1
|
Breitenstein P, Visser VL, Motta SE, Martin M, Generali M, Baaijens FPT, Loerakker S, Breuer CK, Hoerstrup SP, Emmert MY. Modulating biomechanical and integrating biochemical cues to foster adaptive remodeling of tissue engineered matrices for cardiovascular implants. Acta Biomater 2025; 197:48-67. [PMID: 40118167 DOI: 10.1016/j.actbio.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular disease remains one of the leading causes of mortality in the Western world. Congenital heart disease affects nearly 1 % of newborns, with approximately one-fourth requiring reconstructive surgery during their lifetime. Current cardiovascular replacement options have significant limitations. Their inability to grow poses particular challenges for pediatric patients. Tissue Engineered Matrix (TEM)-based in situ constructs, with their self-repair and growth potential, offer a promising solution to overcome the limitations of current clinically used replacement options. Various functionalization strategies, involving the integration of biomechanical or biochemical components to enhance biocompatibility, have been developed for Tissue Engineered Vascular Grafts (TEVG) and Tissue Engineered Heart Valves (TEHV) to foster their capacity for in vivo remodeling. In this review, we present the current state of clinical translation for TEVG and TEHV, and provide a comprehensive overview of biomechanical and biochemical functionalization strategies for TEVG and TEHV. We discuss the rationale for functionalization, the implementation of functionalization cues in TEM-based TEVG and TEHV, and the interrelatedness of biomechanical and biochemical cues in the in vivo response. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications. STATEMENT OF SIGNIFICANCE: Cardiovascular disease remains one of the leading causes of mortality, with current replacements being unable to grow and regenerate. In this review, we present the current state of clinical translation for tissue engineered vascular grafts (TEVG) and heart valves (TEHV). Particularly, we discuss the rationale and implementation for functionalization cues in tissue engineered matrix-based TEVGs and TEHVs, and for the first time we introduce the interrelatedness of biomechanical and biochemical cues in the in-vivo response. These insights pave the way for next-generation cardiovascular implants that promise better durability, biocompatibility, and growth potential. Finally, we address the challenges associated with functionalization and discuss how interdisciplinary research, especially when combined with in silico models, could enhance the translation of these strategies into clinical applications .
Collapse
Affiliation(s)
- Pascal Breitenstein
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Valery L Visser
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Sarah E Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Marcy Martin
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland
| | - Frank P T Baaijens
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Sandra Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Christopher K Breuer
- Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Wyss Zurich Translational Center, University of Zurich and ETH Zurich, Zurich 8092, Switzerland
| | - Maximilian Y Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren 8952, Switzerland; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin 13353, Germany; Charité Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
2
|
Rehak L, Giurato L, Monami M, Meloni M, Scatena A, Panunzi A, Manti GM, Caravaggi CMF, Uccioli L. The Immune-Centric Revolution Translated into Clinical Application: Peripheral Blood Mononuclear Cell (PBMNC) Therapy in Diabetic Patients with No-Option Critical Limb-Threatening Ischemia (NO-CLTI)-Rationale and Meta-Analysis of Observational Studies. J Clin Med 2024; 13:7230. [PMID: 39685690 DOI: 10.3390/jcm13237230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic limb-threatening ischemia (CLTI), the most advanced form of peripheral arterial disease (PAD), is the comorbidity primarily responsible for major lower-limb amputations, particularly for diabetic patients. Autologous cell therapy has been the focus of efforts over the past 20 years to create non-interventional therapeutic options for no-option CLTI to improve limb perfusion and wound healing. Among the different available techniques, peripheral blood mononuclear cells (PBMNC) appear to be the most promising autologous cell therapy due to physio-pathological considerations and clinical evidence, which will be discussed in this review. A meta-analysis of six clinical studies, including 256 diabetic patients treated with naive, fresh PBMNC produced via a selective filtration point-of-care device, was conducted. PBMNC was associated with a mean yearly amputation rate of 15.7%, a mean healing rate of 62%, and a time to healing of 208.6 ± 136.5 days. Moreover, an increase in TcPO2 and a reduction in pain were observed. All-cause mortality, with a mean rate of 22.2% and a yearly mortality rate of 18.8%, was reported. No serious adverse events were reported. Finally, some practical and financial considerations are provided, which point to the therapy's recommendation as the first line of treatment for this particular and crucial patient group.
Collapse
Affiliation(s)
- Laura Rehak
- Athena Cell Therapy Technologies, 50126 Florence, Italy
| | - Laura Giurato
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo Monami
- Department of Diabetology Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy
| | - Marco Meloni
- Diabetic Foot Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Alessia Scatena
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities Southeast Tuscany, 52100 Arezzo, Italy
| | - Andrea Panunzi
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
- PhD School of Applied Medical and Surgical Sciences, University of Rome Tor Vergata Italy, 00133 Rome, Italy
| | | | | | - Luigi Uccioli
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|
3
|
Capone M, Trulli R, Ndrecka O, Di Liberato L, Bonomini M. Successful wound healing by autologous peripheral blood mononuclear cell therapy in a diabetic patient on hemodialysis with no-option critical limb ischemia: a case report. J Nephrol 2024; 37:1361-1365. [PMID: 38289463 DOI: 10.1007/s40620-023-01876-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/26/2023] [Indexed: 09/18/2024]
Abstract
Peripheral artery disease is a common condition in patients on chronic dialysis treatment, end-stage kidney failure itself being a risk factor. The most severe stage of peripheral artery disease, critical limb ischemia, causes marked chronic pain and is associated with risk of limb loss. Despite improvements in revascularization procedures, the results of limb salvage procedures among dialysis patients remains poor, and lower extremity amputation is associated with high mortality and grim socio-economic implications. We report on a limb salvage approach that was successfully employed in a 74-year-old woman on hemodialysis suffering from no-option critical limb ischemia complicated by diabetic foot infection, i.e. otherwise a candidate for major amputation. The approach consists in implanting in the wound bed of the affected limb a concentrate of autologous peripheral blood mononuclear cells collected from the peripheral blood of the patient using a selective filtration separation system. The procedure, performed by a vascular surgeon in an outpatient setting and sterile conditions, was repeated three times at intervals of 15 days, and was well tolerated; no adverse safety signals were observed. Complete wound healing was obtained, with successful limb rescue.
Collapse
Affiliation(s)
- Martina Capone
- Nephrology and Dialysis Unit, Department of Medicine, SS. Annunziata Hospital, G. d'Annunzio University, Via dei Vestini, 66100, Chieti, Italy
| | | | - Olsi Ndrecka
- Nephrology and Dialysis Unit, Department of Medicine, SS. Annunziata Hospital, G. d'Annunzio University, Via dei Vestini, 66100, Chieti, Italy
| | - Lorenzo Di Liberato
- Nephrology and Dialysis Unit, Department of Medicine, SS. Annunziata Hospital, G. d'Annunzio University, Via dei Vestini, 66100, Chieti, Italy
| | - Mario Bonomini
- Nephrology and Dialysis Unit, Department of Medicine, SS. Annunziata Hospital, G. d'Annunzio University, Via dei Vestini, 66100, Chieti, Italy.
| |
Collapse
|
4
|
Chang HC, Wang X, Gu X, Jiang S, Wang W, Wu T, Ye M, Qu X, Bao Z. Correlation of serum VEGF-C, ANGPTL4, and activin A levels with frailty. Exp Gerontol 2024; 185:112345. [PMID: 38092160 DOI: 10.1016/j.exger.2023.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Secretory factors linked to lymphogenesis, such as vascular endothelial growth factor C (VEGF-C), angiopoietin like protein 4 (ANGPTL4), and activin A (ACV-A), have been recognized as potential markers of chronic inflammatory status and age-related diseases. Furthermore, these factors may also be linked to frailty. The primary objective of this study was to examine the serum VEGF-C, ANGPTL4, and ACV-A levels in young individuals, healthy older individuals, and older individuals with pre-frailty and frailty, and to determine their association with pro-inflammatory factor levels. METHODS We conducted an observational study, enrolling a total of 210 older individuals and 20 young healthy volunteers. Participants were divided into four groups based on the Freid frailty phenotype: healthy young group, older patients without frailty group, pre-frail older group, and frail older group. Plasma and peripheral blood mononuclear cells (PBMCs) were collected from all four groups. ELISA was used to measure the serum levels of VEGF-C, ANGPTL4, ACV-A, and pro-inflammatory cytokines, while RT-qPCR was used to measure the transcription level of VEGF-C, ANGPTL4 and ACV-A in PBMCs. RESULTS In comparison to healthy young individuals and older participants without frailty, older participants with frailty exhibited lower renal function, higher serum levels and transcription levels of VEGF-C, ANGPTL4, ACV-A, and elevated levels of pro-inflammatory cytokines (CRP, IL-1β, and TNF-α). Multiple linear regression analysis revealed that serum levels of VEGF-C, ANGPTL4, and ACV-A were positively correlated with the frailty index, independent of age, eGFR, and comorbidities. Furthermore, the receiver operating characteristic (ROC) curve analysis demonstrated that serum levels of VEGF-C, ANGPTL4, and ACV-A have great accuracy in predicting frailty. CONCLUSION Elevated serum levels of VEGF-C, ANGPTL4, and ACV-A are associated with frailty status.
Collapse
Affiliation(s)
- Hung-Chen Chang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xiaojun Wang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuchao Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Shuai Jiang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Wenhao Wang
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Tao Wu
- Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai institute of geriatric medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| |
Collapse
|
5
|
Kim G, Chun H. Similarity-assisted variational autoencoder for nonlinear dimension reduction with application to single-cell RNA sequencing data. BMC Bioinformatics 2023; 24:432. [PMID: 37964243 PMCID: PMC10647110 DOI: 10.1186/s12859-023-05552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Deep generative models naturally become nonlinear dimension reduction tools to visualize large-scale datasets such as single-cell RNA sequencing datasets for revealing latent grouping patterns or identifying outliers. The variational autoencoder (VAE) is a popular deep generative method equipped with encoder/decoder structures. The encoder and decoder are useful when a new sample is mapped to the latent space and a data point is generated from a point in a latent space. However, the VAE tends not to show grouping pattern clearly without additional annotation information. On the other hand, similarity-based dimension reduction methods such as t-SNE or UMAP present clear grouping patterns even though these methods do not have encoder/decoder structures. RESULTS To bridge this gap, we propose a new approach that adopts similarity information in the VAE framework. In addition, for biological applications, we extend our approach to a conditional VAE to account for covariate effects in the dimension reduction step. In the simulation study and real single-cell RNA sequencing data analyses, our method shows great performance compared to existing state-of-the-art methods by producing clear grouping structures using an inferred encoder and decoder. Our method also successfully adjusts for covariate effects, resulting in more useful dimension reduction. CONCLUSIONS Our method is able to produce clearer grouping patterns than those of other regularized VAE methods by utilizing similarity information encoded in the data via the highly celebrated UMAP loss function.
Collapse
Affiliation(s)
- Gwangwoo Kim
- Graduate School of Data Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyonho Chun
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Aries A, Vignon C, Zanetti C, Goubaud A, Cormier A, Diederichs A, Lahlil R, Hénon P, Garitaonandia I. Development of a potency assay for CD34 + cell-based therapy. Sci Rep 2023; 13:19665. [PMID: 37952030 PMCID: PMC10640600 DOI: 10.1038/s41598-023-47079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
We have previously shown that intracardiac delivery of autologous CD34+ cells after acute myocardial infarction (AMI) is safe and leads to long term improvement. We are now conducting a multicenter, randomized, controlled Phase I/IIb study in post-AMI to investigate the safety and efficacy of intramyocardial injection of expanded autologous CD34+ cells (ProtheraCytes) (NCT02669810). Here, we conducted a series of in vitro studies characterizing the growth factor secretion, exosome secretion, gene expression, cell surface markers, differentiation potential, and angiogenic potential of ProtheraCytes clinical batches to develop a potency assay. We show that ProtheraCytes secrete vascular endothelial growth factor (VEGF) and its concentration is significantly correlated with the number of CD34+ cells obtained after expansion. ProtheraCytes also secrete exosomes containing proangiogenic miRNAs (126, 130a, 378, 26a), antiapoptotic miRNAs (21 and 146a), antifibrotic miRNAs (133a, 24, 29b, 132), and miRNAs promoting myocardial regeneration (199a and 590). We also show that ProtheraCytes have in vitro angiogenic activity, express surface markers of endothelial progenitor cells, and can differentiate in vitro into endothelial cells. After the in vitro characterization of multiple ProtheraCytes clinical batches, we established that measuring the concentration of VEGF provided the most practical, reliable, and consistent potency assay.
Collapse
Affiliation(s)
- Anne Aries
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | | | - Céline Zanetti
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | | | | | | | - Rachid Lahlil
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
| | - Philippe Hénon
- Institut de Recherche en Hématologie et Transplantation, Hôpital du Hasenrain, 87 Avenue d'Altkirch, Mulhouse, France
- CellProthera SAS, 12 Rue du Parc, Mulhouse, France
| | | |
Collapse
|
7
|
Traxler D, Dannenberg V, Zlabinger K, Gugerell A, Mester-Tonczar J, Lukovic D, Spannbauer A, Hasimbegovic E, Kastrup J, Gyöngyösi M. Plasma Small Extracellular Vesicle Cardiac miRNA Expression in Patients with Ischemic Heart Failure, Randomized to Percutaneous Intramyocardial Treatment of Adipose Derived Stem Cells or Placebo: Subanalysis of the SCIENCE Study. Int J Mol Sci 2023; 24:10647. [PMID: 37445825 DOI: 10.3390/ijms241310647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Small extracellular vesicles (EVs) and their cargo are an important component of cell-to-cell communication in cardiac disease. Allogeneic adipose derived stem cells (ADSCs) are thought to be a potential approach for cardiac regenerative therapy in ischemic heart disease. The SCIENCE study investigated the effect of ADSCs administered via intramyocardial injection on cardiac function in patients with ischemic heart disease. The aim of this substudy, based on samples from 15 patients, was to explore small EV miRNA dynamics after treatment with ADSCs compared to a placebo. Small EVs were isolated at several timepoints after the percutaneous intramyocardial application of ADSCs. No significant effect of ADSC treatment on small EV concentration was detected. After 12 months, the expression of miR-126 decreased significantly in ADSC patients, but not in the placebo-treated group. However, all cardiac miRNAs correlated with plasma cardiac biomarkers. In line with the overall negative results of the SCIENCE study, with the exception of one miR, we did not detect any significant regulation of small EV miRNAs in this patient collective.
