1
|
Sun M, Liu C, Zhang P, Zhang H, Zhang H, Zhang T, Han C. Integrating network pharmacology and molecular docking to reveal the mechanism of Baihu Decoction in alleviating myocardial injury of heat stressed chicks. Poult Sci 2025; 104:105128. [PMID: 40188620 PMCID: PMC12001121 DOI: 10.1016/j.psj.2025.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/08/2025] Open
Abstract
Baihu Decoction (BHD) is a classic traditional Chinese medicine formula used clinically for febrile diseases. Previous studies have demonstrated that BHD can prevent and alleviate heat stress in mice, chickens, and beef cattle, although its mechanisms remain unclear. In this study, chicks were used as experimental animals, and a heat stress injury model was established by exposing them to high temperature and humidity. UHPLC-Q-Exactive Orbitrap MS was employed to analyze and identify the chemical components of BHD, while the SwissADME platform was utilized to screen for active components. Through network pharmacology, the core targets and core components associated with heat stress were identified. Subsequently, potential targets were further analyzed through GO functional and KEGG pathway enrichment analyses, followed by molecular docking and animal experiments to validate the finding. The result showed that 169 active substances were identified and screened in BHD. KEGG pathway analysis revealed a strong correlation between the MAPK pathway and the intersecting targets. Molecular docking further confirmed the high binding affinity between the core components of BHD and the key targets in the MAPK pathway. These findings indicate that the MAPK pathway is critically involved in heat stress-induced myocardial injury in chicks as well as the cardioprotective effects of BHD. Animal experiments demonstrated that administering BHD via drinking water significantly alleviated myocardial pathology injury in heat stressed chicks exposed to high temperature and humidity. BHD treatment improved cardiac function and enhanced antioxidant capacity. Furthermore, it regulated the phosphorylation levels of ERK1/2, p38, and JNK1/2 in myocardial tissues, thereby inhibiting MAPK pathway activation. Additionally, BHD decreased the levels of Bax and cleaved caspase-3 while increasing Bcl2 expression. In conclusion, BHD effectively alleviates heat stress-induced myocardial injury and cardiac dysfunction in chicks, and its mechanism is closely associated with the inhibition of MAPK signaling pathway-mediated apoptosis. This study identifies BHD as a potential therapeutic drug for heat stress in animals and offers experimental support for its application in heat stress prevention and treatment.
Collapse
Affiliation(s)
- Mingyue Sun
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Cuiyan Liu
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Pengju Zhang
- Anhui Vocational and Technical College of Forestry, Hefei, Anhui Province, 230031, China
| | - Hao Zhang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Hong Zhang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Tao Zhang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Chunyang Han
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui Province, 230036, China.
| |
Collapse
|
2
|
Li J, Shen L, Wang K, Wu S, Wang Y, Pan Y, Chen S, Zhao T, Zhao Y, Niu L, Chen L, Zhang S, Zhu L, Gan M. Biogenesis of stress granules and their role in the regulation of stress-induced male reproduction disorders. Cell Commun Signal 2025; 23:84. [PMID: 39948590 PMCID: PMC11827146 DOI: 10.1186/s12964-025-02054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Stress granules (SGs) are conserved messenger ribonucleoprotein (mRNP) granules that form through rapid coalescence in the cytoplasm of eukaryotic cells under stressful environments. These dynamic membrane-free organelles can respond to a variety of both intracellular and extracellular stressors. Studies have shown that stress conditions such as heat stress, arsenite exposure, and hypoxic stress can induce SGs formation. The formation of SGs helps mitigates the effects of environmental stimuli on cells, protects them from damage, and promotes cell survival. This paper focuses on the biogenesis of SGs and summarizes the role in regulating environmental stress-induced male reproductive disorders, with the aim of exploring SGs as a potential means of mitigating male reproduction disorders. Numerous studies have demonstrated that the detrimental effects of environmental stress on germ cells can be effectively suppressed by regulating the formation and timely disassembly of SGs. Therefore, regulating the phosphorylation of eIF2α and the assembly and disassembly of SGs could offer a promising therapeutic strategy to alleviate the impacts of environmental stress on male reproduction health.
Collapse
Affiliation(s)
- Jiaxin Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuheng Pan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyu Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunhua Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Liu J, Zheng L, Li X, Tang W, Guo M, Wang Y, Tan X, Chang J, Zhao H, Zhu D, Ma YQ, Huo D. Emerging of Ultrafine Membraneless Organelles as the Missing Piece of Nanostress: Mechanism of Biogenesis and Implications at Multilevels. ACS NANO 2025; 19:5659-5679. [PMID: 39882824 DOI: 10.1021/acsnano.4c15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Understanding the interaction between nanomaterials and cellular structures is crucial for nanoparticle applications in biomedicine. We have identified a subtype of stress granules, called nanomaterial-provoked stress granules (NSGs), induced by gold nanorods (AuNRs). These NSGs differ from traditional SGs in their physical properties and biological functions. Uptake of AuNRs causes reactive oxygen species accumulation and protein misfolding in the cell, leading to NSG formation. Physically, NSGs have a gel-like core and a liquid-like shell, influenced positively by HSP70 and negatively by HSP90 and the ubiquitin-proteasome system. AuNRs promote NSG assembly by interacting with G3BP1, reducing the energy needed for liquid-liquid phase separation (LLPS). NSGs impact cellular functions by affecting mRNA surveillance and activating Adenosine 5'-monophosphate (AMP)-activated protein kinase signaling, crucial for a cellular stress response. Our study highlights the role of LLPS in nanomaterial metabolism and suggests NSGs as potential targets for drug delivery strategies, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Jia Liu
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Liuting Zheng
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Xinyue Li
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Wei Tang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Manyu Guo
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yuxing Wang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Xiaoqi Tan
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Jiajia Chang
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| | - Huiyue Zhao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, P. R. China
| | - Dongsheng Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing 211166, P. R. China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Da Huo
- Department of Pharmaceutics, and Nanjing Medical University, Nanjing 211166, P. R. China
| |
Collapse
|
4
|
Benedetto MM, Malcolm M, Bruera MG, Penazzi LG, Guido ME, Contín MA, Garbarino-Pico E. Stress Granule Induction in Rat Retinas Damaged by Constant LED Light. Invest Ophthalmol Vis Sci 2025; 66:38. [PMID: 39813056 PMCID: PMC11741064 DOI: 10.1167/iovs.66.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model. Methods Rat retinas were immunohistochemically analyzed for SG markers G3BP1 and eIF3, and SGs were also visualized by RNA fluorescence in situ hybridization. Additionally, SGs were induced in primary retinal cell and eyeball cultures using sodium arsenite. Light exposure experiments used LED lamps with a color temperature of 5500 K and 200 lux intensity for short-term or two- to eight-day exposures. Results SGs were predominantly detected in retinal ganglion cells (RGCs) and inner nuclear layer (INL) cells, with arsenite-induction verified in RGCs. SG abundance was higher in animals exposed to light for 2-8 days compared to light/dark cycle controls. RGCs consistently exhibited more SGs than INL cells, and INL cells more than outer nuclear layer (ONL) cells (Scheirer-Ray-Hare test: H = 13.2, P = 0.0103 for light condition, and H = 278.2, P < 0.00001 for retinal layer). These observations were consistent across four independent experiments, each with three animals per light condition. Conclusions This study characterizes SGs in the mammalian retina for the first time, with increased prevalence after excessive LED light exposure. RGCs and INL cells showed heightened SG formation, suggesting a potential protective mechanism against photodamage. Further investigations are warranted to elucidate the role of SGs in shielding against light stress and their implications in retinopathies.
