the Crosstalk Between Autophagy and Apoptosis. Toxicol Lett 2022; 359:55-64. [PMID: 35122893 DOI: 10.1016/j.toxlet.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/23/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023]
Abstract
Methylmercury (MeHg) is a bio-accumulative global environmental contaminant present in fish and seafood. MeHg accumulates in the aquatic environment and eventually reaches the human system via the food chain by bio-magnification. The central nervous system is the primary target of toxicity and is particularly vulnerable during development. It is well documented that developmental MeHg exposure can lead to neurological alterations, including cognitive and motor dysfunction. Apoptosis is a primary characteristic of MeHg-induced neurotoxicity, and may be regulated by autophagic activity. However, mechanisms mediating the interaction between apoptosis and autophagy remains to be explored. Autophagy is an adaptive response under stressful conditions, and the basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy can regulate cell fate through different crosstalk signaling pathways. A complex interplay between autophagy and apoptosis determines the degree of apoptosis and the progression of MeHg-induced neurotoxicity as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances in the roles of autophagy and apoptosis in MeHg neurotoxicity and thoroughly explores the relationship between them. The autophagic pathway may be a potential therapeutic target in MeHg neurotoxicity through modulation of apoptosis.
Collapse
Affiliation(s)
- Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning, People's Republic of China.
| |
Collapse
|
12
|
Fetz AE, Wallace SE, Bowlin GL. Electrospun Polydioxanone Loaded With Chloroquine Modulates Template-Induced NET Release and Inflammatory Responses From Human Neutrophils. Front Bioeng Biotechnol 2021; 9:652055. [PMID: 33987174 PMCID: PMC8111017 DOI: 10.3389/fbioe.2021.652055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The implantation of a biomaterial quickly initiates a tissue repair program initially characterized by a neutrophil influx. During the acute inflammatory response, neutrophils release neutrophil extracellular traps (NETs) and secrete soluble signals to modulate the tissue environment. In this work, we evaluated chloroquine diphosphate, an antimalarial with immunomodulatory and antithrombotic effects, as an electrospun biomaterial additive to regulate neutrophil-mediated inflammation. Electrospinning of polydioxanone was optimized for rapid chloroquine elution within 1 h, and acute neutrophil-biomaterial interactions were evaluated in vitro with fresh human peripheral blood neutrophils at 3 and 6 h before quantifying the release of NETs and secretion of inflammatory and regenerative factors. Our results indicate that chloroquine suppresses NET release in a biomaterial surface area–dependent manner at the early time point, whereas it modulates signal secretion at both early and late time points. More specifically, chloroquine elution down-regulates interleukin 8 (IL-8) and matrix metalloproteinase nine secretion while up-regulating hepatocyte growth factor, vascular endothelial growth factor A, and IL-22 secretion, suggesting a potential shift toward a resolving neutrophil phenotype. Our novel repurposing of chloroquine as a biomaterial additive may therefore have synergistic, immunomodulatory effects that are advantageous for biomaterial-guided in situ tissue regeneration applications.
Collapse
Affiliation(s)
- Allison E Fetz
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Shannon E Wallace
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, United States
| |
Collapse
|
13
|
Polymorphisms within Autophagy-Related Genes Influence the Risk of Developing Colorectal Cancer: A Meta-Analysis of Four Large Cohorts. Cancers (Basel) 2021; 13:cancers13061258. [PMID: 33809172 PMCID: PMC7998818 DOI: 10.3390/cancers13061258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary We investigated the influence of autophagy-related variants in modulating colorectal cancer (CRC) risk through a meta-analysis of genome-wide association study (GWAS) data from four large European cohorts. We found that genetic variants within the DAPK2 and ATG5 loci were associated with CRC risk. This study also shed some light onto the functional mechanisms behind the observed associations and demonstrated the impact of DAPK2rs11631973 and ATG5rs546456 polymorphisms on the modulation of host immune responses, blood derived-cell counts and serum inflammatory protein levels, which might be involved in promoting cancer development. No effect of the DAPK2 and ATG5 polymorphisms on the autophagy flux was observed. Abstract The role of genetic variation in autophagy-related genes in modulating autophagy and cancer is poorly understood. Here, we comprehensively investigated the association of autophagy-related variants with colorectal cancer (CRC) risk and provide new insights about the molecular mechanisms underlying the associations. After meta-analysis of the genome-wide association study (GWAS) data from four independent European cohorts (8006 CRC cases and 7070 controls), two loci, DAPK2 (p = 2.19 × 10−5) and ATG5 (p = 6.28 × 10−4) were associated with the risk of CRC. Mechanistically, the DAPK2rs11631973G allele was associated with IL1 β levels after the stimulation of peripheral blood mononuclear cells (PBMCs) with Staphylococcus aureus (p = 0.002), CD24 + CD38 + CD27 + IgM + B cell levels in blood (p = 0.0038) and serum levels of en-RAGE (p = 0.0068). ATG5rs546456T allele was associated with TNF α and IL1 β levels after the stimulation of PBMCs with LPS (p = 0.0088 and p = 0.0076, respectively), CD14+CD16− cell levels in blood (p = 0.0068) and serum levels of CCL19 and cortisol (p = 0.0052 and p = 0.0074, respectively). Interestingly, no association with autophagy flux was observed. These results suggested an effect of the DAPK2 and ATG5 loci in the pathogenesis of CRC, likely through the modulation of host immune responses.
Collapse
|
14
|
Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, Maldonado-Bernal C. Neutrophils: Many Ways to Die. Front Immunol 2021; 12:631821. [PMID: 33746968 PMCID: PMC7969520 DOI: 10.3389/fimmu.2021.631821] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/08/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.
Collapse
Affiliation(s)
- Erandi Pérez-Figueroa
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Pablo Álvarez-Carrasco
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
15
|
Wang Y, Gao W. Effects of TNF-α on autophagy of rheumatoid arthritis fibroblast-like synoviocytes and regulation of the NF-κB signaling pathway. Immunobiology 2021; 226:152059. [PMID: 33561598 DOI: 10.1016/j.imbio.2021.152059] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/20/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease, which seriously harms human health. The hyperplastic growth of fibroblast-like synoviocytes (FLSs) plays a key role in the pathogenesis of RA. However, the pathogenesis of RA remains unclear. In this experiment, we confirmed that Tumor necrosis factor alpha (TNF-α) could activate the autophagy of RA-FLSs. 3-Methyladenine (3-MA) and Chloroquine (CQ), two types of autophagy blocker, combined with TNF-α were used to treat FLSs. The results showed that this treatment caused a reduction in the level of autophagy-related protein, significant increases in the expression of apoptosis-related protein and the apoptosis rate, and significant inhibition of the proliferation-promoting ability of TNF-α. Ammonium pyrrolidinedithiocarbamate (PDTC), a specific nuclear factor kappa-B (NF-κB) activity blocker, significantly inhibited autophagy induced by TNF-α. Collectively, these findings showed, for the first time, that TNF-α can up-regulate autophagy activity and activate the NF-κB signal pathway. Inhibition of autophagy can improve the imbalance of proliferation/apoptosis of FLSs aggravated by TNF-α to some extent, thus delaying the progression of RA. The NF-κB signal pathway may be involved in the regulation of FLSs autophagy by TNF-α.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou 121000, China
| | - Wei Gao
- Department of Rheumatology, the First Affiliated Hospital of Jinzhou Medical University, Liaoning, Jinzhou 121000, China.