Collapse
Affiliation(s)
- Denise Traxler
- Division of Cardiology, Department of Internal Medicine II and Department of Oral and Maxillofacial Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Varius Dannenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Katrin Zlabinger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Alfred Gugerell
- Division of Cardiology, Department of Internal Medicine II, Department of Thoracic Surgery, Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Mester-Tonczar
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Jens Kastrup
- Cardiology Stem Cell Centre, Department of Cardiology, Centre for Cardiac, Vascular, Pulmonary and Infectious Diseases, Rigshospitalet, University of Copenhagen, Henrik Harpestrengs Vej 4, 2100 Copenhagen, Denmark
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Ragghianti B, Berardi BM, Mannucci E, Monami M. Autologous Peripheral Blood Mononuclear Cells in Patients with Small Artery Disease and Diabetic Foot Ulcers: Efficacy, Safety, and Economic Evaluation. J Clin Med 2023; 12:4148. [PMID: 37373842 PMCID: PMC10298945 DOI: 10.3390/jcm12124148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND diabetic foot ulcers (DFU) represent the main cause of major amputations and hospitalisations in diabetic patients. The aim of this study was to assess the safety and cost-efficacy of intramuscular injection of peripheral blood mononuclear cells (PBMNCs) in diabetic patients with no-option chronic limb-threatening ischemia (CLTI) and small artery disease (SAD). METHODS a retrospective study was carried out on a series of type 2 diabetic patients with DFU grade Texas 3 and no-option CLTI and SAD. All patients had undergone at least a previous revascularization and were allocated to a surgery waiting list for major amputation. The principal endpoint evaluated at 90 days was a composite of TcPO2 values at the first toe ≥30 mmHg and/or TcPO2 increase of at least 50% from baseline and/or ulcer healing. Secondary endpoints were individual components of the primary endpoint, any serious and non-serious adverse events, and direct costs at one year. RESULTS the composite endpoint was achieved in nine patients (60.0%); one patient (6.7%) healed within ninety days and 26.7% and 46.7% showed TcPO2 ≥ 30 mmHg and a TcPO2 increase of at least 50% at ninety days, respectively. At one year, three (20.0%) patients underwent a major amputation (all diagnosed SAD grade III). One patient died after seven months, and seven patients (46.7%) healed. The overall median and mean cost per patient were EUR 8238 ± 7798 and EUR 4426 (3798; 8262), respectively. CONCLUSIONS the use of PBMNCs implants in no-option CLTI diabetic patients with SAD seems to be of help in reducing the risk of major amputation.
Collapse
Affiliation(s)
| | | | | | - Matteo Monami
- Department of Diabetology, Careggi University Hospital, 50121 Florence, Italy; (B.R.); (B.M.B.); (E.M.)
| |
Collapse
|
9
|
Bormann D, Gugerell A, Ankersmit HJ, Mildner M. Therapeutic Application of Cell Secretomes in Cutaneous Wound Healing. J Invest Dermatol 2023; 143:893-912. [PMID: 37211377 DOI: 10.1016/j.jid.2023.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 05/23/2023]
Abstract
Although the application of stem cells to chronic wounds emerged as a candidate therapy in the previous century, the mechanism of action remains unclear. Recent evidence has implicated secreted paracrine factors in the regenerative properties of cell-based therapies. In the last two decades, considerable research advances involving the therapeutic potential of stem cell secretomes have expanded the scope of secretome-based therapies beyond stem cell populations. In this study, we review the modes of action of cell secretomes in wound healing, important preconditioning strategies for enhancing their therapeutic efficacy, and clinical trials on secretome-based wound healing.
Collapse
Affiliation(s)
- Daniel Bormann
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Alfred Gugerell
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
10
|
Sun X, Li K, Li BY, Yokota H. Wnt signaling: a double-edged sword in protecting bone from cancer. J Bone Miner Metab 2022; 41:365-370. [PMID: 36040520 DOI: 10.1007/s00774-022-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Wnt signaling plays a critical role in loading-driven bone formation and bone homeostasis, whereas its activation in cancer cells promotes their progression. Currently, major research efforts in cancer treatment have been directed to the development of Wnt inhibitors. Recent studies on tumor-bone interactions, however, presented multiple lines of evidence that support a tumor-suppressive role of Lrp5, a Wnt co-receptor, and β-catenin, in Wnt signaling. This review describes the action of Wnt signaling as a double-edged sword in the bone microenvironment and suggests the possibility of a novel option for protecting bone from cancer.
Collapse
Affiliation(s)
- Xun Sun
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, 723 West Michigan Street, SL220, Indianapolis, IN, 46202, USA.
- Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
11
|
Alves JC, Santos A, Jorge P, Carreira LM. A first report on the efficacy of a single intra-articular administration of blood cell secretome, triamcinolone acetonide, and the combination of both in dogs with osteoarthritis. BMC Vet Res 2022; 18:309. [PMID: 35962448 PMCID: PMC9375423 DOI: 10.1186/s12917-022-03413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background Osteoarthritis represents a significant welfare problem for many dogs, with limited therapeutic options other than palliative pain control. To evaluate the effect of the intra-articular administration of blood cell secretome and triamcinolone, 15 dogs with bilateral hip osteoarthritis were randomly assigned to a blood cell secretome (BCSG, n = 5), triamcinolone (TG) or their combination group (BCS + TG, n = 5). BCSG received a single intra-articular administration of 3 ml of blood cell secretome, TG 0.5 ml of triamcinolone acetonide 40 mg/ml, and BCS + TG received the combined products. The volume to administrate was corrected to 3.5 ml with saline. On days 0, 8, 15, 30, 60, 90, 120, 150, and 180, a copy of the Canine Brief Pain Inventory (divided into pain interference score—PIS and Pain Severity Score—PSS), Liverpool Osteoarthritis in Dogs (LOAD), Hudson Visual Analogue Scale (HVAS), and Canine Orthopedic Index (COI, divided into function, gait, stiffness, and quality of life) was completed. Results were analyzed with the Kruskal–Wallis test and the Kaplan–Meier estimators were conducted and compared with the Log Rank test, p < 0.05. Results Animals in the sample had a mean age of 9.0 ± 2.9 years and a bodyweight of 28.8 ± 4.1 kg. Hips were classified as moderate (8) and severe (7) osteoarthritis. No differences were found between groups at T0 regarding considered evaluations. Significant differences were observed between groups in pain scores from + 8d- + 150d, with BCS + TG exhibiting better results. The same was observed for HVAS and LOAD, from + 8d- + 120d. Improvements were also observed in several dimensions of the COI. Kaplan–Meier estimators showed that BCS + TG produced longer periods with better results, followed by BCSG and TG. Conclusion The intra-articular administration of blood cell secretome improved the clinical signs and scores of several clinical metrology instruments in dogs with hip OA, particularly when combined with triamcinolone. Further studies are required.
Collapse
Affiliation(s)
- J C Alves
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal. .,Environment and Development, MED - Mediterranean Institute for Agriculture, Instituto de Investigação E Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - A Santos
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - P Jorge
- Divisão de Medicina Veterinária, Guarda Nacional Republicana (GNR), Rua Presidente Arriaga, 9, 1200-771, Lisbon, Portugal
| | - L Miguel Carreira
- Faculty of Veterinary Medicine, University of Lisbon (FMV/ULisboa), Lisbon, Portugal.,Interdisciplinary Centre for Research in Animal Health (CIISA), University of Lisbon, (FMV/ULisboa), Lisbon, Portugal.,Anjos of Assis Veterinary Medicine Centre (CMVAA), Barreiro, Portugal
| |
Collapse
|
12
|
Klas K, Ondracek AS, Hofbauer TM, Mangold A, Pfisterer K, Laggner M, Copic D, Direder M, Bormann D, Ankersmit HJ, Mildner M. The Effect of Paracrine Factors Released by Irradiated Peripheral Blood Mononuclear Cells on Neutrophil Extracellular Trap Formation. Antioxidants (Basel) 2022; 11:antiox11081559. [PMID: 36009277 PMCID: PMC9405389 DOI: 10.3390/antiox11081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Neutrophil extracellular trap (NET)-formation represents an important defence mechanism for the rapid clearance of infections. However, exaggerated NET formation has been shown to negatively affect tissue-regeneration after injury. As our previous studies revealed the strong tissue-protective and regenerative properties of the secretome of stressed peripheral blood mononuclear cells (PBMCsec), we here investigated the influence of PBMCsec on the formation of NETs. The effect of PBMCsec on NET formation was assessed ex vivo in ionomycin stimulated neutrophils derived from healthy donors using flow cytometry, image stream analysis, and quantification of released extracellular DNA. The effect of PBMCsec on molecular mechanisms involved in NET formation, including Ca-flux, protein kinase C activity, reactive oxygen species production, and protein arginine deiminase 4 activity, were analysed. Our results showed that PBMCsec significantly inhibited NET formation. Investigation of the different biological substance classes found in PBMCsec revealed only a partial reduction in NET formation, suggesting a synergistic effect. Mechanistically, PBMCsec treatment did not interfere with calcium signalling and PKC-activation, but exerted anti-oxidant activity, as evidenced by reduced levels of reactive oxygen species and upregulation of heme oxygenase 1 and hypoxia inducible-factor 1 in PBMCsec-treated neutrophils. In addition, PBMCsec strongly inhibited the activation of protein arginine deiminase 4 (PAD4), ultimately leading to the inhibition of NET formation. As therapeutics antagonizing excessive NET formation are not currently available, our study provides a promising novel treatment option for a variety of conditions resulting from exaggerated NET formation.
Collapse
Affiliation(s)
- Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Anna S Ondracek
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas M Hofbauer
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria
| | - Andreas Mangold
- Division of Cardiology, Department of Internal Medicine II, Vienna General Hospital, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Pfisterer
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Daniel Bormann
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
13
|
Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One 2022; 17:e0272703. [PMID: 35943990 PMCID: PMC9362953 DOI: 10.1371/journal.pone.0272703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajan D. Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John J. Perrino
- Stanford Cell Sciences Imaging Facility (CSIF), Stanford University School of Medicine Stanford, Stanford, California, United States of America
| | - Damek V. Spacek
- Karius Incorporated, Redwood City, California, United States of America
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
14
|
Onishchenko NA, Nikolskaya AO, Gonikova ZZ, Kirsanova LA, Shagidulin MY, Sevastianov VI. Apoptotic bone marrow-derived mononuclear cells accelerate liver regeneration after extended resection. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022. [DOI: 10.15825/1995-1191-2022-4-85-93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: to compare the efficiency of regenerative processes in the liver using apoptotic bone marrow-derived mononuclear cells (BMMCs) and intact BMMCs from healthy animals on an extended liver resection (ELR) model.Materials and methods. Male Wistar rats (n = 77) with an ELR model (70–75%) were divided into 3 groups: group 1 (control with a single intraperitoneal injection of saline), group 2 (single intraperitoneal injection of unsorted intact BMMCs at a dose of 30–35 × 106, and group 3 (single intraperitoneal injection of apoptotic BMMCs at the same dose). Restoration of biochemical parameters of liver function and mass, as well as the emerging microstructural changes in hepatocytes in histological preparations, were monitored by assessing hepatocyte mitotic activity (MA) during the first 7–10 days after ELR.Results. It was found that in groups 2 and 3, as compared with group 1, there was no death after ELR modeling, and that the biochemical parameters of liver function normalized more rapidly (at days 10–14). Hepatocyte MA in group 3 sharply increased as early as on day 1, and mitotic index (MI) averaged 14‰, reaching 20.9‰ in some experiments; MI in the control group remained at the baseline by this time, while in group 2, MI was only 3.2‰. In group 3, liver mass recovered more rapidly after ELR to baseline values already at days 8–10, whereas the recovery was at day 12–14 and day 17–20 in group 2 and group 1, respectively. It was suggested that the more pronounced increase in the efficiency of regenerative processes in the liver after ELR in group 3 after using apoptotic BMMCs was due to the release from these cells of a large spectrum of formed paracrine factors, including various classes of RNA molecules involved in the regeneration process.Conclusion. Apoptotic BMMNCs have a more effective adaptive and regulatory potential than intact BMMCs because reorganizations are rapidly formed in the damaged liver cells, providing an early and more powerful activation of the targeted regenerative program.