Collapse
Affiliation(s)
- María M. Benedetto
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Melisa Malcolm
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Manuel G. Bruera
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Laura G. Penazzi
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Mario E. Guido
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - María A. Contín
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Eduardo Garbarino-Pico
- Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina
- CONICET. Universidad Nacional de Córdoba. Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| |
Collapse
|
5
|
Wang L, Lou Y, Li B. Exposure to titanium dioxide nanoparticles disrupts the BTB by interfering with the assembly of stress granules in germ cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123799. [PMID: 39709656 DOI: 10.1016/j.jenvman.2024.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are among the most prevalent nanomaterials utilized in industrial and medical fields. However, their impact on spermatogenesis and male fertility remains insufficiently characterized. This study addresses the reproductive toxicity of TiO2 NPs and elucidates the underlying molecular mechanisms involved. Our findings demonstrate that exposure to TiO2 NPs leads to a significant reduction in sperm count and motility. Specifically, TiO2 NPs disrupt the integrity of the blood-testis barrier (BTB) and compromise the cytoskeletal structure in both spermatogenic and Sertoli cells. Additionally, treatment with TiO2 NPs is associated with cell death and a decrease in the protein levels of BTB-related components, including N-cadherin, β-catenin, occludin, and ZO-1. Mechanistic investigations reveal that TiO2 NPs inhibit stress granule formation in germ cells subjected to heat stress and promote germ cell apoptosis via activation of the ATM/P53 signaling pathway. Collectively, our study highlights a potential connection between environmental health and reproductive health, revealing multiple detrimental effects of TiO2 NPs and uncovering previously unrecognized mechanisms by which nanomaterials may adversely impact the reproductive system.
Collapse
Affiliation(s)
- Lingjuan Wang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yantao Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Bin Li
- Institute of Urology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
6
|
Duran J, Salinas JE, Wheaton RP, Poolsup S, Allers L, Rosas-Lemus M, Chen L, Cheng Q, Pu J, Salemi M, Phinney B, Ivanov P, Lystad AH, Bhaskar K, Rajaiya J, Perkins DJ, Jia J. Calcium signaling from damaged lysosomes induces cytoprotective stress granules. EMBO J 2024; 43:6410-6443. [PMID: 39533058 PMCID: PMC11649789 DOI: 10.1038/s44318-024-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lysosomal damage induces stress granule (SG) formation. However, the importance of SGs in determining cell fate and the precise mechanisms that mediate SG formation in response to lysosomal damage remain unclear. Here, we describe a novel calcium-dependent pathway controlling SG formation, which promotes cell survival during lysosomal damage. Mechanistically, the calcium-activated protein ALIX transduces lysosomal damage signals to SG formation by controlling eIF2α phosphorylation after sensing calcium leakage. ALIX enhances eIF2α phosphorylation by promoting the association between PKR and its activator PACT, with galectin-3 inhibiting this interaction; these regulatory events occur on damaged lysosomes. We further find that SG formation plays a crucial role in promoting cell survival upon lysosomal damage caused by factors such as SARS-CoV-2ORF3a, adenovirus, malarial pigment, proteopathic tau, or environmental hazards. Collectively, these data provide insights into the mechanism of SG formation upon lysosomal damage and implicate it in diseases associated with damaged lysosomes and SGs.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Jay E Salinas
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Rui Ping Wheaton
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Monica Rosas-Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Li Chen
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Pavel Ivanov
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Alf Håkon Lystad
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jaya Rajaiya
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA.
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA.
| |
Collapse
|
7
|
O'Connell LC, Johnson V, Otis JP, Hutton AK, Murthy AC, Liang MC, Wang SH, Fawzi NL, Mowry KL. Intrinsically disordered regions and RNA binding domains contribute to protein enrichment in biomolecular condensates in Xenopus oocytes. Sci Rep 2024; 14:27890. [PMID: 39537752 PMCID: PMC11560939 DOI: 10.1038/s41598-024-79409-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Proteins containing both intrinsically disordered regions (IDRs) and RNA binding domains (RBDs) can phase separate in vitro, forming bodies similar to cellular biomolecular condensates. However, how IDR and RBD domains contribute to in vivo recruitment of proteins to biomolecular condensates remains poorly understood. Here, we analyzed the roles of IDRs and RBDs in L-bodies, biomolecular condensates present in Xenopus oocytes. We show that a cytoplasmic isoform of hnRNPAB, which contains two RBDs and an IDR, is highly enriched in L-bodies. While both of these domains contribute to hnRNPAB self-association and phase separation in vitro and mediate enrichment into L-bodies in oocytes, neither the RBDs nor the IDR replicate the localization of full-length hnRNPAB. Our results suggest a model where the combined effects of the IDR and RBDs regulate hnRNPAB partitioning into L-bodies. This model likely has widespread applications as proteins containing RBD and IDR domains are common biomolecular condensate residents.
