1
|
Moreno Borrallo A, Jaramillo Ortiz S, Schaeffer-Reiss C, Quintard B, Rey B, Bize P, Viblanc VA, Boulinier T, Chastel O, Gutiérrez JS, Masero JA, Bertile F, Criscuolo F. Variation in albumin glycation rates in birds suggests resistance to relative hyperglycaemia rather than conformity to the pace of life syndrome hypothesis. eLife 2025; 13:RP103205. [PMID: 40387078 PMCID: PMC12088674 DOI: 10.7554/elife.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The pace of life syndrome (POLS) hypothesis suggests that organisms' life history and physiological and behavioural traits should co-evolve. In this framework, how glycaemia (i.e. blood glucose levels) and its reaction with proteins and other compounds (i.e. glycation) covary with life history traits remain relatively under-investigated, despite the well-documented consequences of glucose and glycation on ageing, and therefore potentially on life history evolution. Birds are particularly relevant in this context given that they have the highest blood glucose levels within vertebrates and still higher mass-adjusted longevity compared to organisms with similar physiology as mammals. We thus performed a comparative analysis on glucose and albumin glycation rates of 88 bird species from 22 orders in relation to life history traits (body mass, clutch mass, maximum lifespan, and developmental time) and diet. Glucose levels correlated positively with albumin glycation rates in a non-linear fashion, suggesting resistance to glycation in species with higher glucose levels. Plasma glucose levels decreased with increasing body mass, but, contrary to what is predicted in the POLS hypothesis, glucose levels increased with maximum lifespan before reaching a plateau. Finally, terrestrial carnivores showed higher albumin glycation compared to omnivores despite not showing higher glucose, which we discuss may be related to additional factors as differential antioxidant levels or dietary composition in terms of fibres or polyunsaturated fatty acids. These results increase our knowledge about the diversity of glycaemia and glycation patterns across birds, pointing towards the existence of glycation resistance mechanisms within comparatively high glycaemic birds.
Collapse
Affiliation(s)
- Adrián Moreno Borrallo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert CurienStrasbourgFrance
| | - Sarahi Jaramillo Ortiz
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert CurienStrasbourgFrance
- National Proteomics Infrastructure, ProFiStrasbourgFrance
| | - Christine Schaeffer-Reiss
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert CurienStrasbourgFrance
- National Proteomics Infrastructure, ProFiStrasbourgFrance
| | | | - Benjamin Rey
- Lyon University 1, UMR CNRS 5558, Laboratoire de Biométrie et Biologie EvolutiveVilleurbanneFrance
| | - Pierre Bize
- Swiss Ornithological InstituteSempachSwitzerland
| | - Vincent A Viblanc
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert CurienStrasbourgFrance
| | | | - Olivier Chastel
- Center of Biological Studies of Chizé (CEBC), UMR 7372 CNRS - La Rochelle UniversityVilliers-en-BoisFrance
| | - Jorge S Gutiérrez
- Ecology in the Anthropocene, Associated Unit CSIC‑UEX, Faculty of Sciences, University of ExtremaduraBadajozSpain
| | - José A Masero
- Ecology in the Anthropocene, Associated Unit CSIC‑UEX, Faculty of Sciences, University of ExtremaduraBadajozSpain
| | - Fabrice Bertile
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert CurienStrasbourgFrance
- National Proteomics Infrastructure, ProFiStrasbourgFrance
| | - Francois Criscuolo
- University of Strasbourg, CNRS, Institut Pluridisciplinaire Hubert CurienStrasbourgFrance
| |
Collapse
|
2
|
Chmielewski R, Lebiedowska A, Barańska-Rybak W. Assessment of the Curative Anti-Glycation Properties of a Novel Injectable Formulation Combining Dual-Weight Hyaluronic Acid (Low- and Mid/High-Molecular Weight) with Trehalose on Human Skin Ex Vivo. Int J Mol Sci 2025; 26:4747. [PMID: 40429894 PMCID: PMC12111894 DOI: 10.3390/ijms26104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Glycation influences skin aging through non-enzymatic reactions between reducing sugars and proteins, forming advanced glycation end-products (AGEs) that accelerate skin deterioration. This study evaluates the curative anti-glycation effects of an injectable formulation combining dual-molecular-weight hyaluronic acid (low and mid/high) with trehalose in methylglyoxal-induced glycation in human skin explants. Thirty-six human skin explants were allocated across five experimental groups in a 12-day study. Glycation was induced using methylglyoxal (500 μM) on days 1 and 4, followed by curative product administration on day 5. CML (Nε-(carboxymethyl)lysine) immunohistochemistry was performed to assess glycation levels in the reticular dermis at days 6, 8, and 12, with quantitative analysis conducted through standardized image analysis. The formulation significantly reduced CML formation by 60% on day 6 compared to untreated controls (p < 0.001). Under methylglyoxal-induced glycation stress the product showed sustained curative effects, with CML reductions of 69% on day 6 (p = 0.008), 68% on day 8 (p = 0.012), and 61% on day 12 (p = 0.033) compared to methylglyoxal treatment alone. Cell viability remained unaffected throughout the study period across all experimental conditions. The tested injectable formulation exhibits significant and sustained curative anti-glycation properties in human skin explants for 12 days, effectively counteracting methylglyoxal-induced glycation damage without affecting cell viability. These findings advance anti-aging skin interventions, offering a novel approach to address glycation-induced skin damage with potential applications in clinical dermatology and aesthetic medicine.