Collapse
Affiliation(s)
- N. A. Onishchenko
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - A. O. Nikolskaya
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - Z. Z. Gonikova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - L. A. Kirsanova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - M. Yu. Shagidulin
- Shumakov National Medical Research Center of Transplantology and Artificial Organs; Sechenov University
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| |
Collapse
|
15
|
Copic D, Direder M, Schossleitner K, Laggner M, Klas K, Bormann D, Ankersmit HJ, Mildner M. Paracrine Factors of Stressed Peripheral Blood Mononuclear Cells Activate Proangiogenic and Anti-Proteolytic Processes in Whole Blood Cells and Protect the Endothelial Barrier. Pharmaceutics 2022; 14:pharmaceutics14081600. [PMID: 36015226 PMCID: PMC9415091 DOI: 10.3390/pharmaceutics14081600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
Tissue-regenerative properties have been attributed to secreted paracrine factors derived from stem cells and other cell types. In particular, the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) has been shown to possess high tissue-regenerative and proangiogenic capacities in a variety of preclinical studies. In light of future therapeutic intravenous applications of PBMCsec, we investigated the possible effects of PBMCsec on white blood cells and endothelial cells lining the vasculature. To identify changes in the transcriptional profile, whole blood was drawn from healthy individuals and stimulated with PBMCsec for 8 h ex vivo before further processing for single-cell RNA sequencing. PBMCsec significantly altered the gene signature of granulocytes (17 genes), T-cells (45 genes), B-cells (72 genes), and, most prominently, monocytes (322 genes). We detected a strong upregulation of several tissue-regenerative and proangiogenic cyto- and chemokines in monocytes, including VEGFA, CXCL1, and CXCL5. Intriguingly, inhibitors of endopeptidase activity, such as SERPINB2, were also strongly induced. Measurement of the trans-endothelial electrical resistance of primary human microvascular endothelial cells revealed a strong barrier-protective effect of PBMCsec after barrier disruption. Together, we show that PBMCsec induces angiogenic and proteolytic processes in the blood and is able to attenuate endothelial barrier damage. These regenerative properties suggest that systemic application of PBMCsec might be a promising novel strategy to restore damaged organs.
Collapse
Affiliation(s)
- Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Direder
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Klaudia Schossleitner
- Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniel Bormann
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria; (D.C.); (M.D.); (M.L.); (K.K.); (D.B.)
- Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: (H.J.A.); (M.M.)
| |
Collapse
|
16
|
Ibrahim R, Mndlovu H, Kumar P, Adeyemi SA, Choonara YE. Cell Secretome Strategies for Controlled Drug Delivery and Wound-Healing Applications. Polymers (Basel) 2022; 14:2929. [PMID: 35890705 PMCID: PMC9324118 DOI: 10.3390/polym14142929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
There is significant interest in using stem cells in the management of cutaneous wounds. However, potential safety, efficacy, and cost problems associated with whole-cell transplantation hinder their clinical application. Secretome, a collective of mesenchymal stem-cell-stored paracrine factors, and immunomodulatory cytokines offer therapeutic potential as a cell-free therapy for the treatment of cutaneous wounds. This review explores the possibility of secretome as a treatment for cutaneous wounds and tissue regeneration. The review mainly focuses on in vitro and in vivo investigations that use biomaterials and secretome together to treat wounds, extend secretome retention, and control release to preserve their biological function. The approaches employed for the fabrication of biomaterials with condition media or extracellular vesicles are discussed to identify their future clinical application in wound treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (R.I.); (H.M.); (P.K.); (S.A.A.)
| |
Collapse
|
17
|
Cai H, Huang LY, Hong R, Song JX, Guo XJ, Zhou W, Hu ZL, Wang W, Wang YL, Shen JG, Qi SH. Momordica charantia Exosome-Like Nanoparticles Exert Neuroprotective Effects Against Ischemic Brain Injury via Inhibiting Matrix Metalloproteinase 9 and Activating the AKT/GSK3β Signaling Pathway. Front Pharmacol 2022; 13:908830. [PMID: 35814200 PMCID: PMC9263912 DOI: 10.3389/fphar.2022.908830] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Plant exosome-like nanoparticles (ELNs) have shown great potential in treating tumor and inflammatory diseases, but the neuroprotective effect of plant ELNs remains unknown. In the present study, we isolated and characterized novel ELNs from Momordica charantia (MC) and investigated their neuroprotective effects against cerebral ischemia-reperfusion injury. In the present study, MC-ELNs were isolated by ultracentrifugation and characterized. Male Sprague–Dawley rats were subjected to middle cerebral artery occlusion (MCAO) and MC-ELN injection intravenously. The integrity of the blood–brain barrier (BBB) was examined by Evans blue staining and with the expression of matrix metalloproteinase 9 (MMP-9), claudin-5, and ZO-1. Neuronal apoptosis was evaluated by TUNEL and the expression of apoptotic proteins including Bcl2, Bax, and cleaved caspase 3. The major discoveries include: 1) Dil-labeled MC-ELNs were identified in the infarct area; 2) MC-ELN treatment significantly ameliorated BBB disruption, decreased infarct sizes, and reduced neurological deficit scores; 3) MC-ELN treatment obviously downregulated the expression of MMP-9 and upregulated the expression of ZO-1 and claudin-5. Small RNA-sequencing revealed that MC-ELN-derived miRNA5266 reduced MMP-9 expression. Furthermore, MC-ELN treatment significantly upregulated the AKT/GSK3β signaling pathway and attenuated neuronal apoptosis in HT22 cells. Taken together, these findings indicate that MC-ELNs attenuate ischemia-reperfusion–induced damage to the BBB and inhibit neuronal apoptosis probably via the upregulation of the AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Heng Cai
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Lin-Yan Huang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Rui Hong
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Jin-Xiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Xin-Jian Guo
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Wei Zhou
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Wan Wang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Yan-Ling Wang
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Jian-Gang Shen
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- *Correspondence: Su-Hua Qi, ; Jian-Gang Shen,
| | - Su-Hua Qi
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
- Medical and Technology School, Xuzhou Medical University, And Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
- *Correspondence: Su-Hua Qi, ; Jian-Gang Shen,
| |
Collapse
|
18
|
Bonanni M, Rehak L, Massaro G, Benedetto D, Matteucci A, Russo G, Esperto F, Federici M, Mauriello A, Sangiorgi GM. Autologous Immune Cell-Based Regenerative Therapies to Treat Vasculogenic Erectile Dysfunction: Is the Immuno-Centric Revolution Ready for the Prime Time? Biomedicines 2022; 10:biomedicines10051091. [PMID: 35625828 PMCID: PMC9138496 DOI: 10.3390/biomedicines10051091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
About 35% of patients affected by erectile dysfunction (ED) do not respond to oral phosphodiesterase-5 inhibitors (PDE5i) and more severe vasculogenic refractory ED affects diabetic patients. Innovative approaches, such as regenerative therapies, including stem cell therapy (SCT) and platelet-rich plasma (PRP), are currently under investigation. Recent data point out that the regenerative capacity of stem cells is strongly influenced by local immune responses, with macrophages playing a pivotal role in the injury response and as a coordinator of tissue regeneration, suggesting that control of the immune response could be an appealing approach in regenerative medicine. A new generation of autologous cell therapy based on immune cells instead of stem cells, which could change regenerative medicine for good, is discussed. Increasing safety and efficacy data are coming from clinical trials using peripheral blood mononuclear cells to treat no-option critical limb ischemia and diabetic foot. In this review, ongoing phase 1/phase 2 stem cell clinical trials are discussed. In addition, we examine the mechanism of action and rationale, as well as propose a new generation of regenerative therapies, evolving from typical stem cell or growth factor to immune cell-based medicine, based on autologous peripheral blood mononuclear cells (PBMNC) concentrates for the treatment of ED.
Collapse
Affiliation(s)
- Michela Bonanni
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Laura Rehak
- Athena Biomedical Innovations, 50126 Florence, Italy;
| | - Gianluca Massaro
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Daniela Benedetto
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | - Andrea Matteucci
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Division of Cardiology San Filippo Neri Hospital, 00135 Rome, Italy
| | - Giulio Russo
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Giuseppe Massimo Sangiorgi
- Department of Biomedicine and Prevention, Institute of Cardiology, University of Rome Tor Vergata, 00133 Rome, Italy; (M.B.); (G.M.); (D.B.); (A.M.); (G.R.)
- Correspondence:
| |
Collapse
|
19
|
PBMNCs Treatment in Critical Limb Ischemia and Candidate Biomarkers of Efficacy. Diagnostics (Basel) 2022; 12:diagnostics12051137. [PMID: 35626293 PMCID: PMC9139406 DOI: 10.3390/diagnostics12051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023] Open
Abstract
When in critical limb ischemia (CLI) the healing process aborts or does not follow an orderly and timely sequence, a chronic vascular wound develops. The latter is major problem today, as their epidemiology is continuously increasing due to the aging population and a growth in the incidence of the underlying diseases. In the US, the mean annualized prevalence of necrotic wounds due to the fact of CLI is 1.33% (95% CI, 1.32–1.34%), and the cost of dressings alone has been estimated at USD 5 billion per year from healthcare budgets. A promising cell treatment in wound healing is the local injection of peripheral blood mononuclear cells (PBMNCs). The treatment is aimed to induce angiogenesis as well to switch inflammatory macrophages, called the M1 phenotype, into anti-inflammatory macrophages, called M2, a phenotype devoted to tissue repair. This mechanism is called polarization and is a critical step for the healing of all human tissues. Regarding the clinical efficacy of PBMNCs, the level of evidence is still low, and a considerable effort is necessary for completing the translational process toward the patient bed site. From this point of view, it is crucial to identify some candidate biomarkers to detect the switching process from M1 to M2 in response to the cell treatment.
Collapse
|
20
|
Tan W, Li B, Wang Z, Zou J, Jia Y, Yoshida S, Zhou Y. Novel Potential Biomarkers for Retinopathy of Prematurity. Front Med (Lausanne) 2022; 9:840030. [PMID: 35187013 PMCID: PMC8848752 DOI: 10.3389/fmed.2022.840030] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Retinopathy of prematurity (ROP) is the main risk factor for vision-threatening disease in premature infants with low birth weight. An accumulating number of independent studies have focused on ROP pathogenesis and have demonstrated that laser photocoagulation therapy and/or anti-VEGF treatment are effective. However, early diagnosis of ROP is still critical. At present, the main method of ROP screening is based on binocular indirect ophthalmoscopy. However, the judgment of whether ROP occurs and whether treatment is necessary depends largely on ophthalmologists with a great deal of experience. Therefore, it is essential to develop a simple, accurate and effective diagnostic method. This review describes recent findings on novel biomarkers for the prediction, diagnosis and prognosis of ROP patients. The novel biomarkers were separated into the following categories: metabolites, cytokines and growth factors, non-coding RNAs, iconography, gut microbiota, oxidative stress biomarkers, and others. Biomarkers with high sensitivity and specificity are urgently needed for the clinical applications of ROP. In addition, using non-invasive or minimally invasive methods to obtain samples is also important. Our review provides an overview of potential biomarkers of ROP.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
21
|
Onishchenko NA, Gonikova ZZ, Nikolskaya AO, Kirsanova LA, Sevastianov VI. Programmed cell death and liver diseases. RUSSIAN JOURNAL OF TRANSPLANTOLOGY AND ARTIFICIAL ORGANS 2022; 24:72-88. [DOI: 10.15825/1995-1191-2022-1-72-88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cell death represents the most critical pathologic entity in liver disease, which dictates pathologic consequences such as inflammation, fibrosis, and cell transformation. We analyzed the conclusions of studies on the involvement of different types of programmed cell death (PCD) in the pathogenesis of liver diseases. Three main forms of PCD (autophagy, apoptosis, necrosis) and five additional, still insufficiently studied PCD – necroptosis, ferroptosis, pyroptosis, partanatosis and entosis – observed in the liver in various acute and chronic diseases are considered. The involvement of several PCD at once in the development of any one pathology and one type of PCD in different pathologies was established. This indicates the existence of cross-regulation of metabolism in the liver cells with different levels of damage in the formation of the main dominant type of PCD. Available results indicate the possibility of attenuation (correction) of functional and morphological manifestations of PCD in the organ by controlled blocking of effector-mediated PCD pathways, as well as targeted induction of autophagy, anti-apoptotic and anti-necrotic mechanisms in liver cells.
Collapse
Affiliation(s)
- N. A. Onishchenko
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - Z. Z. Gonikova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - A. O. Nikolskaya
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - L. A. Kirsanova
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| | - V. I. Sevastianov
- Shumakov National Medical Research Center of Transplantology and Artificial Organs
| |
Collapse
|
22
|
Schmid M, Martins HC, Schratt G, Kröpfl JM, Spengler CM. MiRNA126 - RGS16 - CXCL12 Cascade as a Potential Mechanism of Acute Exercise-Induced Precursor Cell Mobilization. Front Physiol 2021; 12:780666. [PMID: 34955891 PMCID: PMC8696198 DOI: 10.3389/fphys.2021.780666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Acute exercise enhances circulating stem and precursor cells (CPCs) in the peripheral blood. The responsible mechanisms and molecular pathways, however, have not been fully identified. The aim of the present study was to investigate a pathway related to elevated levels of apoptotic peripheral blood mononuclear cells (MNCs) and their secretome. An increased uptake of miRNA126 in MNCs was suggested to lead to reduced levels of RGS16 mRNA and, in turn, an enhanced translation and secretion of CXCL12. Eighteen healthy, young men underwent two identical incremental cycling exercises of which the first served as control while the second was preceded by a 7-day-long antioxidative supplementation. Blood samples were collected at baseline (−10min) and several time points after exercise (0, 30, 90, 180, and 270min). Relative concentrations of miRNA126 in MNCs and CXCL12 levels in plasma were determined at all time points while RGS16 mRNA was assessed in MNCs at baseline and 30min after exercise. CXCL12 increased after exercise and strongly correlated with CPC numbers. MiRNA126 increased 30min and, to a lesser extent, also 180 and 270min after exercise but only with supplementation. RGS16 mRNA decreased 30min after exercise independent of the intervention. The amount of RGS16 mRNA inversely correlated with levels of miRNA126, but not with plasma CXCL12. In conclusion, even though plasma CXCL12 correlated with CPC numbers, the increase in CXCL12 cannot be explained by the increased concentration of miRNA126 and lower RGS16 mRNA in MNCs that would have allowed for an enhanced translation of CXCL12. Clinical Trial Registration: ClinicalTrials.gov, NCT03747913. Registered 20 November 2018, https://clinicaltrials.gov/ct2/show/NCT03747913.