Collapse
Affiliation(s)
- Liam C O'Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
- Intellia Therapeutics, Cambridge, MA, 02139, USA
| | - Victoria Johnson
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Jessica P Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Anika K Hutton
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anastasia C Murthy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
- Monte Rosa Therapeutics, Boston, MA, 02118, USA
| | - Mark C Liang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
- UCI School of Medicine, University of California, Irvine, Irvine, CA, 92617, USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
8
|
Zhang Y, Kang HR, Jun Y, Kang H, Bang G, Ma R, Ju S, Yoon DE, Kim Y, Kim K, Kim JY, Han K. Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2α phosphorylation via protein interactors and actin cytoskeleton. Hum Mol Genet 2024; 33:1671-1687. [PMID: 38981622 DOI: 10.1093/hmg/ddae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
Collapse
Affiliation(s)
- Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yukyung Jun
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Weavers H. Biological resilience in health and disease. Dis Model Mech 2024; 17:dmm050799. [PMID: 39051470 PMCID: PMC11552498 DOI: 10.1242/dmm.050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
All living organisms - from single-celled prokaryotes through to invertebrates and humans - are frequently exposed to numerous challenges during their lifetime, which could damage their molecular and cellular contents and threaten their survival. Nevertheless, these diverse organisms are, on the whole, remarkably resilient to potential threats. Recent years have seen rapid advances in our mechanistic understanding of this emerging phenomenon of biological resilience, which enables cells, tissues and whole organisms to bounce back from challenges or stress. In this At a Glance article, I discuss current knowledge on the diverse molecular mechanisms driving biological resilience across scales, with particular focus on its dynamic and adaptive nature. I highlight emerging evidence that loss of biological resilience could underly numerous pathologies, including age-related frailty and degenerative disease. Finally, I present the multi-disciplinary experimental approaches that are helping to unravel the causal mechanisms of resilience and how this emerging knowledge could be harnessed therapeutically in the clinic.
Collapse
Affiliation(s)
- Helen Weavers
- School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
10
|
Yang D, Xu K, Wang W, Chen P, Liu C, Liu S, Xu W, Xiao W. Protective effects of L-theanine and dihydromyricetin on reproductive function in male mice under heat stress. Food Funct 2024; 15:7093-7107. [PMID: 38873879 DOI: 10.1039/d4fo00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Heat stress can impair the male reproductive function. L-Theanine and dihydromyricetin have biological activities against heat stress; however, their effects on reproductive function in heat-stressed males are unclear. In this study, male mice were given L-theanine, dihydromyricetin, or a combination of both for 28 days, followed by 2 h of heat stress daily for 7 days. All interventions alleviated heat stress-induced testicular damage, improving the testicular organ index, sperm density, acrosome integrity, sperm deformity rate, and hormone levels. Treatment increased the antioxidant enzyme activity and decreased the markers of oxidative and inflammatory stress in the testes. A combination dose of 200 + 200 mg kg-1 d-1 showed the best protective effect. The potential mechanism involves the regulation of HSP27 and HSP70, which regulate the levels of reproductive hormones through the StAR/Cyp11a1/Hsd3b1/Cyp17a1/Hsd17b3 pathway, alleviate inflammation and oxidative stress through the P38/NF-κB/Nrf2/HO-1 pathway, and regulate the Bcl-2/Fas/Caspase3 apoptotic pathway. Overall, L-theanine and dihydromyricetin may play a protective role against heat stress-induced reproductive dysfunction, suggesting their potential use in heat stress-resistant foods.
Collapse
Affiliation(s)
- Difei Yang
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Kaihang Xu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenmao Wang
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Peijian Chen
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Chao Liu
- Zhangjiajie Qiankun Berry Tea Engineering Technology Research Center, Zhangjiajie 427000, China
- Hunan Qiankun Biotechnology Co., Ltd., Zhangjiajie 427000, China
| | - Sha Liu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wei Xu
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science, Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Engineering Research Center of Functional Plant Components Utilization, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
11
|
Lai PF, Mahendran R, Tsai BCK, Lu CY, Kuo CH, Lin KH, Lu SY, Wu YL, Chang YM, Kuo WW, Huang CY. Calycosin Enhances Heat Shock Related-Proteins in H9c2 Cells to Modulate Survival and Apoptosis against Heat Shock. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1173-1193. [PMID: 38938156 DOI: 10.1142/s0192415x24500472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Heat shock proteins (HSPs), which function as chaperones, are activated in response to various environmental stressors. In addition to their role in diverse aspects of protein production, HSPs protect against harmful protein-related stressors. Calycosin exhibits numerous beneficial properties. This study aims to explore the protective effects of calycosin in the heart under heat shock and determine its underlying mechanism. H9c2 cells, western blot, TUNEL staining, flow cytometry, and immunofluorescence staining were used. The time-dependent effects of heat shock analyzed using western blot revealed increased HSP expression for up to 2[Formula: see text]h, followed by protein degradation after 4[Formula: see text]h. Hence, a heat shock damage duration of 4[Formula: see text]h was chosen for subsequent investigations. Calycosin administered post-heat shock demonstrated dose-dependent recovery of cell viability. Under heat shock conditions, calycosin prevented the apoptosis of H9c2 cells by upregulating HSPs, suppressing p-JNK, enhancing Bcl-2 activation, and inhibiting cleaved caspase 3. Calycosin also inhibited Fas/FasL expression and activated cell survival markers (p-PI3K, p-ERK, p-Akt), indicating their cytoprotective properties through PI3K/Akt activation and JNK inhibition. TUNEL staining and flow cytometry confirmed that calycosin reduced apoptosis. Moreover, calycosin reversed the inhibitory effects of quercetin on HSF1 and Hsp70 expression, illustrating its role in enhancing Hsp70 expression through HSF1 activation during heat shock. Immunofluorescence staining demonstrated HSF1 translocation to the nucleus following calycosin treatment, emphasizing its cytoprotective effects. In conclusion, calycosin exhibits pronounced protective effects against heat shock-induced damages by modulating HSP expression and regulating key signaling pathways to promote cell survival in H9c2 cells.