| |
Collapse
|
16
|
Zhang S, Zhang J, Wang C, Chen X, Zhao X, Jing H, Liu H, Li Z, Wang L, Shi J. COVID‑19 and ischemic stroke: Mechanisms of hypercoagulability (Review). Int J Mol Med 2021; 47:21. [PMID: 33448315 PMCID: PMC7849983 DOI: 10.3892/ijmm.2021.4854] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, some patients with severe COVID-19 exhibited complications such as acute ischemic stroke (AIS), which was closely associated with a poor prognosis. These patients often had an abnormal coagulation, namely, elevated levels of D-dimer and fibrinogen, and a low platelet count. Certain studies have suggested that COVID-19 induces AIS by promoting hypercoagulability. Nevertheless, the exact mechanisms through which COVID-19 leads to a hypercoagulable state in infected patients remain unclear. Understanding the underlying mechanisms of hypercoagulability is of utmost importance for the effective treatment of these patients. The present review aims to summarize the current status of research on COVID-19, hypercoagulability and ischemic stroke. The present review also aimed to shed light into the underlying mechanisms through which COVID-19 induces hypercoagulability, and to provide therapies for different mechanisms for the more effective treatment of patients with COVID-19 with ischemic stroke and prevent AIS during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Shuoqi Zhang
- Department of Neurology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jinming Zhang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chunxu Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaojing Chen
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xinyi Zhao
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Huan Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhuxin Li
- Department of Acupuncture and Moxibustion, College of Acupuncture and Moxibustion, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Lihua Wang
- Department of Neurology, The Second Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
17
|
Initiators of Classical and Lectin Complement Pathways Are Differently Engaged after Traumatic Brain Injury-Time-Dependent Changes in the Cortex, Striatum, Thalamus and Hippocampus in a Mouse Model. Int J Mol Sci 2020; 22:ijms22010045. [PMID: 33375205 PMCID: PMC7793095 DOI: 10.3390/ijms22010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein—GFAP), microglia/macrophages (allograft inflammatory factor 1—IBA-1), and microglia (transmembrane protein 119—TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.
Collapse
|
18
|
Huang S, Zhao SM, Shan LH, Zhou XL. Antitumor activity of nervosine VII, and the crosstalk between apoptosis and autophagy in HCT116 human colorectal cancer cells. Chin J Nat Med 2020; 18:81-89. [PMID: 32172951 DOI: 10.1016/s1875-5364(20)30009-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 01/01/2023]
Abstract
Nervosine VII is one of the known saturated pyrrolizidine alkaloids isolated from the plant of Liparis nervosa. This is first study to investigate the antitumor activity of nervosine VII in vitro, and the results indicated that nervosine VII induced autophagy and apoptosis in HCT116 human colorectal cancer cells. Mechanistic studies showed that nervosine VII-induced apoptosis was associated with the intrinsic pathway by the activation of caspase-9, -3 and -7. Autophagy induced by nervosine VII was characteristic with the regulation of autophagic markers including the increase of LC3-II and beclin 1 proteins, and the decrease of p62 protein. Nervosine VII simultaneously induced autophagy and apoptosis by activated MAPKs signaling pathway including JNK, ERK1/2 and p38, suppressing the p53 signaling pathway.
Collapse
Affiliation(s)
- Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shuang-Mei Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lian-Hai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xian-Li Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
19
|
Abstract
ABSTRACT Neutrophils play a critical role in the eradication of pathogenic organisms, particularly bacteria. However, in the septic patient the prolonged activation and accumulation of neutrophils may augment tissue and organ injury. This review discusses the different activation states and chemotaxis of neutrophils in septic patients. Neutrophil killing of bacteria and the formation of neutrophil extracellular traps represent important components of the innate immune response and they become dysregulated during sepsis, possibly through changes in their metabolism. Delayed neutrophil apoptosis may contribute to organ injury, or allow better clearance of pathogens. Neutrophils provide a friendly immune response to clear infections, but excessive activation and recruitment has the potential to turn them into potent foes.
Collapse
|
20
|
Hazra S, Chaudhuri AG, Tiwary BK, Chakrabarti N. Matrix metallopeptidase 9 as a host protein target of chloroquine and melatonin for immunoregulation in COVID-19: A network-based meta-analysis. Life Sci 2020; 257:118096. [PMID: 32679150 PMCID: PMC7361122 DOI: 10.1016/j.lfs.2020.118096] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
AIMS The molecular pathogenesis of COVID-19 is similar to other coronavirus (CoV) infections viz. severe acute respiratory syndrome (SARS) in human. Due to scarcity of the suitable treatment strategy, the present study was undertaken to explore host protein(s) targeted by potent repurposed drug(s) in COVID-19. MATERIALS AND METHODS The differentially expressed genes (DEGs) were identified from microarray data repository of SARS-CoV patient blood. The repurposed drugs for COVID-19 were selected from available literature. Using DEGs and drugs, the protein-protein interaction (PPI) and chemo-protein interaction (CPI) networks were constructed and combined to develop an interactome model of PPI-CPI network. The top-ranked sub-network with its hub-bottleneck nodes were evaluated with their functional annotations. KEY FINDINGS A total of 120 DEGs and 65 drugs were identified. The PPI-CPI network (118 nodes and 293 edges) exhibited a top-ranked sub-network (35 nodes and 174 connectivities) with 12 hub-bottleneck nodes having two drugs chloroquine and melatonin in association with 10 proteins corresponding to six upregulated and four downregulated genes. Two drugs interacted directly with the hub-bottleneck node i.e. matrix metallopeptidase 9 (MMP9), a host protein corresponding to its upregulated gene. MMP9 showed functional annotations associated with neutrophil mediated immunoinflammation. Moreover, literature survey revealed that angiotensin converting enzyme 2, a membrane receptor of SARS-CoV-2 virus, might have functional cooperativity with MMP9 and a possible interaction with both drugs. SIGNIFICANCE The present study reveals that between chloroquine and melatonin, melatonin appears to be more promising repurposed drug against MMP9 for better immunocompromisation in COVID-19.
Collapse
Affiliation(s)
- Suvojit Hazra
- CPEPA-UGC Centre for "Electro-physiological and Neuro-imaging studies including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India; Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Basant K Tiwary
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.
| | - Nilkanta Chakrabarti
- CPEPA-UGC Centre for "Electro-physiological and Neuro-imaging studies including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India; Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
21
|
Jia L, Hao SL, Yang WX. Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation. Nanomedicine (Lond) 2020; 15:1419-1435. [PMID: 32529946 DOI: 10.2217/nnm-2019-0387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Due to their unique physicochemical properties, nanoparticles (NPs) have been increasingly developed for use in various fields. However, there has been both growing negative concerns with toxicity and positive realization of opportunities in nanomedicine, coming from the growing understanding of the associations between NPs and the human body, particularly relating to their cellular autophagic effects. This review summarizes NP-induced autophagy via the modulation of the mTOR signaling pathway and other associated signals including AMPK and ERK and also demonstrates how reactive oxygen species generation greatly underlies the regulation processes. The perspectives in this review aim to contribute to NP design, particularly in consideration of nanotoxicity and the potential for the precise application of NPs in nanomedicine.
Collapse
Affiliation(s)
- Lu Jia
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
22
|
Yu Y, Sun B. Autophagy-mediated regulation of neutrophils and clinical applications. BURNS & TRAUMA 2020; 8:tkz001. [PMID: 32341923 PMCID: PMC7175771 DOI: 10.1093/burnst/tkz001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Autophagy, an adaptive catabolic process, plays a cytoprotective role in enabling cellular homeostasis in the innate and adaptive immune systems. Neutrophils, the most abundant immune cells in circulation, are professional killers that orchestrate a series of events during acute inflammation. The recent literature indicates that autophagy has important roles in regulating neutrophil functions, including differentiation, degranulation, metabolism and neutrophil extracellular trap formation, that dictate neutrophil fate. It is also becoming increasingly clear that autophagy regulation is critical for neutrophils to exert their immunological activity. However, evidence regarding the systematic communication between neutrophils and autophagy is insufficient. Here, we provide an updated overview of the function of autophagy as a regulator of neutrophils and discuss its clinical relevance to provide novel insight into potentially relevant treatment strategies.