Collapse
Affiliation(s)
- Michelle Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Helena Caria Martins
- Systems Neuroscience, Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| | - Gerhard Schratt
- Systems Neuroscience, Institute for Neuroscience, ETH Zurich, Zurich, Switzerland
| | - Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
van Heerden PV, Abutbul A, Sviri S, Zlotnick E, Nama A, Zimro S, El-Amore R, Shabat Y, Reicher B, Falah B, Mevorach D. Apoptotic Cells for Therapeutic Use in Cytokine Storm Associated With Sepsis- A Phase Ib Clinical Trial. Front Immunol 2021; 12:718191. [PMID: 34659208 PMCID: PMC8515139 DOI: 10.3389/fimmu.2021.718191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background Sepsis has no proven specific pharmacologic treatment and reported mortality ranges from 30%–45%. The primary aim of this phase IB study was to determine the safety profile of Allocetra™-OTS (early apoptotic cell) infusion in subjects presenting to the emergency room with sepsis. The secondary aims were to measure organ dysfunction, intensive care unit (ICU) and hospital stays, and mortality. Exploratory endpoints included measuring immune modulator agents to elucidate the mechanism of action. Methods Ten patients presenting to the emergency room at the Hadassah Medical Center with sepsis were enrolled in this phase Ib clinical study. Enrolled patients were males and females aged 51–83 years, who had a Sequential Organ Failure Assessment (SOFA) score ≥2 above baseline and were septic due to presumed infection. Allocetra™-OTS was administered as a single dose (day +1) or in two doses of 140×106 cells/kg on (day +1 and +3), following initiation of standard-of-care (SOC) treatment for septic patients. Safety was evaluated by serious adverse events (SAEs) and adverse events (AEs). Organ dysfunction, ICU and hospital stays, and mortality, were compared to historical controls. Immune modulator agents were measured using Luminex® multiplex analysis. Results All 10 patients had mild-to-moderate sepsis with SOFA scores ranging from 2–6 upon entering the study. No SAEs and no related AEs were reported. All 10 study subjects survived, while matched historical controls had a mortality rate of 27%. The study subjects exhibited rapid resolution of organ dysfunction and had significantly shorter ICU stays compared to matched historical controls (p<0.0001). All patients had both elevated pro- and anti-inflammatory cytokines, chemokines, and additional immune modulators that gradually decreased following treatment. Conclusion Administration of apoptotic cells to patients with mild-to-moderate sepsis was safe and had a significant immuno-modulating effect, leading to early resolution of the cytokine storm. Clinical Trial Registration ClinicalTrials.gov Identifier: NCT03925857. (https://clinicaltrials.gov/ct2/show/study/NCT03925857).
Collapse
Affiliation(s)
| | - Avraham Abutbul
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sigal Sviri
- Medical Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eitan Zlotnick
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Ahmad Nama
- Department of Emergency Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Sebastian Zimro
- General Intensive Care Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raja El-Amore
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel
| | - Yehudit Shabat
- Department of Research, Enlivex Therapeutics Ltd., Ness-Ziona, Israel
| | - Barak Reicher
- Department of Research, Enlivex Therapeutics Ltd., Ness-Ziona, Israel
| | - Batla Falah
- Department of Cardiology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dror Mevorach
- Rheumatology and Rare Disease Research Center, The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center and School, Jerusalem, Israel.,Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
24
|
Moyon A, Garrigue P, Fernandez S, Hubert F, Balasse L, Brige P, Hache G, Nail V, Blot-Chabaud M, Dignat-George F, Rochais F, Guillet B. Comparison of a New 68Ga-Radiolabelled PET Imaging Agent sCD146 and RGD Peptide for In Vivo Evaluation of Angiogenesis in Mouse Model of Myocardial Infarction. Cells 2021; 10:cells10092305. [PMID: 34571954 PMCID: PMC8466330 DOI: 10.3390/cells10092305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemic vascular diseases are associated with elevated tissue expression of angiomotin (AMOT), a promising molecular target for PET imaging. On that basis, we developed an AMOT-targeting radiotracer, 68Ga-sCD146 and performed the first in vivo evaluation on a myocardial infarction mice model and then, compared AMOT expression and αvβ3-integrin expression with 68Ga-sCD146 and 68Ga-RGD2 imaging. After myocardial infarction (MI) induced by permanent ligation of the left anterior descending coronary artery, myocardial perfusion was evaluated by Doppler ultrasound and by 18F-FDG PET imaging. 68Ga-sCD146 and 68Ga-RGD2 PET imaging were performed. In myocardial infarction model, heart-to-muscle ratio of 68Ga-sCD146 imaging showed a significantly higher radiotracer uptake in the infarcted area of MI animals than in sham (* p = 0.04). Interestingly, we also observed significant correlations between 68Ga-sCD146 imaging and delayed residual perfusion assessed by 18F-FDG (* p = 0.04), with lowest tissue fibrosis assessed by histological staining (* p = 0.04) and with functional recovery assessed by ultrasound imaging (** p = 0.01). 68Ga-sCD146 demonstrated an increase in AMOT expression after MI. Altogether, significant correlations of early post-ischemic 68Ga-sCD146 uptake with late heart perfusion, lower tissue fibrosis and better functional recovery, make 68Ga-sCD146 a promising radiotracer for tissue angiogenesis assessment after MI.
Collapse
Affiliation(s)
- Anaïs Moyon
- Pharmacological Faculty, Aix Marseille University, INSERM 1263, INRAE 1260, C2VN, 13385 Marseille, France; (P.G.); (G.H.); (V.N.); (M.B.-C.); (F.D.-G.); (B.G.)
- Medical Faculty, Aix-Marseille University, CNRS 2012, CERIMED, 13385 Marseille, France; (S.F.); (L.B.); (P.B.)
- APHM, Service de Radiopharmacie, 13005 Marseille, France
- Correspondence:
| | - Philippe Garrigue
- Pharmacological Faculty, Aix Marseille University, INSERM 1263, INRAE 1260, C2VN, 13385 Marseille, France; (P.G.); (G.H.); (V.N.); (M.B.-C.); (F.D.-G.); (B.G.)
- Medical Faculty, Aix-Marseille University, CNRS 2012, CERIMED, 13385 Marseille, France; (S.F.); (L.B.); (P.B.)
- APHM, Service de Radiopharmacie, 13005 Marseille, France
| | - Samantha Fernandez
- Medical Faculty, Aix-Marseille University, CNRS 2012, CERIMED, 13385 Marseille, France; (S.F.); (L.B.); (P.B.)
| | - Fabien Hubert
- Medical Faculty, Aix Marseille University, INSERM, MMG, U 1251, 13385 Marseille, France; (F.H.); (F.R.)
| | - Laure Balasse
- Medical Faculty, Aix-Marseille University, CNRS 2012, CERIMED, 13385 Marseille, France; (S.F.); (L.B.); (P.B.)
| | - Pauline Brige
- Medical Faculty, Aix-Marseille University, CNRS 2012, CERIMED, 13385 Marseille, France; (S.F.); (L.B.); (P.B.)
- Medical Faculty, Aix-Marseille University, UR4264, LIIE, 13385 Marseille, France
| | - Guillaume Hache
- Pharmacological Faculty, Aix Marseille University, INSERM 1263, INRAE 1260, C2VN, 13385 Marseille, France; (P.G.); (G.H.); (V.N.); (M.B.-C.); (F.D.-G.); (B.G.)
- Medical Faculty, Aix-Marseille University, CNRS 2012, CERIMED, 13385 Marseille, France; (S.F.); (L.B.); (P.B.)
| | - Vincent Nail
- Pharmacological Faculty, Aix Marseille University, INSERM 1263, INRAE 1260, C2VN, 13385 Marseille, France; (P.G.); (G.H.); (V.N.); (M.B.-C.); (F.D.-G.); (B.G.)
- Medical Faculty, Aix-Marseille University, CNRS 2012, CERIMED, 13385 Marseille, France; (S.F.); (L.B.); (P.B.)
- APHM, Service de Radiopharmacie, 13005 Marseille, France
| | - Marcel Blot-Chabaud
- Pharmacological Faculty, Aix Marseille University, INSERM 1263, INRAE 1260, C2VN, 13385 Marseille, France; (P.G.); (G.H.); (V.N.); (M.B.-C.); (F.D.-G.); (B.G.)
| | - Françoise Dignat-George
- Pharmacological Faculty, Aix Marseille University, INSERM 1263, INRAE 1260, C2VN, 13385 Marseille, France; (P.G.); (G.H.); (V.N.); (M.B.-C.); (F.D.-G.); (B.G.)
- APHM, Service d’Hématologie, Hôpital Conception, 13005 Marseille, France
| | - Francesca Rochais
- Medical Faculty, Aix Marseille University, INSERM, MMG, U 1251, 13385 Marseille, France; (F.H.); (F.R.)
| | - Benjamin Guillet
- Pharmacological Faculty, Aix Marseille University, INSERM 1263, INRAE 1260, C2VN, 13385 Marseille, France; (P.G.); (G.H.); (V.N.); (M.B.-C.); (F.D.-G.); (B.G.)
- Medical Faculty, Aix-Marseille University, CNRS 2012, CERIMED, 13385 Marseille, France; (S.F.); (L.B.); (P.B.)
- APHM, Service de Radiopharmacie, 13005 Marseille, France
| |
Collapse
|
25
|
Grangier A, Branchu J, Volatron J, Piffoux M, Gazeau F, Wilhelm C, Silva AKA. Technological advances towards extracellular vesicles mass production. Adv Drug Deliv Rev 2021; 176:113843. [PMID: 34147532 DOI: 10.1016/j.addr.2021.113843] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are becoming essential actors in bio-therapeutics, as much for their regenerative or immunomodulatory properties as for their potential as cargo delivery vehicles. To enable the democratization of these EV-based therapies, many challenges remain such as large-scale production which is necessary to reduce costs of treatment. Herein, we review some advanced works on high-yield EV manufacturing. One approach consists in developing large-scale cell culture platforms, while others focus on cell stimulation to increase particle yield per cell. This can be done by moderate physico-chemical stresses or by disrupting cell membrane towards autoassembled vesicle-like particles. We critically compare these different techniques, keeping in mind that the field still lacks shared characterization standards, underline the importance of therapeutic potency assessment and discuss mass production strategies that have been identified in current clinical trials.
Collapse
Affiliation(s)
- Alice Grangier
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France
| | | | | | - Max Piffoux
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France; Everzom, 75006 Paris, France; Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Florence Gazeau
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France
| | - Claire Wilhelm
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France; Laboratoire PhysicoChimie Curie, Institut Curie, PSL Research University - Sorbonne Université - CNRS, 75005 Paris, France.
| | - Amanda K A Silva
- Laboratoire MSC Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, 75013 and 75006 Paris, France.
| |
Collapse
|
26
|
An YH, Kim DH, Lee EJ, Lee D, Park MJ, Ko J, Kim DW, Koh J, Hong HS, Son Y, Cho JY, Park JU, Kim SD, Hwang NS. High-Efficient Production of Adipose-Derived Stem Cell (ADSC) Secretome Through Maturation Process and Its Non-scarring Wound Healing Applications. Front Bioeng Biotechnol 2021; 9:681501. [PMID: 34222219 PMCID: PMC8242583 DOI: 10.3389/fbioe.2021.681501] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, the stem cell-derived secretome, which is the set of proteins expressed by stem cells and secreted into the extracellular space, has been demonstrated as a critical contributor for tissue repair. In this study, we have produced two sets of high concentration secretomes from adipose-derived mesenchymal stem cells (ADSCs) that contain bovine serum or free of exogenous molecules. Through proteomic analysis, we elucidated that proteins related to extracellular matrix organization and growth factor-related proteins are highly secreted by ADSCs. Additionally, the application of ADSC secretome to full skin defect showed accelerated wound closure, enhanced angiogenic response, and complete regeneration of epithelial gaps. Furthermore, the ADSC secretome was capable of reducing scar formation. Finally, we show high-dose injection of ADSC secretome via intraperitoneal or transdermal delivery demonstrated no detectable pathological conditions in various tissues/organs, which supports the notion that ADSC secretome can be safely utilized for tissue repair and regeneration.