Collapse
Affiliation(s)
- Pei-Fang Lai
- Department of Emergency Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Ramasamy Mahendran
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei 111, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei 111, Taiwan
- School of Physical Education and Sports Science, Soochow University, Suzhou 215021, China
- Department of Kinesiology and Health, College of William and Mary, Williamsburg, VA 23185, USA
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 406, Taiwan
| | - Shang-Yeh Lu
- College of Medicine, China Medical University, Taichung 406, Taiwan
- Division of Cardiovascular Medicine, Department of Internal, Medicine China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Ling Wu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, 840, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, 824, Taiwan
- 1PT Biotechnology Co., Ltd., Taichung 433, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung 406, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung 406, Taiwan
- School of Pharmacy, China Medical University, Taichung 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
12
|
Guo Y, Li B, Xie H, Wu C, Wang G, Yao K, Li L. The therapeutic efficacy of different configuration nano-polydopamine drug carrier systems with photothermal synergy against head and neck squamous cell carcinoma. Regen Biomater 2024; 11:rbae073. [PMID: 39027362 PMCID: PMC11256922 DOI: 10.1093/rb/rbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide. Considering its special anatomical site and the progressive resistance to chemotherapy drugs, the development of more effective, minimally invasive and precise treatment methods is urgently needed. Nanomaterials, given their special properties, can be used as drug carrier systems to improve the therapeutic effect and reduce the adverse effects. The drug carrier systems with photothermal effect can promote the killing of cancer cells and help overcome drug resistance through heat stress. We selected dopamine, a simple raw material, and designed and synthesized three different configurations of nano-polydopamine (nPDA) nanomaterials, including nPDA balls, nPDA plates and porous nPDA balls. In addition to the self-polymerization and self-assembly, nPDA has high photothermal conversion efficiency and can be easily modified. Moreover, we loaded cisplatin into three different configurations of nPDA, creating nPDA-cis (the nano-drug carrier system with cisplatin), and comparatively studied the properties and antitumor effects of all the nPDA and nPDA-cis materials in vitro and nPDA-cis in vivo. We found that the photothermal effect of the nPDA-cis balls drug carrier system had synergistic effect with cisplatin, resulting in excellent antitumor effect and good clinical application prospects. The comparison of the three different configurations of drug carrier systems suggested the importance of optimizing the spatial configuration design and examining the physical and chemical properties in the future development of nano-drug carrier systems. In this study, we also noted the duality and complexity of the influences of heat stress on tumors in vitro and in vivo. The specific mechanisms and the synergy with chemotherapy and immunotherapy will be an important research direction in the future.
Collapse
Affiliation(s)
- Yuhao Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Stomatology, Xinqiao Hospital of Army Medical University, Chongqing 400037,China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
| | - Guixue Wang
- State and Local Joint Engineering Laboratory, Bioengineering College of Chongqing University, Chongqing 400044,China
| | - Kexin Yao
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044,China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
| |
Collapse
|
13
|
Ni Q, Fan Y, Xiao S, Lu L. Effect of Heat Shock Treatment on the Virulence of Grass Carp Reovirus in Rare Minnow Gobiocypris rarus. Viruses 2024; 16:921. [PMID: 38932213 PMCID: PMC11209515 DOI: 10.3390/v16060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The mode and outcome of fish-virus interactions are influenced by many abiotic factors, among which water temperature is especially important in poikilothermic fish. Rare minnow Gobiocypris rarus is a eurythermal small cyprinid fish that is sensitive to infection with genotype II grass carp reovirus (GCRV). HSP70, a conservative and key player in heat shock response, is previously identified as an induced pro-viral factor during GCRV infection in vitro. Here, rare minnow was subjected to heat shock treatment (HST), 1 h treatment at 32 °C followed by reverting to a normal temperature of 24 °C, and subsequently challenged with GCRV-II at a dosage of 1 × LD50. The effect of HST on GCRV virulence in vivo was evaluated by calculating virus-associated mortality and viral load in both dead and survival fish. The results revealed that HST enhanced the mortality of rare minnow infected with GCRV; the fact that viral loads in the tissue samples of HST-treated fish were significantly higher than those in samples of the control group at 6, 8 d p.i. reflected a faster infection process due to HST. Quantitative gene expression analysis was further employed to show that the expression levels of Hsp70 in intestine and liver tissues from the HST group declined faster than muscle tissue after HST. HST W/O GCRV challenge upregulated proinflammatory cytokines such as MyD88 and Nf-κB, which was in consistence with the inflammation observed in histopathological analysis. This study shed light on the complexity of the interaction between fish abiotic and biotic stress response, which suggested that HST, an abiotic stress, could enhance the virulence of GCRV in Gobiocypris rarus that involved modulating the gene expression of host heat shock, as well as a pro-inflammatory response.