Collapse
Affiliation(s)
- Robert Chmielewski
- Prime Clinic, Topiel 12, 00-342 Warsaw, Poland;
- Positive Pro-Aging Foundation, Topiel 12, 00-342 Warsaw, Poland
- URGO Aesthetics Department, URGO Sp. z o.o., Aleje Jerozolimskie 142 B, 02-305 Warsaw, Poland
| | - Agata Lebiedowska
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jednosci 8B, 41-208 Sosnowiec, Poland
| | - Wioletta Barańska-Rybak
- Department of Dermatology, Venereology, and Allergology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| |
Collapse
|
3
|
Wang RZ, Zhang WS, Jiang CQ, Zhu F, Jin YL, Xu L. Inflammatory age and its impact on age-related health in older Chinese adults. Arch Gerontol Geriatr 2024; 125:105476. [PMID: 38761528 DOI: 10.1016/j.archger.2024.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION A standardized measure for inflammaging is lacking. We introduced the inflammatory age (iAge) as a quantification method and explored its associations with age-related traits and diseases in an older Chinese cohort. METHODS Inflammatory markers including white blood cell count (WBC), neutrophils, lymphocytes, monocytes, C-reactive protein, platelets and albumin were measured. Quantitative real-time polymerase chain reaction was used to measure telomere length. Traditional multivariable linear, partial least squares, and logistic regression were used. RESULTS iAge was constructed based on WBC, neutrophils, monocytes and albumin, which were associated with telomere length independently. A higher iAge indicated a heavier aging-related inflammation burden. Per 1-year increase in iAge was associated with higher body mass index (β 0.86 (95 % CI 0.67, 1.05) kg/m2), waist circumference (β 2.37 (95 % CI 1.85, 2.90) cm), glycosylated hemoglobin A1c (β 0.06 (95 % CI 0.02, 0.10) %), systolic blood pressure (β 1.06 (95 % CI 0.10, 2.03) mmHg), triglycerides (β 0.05 (95 % CI 0.01, 0.08) mmol/L), 10-year cardiovascular diseases risk (β 0.05 (95 % CI 0.02, 0.08) %), diabetes (OR 1.22 (95 % CI 1.02, 1.46)), hypertension (OR 1.21 (95 % CI 1.04, 1.42)) and metabolic syndrome risks (OR 1.25 (95 % CI 1.04, 1.51)), and lower fasting plasma glucose (β -0.016 (95 % CI -0.024, -0.007) mmol/L), total cholesterol (β -0.06 (95 % CI -0.12, -0.01) mmol/L) and high-density lipoprotein cholesterol (β -0.05 (95 % CI -0.07, -0.03) mmol/L). CONCLUSION The newly introduced iAge, derived from inflammatory markers and telomere length, aligns with various metabolic dysfunctions and age-related disease risks, underscoring its potential ability in identifying aging-related phenotypes.
Collapse
Affiliation(s)
- Rui Zhen Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Wei Sen Zhang
- Guangzhou Twelfth People's Hospital, Guangzhou, China.
| | | | - Feng Zhu
- Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Ya Li Jin
- Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Lin Xu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China; School of Public Health, the University of Hong Kong, Hong Kong, China; Institute of Applied Health Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Yu W, Gargett T, Du Z. A Poisson distribution-based general model of cancer rates and a cancer risk-dependent theory of aging. Aging (Albany NY) 2023; 15:8537-8551. [PMID: 37659107 PMCID: PMC10522393 DOI: 10.18632/aging.205016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
This article presents a formula for modeling the lifetime incidence of cancer in humans. The formula utilizes a Poisson distribution-based "np" model to predict cancer incidence, with "n" representing the effective number of cell turnover and "p" representing the probability of single-cell transformation. The model accurately predicts the observed incidence of cancer in humans when a reduction in cell turnover due to aging is taken into account. The model also suggests that cancer development is ultimately inevitable. The article proposes a theory of aging based on this concept, called the "np" theory. According to this theory, an organism maintains its order by balancing cellular entropy through continuous proliferation. However, cellular "information entropy" in the form of accumulated DNA mutations increases irreversibly over time, restricting the total number of cells an organism can generate throughout its lifetime. When cell division slows down and fails to compensate for the increased entropy in the system, aging occurs. Essentially, aging is the phenomenon of running out of predetermined cell resources. Different species have evolved separate strategies to utilize their limited cell resources throughout their life cycle.