Collapse
Affiliation(s)
- Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, South Korea.,BioMax/N-Bio Institute, Seoul National University, Seoul, South Korea
| | | | | | - Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Mihn Jeong Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jiwan Koh
- Senior Science & Life, Inc., Seoul, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, South Korea
| | - Youngsook Son
- Department of Biomedical Science and Technology, Kyung Hee University, Seoul, South Korea.,Department of Genetic Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ji-Ung Park
- Department of Plastic and Reconstructive Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | | | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, South Korea.,BioMax/N-Bio Institute, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| |
Collapse
|
27
|
Scatena A, Petruzzi P, Maioli F, Lucaroni F, Ambrosone C, Ventoruzzo G, Liistro F, Tacconi D, Di Filippi M, Attempati N, Palombi L, Ercolini L, Bolognese L. Autologous Peripheral Blood Mononuclear Cells for Limb Salvage in Diabetic Foot Patients with No-Option Critical Limb Ischemia. J Clin Med 2021; 10:2213. [PMID: 34065278 PMCID: PMC8161401 DOI: 10.3390/jcm10102213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMNCs) are reported to prevent major amputation and healing in no-option critical limb ischemia (NO-CLI). The aim of this study is to evaluate PBMNC treatment in comparison to standard treatment in NO-CLI patients with diabetic foot ulcers (DFUs). The study included 76 NO-CLI patients admitted to our centers because of CLI with DFUs. All patients were treated with the same standard care (control group), but 38 patients were also treated with autologous PBMNC implants. Major amputations, overall mortality, and number of healed patients were evaluated as the primary endpoint. Only 4 out 38 amputations (10.5%) were observed in the PBMNC group, while 15 out of 38 amputations (39.5%) were recorded in the control group (p = 0.0037). The Kaplan-Meier curves and the log-rank test results showed a significantly lower amputation rate in the PBMNCs group vs. the control group (p = 0.000). At two years follow-up, nearly 80% of the PBMNCs group was still alive vs. only 20% of the control group (p = 0.000). In the PBMNC group, 33 patients healed (86.6%) while only one patient healed in the control group (p = 0.000). PBMNCs showed a positive clinical outcome at two years follow-up in patients with DFUs and NO-CLI, significantly reducing the amputation rate and improving survival and wound healing. According to our study results, intramuscular and peri-lesional injection of autologous PBMNCs could prevent amputations in NO-CLI diabetic patients.
Collapse
Affiliation(s)
- Alessia Scatena
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Pasquale Petruzzi
- Interventional Radiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (P.P.); (N.A.)
| | - Filippo Maioli
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Francesca Lucaroni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Cristina Ambrosone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Giorgio Ventoruzzo
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Francesco Liistro
- Interventional Cardiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.L.); (L.B.)
| | - Danilo Tacconi
- Infectious Disease Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Marianna Di Filippi
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy;
| | - Nico Attempati
- Interventional Radiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (P.P.); (N.A.)
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Roma, Italy; (F.L.); (C.A.); (L.P.)
| | - Leonardo Ercolini
- Vascular Surgery Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.M.); (G.V.); (L.E.)
| | - Leonardo Bolognese
- Interventional Cardiology Unit, San Donato Hospital Arezzo, Local Health Authorities South East Tuscany, 52100 Arezzo, Italy; (F.L.); (L.B.)
| |
Collapse
|
28
|
Zhou L, Matsushima GK. Tyro3, Axl, Mertk receptor-mediated efferocytosis and immune regulation in the tumor environment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 361:165-210. [PMID: 34074493 DOI: 10.1016/bs.ircmb.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three structurally related tyrosine receptor cell surface kinases, Tyro3, Axl, and Mertk (TAM) have been recognized to modulate immune function, tissue homeostasis, cardiovasculature, and cancer. The TAM receptor family appears to operate in adult mammals across multiple cell types, suggesting both widespread and specific regulation of cell functions and immune niches. TAM family members regulate tissue homeostasis by monitoring the presence of phosphatidylserine expressed on stressed or apoptotic cells. The detection of phosphatidylserine on apoptotic cells requires intermediary molecules that opsonize the dying cells and tether them to TAM receptors on phagocytes. This complex promotes the engulfment of apoptotic cells, also known as efferocytosis, that leads to the resolution of inflammation and tissue healing. The immune mechanisms dictating these processes appear to fall upon specific family members or may involve a complex of different receptors acting cooperatively to resolve and repair damaged tissues. Here, we focus on the role of TAM receptors in triggering efferocytosis and its consequences in the regulation of immune responses in the context of inflammation and cancer.
Collapse
Affiliation(s)
- Liwen Zhou
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States
| | - Glenn K Matsushima
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Department of Microbiology & Immunology, University of North Carolina-CH, Chapel Hill, NC, United States; UNC Integrative Program for Biological & Genome Sciences, University of North Carolina-CH, Chapel Hill, NC, United States.
| |
Collapse
|
29
|
Laggner M, Gugerell A, Copic D, Jeitler M, Springer M, Peterbauer A, Kremslehner C, Filzwieser-Narzt M, Gruber F, Madlener S, Erb M, Widder J, Lechner W, Georg D, Mildner M, Ankersmit HJ. Comparing the efficacy of γ- and electron-irradiation of PBMCs to promote secretion of paracrine, regenerative factors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:14-27. [PMID: 33768126 PMCID: PMC7960502 DOI: 10.1016/j.omtm.2021.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/19/2021] [Indexed: 11/28/2022]
Abstract
Cell-free secretomes represent a promising new therapeutic avenue in regenerative medicine, and γ-irradiation of human peripheral blood mononuclear cells (PBMCs) has been shown to promote the release of paracrine factors with high regenerative potential. Recently, the use of alternative irradiation sources, such as artificially generated β- or electron-irradiation, is encouraged by authorities. Since the effect of the less hazardous electron-radiation on the production and functions of paracrine factors has not been tested so far, we compared the effects of γ- and electron-irradiation on PBMCs and determined the efficacy of both radiation sources for producing regenerative secretomes. Exposure to 60 Gy γ-rays from a radioactive nuclide and 60 Gy electron-irradiation provided by a linear accelerator comparably induced cell death and DNA damage. The transcriptional landscapes of PBMCs exposed to either radiation source shared a high degree of similarity. Secretion patterns of proteins, lipids, and extracellular vesicles displayed similar profiles after γ- and electron-irradiation. Lastly, we detected comparable biological activities in functional assays reflecting the regenerative potential of the secretomes. Taken together, we were able to demonstrate that electron-irradiation is an effective, alternative radiation source for producing therapeutic, cell-free secretomes. Our study paves the way for future clinical trials employing secretomes generated with electron-irradiation in tissue-regenerative medicine.
Collapse
Affiliation(s)
- Maria Laggner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| | - Dragan Copic
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| | - Markus Jeitler
- Core Facility Genomics, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Springer
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| | - Anja Peterbauer
- Austrian Red Cross Blood Transfusion Service of Upper Austria, 4020 Linz, Austria
| | - Christopher Kremslehner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, 1090 Vienna, Austria
| | - Manuel Filzwieser-Narzt
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, 1090 Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, 1090 Vienna, Austria
| | - Sibylle Madlener
- Molecular Neuro-Oncology, Department of Pediatrics and Adolescent Medicine, and Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria.,Comprehensive Cancer Center of the Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Erb
- SYNLAB Analytics and Services Switzerland AG, 4127 Birsfelden, Switzerland
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Lechner
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria.,Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, 1090 Vienna, Austria
| |
Collapse
|
30
|
Hacker S, Mittermayr R, Traxler D, Keibl C, Resch A, Salminger S, Leiss H, Hacker P, Gabriel C, Golabi B, Pauzenberger R, Slezak P, Laggner M, Mildner M, Michlits W, Ankersmit HJ. The secretome of stressed peripheral blood mononuclear cells increases tissue survival in a rodent epigastric flap model. Bioeng Transl Med 2021; 6:e10186. [PMID: 33532586 PMCID: PMC7823127 DOI: 10.1002/btm2.10186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Reconstructive surgery transfers viable tissue to cover defects and to restore aesthetic and functional properties. Failure rates after free flap surgery range from 3 to 7%. Co-morbidities such as diabetes mellitus or peripheral vascular disease increase the risk of flap failure up to 4.5-fold. Experimental therapeutic concepts commonly use a monocausal approach by applying single growth factors. The secretome of γ-irradiated, stressed peripheral blood mononuclear cells (PBMCsec) resembles the physiological environment necessary for tissue regeneration. Its application led to improved wound healing rates and a two-fold increase in blood vessel counts in previous animal models. We hypothesized that PBMCsec has beneficial effects on the survival of compromised flap tissue by reducing the necrosis rate and increasing angiogenesis. Surgery was performed on 39 male Sprague-Dawley rats (control, N = 13; fibrin sealant, N = 14; PBMCsec, N = 12). PBMCsec was produced according to good manufacturing practices (GMP) guidelines and 2 ml were administered intraoperatively at a concentration of 2.5 × 107 cells/ml using fibrin sealant as carrier substance. Flap perfusion and necrosis (as percentage of the total flap area) were analyzed using Laser Doppler Imaging and digital image planimetry on postoperative days 3 and 7. Immunohistochemical stainings for von Willebrand factor (vWF) and Vascular Endothelial Growth Factor-receptor-3 (Flt-4) were performed on postoperative day 7 to evaluate formation of blood vessels and lymphatic vessels. Seroma formation was quantified using a syringe and flap adhesion and tissue edema were evaluated clinically through a cranial incision by a blinded observer according to previously described criteria on postoperative day 7. We found a significantly reduced tissue necrosis rate (control: 27.8% ± 8.6; fibrin: 22.0% ± 6.2; 20.9% reduction, p = .053 vs. control; PBMCsec: 19.1% ± 7.2; 31.1% reduction, p = .012 vs. control; 12.9% reduction, 0.293 vs. fibrin) together with increased vWF+ vessel counts (control: 70.3 ± 16.3 vessels/4 fields at 200× magnification; fibrin: 67.8 ± 12.1; 3.6% reduction, p = .651, vs. control; PBMCsec: 85.9 ± 20.4; 22.2% increase, p = .045 vs. control; 26.7% increase, p = .010 vs. fibrin) on postoperative day 7 after treatment with PBMCsec. Seroma formation was decreased after treatment with fibrin sealant with or without the addition of PBMCsec. (control: 11.9 ± 9.7 ml; fibrin: 1.7 ± 5.3, 86.0% reduction, 0.004 vs. control; PBMCsec: 0.6 ± 2.0; 94.8% reduction, p = .001 vs. control; 62.8% reduction, p = .523 vs. fibrin). We describe the beneficial effects of a secretome derived from γ-irradiated PBMCs on tissue survival, angiogenesis, and clinical parameters after flap surgery in a rodent epigastric flap model.
Collapse
Affiliation(s)
- Stefan Hacker
- Division of Plastic and Reconstructive SurgeryMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and RegenerationViennaAustria
| | - Rainer Mittermayr
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Denise Traxler
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and RegenerationViennaAustria
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Annika Resch
- Division of Plastic and Reconstructive SurgeryMedical University of ViennaViennaAustria
| | - Stefan Salminger
- Division of Plastic and Reconstructive SurgeryMedical University of ViennaViennaAustria
| | - Harald Leiss
- Division of RheumatologyMedical University of ViennaViennaAustria
| | - Philipp Hacker
- Department of Oral‐ and Maxillofacial SurgeryUniversity Clinic Sankt PoeltenSankt PoeltenAustria
| | - Christian Gabriel
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
- Department of Blood Group Serology and Transfusion MedicineMedical University of GrazAustria
| | - Bahar Golabi
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Reinhard Pauzenberger
- Division of Plastic and Reconstructive SurgeryMedical University of ViennaViennaAustria
| | - Paul Slezak
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Maria Laggner
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and RegenerationViennaAustria
| | - Michael Mildner
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Wolfgang Michlits
- Department of Plastic and Reconstructive SurgeryHospital Wiener NeustadtWiener NeustadtAustria
| | - Hendrik J. Ankersmit
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and RegenerationViennaAustria
- Division of Thoracic SurgeryMedical University of ViennaViennaAustria
| |
Collapse
|
31
|
Smeriglio A, Denaro M, D'Angelo V, Germanò MP, Trombetta D. Antioxidant, Anti-Inflammatory and Anti-Angiogenic Properties of Citrus lumia Juice. Front Pharmacol 2020; 11:593506. [PMID: 33343362 PMCID: PMC7744484 DOI: 10.3389/fphar.2020.593506] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Citrus juices are a rich source of bioactive compounds with various and well-known health benefits. The aim of this study was to investigate the polyphenols and ascorbic acid content as well as to investigate the antioxidant, anti-inflammatory and anti-angiogenic properties of the juice of an ancient Mediterranean species, Citrus lumia Risso (CLJ). The antioxidant and anti-inflammatory activities were evaluated by several in vitro cell-free and cell-based assays, whereas two different in vivo models, the chick chorioallantoic membrane (CAM) and the zebrafish embryos, were used to characterize the anti-angiogenic properties. Twenty-eight polyphenols were identified by RP-LC-DAD-ESI-MS analysis (flavonoids 68.82% and phenolic acids 31.18%) with 1-caffeoyl-5-feruloylquinic acid and kaempferol 3′-rhamnoside, which represent the most abundant compounds (25.70 and 23.12%, respectively). HPLC-DAD analysis showed a high ascorbic acid content (352 mg/kg of CLJ), which contributes with polyphenols to the marked and dose-dependent antioxidant and anti-inflammatory properties observed. CLJ showed strong and dose-dependent anti-angiogenic activity as highlighted by the inhibition of blood vessel formation on CAMs and the decrease of endogenous alkaline phosphatase on zebrafish embryos. Moreover, within the concentration range tested, no dead or malformed embryos were recorded. Certainly, further studies are needed to investigate the molecular mechanisms underlying these promising biological effects, but considering the evidence of the present study, the use of CLJ as a ready-to drink safe prevention strategy for inflammatory-based diseases correlated to angiogenesis could be justified.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Valeria D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
32
|
Schmid M, Gruber HJ, Kröpfl JM, Spengler CM. Acute Exercise-Induced Oxidative Stress Does Not Affect Immediate or Delayed Precursor Cell Mobilization in Healthy Young Males. Front Physiol 2020; 11:577540. [PMID: 33192581 PMCID: PMC7606978 DOI: 10.3389/fphys.2020.577540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Exercise is known to acutely and transiently mobilize precursor cells to the peripheral blood. To date, the underlying mechanisms have not yet been fully elucidated and we hypothesized that exercise-induced oxidative stress could be a mobilizing agent, either directly or via circulating apoptotic cells as mediators. The aim of the study was to assess the effect of acute exercise-induced oxidative stress on numbers of circulating angiogenic precursor cells (CACs), circulating non-angiogenic precursor cells (nCACs), mesenchymal precursor cells (MPCs), mature endothelial cells (ECs), and mononuclear cells (MNCs), as well as their apoptotic subsets. Healthy, young males (n = 18, age: 24.2 ± 3.5 years) completed two identical, standardized incremental cycling tests. The first, un-supplemented control test was followed by a 7-day-long supplementation of vitamin C (1,000 mg/day) and E (400 I.U./day), immediately preceding the second test. Blood samples were collected before, directly after, 30, 90, 180, and 270 min after exercise, and aforementioned circulating cell numbers were determined by flow cytometry and a hematology analyzer. Additionally, total oxidative capacity (TOC) and total antioxidative capacity (TAC) were measured in serum at all timepoints. Antioxidative supplementation abolished the exercise-induced increase in the oxidative stress index (TOC/TAC), and reduced baseline concentrations of TOC and TOC/TAC. However, it did not have any effect on CACs, nCACs, and MPC numbers or the increase in apoptotic MNCs following exercise. Our results indicate that exercise-induced oxidative stress is neither a main driver of lymphocyte and monocyte apoptosis, nor one of the mechanisms involved in the immediate or delayed mobilization of precursor cells.