Collapse
Affiliation(s)
- Qinwei Ni
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Q.N.); (Y.F.); (S.X.)
| | - Yanchang Fan
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Q.N.); (Y.F.); (S.X.)
| | - Simin Xiao
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China; (Q.N.); (Y.F.); (S.X.)
| | - Liqun Lu
- Key Laboratory of Agriculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai 201306, China
- Department of Aquatic Medicine, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
14
|
Mahboubi H, Yu H, Malca M, McCusty D, Stochaj U. Pifithrin-µ Induces Stress Granule Formation, Regulates Cell Survival, and Rewires Cellular Signaling. Cells 2024; 13:885. [PMID: 38891018 PMCID: PMC11172192 DOI: 10.3390/cells13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
(1) Background: Stress granules (SGs) are cytoplasmic protein-RNA condensates that assemble in response to various insults. SG production is driven by signaling pathways that are relevant to human disease. Compounds that modulate SG characteristics are therefore of clinical interest. Pifithrin-µ is a candidate anti-tumor agent that inhibits members of the hsp70 chaperone family. While hsp70s are required for granulostasis, the impact of pifithrin-µ on SG formation is unknown. (2) Methods: Using HeLa cells as model system, cell-based assays evaluated the effects of pifithrin-µ on cell viability. Quantitative Western blotting assessed cell signaling events and SG proteins. Confocal microscopy combined with quantitative image analyses examined multiple SG parameters. (3) Results: Pifithrin-µ induced bona fide SGs in the absence of exogenous stress. These SGs were dynamic; their properties were determined by the duration of pifithrin-µ treatment. The phosphorylation of eIF2α was mandatory to generate SGs upon pifithrin-µ exposure. Moreover, the formation of pifithrin-µ SGs was accompanied by profound changes in cell signaling. Pifithrin-µ reduced the activation of 5'-AMP-activated protein kinase, whereas the pro-survival protein kinase Akt was activated. Long-term pifithrin-µ treatment caused a marked loss of cell viability. (4) Conclusions: Our study identified stress-related changes in cellular homeostasis that are elicited by pifithrin-µ. These insights are important knowledge for the appropriate therapeutic use of pifithrin-µ and related compounds.
Collapse
Affiliation(s)
- Hicham Mahboubi
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Henry Yu
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Michael Malca
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - David McCusty
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada (H.Y.); (M.M.)
- Quantitative Life Sciences Program, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
15
|
Kauts S, Mishra Y, Singh MP. Impact of Polyethylene Terephthalate Microplastics on Drosophila melanogaster Biological Profiles and Heat Shock Protein Levels. BIOLOGY 2024; 13:293. [PMID: 38785774 PMCID: PMC11118830 DOI: 10.3390/biology13050293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Microplastics and nanoplastics are abundant in the environment. Further research is necessary to examine the consequences of microplastic contamination on living species, given its widespread presence. In our research, we determined the toxic effects of PET microplastics on Drosophila melanogaster at the cellular and genetic levels. Our study revealed severe cytotoxicity in the midgut of larvae and the induction of oxidative stress after 24 and 48 h of treatment, as indicated by the total protein, Cu-Zn SOD, CAT, and MDA contents. For the first time, cell damage in the reproductive parts of the ovaries of female flies, as well as in the accessory glands and testes of male flies, has been observed. Furthermore, a decline in reproductive health was noted, resulting in decreased fertility among the flies. By analyzing stress-related genes such as hsp83, hsp70, hsp60, and hsp26, we detected elevated expression of hsp83 and hsp70. Our study identified hsp83 as a specific biomarker for detecting early redox changes in cells caused by PET microplastics in all the treated groups, helping to elucidate the primary defense mechanism against PET microplastic toxicity. This study offers foundational insights into the emerging environmental threats posed by microplastics, revealing discernible alterations at the genetic level.
Collapse
Affiliation(s)
- Simran Kauts
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 14411, India; (S.K.); (Y.M.)
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 14411, India; (S.K.); (Y.M.)
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
- Centre of Genomics and Bioinformatics (CGB), Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
16
|
Duran J, Poolsup S, Allers L, Lemus MR, Cheng Q, Pu J, Salemi M, Phinney B, Jia J. A mechanism that transduces lysosomal damage signals to stress granule formation for cell survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587368. [PMID: 38617306 PMCID: PMC11014484 DOI: 10.1101/2024.03.29.587368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Lysosomal damage poses a significant threat to cell survival. Our previous work has reported that lysosomal damage induces stress granule (SG) formation. However, the importance of SG formation in determining cell fate and the precise mechanisms through which lysosomal damage triggers SG formation remains unclear. Here, we show that SG formation is initiated via a novel calcium-dependent pathway and plays a protective role in promoting cell survival in response to lysosomal damage. Mechanistically, we demonstrate that during lysosomal damage, ALIX, a calcium-activated protein, transduces lysosomal damage signals by sensing calcium leakage to induce SG formation by controlling the phosphorylation of eIF2α. ALIX modulates eIF2α phosphorylation by regulating the association between PKR and its activator PACT, with galectin-3 exerting a negative effect on this process. We also found this regulatory event of SG formation occur on damaged lysosomes. Collectively, these investigations reveal novel insights into the precise regulation of SG formation triggered by lysosomal damage, and shed light on the interaction between damaged lysosomes and SGs. Importantly, SG formation is significant for promoting cell survival in the physiological context of lysosomal damage inflicted by SARS-CoV-2 ORF3a, adenovirus infection, Malaria hemozoin, proteopathic tau as well as environmental hazard silica.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Monica Rosas Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA 95616, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM 87106, USA
- Lead Contact
| |
Collapse
|
17
|
Omidi A, Nazifi S, Rasekh M, Zare N. Heat-shock proteins, oxidative stress, and antioxidants in one-humped camels. Trop Anim Health Prod 2023; 56:29. [PMID: 38158433 DOI: 10.1007/s11250-023-03876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
One-humped camels (Camelus dromedarius) exhibit remarkable adaptability to harsh desert environments through various physiological adaptations. This study aimed to assess variations and reference values of Heat-shock proteins (HSPs), physiological parameters, mineral concentrations, total antioxidant capacity (TAC), and malondialdehyde (MDA) in 90 healthy female one-humped camels from Zabol's outskirts in Iran. The objective was to understand how these camels adapt to heat stress. Blood samples were collected from camels located at five geographical regions and analyzed using standard kits and methods. Reference intervals for heat-shock protein 30 (HSP30), heat-shock protein 40 (HSP40), heat-shock protein 70 (HSP70), and heat-shock protein 90 (HSP90) were determined using the reference value advisor (RVA). The study found significant differences among different regions for HSPs (P < 0.05), MDA (P = 0.021), and TAC (P = 0.042) levels, indicating variations in adaptation mechanisms. However, no notable differences were observed for other measured parameters between these regions. There were no significant differences observed in the evaluated parameters between the age categories of > 36 months and < 36 months. The positive correlation between HSPs and MDA levels (ranging from 0.754 to 0.884) suggests that the synthesis of HSPs is triggered as a response to oxidative stress caused by an imbalance between the production of reactive oxygen species (ROS) and the body's antioxidant defenses. This oxidative stress, in turn, is a consequence of thermal stress. Additionally, the study reveals a negative association between TAC and HSP levels (ranging from - 0.660 to - 0.820), emphasizing the role of antioxidants in mitigating heat stress. The findings of this research offer compelling support for the critical role that HSPs play in protecting cells from heat-induced damage. Additionally, the presence of higher levels of HSPs in regions with more severe climate conditions serves as evidence of camels' adaptation to heat stress. These findings emphasize the substantial impact of environmental factors on HSP production and further reinforce the crucial role of HSPs in bolstering the resilience of camels. Further research is needed to explore HSP expression and mechanisms to effectively manage and enhance camel resilience in extreme temperatures.