Collapse
Affiliation(s)
- Wenbo Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Tessa Gargett
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Zhenglong Du
- Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Lopez FV, O’Shea A, Rosenberg JT, Leeuwenburgh C, Anton S, Bowers D, Woods AJ. Frontal adenosine triphosphate markers from 31P MRS are associated with cognitive performance in healthy older adults: preliminary findings. Front Aging Neurosci 2023; 15:1180994. [PMID: 37614473 PMCID: PMC10442546 DOI: 10.3389/fnagi.2023.1180994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Aging is associated with declines in mitochondrial efficiency and energy production which directly impacts the availability of adenosine triphosphate (ATP), which contains high energy phosphates critical for a variety of cellular functions. Previous phosphorous magnetic resonance spectroscopy (31P MRS) studies demonstrate cerebral ATP declines with age. The purpose of this study was to explore the functional relationships of frontal and posterior ATP levels with cognition in healthy aging. Here, we measured frontal and posterior ATP levels using 31P MRS at 3 Tesla (3 T) and assessed cognition using the Montreal Cognitive Assessment (MoCA) in 30 healthy older adults. We found that greater frontal, but not posterior, ATP levels were significantly associated with better MoCA performance. This relationship remained significant after controlling for age, sex, years of education, and brain atrophy. In conclusion, our findings indicate that cognition is related to ATP in the frontal cortex. These preliminary findings may have important implications in the search for non-invasive markers of in vivo mitochondrial function and the impact of ATP availability on cognition. Future studies are needed to confirm the functional significance of regional ATP and cognition across the lifespan.
Collapse
Affiliation(s)
- Francesca V. Lopez
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Andrew O’Shea
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jens T. Rosenberg
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, United States
- College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
| | - Stephen Anton
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, United States
- College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
| | - Dawn Bowers
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Department of Neurology, College of Medicine, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adam J. Woods
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
7
|
Zhang W, Xiong Y, Tao R, Panayi AC, Mi B, Liu G. Emerging Insight Into the Role of Circadian Clock Gene BMAL1 in Cellular Senescence. Front Endocrinol (Lausanne) 2022; 13:915139. [PMID: 35733785 PMCID: PMC9207346 DOI: 10.3389/fendo.2022.915139] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Cell senescence is a crucial process in cell fate determination and is involved in an extensive array of aging-associated diseases. General perceptions and experimental evidence point out that the decline of physical function as well as aging-associated diseases are often initiated by cell senescence and organ ageing. Therefore, regulation of cell senescence process can be a promising way to handle aging-associated diseases such as osteoporosis. The circadian clock regulates a wide range of cellular and physiological activities, and many age-linked degenerative disorders are associated with the dysregulation of clock genes. BMAL1 is a core circadian transcription factor and governs downstream genes by binding to the E-box elements in their promoters. Compelling evidence has proposed the role of BMAL1 in cellular senescence and aging-associated diseases. In this review, we summarize the linkage between BMAL1 and factors of cell senescence including oxidative stress, metabolism, and the genotoxic stress response. Dysregulated and dampened BMAL1 may serve as a potential therapeutic target against aging- associated diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
8
|
Maciejczyk M, Nesterowicz M, Szulimowska J, Zalewska A. Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging? J Inflamm Res 2022; 15:2051-2073. [PMID: 35378954 PMCID: PMC8976116 DOI: 10.2147/jir.s356029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Aging is inextricably linked to oxidative stress, inflammation, and posttranslational protein modifications. However, no studies evaluate oxidation, glycation, and carbamylation of salivary biomolecules as biomarkers of aging. Saliva collection is non-invasive, painless, and inexpensive, which are advantages over other biofluids. Methods The study enrolled 180 healthy subjects divided into six groups according to age: 6–13, 14–19, 20–39, 40–59, 60–79, and 80–100 years. The number of individuals was determined a priori based on our previous experiment (power of the test = 0.8; α = 0.05). Non-stimulated saliva and plasma were collected from participants, in which biomarkers of aging were determined by colorimetric, fluorometric, and ELISA methods. Results The study have demonstrated that modifications of salivary proteins increase with age, as manifested by decreased total thiol levels and increased carbonyl groups, glycation (Nε-(carboxymethyl) lysine, advanced glycation end products (AGE)) and carbamylation (carbamyl-lysine) protein products in the saliva of old individuals. Oxidative modifications of lipids (4-hydroxynonenal) and nucleic acids (8-hydroxy-2’-deoxyguanosine (8-OHdG)) also increase with age. Salivary redox biomarkers correlate poorly with their plasma levels; however, salivary AGE and 8-OHdG generally reflect their blood concentrations. In the multivariate regression model, they are a predictor of aging and, in the receiver operating characteristic (ROC) analysis, significantly differentiate children and adolescents (under 15 years old) from the working-age population (15–64 years) and the older people (65 years and older). Conclusion Salivary AGE and 8-OHdG have the most excellent diagnostic utility in assessing the aging process. Saliva can be used to evaluate the aging of the body.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- Correspondence: Mateusz Maciejczyk, Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok, 15-233, Poland, Email