Collapse
Affiliation(s)
- Michelle Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Kong L, Wang J, Cheng J, Zang C, Chen F, Wang W, Zhao H, Wang Y, Wang D. Comprehensive Identification of the Human Secretome as Potential Indicators in Treatment Outcome of HPV-Positive and -Negative Cervical Cancer Patients. Gynecol Obstet Invest 2020; 85:405-415. [PMID: 33171469 DOI: 10.1159/000510713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/01/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this work was to explore the novel and promising biomarkers for the diagnosis and prognosis of cervical cancer patients. METHODS The secretome of primary cervical tissues was extracted and then determined by the LC-MS/MS assay. The level of screened targets was confirmed using the RT-PCR and ELISA in cervical cancer tissue samples. The median expression level of certain targets was used as a cutoff value to divide the patients into 2 groups, and then the patients were followed up. The predictive abilities of the targets on the prognosis were further studied. RESULTS LC-MS/MS, together with bioinformatic analysis, demonstrated that totally 95 targets were dysregulated in cervical cancer. Among them, ECM2, KLK6, and MASP1 were increased in cervical cancer in a stage-dependent manner, whereas FGA was negatively associated with the stage of cervical cancers. Overall survival (OS) and disease-free survival (DFS) rates were significantly decreased in the KLK6 high group, whereas little difference was found between the high and low groups of other 3 cases. Univariate analysis of the 5-year OS and DFS revealed a significantly worse outcome for patients with KLK6 high tumors. In multivariate analysis, KLK6 remained a highly significant prognostic marker for OS and DFS. Combined survival analysis of KLK6 expression and the HPV infection revealed that KLK6highHPV(-) predicted the most poor OS rate and the KLK6lowHPV(+) group showed the best prognosis. CONCLUSION Through the secretome analysis, we identified a series of secreted proteins differentially expressed in the clinical cancer, among which KLK6 has the potential to become a promising biomarker for the diagnosis and prognosis of cervical cancer patients.
Collapse
Affiliation(s)
- Liang Kong
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China,
| | - Jinjuan Wang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jiumei Cheng
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Chunyi Zang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Fang Chen
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wenli Wang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hui Zhao
- Department of Gynecological Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yuwei Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Evaluation of cytokine expression and circulating immune cell subsets as potential parameters of acute radiation toxicity in prostate cancer patients. Sci Rep 2020; 10:19002. [PMID: 33149212 PMCID: PMC7643057 DOI: 10.1038/s41598-020-75812-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
One of the challenges of radiation oncology in the era of personalized medicine is identification of biomarkers associated with individual radiosensitivity. The aim of research was to evaluate the possible clinical value of the associations between clinical, physical, and biological factors, and risk for development of acute radiotoxicity in patients with prostate cancer. The study involved forty four patients treated with three-dimensional conformal radiotherapy. The concentrations of IL-1β, IL-2, IL-6, IFN-γ and TGF-β1 were assessed before radiotherapy, after 5th, 15th and 25th radiotherapy fractions, at the end, and 1 month after the end of radiotherapy. Cytokine gene expression was determined in peripheral blood mononuclear cells. The univariate analysis of circulating cytokine levels during radiotherapy showed that increased serum concentrations of IL-6 were significantly associated with higher grade of acute genitourinary toxicity. The multivariate analysis demonstrated that increased level of IL-6 during the radiotherapy was significantly associated with higher grade of acute genitourinary toxicity across treatment. TGF-β expression levels significantly decreased during course of radiotherapy. Research indicates that changes in circulating cytokine levels might be important parameter of radiotoxicity in patients with prostate cancer. These findings suggest that future studies based on multi-parameter examination are necessary for prediction of individual radiosensitivity.
Collapse
|
35
|
Wu X, Reboll MR, Korf-Klingebiel M, Wollert KC. Angiogenesis after acute myocardial infarction. Cardiovasc Res 2020; 117:1257-1273. [PMID: 33063086 DOI: 10.1093/cvr/cvaa287] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction (MI) inflicts massive injury to the coronary microcirculation leading to vascular disintegration and capillary rarefication in the infarct region. Tissue repair after MI involves a robust angiogenic response that commences in the infarct border zone and extends into the necrotic infarct core. Technological advances in several areas have provided novel mechanistic understanding of postinfarction angiogenesis and how it may be targeted to improve heart function after MI. Cell lineage tracing studies indicate that new capillary structures arise by sprouting angiogenesis from pre-existing endothelial cells (ECs) in the infarct border zone with no meaningful contribution from non-EC sources. Single-cell RNA sequencing shows that ECs in infarcted hearts may be grouped into clusters with distinct gene expression signatures, likely reflecting functionally distinct cell populations. EC-specific multicolour lineage tracing reveals that EC subsets clonally expand after MI. Expanding EC clones may arise from tissue-resident ECs with stem cell characteristics that have been identified in multiple organs including the heart. Tissue repair after MI involves interactions among multiple cell types which occur, to a large extent, through secreted proteins and their cognate receptors. While we are only beginning to understand the full complexity of this intercellular communication, macrophage and fibroblast populations have emerged as major drivers of the angiogenic response after MI. Animal data support the view that the endogenous angiogenic response after MI can be boosted to reduce scarring and adverse left ventricular remodelling. The improved mechanistic understanding of infarct angiogenesis therefore creates multiple therapeutic opportunities. During preclinical development, all proangiogenic strategies should be tested in animal models that replicate both cardiovascular risk factor(s) and the pharmacotherapy typically prescribed to patients with acute MI. Considering that the majority of patients nowadays do well after MI, clinical translation will require careful selection of patients in need of proangiogenic therapies.
Collapse
Affiliation(s)
- Xuekun Wu
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Marc R Reboll
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Mortimer Korf-Klingebiel
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| | - Kai C Wollert
- Division of Molecular and Translational Cardiology, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany
| |
Collapse
|
36
|
Weber M, Fech A, Jäger L, Steinle H, Bühler L, Perl RM, Martirosian P, Mehling R, Sonanini D, Aicher WK, Nikolaou K, Schlensak C, Enderle MD, Wendel HP, Linzenbold W, Avci-Adali M. Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium. Sci Rep 2020; 10:16787. [PMID: 33033281 PMCID: PMC7546722 DOI: 10.1038/s41598-020-73693-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022] Open
Abstract
The reprogramming of patient´s somatic cells into induced pluripotent stem cells (iPSCs) and the consecutive differentiation into cardiomyocytes enables new options for the treatment of infarcted myocardium. In this study, the applicability of a hydrojet-based method to deliver footprint-free iPSC-derived cardiomyocytes into the myocardium was analyzed. A new hydrojet system enabling a rapid and accurate change between high tissue penetration pressures and low cell injection pressures was developed. Iron oxide-coated microparticles were ex vivo injected into porcine hearts to establish the application parameters and the distribution was analyzed using magnetic resonance imaging. The influence of different hydrojet pressure settings on the viability of cardiomyocytes was analyzed. Subsequently, cardiomyocytes were delivered into the porcine myocardium and analyzed by an in vivo imaging system. The delivery of microparticles or cardiomyocytes into porcine myocardium resulted in a widespread three-dimensional distribution. In vitro, 7 days post-injection, only cardiomyocytes applied with a hydrojet pressure setting of E20 (79.57 ± 1.44%) showed a significantly reduced cell viability in comparison to the cells applied with 27G needle (98.35 ± 5.15%). Furthermore, significantly less undesired distribution of the cells via blood vessels was detected compared to 27G needle injection. This study demonstrated the applicability of the hydrojet-based method for the intramyocardial delivery of iPSC-derived cardiomyocytes. The efficient delivery of cardiomyocytes into infarcted myocardium could significantly improve the regeneration.
Collapse
Affiliation(s)
- Marbod Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Andreas Fech
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Luise Jäger
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Heidrun Steinle
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Louisa Bühler
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Regine Mariette Perl
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Petros Martirosian
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Roman Mehling
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Dominik Sonanini
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University, Roentgenweg 13, 72076, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, ZMF, University Hospital Tuebingen, Waldhoernlestr. 22, 72072, Tuebingen, Germany
| | - Konstantin Nikolaou
- Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Markus D Enderle
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Walter Linzenbold
- Erbe Elektromedizin Tuebingen, Waldhoernlestr. 17, 72072, Tuebingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany.
| |
Collapse
|
37
|
Large Animal Models of Cell-Free Cardiac Regeneration. Biomolecules 2020; 10:biom10101392. [PMID: 33003617 PMCID: PMC7600588 DOI: 10.3390/biom10101392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
The adult mammalian heart lacks the ability to sufficiently regenerate itself, leading to the progressive deterioration of function and heart failure after ischemic injuries such as myocardial infarction. Thus far, cell-based therapies have delivered unsatisfactory results, prompting the search for cell-free alternatives that can induce the heart to repair itself through cardiomyocyte proliferation, angiogenesis, and advantageous remodeling. Large animal models are an invaluable step toward translating basic research into clinical applications. In this review, we give an overview of the state-of-the-art in cell-free cardiac regeneration therapies that have been tested in large animal models, mainly pigs. Cell-free cardiac regeneration therapies involve stem cell secretome- and extracellular vesicles (including exosomes)-induced cardiac repair, RNA-based therapies, mainly regarding microRNAs, but also modified mRNA (modRNA) as well as other molecules including growth factors and extracellular matrix components. Various methods for the delivery of regenerative substances are used, including adenoviral vectors (AAVs), microencapsulation, and microparticles. Physical stimulation methods and direct cardiac reprogramming approaches are also discussed.
Collapse
|
38
|
Groppa E, Colliva A, Vuerich R, Kocijan T, Zacchigna S. Immune Cell Therapies to Improve Regeneration and Revascularization of Non-Healing Wounds. Int J Mol Sci 2020; 21:E5235. [PMID: 32718071 PMCID: PMC7432547 DOI: 10.3390/ijms21155235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.
Collapse
Affiliation(s)
- Elena Groppa
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tea Kocijan
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
39
|
Bartlett RD, Burley S, Ip M, Phillips JB, Choi D. Cell Therapies for Spinal Cord Injury: Trends and Challenges of Current Clinical Trials. Neurosurgery 2020; 87:E456-E472. [DOI: 10.1093/neuros/nyaa149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract
Cell therapies have the potential to revolutionize the treatment of spinal cord injury. Basic research has progressed significantly in recent years, with a plethora of cell types now reaching early-phase human clinical trials, offering new strategies to repair the spinal cord. However, despite initial enthusiasm for preclinical and early-phase clinical trials, there has been a notable hiatus in the translation of cell therapies to routine clinical practice. Here, we review cell therapies that have reached clinical trials for spinal cord injury, providing a snapshot of all registered human trials and a summary of all published studies. Of registered trials, the majority have used autologous cells and approximately a third have been government funded, a third industry sponsored, and a third funded by university or healthcare systems. A total of 37 cell therapy trials have been published, primarily using stem cells, although a smaller number have used Schwann cells or olfactory ensheathing cells. Significant challenges remain for cell therapy trials in this area, including achieving stringent regulatory standards, ensuring appropriately powered efficacy trials, and establishing sustainable long-term funding. However, cell therapies hold great promise for human spinal cord repair and future trials must continue to capitalize on the exciting developments emerging from preclinical studies.