Collapse
Affiliation(s)
- Arash Omidi
- Department of Animal Health Management, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Rasekh
- Department of Clinical Sciences, School of Veterinary Medicine, Zabol University, Zabol, Iran
| | - Nima Zare
- School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
18
|
Ando R, Ishikawa Y, Kamada Y, Izawa S. Contribution of the yeast bi-chaperone system in the restoration of the RNA helicase Ded1 and translational activity under severe ethanol stress. J Biol Chem 2023; 299:105472. [PMID: 37979914 PMCID: PMC10746526 DOI: 10.1016/j.jbc.2023.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Preexposure to mild stress often improves cellular tolerance to subsequent severe stress. Severe ethanol stress (10% v/v) causes persistent and pronounced translation repression in Saccharomyces cerevisiae. However, it remains unclear whether preexposure to mild stress can mitigate translation repression in yeast cells under severe ethanol stress. We found that the translational activity of yeast cells pretreated with 6% (v/v) ethanol was initially significantly repressed under subsequent 10% ethanol but was then gradually restored even under severe ethanol stress. We also found that 10% ethanol caused the aggregation of Ded1, which plays a key role in translation initiation as a DEAD-box RNA helicase. Pretreatment with 6% ethanol led to the gradual disaggregation of Ded1 under subsequent 10% ethanol treatment in wild-type cells but not in fes1Δhsp104Δ cells, which are deficient in Hsp104 with significantly reduced capacity for Hsp70. Hsp104 and Hsp70 are key components of the bi-chaperone system that play a role in yeast protein quality control. fes1Δhsp104Δ cells did not restore translational activity under 10% ethanol, even after pretreatment with 6% ethanol. These results indicate that the regeneration of Ded1 through the bi-chaperone system leads to the gradual restoration of translational activity under continuous severe stress. This study provides new insights into the acquired tolerance of yeast cells to severe ethanol stress and the resilience of their translational activity.
Collapse
Affiliation(s)
- Ryoko Ando
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Yu Ishikawa
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | - Shingo Izawa
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
19
|
O’Connell LC, Johnson V, Hutton AK, Otis JP, Murthy AC, Liang MC, Wang SH, Fawzi NL, Mowry KL. Intrinsically disordered regions and RNA binding domains contribute to protein enrichment in biomolecular condensates in Xenopus oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566489. [PMID: 37986933 PMCID: PMC10659413 DOI: 10.1101/2023.11.10.566489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Proteins containing both intrinsically disordered regions (IDRs) and RNA binding domains (RBDs) can phase separate in vitro, forming bodies similar to cellular biomolecular condensates. However, how IDR and RBD domains contribute to in vivo recruitment of proteins to biomolecular condensates remains poorly understood. Here, we analyzed the roles of IDRs and RBDs in L-bodies, biomolecular condensates present in Xenopus oocytes. We show that a cytoplasmic isoform of hnRNPAB, which contains two RBDs and an IDR, is highly enriched in L-bodies. While both of these domains contribute to hnRNPAB self-association and phase separation in vitro and mediate enrichment into L-bodies in oocytes, neither the RBDs nor the IDR replicate the localization of full-length hnRNPAB. Our results suggest a model where the additive effects of the IDR and RBDs regulate hnRNPAB partitioning into L-bodies. This model likely has widespread applications as proteins containing RBD and IDR domains are common biomolecular condensate residents.