Collapse
Affiliation(s)
- Yao Yu
- Department of Burns and Plastic Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| |
Collapse
|
23
|
Jiang Y, Zhao Y, Zhu X, Liu Y, Wu B, Guo Y, Liu B, Zhang X. Effects of autophagy on macrophage adhesion and migration in diabetic nephropathy. Ren Fail 2020; 41:682-690. [PMID: 31352855 PMCID: PMC6711118 DOI: 10.1080/0886022x.2019.1632209] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Macrophage infiltration in kidney is a major pathological feature of diabetic nephropathy (DN), which has been demonstrated associate with macrophages autophagy homeostasis. However, the relationships between autophagy and the infiltration response related of macrophages adhesion and migration are unknown. This study aims to investigate the impact of macrophages adhesion and migration by modulating autophagy. Methods: In vivo, rats were randomly distributed into control (NC) and DN groups. The pathological changes in renal tissue were assessed, and expression of CD68, LC3, P62 were analyzed. In vitro, RAW264.7 cells were divided into NC and high glucose (HG) groups. The capacity of macrophages adhesion migration and the expression of autophagy markers were observed with and without autophagy modulators (rapamycin, 3-methyladenine, chloroquine, and bafilomycin A1 for RAPA, 3-MA, CQ, BAFA). The macrophages autophagosome and the process of degradation and fusion of autophagosome-lysosome were observed by electron microscopy. Results: In vivo, renal injury is aggravated in diabetic rat compared with NC group. The autophagy level is inhibited in renal tissues of DN group with the increasing expression of CD68 and P62, while expression level of LC3 decreased (p < .05). In vitro, HG and 3-MA reduce the numbers of autophagosome of macrophages to inhibit autophagy level with decrease expression of LC3 and Beclin-1, but increase expression of P62, which promote the adhesion and migration capacity of macrophages (p < .05). Moreover, CQ and BAFA suppress autophagy level by inhibiting the process of autophagosome-lysosome degradation and fusion of macrophages, as well as the expression of LC3 and Beclin-1. We notice an increase expression of P62 by CQ and BAFA stimulation (p < .05). CQ and BAFA further facilitate the adhesion and migration capacity of macrophages. However, RAPA increases the numbers of macrophages autophagosome that inhibited by HG, resulting in a recovery of autophagy level with increase expression of LC3 and Beclin-1, whereas a reduction expression of P62, which lead to inhibition of adhesion and migration of macrophages induced by HG (p < .05) Conclusions: High glucose efficiently reduced the level of macrophage autophagy, following macrophages adhesion and migration enhanced when autophagy is suppressed. Activation of autophagosome improve the level of autophagy, but leading to a reduction of the macrophages adhesion and migration. While, inhibiting the process of degradation and fusion of autophagosome-lysosome suppress the level of autophagy and promote the macrophages adhesion and migration. These results indicate that high glucose may play an important role in macrophages adhesion and migration through modulating autophagy activities in diabetic nephropathy.
Collapse
Affiliation(s)
- Yuteng Jiang
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yu Zhao
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Xiaodong Zhu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yuqiu Liu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Beibei Wu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Yinfeng Guo
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Bicheng Liu
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| | - Xiaoliang Zhang
- a Institute of Nephrology, Zhong Da Hospital, Southeast University, School of Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
24
|
Shi X, Zhou N, Cheng J, Shi X, Huang H, Zhou M, Zhu H. Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis. BMC Pharmacol Toxicol 2019; 20:56. [PMID: 31500666 PMCID: PMC6734305 DOI: 10.1186/s40360-019-0336-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are evidences that chlorogenic acid (CGA) has antidepressant effects, however the underlying molecular mechanism has not been well understood. The aim of the study was to explore the neuroprotective effect of CGA on corticosterone (CORT)-induced PC 12 cells and its mechanism, especially the autophagy pathway. METHODS PC12 cells were incubated with CORT (0, 100, 200, 400 or 800 μM) for 24 h, cell viability was measured by MTT assay. PC12 cells were cultured with 400 μM of CORT in the absence or presence of CGA (25 μg/ml) for 24 h, morphologies and specific marker of autophagosome were observed by transmission electron microscope (TEM) and confocal immunofluorescence microscopy, respectively. In addition, PC12 cells were treated with different doses of CGA (0, 6.25, 12.5, 25 or 50 μg/ml) with or without CORT (400 μM) for 24 h, cell viability and changes in the morphology were observed, and further analysis of apoptotic and autophagic proteins, and expression of AKT/mTOR signaling pathway were carried out by Western blot. Specific inhibitors of autophagy 3-Methyladenine (3-MA) and chloroquine (CQ) were added to the PC12 cells cultures to explore the potential role of autophagy in CORT-induced neuronal cell apoptosis. RESULTS Besides decreasing PC12 cell activity, CORT could also induce autophagy and apoptosis of PC12 cells, while CGA could reverse these effects. In addition, CGA treatment regulated AKT/mTOR signaling pathway in PC12 cells. CGA, similar to 3-MA and QC, significantly inhibited CORT-induced apoptosis in PC12 cells. CONCLUSIONS Our results provide a new molecular mechanism for the treatment of CORT-induced neurotoxicity by CGA, and suggest CGA may be a potential substance which is can alleviate depression.
Collapse
Affiliation(s)
- Xiaowen Shi
- Center for Chinese Medical Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Cardiology, Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Nian Zhou
- Center for Chinese Medical Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jieyi Cheng
- Center for Chinese Medical Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xunlong Shi
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hai Huang
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mingmei Zhou
- Center for Chinese Medical Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Haiyan Zhu
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
25
|
Sun X, Zhang X, Zhai H, Zhang D, Ma S. Chicoric acid (CA) induces autophagy in gastric cancer through promoting endoplasmic reticulum (ER) stress regulated by AMPK. Biomed Pharmacother 2019; 118:109144. [PMID: 31545234 DOI: 10.1016/j.biopha.2019.109144] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is one of the most common cancers leading to tumor-related deaths worldwide. Chicoric acid (CA) exhibits a variety of protective effects in different diseases. However, its role in regulating tumor progression has not been reported. Autophagy, as a conserved catabolic process, sustains cellular homoeostasis responding to stress to modulate cell fate. In the study, the effects of CA on gastric cancer were investigated. The results indicated that CA treatment markedly reduced the cell viability and induced apoptosis in gastric cancer cells, and prevented tumor growth in an established xenograft gastric cancer model. Furthermore, CA exposure significantly induced autophagy both in gastric cancer cells and tumor samples, as evidenced by the up-regulated expression of LC3II. Moreover, phosphorylated AMP-activated protein kinase (AMPK) and p70S6 kinase (p70s6k) expression were obviously promoted by CA in vitro and in vivo. Importantly, blocking AMPK activation abrogated CA-induced expression of LC3II in gastric cancer cells. In addition, endoplasmic reticulum (ER) stress in tumor samples or cells was markedly induced by CA treatment through promoting the expression of associated signals such as Parkin, protein kinase RNA-like ER kinase (PERK), activating transcription factors 4 (ATF4) and ATF6. Importantly, these effects were abolished by the inhibition of AMPK signaling. Collectively, our findings indicated that CA prevents human gastric cancer progression by inducing autophagy partly through the activation of AMPK, and represents an effective therapeutic strategy against gastric cancer development.