Collapse
Affiliation(s)
- Richard D Bartlett
- Centre for Nerve Engineering, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
- Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
| | - Sarah Burley
- Centre for Nerve Engineering, University College London, London, United Kingdom
| | - Mina Ip
- Centre for Nerve Engineering, University College London, London, United Kingdom
| | - James B Phillips
- Centre for Nerve Engineering, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - David Choi
- Centre for Nerve Engineering, University College London, London, United Kingdom
- Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, United Kingdom
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
40
|
Laggner M, Copic D, Nemec L, Vorstandlechner V, Gugerell A, Gruber F, Peterbauer A, Ankersmit HJ, Mildner M. Therapeutic potential of lipids obtained from γ-irradiated PBMCs in dendritic cell-mediated skin inflammation. EBioMedicine 2020; 55:102774. [PMID: 32403085 PMCID: PMC7218268 DOI: 10.1016/j.ebiom.2020.102774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Since numerous pathological conditions are evoked by unwanted dendritic cell (DC) activity, therapeutic agents modulating DC functions are of great medical interest. In regenerative medicine, cellular secretomes have gained increasing attention and valuable immunomodulatory properties have been attributed to the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCs). Potential effects of the PBMC secretome (PBMCsec) on key DC functions have not been elucidated so far. METHODS We used a hapten-mediated murine model of contact hypersensitivity (CH) to study the effects of PBMCsec on DCs in vivo. Effects of PBMCsec on human DCs were investigated in monocyte-derived DCs (MoDC) and ex vivo skin cultures. DCs were phenotypically characterised by transcriptomics analyses and flow cytometry. DC function was evaluated by cytokine secretion, antigen uptake, PBMC proliferation and T-cell priming. FINDINGS PBMCsec significantly alleviated tissue inflammation and cellular infiltration in hapten-sensitized mice. We found that PBMCsec abrogated differentiation of MoDCs, indicated by lower expression of classical DC markers CD1a, CD11c and MHC class II molecules. Furthermore, PBMCsec reduced DC maturation, antigen uptake, lipopolysaccharides-induced cytokine secretion, and DC-mediated immune cell proliferation. Moreover, MoDCs differentiated with PBMCsec displayed diminished ability to prime naïve CD4+T-cells into TH1 and TH2 cells. Furthermore, PBMCsec modulated the phenotype of DCs present in the skin in situ. Mechanistically, we identified lipids as the main biomolecule accountable for the observed immunomodulatory effects. INTERPRETATION Together, our data describe DC-modulatory actions of lipids secreted by stressed PBMCs and suggest PBMCsec as a therapeutic option for treatment of DC-mediated inflammatory skin conditions. FUNDING This research project was supported by the Austrian Research Promotion Agency (Vienna, Austria; grant "APOSEC" 862068; 2015-2019) and the Vienna Business Agency (Vienna, Austria; grant "APOSEC to clinic" 2343727).
Collapse
Affiliation(s)
- Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lucas Nemec
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Vera Vorstandlechner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alfred Gugerell
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Anja Peterbauer
- Austrian Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Hendrik J Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Vienna, Austria; Division of Thoracic Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria.
| |
Collapse
|
41
|
Pan J, Ding Q, Lv S, Xia B, Jin H, Chen D, Xiao L, Tong P. Prognosis after autologous peripheral blood stem cell transplantation for osteonecrosis of the femoral head in the pre-collapse stage: a retrospective cohort study. Stem Cell Res Ther 2020; 11:83. [PMID: 32101150 PMCID: PMC7045398 DOI: 10.1186/s13287-020-01595-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/06/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Autologous peripheral blood stem cell (auto-PBSC) transplantation is an effective therapeutic for the osteonecrosis of the femoral head (ONFH) but without prognosis estimation. This study mainly aimed to (1) determine whether auto-PBSC transplantation is a promising option, (2) assess the risk of hip-preservation failure, (3) achieve a predictive model of femoral head survival after the intervention, and (4) eventually identify clinical indications for auto-PBSC transplantation in future. METHODS After reviewing the in-patient database of the First Affiliated Hospital of Zhejiang Chinese Medicine University from June 2012 to June 2014, 37 eligible patients with Association Research Circulation Osseous stage I or II ONFH who were receiving intra-arterial infusion of auto-PBSCs were recruited. A case form was designed to retrieve relevant data. Hip-preservation failure was defined as the endpoint. All participants were stratified by the categorical risk of collapse, which was statistically tested through log-rank analysis. All significant factors were evaluated using Cox proportional hazards regression model, and a predictive nomogram plot was generated. RESULTS In total, 47 hips were followed up for 53.96 ± 21.09 months; the median survival time was 60.18 months. Among the predictors, body mass index (BMI; P = 0.0015) and Harris hip score (HHS; P < 0.0001) independently affected femoral head survival. Patients with BMI ≥ 24 kg/m2 exhibited a 2.58 times higher risk of hip-preservation failure [95% confidence interval (CI), 1.32-5.45] than those with BMI < 24 kg/m2, whereas those with HHS ≥ 70 exhibited a 0.19 times lower risk (95% CI, 0.09-0.38) than those with HHS < 70. Hazard ratios associated with age (P = 0.042), BMI (P = 0.012), HHS (P = 0.022), and necrotic volume (P = 0.000) were 1.038 (95% CI, 1.001-1.075), 1.379 (95% CI, 1.072-1.773), 0.961 (95% CI, 0.928-0.994), and 1.258 (95% CI, 1.120-1.412), respectively. A nomogram plot (score test P = 0.000; C-index = 0.8863) was available for the orthopedic doctor to predict hip survival probability. CONCLUSIONS The results suggest that intra-arterial infusion of auto-PBSCs prolongs femoral head survival. Age, BMI, HHS, and necrotic volume can influence the efficacy of this intervention. This study was approved by ethics committee of the trial center, number 2019-KL-075-01.
Collapse
Affiliation(s)
- Jiafei Pan
- Tongde Hospital of Zhejiang Province, affiliated with Zhejiang Chinese Medicine University, Hangzhou, 310012, People's Republic of China.,Zhejiang Chinese Medicine University, Hangzhou, 310053, People's Republic of China
| | - Quanwei Ding
- Hangzhou Fuyang Hospital of Traditional Chinese Medicine Orthopedics and Traumatology, Hangzhou, 311400, People's Republic of China
| | - Shuaijie Lv
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310006, People's Republic of China
| | - Bingjiang Xia
- Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, People's Republic of China
| | - Hongting Jin
- Zhejiang Chinese Medicine University, Hangzhou, 310053, People's Republic of China.,Institute of Orthopedics and Traumatology of Zhejiang Province, Hangzhou, 310053, People's Republic of China
| | - Di Chen
- Rush University Medical Center, Chicago, IL, 60612, USA
| | - Luwei Xiao
- Zhejiang Chinese Medicine University, Hangzhou, 310053, People's Republic of China.,The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310006, People's Republic of China.,Institute of Orthopedics and Traumatology of Zhejiang Province, Hangzhou, 310053, People's Republic of China
| | - Peijian Tong
- Zhejiang Chinese Medicine University, Hangzhou, 310053, People's Republic of China. .,The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310006, People's Republic of China. .,Institute of Orthopedics and Traumatology of Zhejiang Province, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|
42
|
Laggner M, Gugerell A, Bachmann C, Hofbauer H, Vorstandlechner V, Seibold M, Gouya Lechner G, Peterbauer A, Madlener S, Demyanets S, Sorgenfrey D, Ostler T, Erb M, Mildner M, Ankersmit HJ. Reproducibility of GMP-compliant production of therapeutic stressed peripheral blood mononuclear cell-derived secretomes, a novel class of biological medicinal products. Stem Cell Res Ther 2020; 11:9. [PMID: 31900195 PMCID: PMC6942406 DOI: 10.1186/s13287-019-1524-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The recent concept of secretome-based tissue regeneration has profoundly altered the field of regenerative medicine and offers promising novel therapeutic options. In contrast to medicinal products with a single active substance, cell-derived secretomes comprise pleiotropic bioactive ingredients, representing a major obstacle for reproducible drug product efficacy and warranting patient safety. Good manufacturing practice (GMP)-compliant production guarantees high batch-to-batch consistency and reproducible efficacy of biological medicinal products, but different batches of cellular secretomes produced under GMP have not been compared yet, and suitable quality control parameters have not been established. To this end, we analyzed diverse biological and functional parameters of different batches produced under GMP of the secretome obtained from γ-irradiated peripheral blood mononuclear cells with proven tissue regenerative properties in infarcted myocardium, stroke, spinal cord injury, and skin wounds. METHODS We quantified key secretome ingredients, including cytokines, lipids, and extracellular vesicles, and functionally assessed potency in tube formation assay, ex vivo aortic ring sprouting assay, and cell-based protein and reporter gene assays. Furthermore, we determined secretome stability in different batches after 6 months of storage at various ambient temperatures. RESULTS We observed that inter-batch differences in the bioactive components and secretome properties were small despite considerable differences in protein concentrations and potencies between individual donor secretomes. Stability tests showed that the analytical and functional properties of the secretomes remained stable when lyophilisates were stored at temperatures up to + 5 °C for 6 months. CONCLUSIONS We are the first to demonstrate the consistent production of cell-derived, yet cell-free secretome as a biological medicinal product. The results from this study provide the basis for selecting appropriate quality control parameters for GMP-compliant production of therapeutic cell secretomes and pave the way for future clinical trials employing secretomes in tissue regenerative medicine.
Collapse
Affiliation(s)
- Maria Laggner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Alfred Gugerell
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | | | - Helmut Hofbauer
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | - Vera Vorstandlechner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG, Vienna, Austria
| | | | | | - Anja Peterbauer
- Austrian Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Sibylle Madlener
- Molecular Neuro-Oncology, Department of Pediatrics and Adolescent Medicine and Institute of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Svitlana Demyanets
- Department for Laboratory Medicine at the Medical University of Vienna, Vienna, Austria
| | | | - Tobias Ostler
- SYNLAB Analytics and Services Switzerland AG, Birsfelden, Switzerland
| | - Michael Erb
- SYNLAB Analytics and Services Switzerland AG, Birsfelden, Switzerland
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
- Aposcience AG, Vienna, Austria.
| |
Collapse
|
43
|
Gugerell A, Sorgenfrey D, Laggner M, Raimann J, Peterbauer A, Bormann D, Suessner S, Gabriel C, Moser B, Ostler T, Mildner M, Ankersmit HJ. Viral safety of APOSECTM: a novel peripheral blood mononuclear cell derived-biological for regenerative medicine. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2020; 18:30-39. [PMID: 30865581 PMCID: PMC7053523 DOI: 10.2450/2019.0249-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Viral reduction and inactivation of cell-derived biologicals is paramount for patients' safety and so viral reduction needs to be demonstrated to regulatory bodies in order to obtain marketing authorisation. Allogeneic human blood-derived biological medicinal products require special attention. APOSECTM, the secretome harvested from selected human blood cells, is a new biological with promising regenerative capabilities. We evaluated the effectiveness of inactivation of model viruses by methylene blue/light treatment, lyophilisation, and gamma irradiation during the manufacturing process of APOSECTM. MATERIALS AND METHODS Samples of intermediates of APOSECTM were acquired during the manufacturing process and spiked with bovine viral diarrhoea virus (BVDV), human immunodeficiency virus type 1 (HIV-1), pseudorabies virus (PRV), hepatitis A virus (HAV), and porcine parvovirus (PPV). Viral titres were assessed with suitable cell lines. RESULTS Methylene blue-assisted viral reduction is mainly effective against enveloped viruses: the minimum log10 reduction factors for BVDV, HIV-1, and PRV were ≥6.42, ≥6.88, and ≥6.18, respectively, with no observed residual infectivity. Viral titres of both HAV and PPV were not significantly reduced, indicating minor inactivation of non-enveloped viruses. Lyophilisation had minor effects on the viability of several enveloped model viruses. Gamma irradiation contributes to the viral safety by reduction of enveloped viruses (BVDV: ≥2.42; HIV-1: 4.53; PRV: ≥4.61) and to some degree of non-enveloped viruses as seen for HAV with a minimum log10 reduction factor of 2.92. No significant reduction could be measured for the non-enveloped virus PPV (2.60). DISCUSSION Three manufacturing steps of APOSECTM were evaluated under Good Laboratory Practice conditions for their efficacy at reducing and inactivating potentially present viruses. It could be demonstrated that all three steps contribute to the viral safety of APOSECTM.
Collapse
Affiliation(s)
- Alfred Gugerell
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Maria Laggner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Jürgen Raimann
- Charles River Laboratories Germany GmbH (CRL), Cologne, Germany
| | - Anja Peterbauer
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Daniel Bormann
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Susanne Suessner
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Christian Gabriel
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Graz, Graz, Austria
| | - Bernhard Moser
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Tobias Ostler
- SYNLAB Analytics and Services Switzerland AG, Birsfelden, Switzerland
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Hendrik J Ankersmit
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Wiener Wirtschaftsagentur Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
- Austrian Research Promotion Agency FFG Projects 852748 and 862068 "APOSEC", Medical University Vienna, Vienna, Austria
| |
Collapse
|
44
|
Nazarenko I. Extracellular Vesicles: Recent Developments in Technology and Perspectives for Cancer Liquid Biopsy. Recent Results Cancer Res 2020; 215:319-344. [PMID: 31605237 DOI: 10.1007/978-3-030-26439-0_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular micro- and nanoscale membrane vesicles produced by different cells progressively attract the attention of the scientific community. They function as mediators of intercellular communication and transport genetic material and signaling molecules between the cells. In the context of keeping homeostasis, the extracellular vesicles contribute to the regulation of various systemic and local processes. Vesicles released by the tumor and activated stromal cells exhibit multiple functions including support of tumor growth, preparation of the pre-metastatic niches, and immune suppression. Considerable progress has been made regarding the criteria of classification of the vesicles according to their origin, content, and function: Exosomes, microvesicles, also referred to as microparticles or ectosomes, and large oncosomes were defined as actively released vesicles. Additionally, apoptotic bodies represented by a highly heterogeneous population of particles produced during apoptosis, the programmed cell death, should be considered. Because the majority of isolation techniques do not allow the separation of different types of vesicles, a joined term "extracellular vesicles" (EVs) was recommended by the ISEV community for the definition of vesicles isolated from either the cell culture supernatants or the body fluids. Because EV content reflects the content of the cell of origin, multiple studies on EVs from body fluids in the context of cancer diagnosis, prediction, and prognosis were performed, actively supporting their high potential as a biomarker source. Here, we review the leading achievements in EV analysis from body fluids, defined as EV-based liquid biopsy, and provide an overview of the main EV constituents: EV surface proteins, intravesicular soluble proteins, EV RNA including mRNA and miRNA, and EV DNA as potential biomarkers. Furthermore, we discuss recent developments in technology for quantitative EV analysis in the clinical setting and future perspectives toward miniaturized high-precision liquid biopsy approaches.