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Julita Szulimowska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Glutathione Encapsulation in Core-Shell Drug Nanocarriers (Polymersomes and Niosomes) Prevents Advanced Glycation End-products Toxicities. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Nutzung von Altersinformationen aus posttranslationalen Proteinmodifikationen und DNA-Methylierung zur postmortalen Lebensaltersschätzung. Rechtsmedizin (Berl) 2021. [DOI: 10.1007/s00194-021-00489-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ZusammenfassungMit der Identifikation und Beschreibung „molekularer Uhren“ (posttranslationale Proteinmodifikationen, DNA-Methylierung) eröffnen sich neue Möglichkeiten zur Entwicklung von Verfahren zur postmortalen Lebensaltersschätzung. Bislang werden diese Ansätze aber nur unabhängig voneinander eingesetzt. Ihre Verknüpfung verspricht eine bessere Erfassung hochkomplexer Alterungsprozesse und damit die Möglichkeit zur Entwicklung optimierter Verfahren zur Altersschätzung für verschiedenste Szenarien der forensischen Praxis.In Vorbereitung umfangreicher Untersuchungen zur Überprüfung dieser Hypothese wurden verschiedene molekulare Uhren (Akkumulation von D‑Asparaginsäure, Akkumulation von Pentosidin und DNA-Methylierungsmarker [RPA2, ZYG11A, F5, HOXC4, NKIRAS2, TRIM59, ELOVL2, DDO, KLF14 und PDE4C]) in 4 fäulnisresistenten Geweben (Knochen, Sehne, Bandscheibe, Epiglottis) von 15 Individuen untersucht.In allen untersuchten Geweben fand sich eine starke Korrelation beider Proteinmarker sowie jeweils mehrerer DNA-Methylierungsmarker mit dem Lebensalter. Dabei zeigten die untersuchten Parameter gewebsspezifische Veränderungen mit dem Alter.Die Ergebnisse der Pilotstudie belegen das Potenzial der Verknüpfung molekularer Verfahren für die postmortale Altersschätzung. Weitere Untersuchungen werden zeigen, wie genau postmortale Altersschätzungen sein können, wenn Altersinformationen aus posttranslationalen Proteinmodifikationen und DNA-Methylierung aus verschiedenen Geweben in multivariaten Modellen verknüpft werden.
Collapse
|
11
|
Kirana AN, Prafiantini E, Hardiany NS. Protein intake and loss of proteostasis in the eldery. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ageing is a process of declining bodily function and a major risk factor of chronic diseases. The declining bodily function in ageing can cause loss of proteostasis (protein homeostasis), which is a balance between protein synthesis, folding, modification and degradation. For the elderly, adequate protein intake is necessary to prevent sarcopenia, frailty, fracture and osteoporosis as well as reduced resistance to infection. However, increasing the protein intake can enhance the risk of oxidized protein formation, loss of proteostasis and degenerative disorder occurrence. On the other hand, several studies show that protein restriction would increase longevity. The aim of this review was to explain the importance of determining the right amount and composition of protein intake for the elderly. Oxidative stress and molecular mechanism of proteostasis loss in ageing cells as well as its suppression pathway by protein restriction are discussed in this review. Keywords: ageing, dietary proteins, mTOR, oxidative stress, proteostasis loss
Collapse
|
12
|
Shen CY, Lu CH, Wu CH, Li KJ, Kuo YM, Hsieh SC, Yu CL. The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases. Molecules 2020; 25:molecules25235591. [PMID: 33261212 PMCID: PMC7729569 DOI: 10.3390/molecules25235591] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Advanced glycation end products (AGEs) are generated by nonenzymatic modifications of macromolecules (proteins, lipids, and nucleic acids) by saccharides (glucose, fructose, and pentose) via Maillard reaction. The formed AGE molecules can be catabolized and cleared by glyoxalase I and II in renal proximal tubular cells. AGE-related diseases include physiological aging, neurodegenerative/neuroinflammatory diseases, diabetes mellitus (DM) and its complications, autoimmune/rheumatic inflammatory diseases, bone-degenerative diseases, and chronic renal diseases. AGEs, by binding to receptors for AGE (RAGEs), alter innate and adaptive immune responses to induce inflammation and immunosuppression via the generation of proinflammatory cytokines, reactive oxygen species (ROS), and reactive nitrogen intermediates (RNI). These pathological molecules cause vascular endothelial/smooth muscular/connective tissue-cell and renal mesangial/endothelial/podocytic-cell damage in AGE-related diseases. In the present review, we first focus on the cellular and molecular bases of AGE–RAGE axis signaling pathways in AGE-related diseases. Then, we discuss in detail the modes of action of newly discovered novel biomolecules and phytochemical compounds, such as Maillard reaction and AGE–RAGE signaling inhibitors. These molecules are expected to become the new therapeutic strategies for patients with AGE-related diseases in addition to the traditional hypoglycemic and anti-hypertensive agents. We particularly emphasize the importance of “metabolic memory”, the “French paradox”, and the pharmacokinetics and therapeutic dosing of the effective natural compounds associated with pharmacogenetics in the treatment of AGE-related diseases. Lastly, we propose prospective investigations for solving the enigmas in AGE-mediated pathological effects.