Collapse
Affiliation(s)
- Xiaoli Sun
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xinwu Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hongjun Zhai
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Di Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shuangyu Ma
- Department of General Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
26
|
Wu L, Chen Y, Wang CY, Tang YY, Huang HL, Kang X, Li X, Xie YR, Tang XQ. Hydrogen Sulfide Inhibits High Glucose-Induced Neuronal Senescence by Improving Autophagic Flux via Up-regulation of SIRT1. Front Mol Neurosci 2019; 12:194. [PMID: 31481873 PMCID: PMC6710442 DOI: 10.3389/fnmol.2019.00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/25/2019] [Indexed: 01/31/2023] Open
Abstract
Hyperglycemia, a key characteristic and risk factor for diabetes mellitus (DM), causes neuronal senescence. Hydrogen sulfide (H2S) is a novel neuroprotectant. The present work was to investigate the potential effect of H2S on hyperglycemia-induced neuronal senescence and the underlying mechanisms. We found that NaHS, a donor of H2S, inhibited high glucose (HG)-induced cellular senescence in HT22 cells (an immortalized mouse hippocampal cell line), as evidenced by a decrease in the number of senescence associated-β-galactosidase (SA-β-gal) positive cells, increase in the growth of cells, and down-regulations of senescence mark proteins, p16INK4a and p21CIP1. NaHS improved the autophagic flux, which is judged by a decrease in the amount of intracellular autophagosome as well as up-regulations of LC3II/I and P62 in HG-exposed HT22 cells. Furthermore, blocked autophagic flux by chloroquine (CQ) significantly abolished NaHS-exerted improvement in the autophagic flux and suppression in the cellular senescence of GH-exposed HT22 cells, which indicated that H2S antagonizes HG-induced neuronal senescence by promoting autophagic flux. We also found that NaHS up-regulated the expression of silent mating type information regulation 2 homolog 1 (SIRT1), an important anti-aging protein, in HG-exposed HT22 cells. Furthermore, inhibition of SIRT1 by sirtinol reversed the protection of H2S against HG-induced autophagic flux blockade and cellular senescence in HT22 cells. These data indicated that H2S protects HT22 cells against HG-induced neuronal senescence by improving autophagic flux via up-regulation of SIRT1, suggesting H2S as a potential treatment strategy for hyperglycemia-induced neuronal senescence and neurotoxicity.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ying Chen
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Department of Pharmacology, The Central Hospital of Hengyang, Hengyang, China
| | - Chun-Yan Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Hong-Lin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Xuan Kang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiang Li
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Yu-Rong Xie
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
27
|
Talla U, Bozonet SM, Parker HA, Hampton MB, Vissers MCM. Prolonged exposure to hypoxia induces an autophagy-like cell survival program in human neutrophils. J Leukoc Biol 2019; 106:1367-1379. [PMID: 31412152 DOI: 10.1002/jlb.4a0319-079rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophils contribute to low oxygen availability at inflammatory sites through the generation of reactive oxidants. They are also functionally affected by hypoxia, which delays neutrophil apoptosis. However, the eventual fate of neutrophils in hypoxic conditions is unknown and this is important for their effective clearance and the resolution of inflammation. We have monitored the survival and function of normal human neutrophils exposed to hypoxia over a 48 h period. Apoptosis was delayed, and the cells remained intact even at 48 h. However, hypoxia promoted significant changes in neutrophil morphology with the appearance of many new cytoplasmic vesicles, often containing cell material, within 5 hours of exposure to low O2 . This coincided with an increase in LC3B-II expression, indicative of autophagosome formation and an autophagy-like process. In hypoxic conditions, neutrophils preferentially lost myeloperoxidase, a marker of azurophil granules. Short-term (2 h) hypoxic exposure resulted in sustained potential to generate superoxide when O2 was restored, but the capacity for oxidant production was lost with longer periods of hypoxia. Phagocytic ability was unchanged by hypoxia, and bacterial killing by neutrophils in both normoxic and hypoxic conditions was substantially diminished after 24 hours. However, pre-exposure to hypoxia resulted in an enhanced ability to kill bacteria by oxidant-independent mechanisms. Our data provide the first evidence for hypoxia as a driver of neutrophil autophagy that can influence the function and ultimate fate of these cells, including their eventual clearance and the resolution of inflammation.
Collapse
Affiliation(s)
- Usharani Talla
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Stephanie M Bozonet
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Heather A Parker
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
28
|
Zhang M, Zhang W, Tang G, Wang H, Wu M, Yu W, Zhou Z, Mou Y, Liu X. Targeted Codelivery of Docetaxel and Atg7 siRNA for Autophagy Inhibition and Pancreatic Cancer Treatment. ACS APPLIED BIO MATERIALS 2019; 2:1168-1176. [PMID: 35021365 DOI: 10.1021/acsabm.8b00764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Miaozun Zhang
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315041, China
| | - Wei Zhang
- Department of Gastroenterology, Ningbo No.2 Hospital, Ningbo 315010, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Hebin Wang
- College of Life Sciences, Tarim University, Alar 843300, China
| | - Min Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Weiming Yu
- Department of General Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo 315041, China
| | - Zhenfeng Zhou
- Department of Anesthesiology, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Yiping Mou
- Department of General Surgery, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China
| | - Xingang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
29
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
30
|
Zhao P, Li M, Wang Y, Chen Y, He C, Zhang X, Yang T, Lu Y, You J, Lee RJ, Xiang G. Enhancing anti-tumor efficiency in hepatocellular carcinoma through the autophagy inhibition by miR-375/sorafenib in lipid-coated calcium carbonate nanoparticles. Acta Biomater 2018; 72:248-255. [PMID: 29555460 DOI: 10.1016/j.actbio.2018.03.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Sorafenib is a first-line drug for hepatocellular carcinoma (HCC). Autophagy has been shown to facilitate sorafenib resistance. miR-375 has been shown to be an inhibitor of autophagy. In this study, miR-375 and sorafenib were co-loaded into calcium carbonate nanoparticles with lipid coating (miR-375/Sf-LCC NPs). The nanoparticles had high loading efficiency and were ∼50 nm in diameter. Besides, the NPs could increase the stability and residence time of both drugs. Moreover, we demonstrated that autophagy was activated in HCC cells by sorafenib but not by miR-375/Sf-LCC NPs. In vitro, miR-375/Sf-LCC NPs exhibited pH-dependent drug release and potent cytotoxicity. In vivo, miR-375/Sf-LCC NPs increased miR-375 and sorafenib uptake in tumor (2 folds compared with Lipofectamine 2000-miR-375 and 2-5 folds compared with free sorafenib). Furthermore, miR-375/Sf-LCC NPs showed greatly enhanced therapeutic efficacy in an HCC xenograft model. These findings suggest that miR-375/Sf-LCC NPs may be a promising agent for the HCC therapy. STATEMENT OF SIGNIFICANCE Hepatocellular carcinoma (HCC) is the most common primary liver tumor and the third leading cause of cancer mortality globally. In this manuscript, miR-375 and sorafenib were co-loaded into calcium carbonate nanoparticles with lipid coating (miR-375/Sf-LCC NPs) to treat HCC. We demonstrated that miR-375/Sf-LCC NPs can deliver sorafenib and miR-375 into HCC cells and tumor tissues, increase drug retention time in tumor, significantly inhibit autophagy and produce enhanced anti-tumor effect.
Collapse
|
31
|
Autophagy-independent increase of ATG5 expression in T cells of multiple sclerosis patients. J Neuroimmunol 2018; 319:100-105. [PMID: 29548704 DOI: 10.1016/j.jneuroim.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/16/2022]
Abstract
Autophagy, a process of controlled self-digestion which regulates cell homeostasis, is involved in innate and adaptive immunity. We investigated the expression of autophagy genes and autophagic activity in distinct lymphocyte populations in treatment-naive MS patients. The mRNA and protein levels of autophagy-related (ATG)5, required for autophagosome formation, were increased in CD4+ and CD4- T cells, but not B cells of MS patients compared to control subjects. The expression of other investigated autophagy genes, as well as the autophagic activity, did not significantly differ between the two groups. ATG5 mRNA levels in CD4+ T cells from MS patients were positively correlated with those of the proinflammatory cytokine tumor necrosis factor. These data suggest that autophagy-independent increase in ATG5 expression might be associated with the proinflammatory capacity of T cells in multiple sclerosis.