Collapse
Affiliation(s)
- Liam C. O’Connell
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Victoria Johnson
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Anika K. Hutton
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Jessica P. Otis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Anastasia C. Murthy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Mark C. Liang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University Providence, RI 02912, USA
| |
Collapse
|
20
|
Schwarze J, Carolan JC, Stewart GS, McCabe PF, Kacprzyk J. The boundary of life and death: changes in mitochondrial and cytosolic proteomes associated with programmed cell death of Arabidopsis thaliana suspension culture cells. FRONTIERS IN PLANT SCIENCE 2023; 14:1194866. [PMID: 37593044 PMCID: PMC10431908 DOI: 10.3389/fpls.2023.1194866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023]
Abstract
Introduction Despite the critical role of programmed cell death (PCD) in plant development and defense responses, its regulation is not fully understood. It has been proposed that mitochondria may be important in the control of the early stages of plant PCD, but the details of this regulation are currently unknown. Methods We used Arabidopsis thaliana cell suspension culture, a model system that enables induction and precise monitoring of PCD rates, as well as chemical manipulation of this process to generate a quantitative profile of the alterations in mitochondrial and cytosolic proteomes associated with early stages of plant PCD induced by heat stress. The cells were subjected to PCD-inducing heat levels (10 min, 54°C), with/without the calcium channel inhibitor and PCD blocker LaCl3. The stress treatment was followed by separation of cytosolic and mitochondrial fractions and mass spectrometry-based proteome analysis. Results Heat stress induced rapid and extensive changes in protein abundance in both fractions, with release of mitochondrial proteins into the cytosol upon PCD induction. In our system, LaCl3 appeared to act downstream of cell death initiation signal, as it did not affect the release of mitochondrial proteins, but instead partially inhibited changes occurring in the cytosolic fraction, including upregulation of proteins with hydrolytic activity. Discussion We characterized changes in protein abundance and localization associated with the early stages of heat stress-induced PCD. Collectively, the generated data provide new insights into the regulation of cell death and survival decisions in plant cells.
Collapse
Affiliation(s)
- Johanna Schwarze
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | | | - Gavin S. Stewart
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Paul F. McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Sampath V, Shalakhti O, Veidis E, Efobi JAI, Shamji MH, Agache I, Skevaki C, Renz H, Nadeau KC. Acute and chronic impacts of heat stress on planetary health. Allergy 2023; 78:2109-2120. [PMID: 36883412 DOI: 10.1111/all.15702] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Heat waves are increasing in intensity, frequency, and duration causing significant heat stress in all living organisms. Heat stress has multiple negative effects on plants affecting photosynthesis, respiration, growth, development, and reproduction. It also impacts animals leading to physiological and behavioral alterations, such as reduced caloric intake, increased water intake, and decreased reproduction and growth. In humans, epidemiological studies have shown that heat waves are associated with increased morbidity and mortality. There are many biological effects of heat stress (structural changes, enzyme function disruption, damage through reactive oxygen or nitrogen species). While plants and animals can mitigate some of these effects through adaptive mechanisms such as the generation of heat shock proteins, antioxidants, stress granules, and others, these mechanisms may likely be inadequate with further global warming. This review summarizes the effects of heat stress on plants and animals and the adaptative mechanisms that have evolved to counteract this stress.
Collapse
Affiliation(s)
- Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Omar Shalakhti
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Erika Veidis
- Center for Innovation in Global Health, Stanford University, California, Stanford, USA
| | - Jo Ann Ifeoma Efobi
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University, California, Stanford, USA
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Fujikawa D, Nakamura T, Yoshioka D, Li Z, Moriizumi H, Taguchi M, Tokai-Nishizumi N, Kozuka-Hata H, Oyama M, Takekawa M. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases. Curr Biol 2023; 33:1967-1981.e8. [PMID: 37119817 DOI: 10.1016/j.cub.2023.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023]
Abstract
Cytoplasmic stress granules (SGs) are phase-separated membrane-less organelles that form in response to various stress stimuli. SGs are mainly composed of non-canonical stalled 48S preinitiation complexes. In addition, many other proteins also accumulate into SGs, but the list is still incomplete. SG assembly suppresses apoptosis and promotes cell survival under stress. Furthermore, hyperformation of SGs is frequently observed in various human cancers and accelerates tumor development and progression by reducing stress-induced damage of cancer cells. Therefore, they are of clinical importance. However, the precise mechanism underlying SG-mediated inhibition of apoptosis remains ill-defined. Here, using a proximity-labeling proteomic approach, we comprehensively analyzed SG-resident proteins and identified the executioner caspases, caspase-3 and -7, as SG components. We demonstrate that accumulation of caspase-3/7 into SGs is mediated by evolutionarily conserved amino acid residues within their large catalytic domains and inhibits caspase activities and consequent apoptosis induced by various stresses. Expression of an SG-localization-deficient caspase-3 mutant in cells largely counteracted the anti-apoptotic effect of SGs, whereas enforced relocalization of the caspase-3 mutant to SGs restored it. Thus, SG-mediated sequestration of executioner caspases is a mechanism underlying the broad cytoprotective function of SGs. Furthermore, using a mouse xenograft tumor model, we show that this mechanism prevents cancer cells from apoptosis in tumor tissues, thereby promoting cancer progression. Our results reveal the functional crosstalk between SG-mediated cell survival and caspase-mediated cell death signaling pathways and delineate a molecular mechanism that dictates cell-fate decisions under stress and promotes tumorigenesis.
Collapse
Affiliation(s)
- Daichi Fujikawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takanori Nakamura
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daisuke Yoshioka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Zizheng Li
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Hisashi Moriizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
| | - Mari Taguchi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noriko Tokai-Nishizumi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8562, Chiba, Japan; Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
23
|
Comprehensive Profiling of ceRNA (circRNA-miRNA-mRNA) Networks in Hypothalamic-Pituitary-Mammary Gland Axis of Dairy Cows under Heat Stress. Int J Mol Sci 2023; 24:ijms24010888. [PMID: 36614329 PMCID: PMC9821774 DOI: 10.3390/ijms24010888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Heat stress (HS) is directly correlated with mammary gland dysfunction and the hypothalamic-pituitary-mammary gland (HPM) axis is involved in regulating stress responses and lactation in dairy cows. Circular RNAs (circRNAs) play major roles in regulating transcription and post-transcription but their expression in the HPM axis of dairy cows under HS is still unclear. In the present study, we performed RNA sequencing to identify diferentially expressed (DE) circRNAs, DE microRNAs(miRNAs) and DEmRNAs, and performed bioinformatics analysis on those in HPM axis-related tissues of heat-stressed and normal cows. A total of 1680, 1112 and 521 DEcircRNAs, 120, 493 and 108 DEmiRNAs, 274, 6475 and 3134 DEmRNAs were identified in the hypothalamic, pituitary, and mammary gland tissues, respectively. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses indicated that the MAPK signaling pathway is potentially a key pathway. Competitive endogenous RNA (ceRNA) networks related to HS response and lactation regulation were established in three tissues. In conclusion, our results indicate that HS induces differential circRNA expression profiles in HPM axis-related tissues, and the predicted ceRNA network provides a molecular basis for regulating the stress response and lactation regulation in heat-stressed dairy cows.