Collapse
Affiliation(s)
- Chieh-Yu Shen
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Hsun Lu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Cheng-Han Wu
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Yu-Min Kuo
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (C.-Y.S.); (C.-H.L.); (C.-H.W.); (Y.-M.K.)
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Correspondence: (S.-C.H.); (C.-L.Y.)
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan;
- Department of Internal Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung 80756, Taiwan
- Correspondence: (S.-C.H.); (C.-L.Y.)
| |
Collapse
|
13
|
Ghorbanizamani F, Moulahoum H, Sanli S, Bayir E, Zihnioglu F, Timur S. pH-bioresponsive poly(ε-caprolactone)-based polymersome for effective drug delivery in cancer and protein glycoxidation prevention. Arch Biochem Biophys 2020; 695:108643. [PMID: 33122162 DOI: 10.1016/j.abb.2020.108643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Artificial nanostructures using polymers to produce polymeric vesicles are inspired by the many intricate structures found in living organisms. Polymersomes are a class of self-assembled vesicles known for their great stability and application in drug delivery. They can be tuned according to their intended use by changing their components and introducing activable block copolymers that transform these polymersomes into smart nanocarriers. In this study, we propose the synthesis of a poly (ethylene oxide)-poly (ε-caprolactone)-based polymersome (PEO-PCL) loaded with GSH as a pH-responsive drug delivery molecule for cancer and protein alteration inhibition. Initially, the nanocarrier was synthesized and characterized by DLS, TEM/SEM microscopy as well as gel permeation chromatography (GPC) and 1H NMR. Their CMC formation, encapsulation efficiency, and pH responsiveness were analyzed. In addition, empty and GSH-loaded PEO-PCL polymersomes were tested for their toxicity and therapeutic effect on normal and cancer cells via an MTT test. Subsequently, protein alteration models (aggregation, glycation, and oxidation) were performed in vitro where the polymersomes were tested. Results showed that other than being non-toxic and able to highly encapsulate and release the GSH in response to acidic conditions, the nanocomposites do not hinder its content's ameliorative effects on cancer cells and protein alterations. This infers that polymeric nanocarriers can be a base for future smart biomedicine applications and theranostics.
Collapse
Affiliation(s)
- Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey.
| | - Serdar Sanli
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Ece Bayir
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, Izmir, 35100, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, Izmir, 35100, Turkey; Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, Izmir, 35100, Turkey.
| |
Collapse
|
14
|
Shahid M, Kim J. Exercise May Affect Metabolism in Cancer-Related Cognitive Impairment. Metabolites 2020; 10:E377. [PMID: 32962184 PMCID: PMC7570125 DOI: 10.3390/metabo10090377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer-related cognitive impairment (CRCI) is a significant comorbidity for cancer patients and survivors. Physical activity (PA) has been found to be a strong gene modulator that can induce structural and functional changes in the brain. PA and exercise reduce the risk of cancer development and progression and has been shown to help in overcoming post-treatment syndromes. Exercise plays a role in controlling cancer progression through direct effects on cancer metabolism. In this review, we highlight several priorities for improving studies on CRCI in patients and its underlying potential metabolic mechanisms.
Collapse
Affiliation(s)
- Muhammad Shahid
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Davis 5071, 8700 Beverly Blvd., Los Angeles, CA 90048, USA;
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Davis 5071, 8700 Beverly Blvd., Los Angeles, CA 90048, USA;
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Urology, Ga Cheon University College of Medicine, Incheon 461-701, Korea
| |
Collapse
|
15
|
Maksimovic I, Zheng Q, Trujillo MN, Galligan JJ, David Y. An Azidoribose Probe to Track Ketoamine Adducts in Histone Ribose Glycation. J Am Chem Soc 2020; 142:9999-10007. [PMID: 32390412 PMCID: PMC8052992 DOI: 10.1021/jacs.0c01325] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive cellular metabolites can modify macromolecules and form adducts known as nonenzymatic covalent modifications (NECMs). The dissection of the mechanisms, regulation, and consequences of NECMs, such as glycation, has been challenging due to the complex and often ambiguous nature of the adducts formed. Specific chemical tools are required to directly track the formation of these modifications on key targets in order to uncover their underlying physiological importance. Here, we present the novel chemoenzymatic synthesis of an active azido-modified ribose analog, 5-azidoribose (5-AR), as well as the synthesis of an inactive control derivative, 1-azidoribose (1-AR), and their application toward understanding protein ribose-glycation in vitro and in cellulo. With these new probes we found that, similar to methylglyoxal (MGO) glycation, ribose glycation specifically accumulates on histones. In addition to fluorescent labeling, we demonstrate the utility of the probe in enriching modified targets, which were identified by label-free quantitative proteomics and high-resolution MS/MS workflows. Finally, we establish that the known oncoprotein and hexose deglycase, fructosamine 3-kinase (FN3K), recognizes and facilitates the removal of 5-AR glycation adducts in live cells, supporting the dynamic regulation of ribose glycation as well as validating the probe as a new platform to monitor FN3K activity. Altogether, we demonstrate this probe's utilities to uncover ribose-glycation and deglycation events as well as track FN3K activity toward establishing its potential as a new cancer vulnerability.