Collapse
|
32
|
Iula L, Keitelman IA, Sabbione F, Fuentes F, Guzman M, Galletti JG, Gerber PP, Ostrowski M, Geffner JR, Jancic CC, Trevani AS. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils. Front Immunol 2018; 9:269. [PMID: 29515581 PMCID: PMC5825906 DOI: 10.3389/fimmu.2018.00269] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/30/2018] [Indexed: 12/12/2022] Open
Abstract
Interleukin-1β (IL-1β), a major pro-inflammatory cytokine, is a leaderless cytosolic protein whose secretion does not follow the classical endoplasmic reticulum-to-Golgi pathway, and for which a canonical mechanism of secretion remains to be established. Neutrophils are essential players against bacterial and fungi infections. These cells are rapidly and massively recruited from the circulation into infected tissues and, beyond of displaying an impressive arsenal of toxic weapons effective to kill pathogens, are also an important source of IL-1β in infectious conditions. Here, we analyzed if an unconventional secretory autophagy mechanism is involved in the exportation of IL-1β by these cells. Our findings indicated that inhibition of autophagy with 3-methyladenine and Wortmannin markedly reduced IL-1β secretion induced by LPS + ATP, as did the disruption of the autophagic flux with Bafilomycin A1 and E64d. These compounds did not noticeable affect neutrophil viability ruling out that the effects on IL-1β secretion were due to cell death. Furthermore, VPS34IN-1, a specific autophagy inhibitor, was still able to reduce IL-1β secretion when added after it was synthesized. Moreover, siRNA-mediated knockdown of ATG5 markedly reduced IL-1β secretion in neutrophil-differentiated PLB985 cells. Upon LPS + ATP stimulation, IL-1β was incorporated to an autophagic compartment, as was revealed by its colocalization with LC3B by confocal microscopy. Overlapping of IL-1β-LC3B in a vesicular compartment peaked before IL-1β increased in culture supernatants. On the other hand, stimulation of autophagy by cell starvation augmented the colocalization of IL-1β and LC3B and then promoted neutrophil IL-1β secretion. In addition, specific ELISAs indicated that although both IL-1β and pro-IL-1β are released to culture supernatants upon neutrophil stimulation, autophagy only promotes IL-1β secretion. Furthermore, the serine proteases inhibitor AEBSF reduced IL-1β secretion. Moreover, IL-1β could be also found colocalizing with elastase, suggesting both some vesicles containing IL-1β intersect azurophil granules content and that serine proteases also regulate IL-1β secretion. Altogether, our findings indicate that an unconventional autophagy-mediated secretory pathway mediates IL-1β secretion in human neutrophils.
Collapse
Affiliation(s)
- Leonardo Iula
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Irene A. Keitelman
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Florencia Sabbione
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Federico Fuentes
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mauricio Guzman
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Jeremías Gastón Galletti
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Pehuén Pereyra Gerber
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Matías Ostrowski
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge R. Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina C. Jancic
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía S. Trevani
- Laboratorio de Inmunidad Innata, Instituto de Medicina Experimental (IMEX)––CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
33
|
Synergistic effect of a novel autophagy inhibitor and Quizartinib enhances cancer cell death. Cell Death Dis 2018; 9:138. [PMID: 29374185 PMCID: PMC5833862 DOI: 10.1038/s41419-017-0170-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023]
Abstract
Drug combinations have been increasingly applied in chemotherapy as a strategy to enhance the efficacy of anti-cancer treatment. The appropriate drug combinations may achieve synergistic effects beyond monotherapies alone. AC220 (Quizartinib), an FLT3 receptor tyrosine kinase inhibitor, developed for the treatment of AML, has been tested in phase II human clinical trials. However, AC220 as a monotherapy is not efficacious enough. In this study, we performed a small-molecule screening of 12 640 compounds in order to find a compound that increase the AC220 efficacy in chemotherapy. We identified that TAK-165, a HER2 inhibitor, even when used at low nanomolar doses in combination with AC220, was able to induce cell death in different cancer cells, but not in non-cancer cell lines. We showed that TAK-165 and AC220 act synergistically to downregulate key signaling pathways and potently induce cancer cell death. Furthermore, we demonstrated that TAK-165 inhibited autophagy in a HER2-independent manner. Finally, we showed that the combination of TAK-165 and AC220 induced cell death in cancer cells through the activation of chaperone-mediated autophagy. Overall, these findings support the strategy for using AC220 and an autophagy inhibitor such as TAK-165 in a combinatorial treatment to enhance the efficacy of cancer therapies.
Collapse
|
34
|
Pham DL, Ban GY, Kim SH, Shin YS, Ye YM, Chwae YJ, Park HS. Neutrophil autophagy and extracellular DNA traps contribute to airway inflammation in severe asthma. Clin Exp Allergy 2017; 47:57-70. [PMID: 27883241 DOI: 10.1111/cea.12859] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/20/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autophagy and neutrophil extracellular DNA traps (NETs) are implicated in asthma; however, their roles in asthma pathogenesis have not been elucidated. OBJECTIVES We compared autophagy and NET production levels from peripheral blood neutrophils (PBNs) of patients with severe asthma (SA) and non-severe asthma (NSA). Additionally, we investigated the inflammatory effects of NETs on human airway epithelial cells (AECs) and peripheral blood eosinophils (PBEs). METHODS Peripheral blood neutrophils from patients with SA (n = 30) and NSA (n = 38) were treated with interleukin (IL)-8 (100 ng/mL). Autophagy (light chain 3-II expression) and NET production levels were evaluated by Western blot, immunofluorescence microscopy, and PicoGreen assay. The effects of NETs on AECs were assessed by investigating cell death, cell detachment, expression of occludin and claudin-1, and IL-8 production; the effects of NETs on PBEs were examined by investigating the activation and release of eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN). RESULTS Untreated and IL-8-treated PBNs from the SA group produced higher autophagy and NET levels compared with those from the NSA group (P < 0.01). IL-8 increased autophagy and NET levels in PBNs from the SA group, but not from the NSA group. NET levels were correlated with autophagy levels in PBNs (P < 0.001). IL-8-induced NET production levels negatively were correlated with FEV1/FVC (r = -0.700, P = 0.016). NETs induced cell death, detachment, degradation of occludin and claudin-1, and IL-8 production from AECs. Higher levels of NET-induced ECP and EDN were released from PBEs in SA compared with NSA groups. CONCLUSIONS AND CLINICAL RELEVANCE Neutrophil autophagy and NETs could enhance asthma severity by damaging airway epithelium and triggering inflammatory responses of AECs and PBEs. Modulating neutrophil autophagy and NET production may be a new target therapy for SA.
Collapse
Affiliation(s)
- D L Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.,Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - G-Y Ban
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - S-H Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Y S Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Y-M Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Y-J Chwae
- Department of Microbiology, Ajou University School of Medicine, Suwon, Korea
| | - H-S Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.,Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
35
|
Ren C, Zhang H, Wu TT, Yao YM. Autophagy: A Potential Therapeutic Target for Reversing Sepsis-Induced Immunosuppression. Front Immunol 2017; 8:1832. [PMID: 29326712 PMCID: PMC5741675 DOI: 10.3389/fimmu.2017.01832] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/04/2017] [Indexed: 01/17/2023] Open
Abstract
Sepsis remains the leading cause of mortality in intensive care units and an intractable condition due to uncontrolled inflammation together with immune suppression. Dysfunction of immune cells is considered as a major cause for poor outcome of septic patients but with little specific treatments. Currently, autophagy that is recognized as an important self-protective mechanism for cellular survival exhibits great potential for maintaining immune homeostasis and alleviating multiple organ failure, which further improves survival of septic animals. The protective effect of autophagy on immune cells covers both innate and adaptive immune responses and refers to various cellular receptors and intracellular signaling. Multiple drugs and measures are reportedly beneficial for septic challenge by inducing autophagy process. Therefore, autophagy might be an effective target for reversing immunosuppression compromised by sepsis.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Hui Zhang
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Tian-Tian Wu
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China.,State Key Laboratory of Kidney Disease, The Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
36
|
Pan J, He L, Li X, Li M, Zhang X, Venesky J, Li Y, Peng Y. Activating Autophagy in Hippocampal Cells Alleviates the Morphine-Induced Memory Impairment. Mol Neurobiol 2017; 54:1710-1724. [DOI: 10.1007/s12035-016-9735-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/20/2016] [Indexed: 11/25/2022]
|
37
|
TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance. Sci Rep 2017; 7:44659. [PMID: 28304381 PMCID: PMC5356338 DOI: 10.1038/srep44659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/13/2017] [Indexed: 01/15/2023] Open
Abstract
Persistent elevation of plasma TNF-α is a marker of low grade systemic inflammation. Palmitic acid (PA) is the most abundant type of saturated fatty acid in human body. PA is bound with albumin in plasma and could not pass through endothelial barrier freely. Albumin-bound PA has to be transported across monolayer endothelial cells through intracellular transcytosis, but not intercellular diffusion. In the present study, we discovered that TNF-α might stimulate PA transcytosis across cardiac microvascular endothelial cells, which further impaired the insulin-stimulated glucose uptake by cardiomyocytes and promoted insulin resistance. In this process, TNF-α-stimulated endothelial autophagy and NF-κB signaling crosstalk with each other and orchestrate the whole event, ultimately result in increased expression of fatty acid transporter protein 4 (FATP4) in endothelial cells and mediate the increased PA transcytosis across microvascular endothelial cells. Hopefully the present study discovered a novel missing link between low grade systemic inflammation and insulin resistance.