Collapse
Affiliation(s)
- Irina Nazarenko
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
45
|
Simader E, Beer L, Laggner M, Vorstandlechner V, Gugerell A, Erb M, Kalinina P, Copic D, Moser D, Spittler A, Tschachler E, Jan Ankersmit H, Mildner M. Tissue-regenerative potential of the secretome of γ-irradiated peripheral blood mononuclear cells is mediated via TNFRSF1B-induced necroptosis. Cell Death Dis 2019; 10:729. [PMID: 31570701 PMCID: PMC6768878 DOI: 10.1038/s41419-019-1974-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) have been shown to produce and release a plethora of pro-angiogenetic factors in response to γ-irradiation, partially accounting for their tissue-regenerative capacity. Here, we investigated whether a certain cell subtype of PBMCs is responsible for this effect, and whether the type of cell death affects the pro-angiogenic potential of bioactive molecules released by γ-irradiated PBMCs. PBMCs and PBMC subpopulations, including CD4+ and CD8+ T cells, B cells, monocytes, and natural killer cells, were isolated and subjected to high-dose γ-irradiation. Transcriptome analysis revealed subpopulation-specific responses to γ-irradiation with distinct activation of pro-angiogenic pathways, cytokine production, and death receptor signalling. Analysis of the proteins released showed that interactions of the subsets are important for the generation of a pro-angiogenic secretome. This result was confirmed at the functional level by the finding that the secretome of γ-irradiated PBMCs displayed higher pro-angiogenic activity in an aortic ring assay. Scanning electron microscopy and image stream analysis of γ-irradiated PBMCs revealed distinct morphological changes, indicative for apoptotic and necroptotic cell death. While inhibition of apoptosis had no effect on the pro-angiogenic activity of the secretome, inhibiting necroptosis in stressed PBMCs abolished blood vessel sprouting. Mechanistically, we identified tumor necrosis factor (TNF) receptor superfamily member 1B as the main driver of necroptosis in response to γ-irradiation in PBMCs, which was most likely mediated via membrane-bound TNF-α. In conclusion, our study demonstrates that the pro-angiogenic activity of the secretome of γ-irradiated PBMCs requires interplay of different PBMC subpopulations. Furthermore, we show that TNF-dependent necroptosis is an indispensable molecular process for conferring tissue-regenerative activity and for the pro-angiogenic potential of the PBMC secretome. These findings contribute to a better understanding of secretome-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Elisabeth Simader
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria.,Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Radiology and Cancer Research UK Cambridge Center, Cambridge, CB2 0QQ, UK
| | - Maria Laggner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria.,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
| | - Vera Vorstandlechner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria.,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
| | - Alfred Gugerell
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria.,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
| | - Michael Erb
- Synlab Analytics and Services Switzerland AG, Birsfelden, Switzerland
| | - Polina Kalinina
- Research Division of Biology and Pathobiology of the SkinDepartment of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Dragan Copic
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria.,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria
| | - Doris Moser
- Division of Oral and Maxillofacial Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Research Laboratories, Core Facility Flow Cytometry, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the SkinDepartment of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria. .,FFG Project 852748 "APOSEC", Medical University of Vienna, Vienna, Austria. .,Vienna Business Agency Project 2343727 "APOSEC to clinic", Medical University Vienna, Vienna, Austria.
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the SkinDepartment of Dermatology, Research Division of Biology and Pathobiology of the Skin, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
46
|
Wuschko S, Gugerell A, Chabicovsky M, Hofbauer H, Laggner M, Erb M, Ostler T, Peterbauer A, Suessner S, Demyanets S, Leuschner J, Moser B, Mildner M, Ankersmit HJ. Toxicological testing of allogeneic secretome derived from peripheral mononuclear cells (APOSEC): a novel cell-free therapeutic agent in skin disease. Sci Rep 2019; 9:5598. [PMID: 30944367 PMCID: PMC6447581 DOI: 10.1038/s41598-019-42057-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 03/19/2019] [Indexed: 12/19/2022] Open
Abstract
A cell-free approach using secretomes derived from stem cells or peripheral blood mononuclear cells is an active area of regenerative medicine that holds promise for therapies. Regulatory authorities classify these secretomes as biological medicinal products, and non- clinical safety assessment thus falls under the scope of ICH S6. A secretome of stressed peripheral blood mononuclear cells (APOSEC) was successfully tested in a toxicology program, supporting clinical use of the new drug candidate. Here, to allow for topical, dermal treatment of patients with diabetic foot ulcer, several non-clinical safety studies were performed. Acute toxicity (single dose) and neuropharmacological screening were tested intravenously in a rat model. Risk for skin sensitisation was tested in mice. A 4-week intravenous toxicity study in mice and a 4-week subcutaneous toxicity study in minipigs were conducted to cover the clinical setting and application in a rodent and a non-rodent model. Acute and repeated-dose toxicity studies show that APOSEC administered intravenously and subcutaneously does not involve major toxicities or signs of local intolerance at levels above the intended total human maximal dose of 3.3 U/kg/treatment, 200 U/wound/treatment, and 100 U/cm2/treatment. The non-clinical data support the safe topical use of APOSEC in skin diseases related to deficient wound healing.
Collapse
Affiliation(s)
- Silvio Wuschko
- Drug and Chemical Safety Research & Toxicology, Consultant, Alland, Austria
| | - Alfred Gugerell
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.,Department of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | - Helmut Hofbauer
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Laggner
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | - Anja Peterbauer
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Susanne Suessner
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jost Leuschner
- LPT - Laboratory of Pharmacology and Toxicology GmbH & Co KG, Hamburg, Germany
| | - Bernhard Moser
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Hendrik J Ankersmit
- Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria. .,FFG Projects "APOSEC" 852748 and 862068, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
47
|
Yang X, Kang N, Toyofuku WM, Scott MD. Enhancing the pro-inflammatory anti-cancer T cell response via biomanufactured, secretome-based, immunotherapeutics. Immunobiology 2019; 224:270-284. [PMID: 30711357 DOI: 10.1016/j.imbio.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
Abstract
T lymphocytes play a critical role in the pro-inflammatory anti-cancer response; hence, significant pharmacologic efforts have been made to enhance the endogenous T cell response. Unfortunately, significant toxicity arises consequent to pan T cell activation. In contrast, the less robust T cell alloresponse has also demonstrated an anti-cancer effect, but poses an inherent risk of GvHD. To overcome the GvHD risk, an acellular pro-inflammatory agent (IA1) has been biomanufactured from the secretome of the allorecognition response. To assess IA1's immunomodulatory activity, T cell proliferation and differentiation were determined in vitro. The pro-inflammatory properties of the IA1 therapeutic were mediated by the miRNA-enriched fractions. Moreover, cross-species efficacy was observed consequent to the evolutionary conservation of miRNA. IA1 exerted no toxicity to resting PBMC but induced significant proliferation of resting CD3+ (CD4+ and CD8+) T cells and skewed the response towards a pro-inflammatory state (i.e., increased Teff:Treg ratio). Crucially, IA1-activated PBMC demonstrated a potent inhibition of cancer cell (HeLa and SH-4 melanoma) proliferation relative to the resting PBMC. The anti-proliferation effect of IA1-activated PBMC was noted within ˜12 h versus 4-5 days for resting cells. A second biomanufactured therapeutic (IA2; produced using HeLa cells) surprisingly demonstrated direct toxicity to cancer cells but was less effective than IA1 in inducing a cell-mediated response. This study demonstrates that miRNA-enriched therapeutics can be biomanufactured from the secretome and can induce a potent pro-inflammatory, anti-cancer, effect on resting lymphocytes.
Collapse
Affiliation(s)
- Xining Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Canada
| | - Ning Kang
- University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada
| | - Wendy M Toyofuku
- University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada; University of British Columbia Centre for Blood Research, Canada; Canadian Blood Services, Canada.
| |
Collapse
|
48
|
Different pro-angiogenic potential of γ-irradiated PBMC-derived secretome and its subfractions. Sci Rep 2018; 8:18016. [PMID: 30573762 PMCID: PMC6301954 DOI: 10.1038/s41598-018-36928-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
Secretomes from various cell sources exert strong regenerative activities on numerous organs, including the skin. Although secretomes consist of many diverse components, a growing body of evidence suggests that small extracellular vesicles (EVs) account for their regenerative capacity. We previously demonstrated that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCs) exhibits wound healing capacity. Therefore, we sought to dissect the molecular composition of EVs present in the secretome and compared wound healing-related activities of these EVs to other subfractions of the secretome and the fully supplemented secretome (MNCaposec). Compared to EVs derived from non-irradiated PBMCs, γ-irradiation significantly increased the size and number and changed the composition of released EVs. Detailed characterization of the molecular components of EVs, i.e. miRNA, proteins, and lipids, derived from irradiated PBMCs revealed a strong association with regenerative processes. Reporter gene assays and aortic ring sprouting assays revealed diminished activity of the subfractions compared to MNCaposec. In addition, we showed that MNCaposec accelerated wound closure in a diabetic mouse model. Taken together, our results suggest that secretome-based wound healing represents a promising new therapeutic avenue, and strongly recommend using the complete secretome instead of purified subfractions, such as EVs, to exploit its full regenerative capacity.
Collapse
|
49
|
Gójska-Grymajło A, Zieliński M, Wardowska A, Gąsecki D, Pikuła M, Karaszewski B. CXCR7+ and CXCR4+ stem cells and neuron specific enolase in acute ischemic stroke patients. Neurochem Int 2018; 120:134-139. [PMID: 30125595 DOI: 10.1016/j.neuint.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/29/2018] [Accepted: 08/16/2018] [Indexed: 01/25/2023]
Abstract
Stroke causes an efflux of various groups of progenitor/stem cells from bone marrow to bloodstream and a rise in neuron specific enolase (NSE) serum concentrations. The aim of this study was to identify activity of chosen stem/progenitor cells during first 7 days after stroke through correlations between these cells levels and NSE values. Additional goal was to confirm the role of NSE as a prognostic marker of ischemic stroke. Venous blood was collected repeatedly from 67 acute ischemic stroke patients and 15 control subjects, in order to assess NSE with ELISA, and CD45-CD34 + CD271+, CD45-CD34 + CXCR4+, CD45-CD34 + CXCR7+ and CD45-CD34 + CD133 + stem/progenitor cells by means of flow cytometry. Patients underwent repeated assessment with the National Ischemic Stroke Scale and modified Rankin Scale. Ischemic lesion volumes were assessed twice by MRI-DWI (day 1 and 5 ± 2). NSE correlated negatively with MFI levels of the CD45-CD34 + CXCR7+ cells, and percentage levels of the CD45-CD34 + and CD45-CD34 + CXCR4+ cells. NSE concentrations were significantly higher in patients compared to control subjects. NSE on day 2 positively correlated with lesion volume on both MRI. NSE on day 2 and 6-7 correlated positively with initial NIHSS scores, and on day 1 with mRS score on day 9. In conclusion, in this study NSE indicated some activity of the CD45-CD34 + CXCR7+, CD45-CD34 + and CD45-CD34 + CXCR4+ stem/progenitor cells in the first 7 days after ischemic stroke. Additionally, this study supports the thesis that NSE might be a valuable prognostic marker in acute ischemic stroke.
Collapse
Affiliation(s)
- Anna Gójska-Grymajło
- Department of Adult Neurology, Medical University of Gdańsk & University Clinical Centre, Poland.
| | - Maciej Zieliński
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Poland
| | - Anna Wardowska
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Poland; Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Poland
| | - Dariusz Gąsecki
- Department of Adult Neurology, Medical University of Gdańsk & University Clinical Centre, Poland
| | - Michał Pikuła
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Poland; Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, Poland
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdańsk & University Clinical Centre, Poland
| |
Collapse
|
50
|
Differential long noncoding RNA expressions in peripheral blood mononuclear cells for detection of acute ischemic stroke. Clin Sci (Lond) 2018; 132:1597-1614. [PMID: 29997237 DOI: 10.1042/cs20180411] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been highlighted to be involved in the pathological process of ischemic stroke (IS). The purpose of the present study was to investigate the expression profile of lncRNAs in peripheral blood mononuclear cells (PBMCs) of acute IS patients and to explore their utility as biomarkers of IS. Distinctive expression patterns of PBMC lncRNAs were identified by an lncRNA microarray and individual quantitative real-time PCR (qRT-PCR) in four independent sets for 206 IS, 179 healthy controls (HCs), and 55 patients with transient ischemic attack (TIA). A biomarker panel (lncRNA-based combination index) was established using logistic regression. LncRNA microarray analysis showed 70 up-regulated and 128 down-regulated lncRNAs in IS patients. Individual qRT-PCR validation demonstrated that three lncRNAs (linc-DHFRL1-4, SNHG15, and linc-FAM98A-3) were significantly up-regulated in IS patients compared with HCs and TIA patients. Longitudinal analysis of lncRNA expression up to 90 days after IS showed that linc-FAM98A-3 normalized to control levels by day 7, while SNHG15 remained increased, indicating the ability of lncRNAs to monitor IS dynamics. Receiver-operating characteristic (ROC) curve analysis showed that the lncRNA-based combination index outperformed serum brain-derived neurotrophic factor (BDNF) and neurone-specific enolase (NSE) in distinguishing IS patients from TIA patients and HCs with areas under ROC curve of more than 0.84. Furthermore, the combination index increased significantly after treatment and was correlated with neurological deficit severity of IS. The panel of these altered lncRNAs was associated with acute IS and could serve as a novel diagnostic method.
Collapse
|