Collapse
Affiliation(s)
- Igor Maksimovic
- Tri-Institutional PhD Program in Chemical Biology, New York, New York 10065, United States
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Qingfei Zheng
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Marissa N Trujillo
- Department of Pharmaocology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - James J Galligan
- Department of Pharmaocology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Yael David
- Tri-Institutional PhD Program in Chemical Biology, New York, New York 10065, United States
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, New York, New York 10065, United States
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
16
|
Advanced Glycation End Products of Bovine Serum Albumin Suppressed Th1/Th2 Cytokine but Enhanced Monocyte IL-6 Gene Expression via MAPK-ERK and MyD88 Transduced NF-κB p50 Signaling Pathways. Molecules 2019; 24:molecules24132461. [PMID: 31277476 PMCID: PMC6652144 DOI: 10.3390/molecules24132461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGE), the most known aging biomarker, may cause “inflamm-aging” (i.e., chronic low-grade inflammation that develops with aging) in both aged and diabetes groups. However, the molecular bases of inflamm-aging remain obscure. We prepared AGE by incubating BSA (0.0746 mmol/L) + glucose (0.5 mol/L) at 37 °C in 5% CO2–95% air for 1–180 days. The lysine glycation in BSA–AGE reached 77% on day 30 and 100% after day 130, whereas the glycation of arginine and cysteine was minimal. The Nε-(carboxymethyl)-lysine content in BSA–AGE was also increased with increasing number of incubation days. The lectin-binding assay revealed that the glycation of BSA not only altered the conformational structure, but lost binding capacity with various lectins. An immunological functional assay showed that BSA–AGE > 8 μg/mL significantly suppressed normal human Th1 (IL-2 and IFN-γ) and Th2 (IL-10) mRNA expression, whereas AGE > 0.5 μg/mL enhanced monocyte IL-6 production irrelevant to cell apoptosis. The AGE-enhanced monocyte IL-6 production was via MAPK–ERK and MyD88-transduced NF-κBp50 signaling pathways. To elucidate the structure–function relationship of BSA–AGE-enhanced IL-6 production, we pre-preincubated BSA–AGE with different carbohydrate-degrading, protein-degrading, and glycoprotein-degrading enzymes. We found that trypsin and carboxypeptidase Y suppressed whereas β-galactosidase enhanced monocyte IL-6 production. In conclusion, BSA–AGE exerted both immunosuppressive and pro-inflammatory effects that are the molecular basis of inflamm-aging in aged and diabetes groups.
Collapse
|
17
|
Singh SK. Sucrose and Trehalose in Therapeutic Protein Formulations. CHALLENGES IN PROTEIN PRODUCT DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-90603-4_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Ali A, More TA, Hoonjan AK, Sivakami S. Antiglycating potential of acesulfame potassium: an artificial sweetener. Appl Physiol Nutr Metab 2017; 42:1054-1063. [DOI: 10.1139/apnm-2017-0119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sweeteners have replaced the natural sugars in the food and beverage industry because of many reasons, such as hyperglycemia and cost. Saccharin, sucralose, aspartame and acesulfame-K are the most commonly used sweeteners. In the present study, the abovementioned artificial sweeteners were used to assess their glycating properties by established methods such as browning, fructosamine assay, determination of carbonyl content, protein aggregation, and measurement of fluorescence. Amadori and advanced glycation end products (AGEs) are formed as a result of the interaction between carbonyl groups of reducing sugars and amino groups of proteins and other macromolecules during glycation. The objective of this study was to investigate the influence of artificial sweeteners on the formation of AGEs and protein oxidation in an in vitro model of glucose-mediated protein glycation. The results indicated that the abovementioned artificial sweeteners do not enhance the process of glycation. On the other hand, acesulfame-K was found to have antiglycating potential as it caused decreased formation of Amadori products and AGEs. Further studies are essential in the characterization of Amadori products and AGEs produced as a result of interaction between sweeteners and proteins, which are interfered with by sweeteners. This study is significant in understanding the probable role of artificial sweeteners in the process of glycation and the subsequent effect on macromolecular alteration.