Collapse
|
38
|
Khalili Fard J, Hamzeiy H, Sattari M, Eghbal MA. Protective Roles of N-acetyl Cysteine and/or Taurine against Sumatriptan-Induced Hepatotoxicity. Adv Pharm Bull 2016; 6:627-637. [PMID: 28101470 DOI: 10.15171/apb.2016.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Purpose: Triptans are the drug category mostly prescribed for abortive treatment of migraine. Most recent cases of liver toxicity induced by triptans have been described, but the mechanisms of liver toxicity of these medications have not been clear. Methods: In the present study, we obtained LC50 using dose-response curve and investigated cell viability, free radical generation, lipid peroxide production, mitochondrial injury, lysosomal membrane damage and the cellular glutathione level as toxicity markers as well as the beneficial effects of taurine and/or N-acetyl cysteine in the sumatriptan-treated rat parenchymal hepatocytes using accelerated method of cytotoxicity mechanism screening. Results: It was revealed that liver toxicity induced by sumatriptan in in freshly isolated parenchymal hepatocytes is dose-dependent. Sumatriptan caused significant free radical generation followed by lipid peroxide formation, mitochondrial injury as well as lysosomal damage. Moreover, sumatriptan reduced cellular glutathione content. Taurine and N-acetyl cysteine were able to protect hepatocytes against sumatriptan-induced harmful effects. Conclusion: It is concluded that sumatriptan causes oxidative stress in hepatocytes and the decreased hepatocytes glutathione has a key role in the sumatriptan-induced harmful effects. Also, N-acetyl cysteine and/or taurine could be used as treatments in sumatriptan-induced side effects.
Collapse
Affiliation(s)
- Javad Khalili Fard
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Hamzeiy
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sattari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Eghbal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Pharmacology and Toxicology Department, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
39
|
Activation of Adenosine 2A receptor inhibits neutrophil apoptosis in an autophagy-dependent manner in mice with systemic inflammatory response syndrome. Sci Rep 2016; 6:33614. [PMID: 27647162 PMCID: PMC5028892 DOI: 10.1038/srep33614] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/30/2016] [Indexed: 01/13/2023] Open
Abstract
Systemic inflammatory response syndrome (SIRS) is an overwhelming whole body inflammation caused by infectious diseases or sterile insults. Neutrophils are the dominant participants during inflammation, and their survival and death determine the initiation as well as resolution of SIRS. Apoptosis and autophagy are two fundamental cellular processes that modulating cell fate, but their correlation and regulators in neutrophils under SIRS condition have not been elucidated. In this study, we demonstrated that high dose of LPS induced both apoptosis and autophagy of neutrophils in a mouse SIRS model and LPS-stimulated neutrophils in vitro. Moreover, we found that the adenosine 2A receptor (A2AR), a known anti-inflammatory G protein-coupled receptor (GPCR), could inhibit LPS-induced neutrophil apoptosis by suppressing the LPS-induced autophagy. Activation of A2AR suppressed LPS-induced autophagy by inhibiting the ROS-JNK pathway as well as promoting GPCR βϒ subunit–AKT signaling. The A2AR-inhibited autophagy suppressed apoptosis of neutrophils by blocking caspase8, caspase3 and PARP signaling. These findings not only increase our understandings of neutrophils’ fate and function in response to systemic inflammation, but also identify a novel anti-inflammatory role of A2AR in modulating neutrophils’ survival during inflammation.
Collapse
|
40
|
Pang M, Wang H, Rao P, Zhao Y, Xie J, Cao Q, Wang Y, Wang YM, Lee VW, Alexander SI, Harris DCH, Zheng G. Autophagy links β-catenin and Smad signaling to promote epithelial-mesenchymal transition via upregulation of integrin linked kinase. Int J Biochem Cell Biol 2016; 76:123-134. [PMID: 27177845 DOI: 10.1016/j.biocel.2016.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/26/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
TGF-β1 induces epithelial-mesenchymal transition (EMT) and autophagy in a variety of cells. However, the role of autophagy in TGF-β1-induced EMT has not been clearly elucidated and the underlying mechanisms are unclear. In the present study, we found that TGF-β1 induced both autophagy and EMT in mouse tubular epithelial C1.1 cells. Inhibition of autophagy by 3-methyladenine or siRNA knockdown of Beclin 1 reduced TGF-β1-induced increase of vimentin and decreased E-cadherin expression. In contrast, rapamycin-associated enhancement of TGF-β1-induced autophagy increased EMT of C1.1 cells. Serum rescue inhibited autophagy followed by reversal of EMT. Blocking of autophagosome-lysosomal but not proteosomal degradation reduced the decrease of E-cadherin, demonstrating a role for autophagy in degradation of E-cadherin during EMT. Autophagy promoted the activation of Src and Src-associated phosphorylation of β-catenin at Y-654 leading to pY654-β-catenin/p-Smad2 complex formation. Chromatin immunoprecipitation assay demonstrated binding by the pY654-β-catenin/p-Smad2 complex to ILK promoter thus increasing ILK expression. Taken together, our results demonstrate that TGF-β1-induced autophagy links β-catenin and Smad signaling to promote EMT in C1.1 cells through a novel pY654-β-catenin/p-Smad2/ILK pathway. The pathway delineated links disruption of E-cadherin/β-catenin-mediated cell-cell contact to induction of EMT via upregulation of ILK.
Collapse
Affiliation(s)
- Min Pang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia; Dept. of Respiratory Medicine, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Hailong Wang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia; Dept. of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
| | - Padmashree Rao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Ye Zhao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Jun Xie
- Dept. of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China
| | - Qi Cao
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Yiping Wang
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney NSW 2145, Australia
| | - Vincent W Lee
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Sydney NSW 2145, Australia
| | - David C H Harris
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia
| | - Guoping Zheng
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney NSW 2145, Australia; Dept. of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, PR China.
| |
Collapse
|
41
|
Abstract
Apoptosis is a primary characteristic in the pathogenesis of liver disease. Hepatic apoptosis is regulated by autophagic activity. However, mechanisms mediating their interaction remain to be determined. Basal level of autophagy ensures the physiological turnover of old and damaged organelles. Autophagy also is an adaptive response under stressful conditions. Autophagy can control cell fate through different cross-talk signals. A complex interplay between hepatic autophagy and apoptosis determines the degree of hepatic apoptosis and the progression of liver disease as demonstrated by pre-clinical models and clinical trials. This review summarizes recent advances on roles of autophagy that plays in pathophysiology of liver. The autophagic pathway can be a novel therapeutic target for liver disease.