Collapse
|
24
|
Fefilova AS, Antifeeva IA, Gavrilova AA, Turoverov KK, Kuznetsova IM, Fonin AV. Reorganization of Cell Compartmentalization Induced by Stress. Biomolecules 2022; 12:1441. [PMID: 36291650 PMCID: PMC9599104 DOI: 10.3390/biom12101441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The discovery of intrinsically disordered proteins (IDPs) that do not have an ordered structure and nevertheless perform essential functions has opened a new era in the understanding of cellular compartmentalization. It threw the bridge from the mostly mechanistic model of the organization of the living matter to the idea of highly dynamic and functional "soft matter". This paradigm is based on the notion of the major role of liquid-liquid phase separation (LLPS) of biopolymers in the spatial-temporal organization of intracellular space. The LLPS leads to the formation of self-assembled membrane-less organelles (MLOs). MLOs are multicomponent and multifunctional biological condensates, highly dynamic in structure and composition, that allow them to fine-tune the regulation of various intracellular processes. IDPs play a central role in the assembly and functioning of MLOs. The LLPS importance for the regulation of chemical reactions inside the cell is clearly illustrated by the reorganization of the intracellular space during stress response. As a reaction to various types of stresses, stress-induced MLOs appear in the cell, enabling the preservation of the genetic and protein material during unfavourable conditions. In addition, stress causes structural, functional, and compositional changes in the MLOs permanently present inside the cells. In this review, we describe the assembly of stress-induced MLOs and the stress-induced modification of existing MLOs in eukaryotes, yeasts, and prokaryotes in response to various stress factors.
Collapse
Affiliation(s)
| | | | | | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of RAS, 194064 St. Petersburg, Russia
| | | | | |
Collapse
|
25
|
Wang M, Zou J, Wang J, Liu M, Liu K, Wang N, Wang K. Aberrant HSF1 signaling activation underlies metformin amelioration of myocardial infarction in mice. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:312-328. [PMID: 35950214 PMCID: PMC9352811 DOI: 10.1016/j.omtn.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Myocardial infarction (MI) is a cardiovascular disease with high morbidity and mortality. Clinically, rehabilitation after massive MI often has a poor prognosis. Therefore, it is necessary to explore the therapeutic methods of myocardial protection after MI. As a first-line treatment for type 2 diabetes, metformin has been found to have a certain protective effect on myocardial tissue. However, its pharmacological mechanism remains unclear. In this study, we investigated key factors that reduced MI with metformin. Through in vivo, in vitro, and in silico analyses, we identified HSF1 as a key target for metformin. HSF1 could up-regulate the transcriptional level of AMPKα2 through transcriptional activation and stimulate the activity of the downstream AMPK/mTOR signaling pathway. Metformin stimulated cardiomyocytes to form stress granules (SGs), and knockdown of HSF1 reversed this process. Furthermore, HSF1 exhibited better in vitro affinity for metformin than AMPK, suggesting that HSF1 may be a more sensitive target for metformin.
Collapse
|
26
|
Stress-Induced Membraneless Organelles in Eukaryotes and Prokaryotes: Bird’s-Eye View. Int J Mol Sci 2022; 23:ijms23095010. [PMID: 35563401 PMCID: PMC9105482 DOI: 10.3390/ijms23095010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Stress is an inevitable part of life. An organism is exposed to multiple stresses and overcomes their negative consequences throughout its entire existence. A correlation was established between life expectancy and resistance to stress, suggesting a relationship between aging and the ability to respond to external adverse effects as well as quickly restore the normal regulation of biological processes. To combat stress, cells developed multiple pro-survival mechanisms, one of them is the assembly of special stress-induced membraneless organelles (MLOs). MLOs are formations that do not possess a lipid membrane but rather form as a result of the “liquid–liquid” phase separation (LLPS) of biopolymers. Stress-responsive MLOs were found in eukaryotes and prokaryotes, they form as a reaction to the acute environmental conditions and are dismantled after its termination. These compartments function to prevent damage to the genetic and protein material of the cell during stress. In this review, we discuss the characteristics of stress-induced MLO-like structures in eukaryotic and prokaryotic cells.
Collapse
|
27
|
Regulation of spatially restricted gene expression: linking RNA localization and phase separation. Biochem Soc Trans 2021; 49:2591-2600. [PMID: 34821361 DOI: 10.1042/bst20210320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Subcellular restriction of gene expression is crucial to the functioning of a wide variety of cell types. The cellular machinery driving spatially restricted gene expression has been studied for many years, but recent advances have highlighted novel mechanisms by which cells can generate subcellular microenvironments with specialized gene expression profiles. Particularly intriguing are recent findings that phase separation plays a role in certain RNA localization pathways. The burgeoning field of phase separation has revolutionized how we view cellular compartmentalization, revealing that, in addition to membrane-bound organelles, phase-separated cytoplasmic microenvironments - termed biomolecular condensates - are compositionally and functionally distinct from the surrounding cytoplasm, without the need for a lipid membrane. The coupling of phase separation and RNA localization allows for precise subcellular targeting, robust translational repression and dynamic recruitment of accessory proteins. Despite the growing interest in the intersection between RNA localization and phase separation, it remains to be seen how exactly components of the localization machinery, particularly motor proteins, are able to associate with these biomolecular condensates. Further studies of the formation, function, and transport of biomolecular condensates promise to provide a new mechanistic understanding of how cells restrict gene expression at a subcellular level.
Collapse
|