Collapse
Affiliation(s)
- Ahmad Ali
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098, India
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098, India
| | - Tejashree Anil More
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098, India
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098, India
| | - Amaritpal Kaur Hoonjan
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098, India
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098, India
| | - Subramanian Sivakami
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098, India
- University Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
19
|
Kim CS, Park S, Kim J. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. J Exerc Nutrition Biochem 2017; 21:55-61. [PMID: 29036767 PMCID: PMC5643203 DOI: 10.20463/jenb.2017.0027] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 01/12/2023] Open
Abstract
[Purpose] Advanced glycation end products (AGEs) are non-enzymatic modifications of proteins or lipids after exposure to sugars. In this review, the glycation process and AGEs are introduced, and the harmful effects of AGEs in the aging process are discussed. [Methods] Results from human and animal studies examining the mechanisms and effects of AGEs are considered. In addition, publications addressing means to attenuate glycation stress through AGE inhibitors or physical exercise are reviewed. [Results] AGEs form in hyperglycemic conditions and/or the natural process of aging. Numerous publications have demonstrated acceleration of the aging process by AGEs. Exogenous AGEs in dietary foods also trigger organ dysfunction and tissue aging. Various herbal supplements or regular physical exercise have beneficial effects on glycemic control and oxidative stress with a consequent reduction of AGE accumulation during aging. [Conclusion] The inhibition of AGE formation and accumulation in tissues can lead to an increase in lifespan.
Collapse
Affiliation(s)
- Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sok Park
- Department of Sports Leadership, Kwangwoon University, Seoul, Republic of Korea
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
20
|
Villadsen K, Martos-Maldonado MC, Jensen KJ, Thygesen MB. Chemoselective Reactions for the Synthesis of Glycoconjugates from Unprotected Carbohydrates. Chembiochem 2017; 18:574-612. [DOI: 10.1002/cbic.201600582] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Klaus Villadsen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Manuel C. Martos-Maldonado
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Knud J. Jensen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; University of Copenhagen; Faculty of Science; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| |
Collapse
|
21
|
Griffith CM, Macklin LN, Bartke A, Patrylo PR. Differential Fasting Plasma Glucose and Ketone Body Levels in GHRKO versus 3xTg-AD Mice: A Potential Contributor to Aging-Related Cognitive Status? Int J Endocrinol 2017; 2017:9684061. [PMID: 28638409 PMCID: PMC5468562 DOI: 10.1155/2017/9684061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cognitive function declines with age and appears to correlate with decreased cerebral metabolic rate (CMR). Caloric restriction, an antiaging manipulation that extends life-span and can preserve cognitive function, is associated with decreased glucose uptake, decreased lactate levels, and increased ketone body (KB) levels in the brain. Since the majority of brain nutrients come from the periphery, this study examined whether the capacity to regulate peripheral glucose levels and KB production differs in animals with successful cognitive aging (growth hormone receptor knockouts, GHRKOs) versus unsuccessful cognitive aging (the 3xTg-AD mouse model of Alzheimer's disease). Animals were fasted for 5 hours with their plasma glucose and KB levels subsequently measured. Intriguingly, in GHRKO mice, compared to those in controls, fasting plasma glucose levels were significantly decreased while their KB levels were significantly increased. Conversely, 3xTg-AD mice, compared to controls, exhibited significantly elevated plasma glucose levels and significantly reduced plasma KB levels. Taken together, these results suggest that the capacity to provide the brain with KBs versus glucose throughout an animal's life could somehow help preserve cognitive function with age, potentially through minimizing overall brain exposure to reactive oxygen species and advanced glycation end products and improving mitochondrial function.
Collapse
Affiliation(s)
- Chelsea M. Griffith
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Lauren N. Macklin
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794-9628, USA
| | - Peter R. Patrylo
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- Center for Integrated Research in Cognitive and Neural Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
- *Peter R. Patrylo:
| |
Collapse
|
22
|
Flandrin A, Allouche S, Rolland Y, McDuff FO, Richard Wagner J, Klarskov K. Characterization of dehydroascorbate-mediated modification of glutaredoxin by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1358-1366. [PMID: 26634969 DOI: 10.1002/jms.3706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/25/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Ascorbate is as a potent antioxidant in vivo protecting the organism against oxidative stress. In this process, ascorbate is oxidized in two steps to dehydroascorbate (DHA), which if not efficiently reduced back to ascorbate decomposes irreversibly to a complex mixture of products. We demonstrate that a component of this mixture specifically reacts with the thiol group of cysteine residues at physiological pH to give a protein adduct involving the addition of a 5-carbon fragment of DHA (+112 Da). Incubations of glutaredoxin-1 expressed in Escherichia coli and dehydroascorbate revealed abundant adducts of +112, +224 and +336 Da due to the addition of one, two and three conjugation products of DHA, respectively. ESI-MS of carbamidomethylated glutaredoxin-1 before incubation with DHA, deuterium exchange together with tandem mass spectrometry analysis and LC-ESIMS/MS of modified peptides confirmed structure and sites of modification in the protein. Modification of protein thiols by a DHA-derived product can be involved in oxidative stress-mediated cellular toxicity.