Collapse
Key Words
- ALT, alanine aminotransferase
- AMBRA-1, activating molecule in Beclin-1-regulated autophagy
- APAP, N-acetyl-p-aminophenol
- ATP, adenosine triphosphate
- Atg, autophagy-related gene
- BH3, Bcl-2 homology domain-3
- BNIP, Bcl-2/adenovirus E1B 19 kd-interacting protein
- Barkor, Beclin-1-associated autophagy-related key regulator
- Bcl-2, B-cell lymphoma-2
- Bcl-xL, B-cell lymphoma extra long
- Beclin-1, Bcl-2-interacting protein-1
- CSE, cigarette smoke extract
- DISC, death-inducing signaling complex
- DNA, DNA
- DRAM, damage regulated autophagic modulator
- Drp1, dynamin-related protein 1
- ER stress, endoplasmic reticulum stress
- FADD, Fas-associated protein with death domain
- FFA, free fatty acids
- HBV, hepatitis B virus
- HBx, hepatitis B X protein
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HSC, hepatic stellate cells
- LAMP-2, lysosome-associated membrane protein 2
- LD, lipid droplets
- MDBs, Mallory-Denk bodies
- MOMP, mitochondrial outer membrane permiabilization
- Microtubule LC3, microtubule light chain 3
- PCD, programmed cell death
- PI3KC3, phosphatidylinositol-3-kinase class-3
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- TNFα, tumor necrosis factor-α
- TUNEL, terminal deoxynucleotidyl transferase dUTP nick-end labeling
- UVRAG, UV-resistance-associated gene
- Vps34, vacuolar protein sorting-34
- apoptosis
- autophagy
- c-FLIP, cellular FLICE-like inhibitor protein
- cross-talk
- liver injury
- mTOR, mammalian target of rapamycin
- mechanism
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Kewei Wang
- a Departments of Surgery; University of Illinois College of Medicine ; Peoria , IL , USA
| |
Collapse
|
42
|
Huang J, Ge M, Lu S, Shi J, Yu W, Li X, Wang M, Zhang J, Feng S, Dong S, Cheng X, Zheng Y. Impaired Autophagy in Adult Bone Marrow CD34+ Cells of Patients with Aplastic Anemia: Possible Pathogenic Significance. PLoS One 2016; 11:e0149586. [PMID: 26930650 PMCID: PMC4773166 DOI: 10.1371/journal.pone.0149586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/01/2016] [Indexed: 12/17/2022] Open
Abstract
Aplastic anemia (AA) is a bone marrow failure syndrome that is caused largely by profound quantitative and qualitative defects of hematopoietic stem and progenitor cells. However, the mechanisms underlying these defects remain unclear. Under conditions of stress, autophagy acts as a protective mechanism for cells. We therefore postulated that autophagy in CD34+ hematopoietic progenitor cells (HPCs) from AA patients might be impaired and play a role in the pathogenesis of AA. To test this hypothesis, we tested autophagy in CD34+ cells from AA samples and healthy controls and investigated the effect of autophagy on the survival of adult human bone marrow CD34+ cells. We found that the level of autophagy in CD34+ cells from AA patients was significantly lower than in age/sex-matched healthy controls, and lower in cases of severe AA than in those with non-severe AA. Autophagy in CD34+ cells improved upon amelioration of AA but, compared to healthy controls, was still significantly reduced even in AA patients who had achieved a complete, long-term response. We also showed that although the basal autophagy in CD34+ cells was low, the autophagic response of CD34+ cells to “adversity” was rapid. Finally, impaired autophagy resulted in reduced differentiation and proliferation of CD34+ cells and sensitized them to death and apoptosis. Thus, our results confirm that autophagy in CD34+ cells from AA patients is impaired, that autophagy is required for the survival of CD34+ cells, and that impaired autophagy in CD34+ HPCs may play an important role in the pathogenesis of AA.
Collapse
Affiliation(s)
- Jinbo Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Shihong Lu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Wei Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Xingxin Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Jizhou Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Shuxu Dong
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, P.R. China
- * E-mail:
| |
Collapse
|
43
|
Li Y, Zhu H, Wang S, Qian X, Fan J, Wang Z, Song P, Zhang X, Lu W, Ju D. Interplay of Oxidative Stress and Autophagy in PAMAM Dendrimers-Induced Neuronal Cell Death. Am J Cancer Res 2015; 5:1363-77. [PMID: 26516373 PMCID: PMC4615738 DOI: 10.7150/thno.13181] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/30/2015] [Indexed: 01/07/2023] Open
Abstract
Poly-amidoamine (PAMAM) dendrimers are proposed to be one of the most promising drug-delivery nanomaterials. However, the toxicity of PAMAM dendrimers on the central nervous system seriously hinders their medical applications. The relationship between oxidative stress and autophagy induced by PAMAM dendrimers, and its underlying mechanism remain confusing. In this study, we reported that PAMAM dendrimers induced both reactive oxygen species and autophagy flux in neuronal cells. Interestingly, autophagy might be triggered by the formation of reactive oxygen species induced by PAMAM dendrimers. Suppression of reactive oxygen species could not only impair PAMAM dendrimers-induced autophagic effects, but also reduce PAMAM dendrimers-induced neuronal cell death. Moreover, inhibition of autophagy could protect against PAMAM dendrimers-induced neuronal cell death. These findings systematically elucidated the interplay between oxidative stress and autophagy in the neurotoxicity of PAMAM dendrimers, which might encourage the application of antioxidants and autophagy inhibitors to ameliorate the neurotoxicity of PAMAM dendrimers in clinic.
Collapse
|
44
|
Pliyev BK, Ivanova AV, Savchenko VG. Extracellular NAD(+) inhibits human neutrophil apoptosis. Apoptosis 2015; 19:581-93. [PMID: 24292505 DOI: 10.1007/s10495-013-0948-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Regulation of neutrophil apoptosis plays a critical role in the inflammatory response. Inflammation has previously been shown to increase levels of extracellular β-nicotinamide adenine dinucleotide (NAD(+)). The present study demonstrates that extracellular NAD(+) at concentrations found in the inflamed tissues profoundly delays spontaneous apoptosis of human neutrophils as was evidenced by inhibition of phosphatidylserine (PS) exposure, DNA fragmentation and caspase-3 activation. The effect was abrogated by NF157, an antagonist of P2Y11 receptor, and was pertussis toxin-insensitive. The NAD(+)-mediated delay of neutrophil apoptosis was reversed by 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase, and Rp-8-Br-cAMPS, an inhibitor of type I cAMP-dependent protein kinase A (PKA). Blocking of NAD(+)-induced influx of extracellular Ca(2+) with EGTA did not abolish the pro-survival effect of NAD(+). Extracellular NAD(+) inhibited proteasome-dependent degradation of Mcl-1 upstream of caspase activation and, furthermore, suppressed Bax translocation to the mitochondria and attenuated both dissipation of mitochondrial transmembrane potential (ΔΨm) and cytochrome c release from the mitochondria into the cytosol. Finally, we found that extracellular NAD(+) inhibited spontaneous activation of caspase-9, but not caspase-8, and the pro-survival effect of extracellular NAD(+) was abrogated by the inhibitor of caspase-9, but not by the inhibitor of caspase-8. Together, these results demonstrate that extracellular NAD(+) inhibits neutrophil apoptosis via P2Y11 receptor and cAMP/PKA pathway by regulating Mcl-1 level, Bax targeting to the mitochondria and mitochondrial apoptotic pathway. Thus, extracellular NAD(+) acts as a neutrophil survival factor that can contribute to prolonged neutrophil lifespan in inflammatory response.
Collapse
Affiliation(s)
- Boris K Pliyev
- Hematology Research Center, Novy Zykovsky Pr. 4, Moscow, 125167, Russia,
| | | | | |
Collapse
|
45
|
The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 2014; 35:9144-54. [DOI: 10.1016/j.biomaterials.2014.07.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 12/16/2022]
|
46
|
Liu Q, Shi X, Zhou X, Wang D, Wang L, Li C. Effect of autophagy inhibition on cell viability and cell cycle progression in MDA‑MB‑231 human breast cancer cells. Mol Med Rep 2014; 10:625-30. [PMID: 24898397 DOI: 10.3892/mmr.2014.2296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/22/2014] [Indexed: 11/06/2022] Open
Abstract
Atg7 is an autophagy‑related gene, and is involved in two ubiquitin‑like conjugation systems in the process of autophagy. It is well established that 3‑methyladenine (3Ma) is an autophagy inhibitor. The present study aimed to investigate the effect of autophagy inhibition on the cell viability and cell cycle progression of human breast cancer cells. MDA‑MB‑231 human breast cancer cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with high glucose, then divided into six groups. The six groups included the three fundamental groups as follows: The control group (untreated); the starvation group (high‑glucose DMEM replaced with glucose‑free minimal essential medium); and the starvation 3Ma group (maintained in glucose‑free culture medium and treated with the autophagy inhibitor 3Ma). The three fundamental groups were further divided into Atg7 siRNA‑transfected and non‑transfected groups. The cell viability and apoptosis of each group was determined by MTT assay and flow cytometry. The results of the current study demonstrated that Atg7 deficiency alone had no statically significant effect on the cell viability of MDA‑MB‑231 human breast cancer cells, while 3Ma reduced the cell viability and its effect was potentiated by Atg7 deficiency. Atg7 deficiency was more intense than 3Ma in the promotion of apoptosis and cell arrest in G0/G1‑phase in the absence of glucose and its effect was reduced by 3Ma. In conclusion, 3Ma and Atg7 may be involved in different pathways in the process of autophagy. Inhibition of autophagy may influence the cell viability and cell cycle through different pathways in MDA‑MB‑231 human breast cancer cells.
Collapse
Affiliation(s)
- Qiujun Liu
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xinli Shi
- Department of Pathobiology and Immunology, Hebei University of Traditional Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
| | - Xianyao Zhou
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Da Wang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Wang
- Research Center of Traditional Chinese and Western Medicine, Affiliated Traditional Hospital, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
47
|
Pliyev BK, Dimitrieva TV, Savchenko VG. Diadenosine diphosphate (Ap₂A) delays neutrophil apoptosis via the adenosine A2A receptor and cAMP/PKA pathway. Biochem Cell Biol 2014; 92:420-4. [PMID: 25179165 DOI: 10.1139/bcb-2014-0059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diadenosine polyphosphates have been shown to inhibit neutrophil apoptosis, but mechanisms of the antiapoptotic effect are not known. Diadenosine diphosphate (Ap2A) is the simplest naturally occurring diadenosine polyphosphate, and its effect on neutrophil apoptosis has not previously been investigated. Here we report that Ap2A delays spontaneous apoptosis of human neutrophils, and the effect is reversed by the adenosine A2A receptor antagonists SCH442416 and ZM241385. Ap2A induced an elevation of intracellular cAMP and the elevation was blocked by the adenosine A2A receptor antagonists. The antiapoptotic effect of Ap2A was abrogated by 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase, and Rp-8-Br-cAMPS, an inhibitor of type I cAMP-dependent protein kinase A (PKA). Together, these results demonstrate that Ap2A delays neutrophil apoptosis via the adenosine A2A receptor and cAMP/PKA signaling axis.
Collapse
Affiliation(s)
- Boris K Pliyev
- Hematology Research Center, Novy Zykovsky Pr. 4, Moscow 125167, Russia
| | | | | |
Collapse
|
48
|
Li Y, Zeng X, Wang S, Sun Y, Wang Z, Fan J, Song P, Ju D. Inhibition of autophagy protects against PAMAM dendrimers-induced hepatotoxicity. Nanotoxicology 2014; 9:344-55. [PMID: 24983897 DOI: 10.3109/17435390.2014.930533] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toxicity of nanomaterials is one of the biggest challenges in their medicinal applications. Although toxicities of nanomaterials have been widely reported, the exact mechanisms of toxicities are still not well elucidated. Consequently, the exploration of approaches to attenuate toxicities of nanomaterials is limited. In this study, we reported that poly-amidoamine (PAMAM) dendrimers, a widely used nanomaterial in the pharmaceutical industry, caused toxicity of human liver cells by inducing cell growth inhibition, mitochondria damage, and apoptosis. Meanwhile, autophagy was activated in PAMAM dendrimers-induced toxicity and inhibition of autophagy-rescued viability of hepatic cells, indicating that autophagy played a key role in PAMAM dendriemrs-induced hepatotoxicity. To further explore approaches to attenuate PAMAM dendrimers-induced liver injury, effects of autophagic inhibitors on PAMAM dendrimers' hepatotoxicity were investigated in an in vivo model. Autophagy blockage in PAMAM dendrimers-administered mice led to weight restoration, damage reversion of liver tissue, and protection against changes of serum biochemistry parameters. Moreover, inhibition of Akt/mTOR and activation of Erk1/2 signaling pathways were involved in PAMAM dendrimers-induced autophagy. Collectively, these findings indicated that autophagy was associated with PAMAM dendrimers-induced hepatotoxicity, and supported the possibility that autophagy inhibitors could be used to reduce hepatotoxicity of PAMAM dendrimers.
Collapse
Affiliation(s)
- Yubin Li
- Department of Biosynthesis & The Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University , Shanghai , PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ma J, Wan J, Meng J, Banerjee S, Ramakrishnan S, Roy S. Methamphetamine induces autophagy as a pro-survival response against apoptotic endothelial cell death through the Kappa opioid receptor. Cell Death Dis 2014; 5:e1099. [PMID: 24603327 PMCID: PMC3973232 DOI: 10.1038/cddis.2014.64] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/09/2022]
Abstract
Methamphetamine (METH) is a psychostimulant with high abuse potential and severe neurotoxicity. Recent studies in animal models have indicated that METH can impair the blood-brain barrier (BBB), suggesting that some of the neurotoxic effects resulting from METH abuse could be due to barrier disruption. We report here that while chronic exposure to METH disrupts barrier function of primary human brain microvascular endothelial cells (HBMECs) and human umbilical vein endothelial cells (HUVECs), an early pro-survival response is observed following acute exposure by induction of autophagic mechanisms. Acute METH exposure induces an early increase in Beclin1 and LC3 recruitment. This is mediated through inactivation of the protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/p70S6K pathway, and upregulation of the ERK1/2. Blockade of Kappa opioid receptor (KOR), and treatment with autophagic inhibitors accelerated METH-induced apoptosis, suggesting that the early autophagic response is a survival mechanism for endothelial cells and is mediated through the kappa opioid receptor. Our studies indicate that kappa opioid receptor can be therapeutically exploited for attenuating METH-induced BBB dysfunction.
Collapse
Affiliation(s)
- J Ma
- Departments of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - J Wan
- Departments of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - J Meng
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S Banerjee
- Departments of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - S Ramakrishnan
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - S Roy
- Departments of Surgery, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
50
|
Dyugovskaya L, Berger S, Polyakov A, Lavie L. The development of giant phagocytes in long-term neutrophil cultures. J Leukoc Biol 2014; 96:511-21. [PMID: 24577569 DOI: 10.1189/jlb.0813437] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We tested the hypothesis that in long-term culture conditions, some neutrophils remain viable and participate in debris clearance, and autophagy is involved in their prolonged survival. Neutrophils, classified as professional phagocytes, have the shortest half-life among leukocytes and are constitutively committed to apoptosis. Apoptotic neutrophils are actively removed by Mφ/DCs. However, early and acute inflammatory infiltrates primarily consist of neutrophils. Recently, neutrophils were suggested to facilitate debris clearance at inflammatory sites when the Mφ/DC system is insufficient. Here, purified CD15(+)/CD66b(+)/CD63(+) neutrophils were followed up to 7 days in culture using light, time-lapse, and confocal microscopy. After 3 days in culture, Annexin-V(-)/LC3B(+) large vacuolated cells, engulfing cellular residues, were noted among apoptotic neutrophils and cell debris. Thereafter, these cells were vastly enlarged and exhibited a neutrophilic phenotype (CD15(+)/CD63(+)/MPO(+)/CD66b(+)), phagocytosis, and oxidative burst activity. They also expressed CD68 scavenger receptors and internalized oxLDL. But, unlike in fresh neutrophils or cultured monocytes, oxLDL treatment increased their ROS production. Additionally, these phagocytes contained LC3B-coated vacuoles and LC3B aggregates, indicating the activation of autophagy. An intensive LC3B accumulation was also noted during oxLDL internalization. Importantly, the inhibition of autophagy by 3-MA or BafA1 prevented their development. In conclusion, the internalization of neutrophil remnants may induce activation of autophagic mechanisms in some neutrophil subsets or precursors. This may lead to cell adaptation and survival, resulting in their transformation into long-lived Gφ and potentially suggesting their involvement in inflammatory/anti-inflammatory processes.
Collapse
Affiliation(s)
- Larissa Dyugovskaya
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Slava Berger
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andrey Polyakov
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lena Lavie
- The Lloyd Rigler Sleep Apnea Research Laboratory, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|