Collapse
Affiliation(s)
- Aurore Flandrin
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- École nationale supérieure des ingénieurs en arts chimiques et technologiques, Toulouse, France
| | - Sebastien Allouche
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- École nationale supérieure des ingénieurs en arts chimiques et technologiques, Toulouse, France
| | - Yoann Rolland
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- École nationale supérieure des ingénieurs en arts chimiques et technologiques, Toulouse, France
| | - François-Olivier McDuff
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Klaus Klarskov
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
23
|
Kiselar JG, Wang X, Dubyak GR, El Sanadi C, Ghosh SK, Lundberg K, Williams WM. Modification of β-Defensin-2 by Dicarbonyls Methylglyoxal and Glyoxal Inhibits Antibacterial and Chemotactic Function In Vitro. PLoS One 2015; 10:e0130533. [PMID: 26244639 PMCID: PMC4526640 DOI: 10.1371/journal.pone.0130533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022] Open
Abstract
Background Beta-defensins (hBDs) provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2) acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO) and glyoxal (GO). Methods The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2) to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells. Results MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1). We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO. Conclusions Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.
Collapse
Affiliation(s)
- Janna G. Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiaowei Wang
- Department of Periodontics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - George R. Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Caroline El Sanadi
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Santosh K. Ghosh
- Department of Biological Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kathleen Lundberg
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wesley M. Williams
- Department of Biological Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Kielmas M, Kijewska M, Kluczyk A, Oficjalska J, Gołębiewska B, Stefanowicz P, Szewczuk Z. Comparison of modification sites in glycated crystallin in vitro and in vivo. Anal Bioanal Chem 2015; 407:2557-67. [PMID: 25636230 PMCID: PMC4365289 DOI: 10.1007/s00216-015-8487-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/30/2014] [Accepted: 01/13/2015] [Indexed: 11/28/2022]
Abstract
Glycation of α-crystallin is responsible for age- and diabetic-related cataracts, which are the main cause of blindness worldwide. We optimized the method of identification of lysine residues prone to glycation using the combination of LC-MS, isotopic labeling, and modified synthetic peptide standards with the glycated lysine derivative (Fmoc-Lys(i,i-Fru,Boc)-OH). The in vitro glycation of bovine lens α-crystallin was conducted by optimized method with the equimolar mixture of [(12)C6]- and [(13)C6]D-glucose. The in vivo glycation was studied on human lens crystallin. The glycated protein was subjected to proteolysis and analyzed using LC-MS. The results of in vitro and in vivo glycation of α-crystallin reveal a different distribution of the modified lysine residues. More Amadori products were detected as a result of the in vitro reaction due to forced glycation conditions. The developed method allowed us to identify the glycation sites in crystallin from eye lenses obtained from patients suffering from the cataract. We identified K166 in the A chain and K166 in the B chain of α-crystallin as major glycation sites during the in vitro reaction. We found also two in vivo glycated lysine residues: K92 in the B chain and K166 in the A chain, which are known as locations for Amadori products. These modification sites were confirmed by the LC-MS experiment using two synthetic standards. This study demonstrates the applicability of the LC-MS methods combined with the isotopic labeling and synthetic peptide standards for analysis of post-translational modifications in the biological material.
Collapse
Affiliation(s)
- Martyna Kielmas
- Faculty of Chemistry, University of Wrocław, 50-137, Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
25
|
Kay P, Wagner JR, Gagnon H, Day R, Klarskov K. Modification of peptide and protein cysteine thiol groups by conjugation with a degradation product of ascorbate. Chem Res Toxicol 2013; 26:1333-9. [PMID: 23865753 DOI: 10.1021/tx400061e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ascorbate is an important water-soluble antioxidant, which when oxidized by reactive oxygen species is converted into dehydroascorbate (DHA). If not rapidly reduced back to ascorbate, DHA decomposes to a reactive 5-carbon compound (DHA*, +130 Da) that can modify reduced cysteinyl residues in peptides and proteins in vitro. The formation of cysteine adducts by DHA* was characterized by mass spectrometry using reduced insulin B-chain, α-lactalbumin, and hemoglobin. Mass spectrometry of DHA* modified insulin B-chain revealed the presence of one and two DHA* adducts. Enzymatic cleavage and tandem mass spectrometry of modified peptides allowed unambiguous localization of DHA* to the two cysteine residues in positions 7 and 19 of the insulin B-chain. Incubations of DHA with α-lactalbumin revealed that approximately 25% of the protein population was in a reduced state and could be modified by DHA*. The adduct was assigned to the N-terminally located cysteinyl residue in position 6. Incubation of hemoglobin with DHA followed by pepsin digestion and electrospray ionization tandem mass spectrometry (ESI-MSMS) of the peptide mixture allowed for the identification of three modified peptides. Tandem mass spectrometry of the modified peptides, two from the hemoglobin A-chain with identical mass and one from the hemoglobin B-chain, gave a complete series of y-type fragment ions, which were assigned to the cysteine containing peptides (100)LLSHCL(105) (A-chain), (101)LSHCLL(106) (A-chain), and (111)VCVLAHHFGKE(121) (B-chain). Although the DHA* adduct was lost from the peptides derived from α-lactalbumin and hemoglobin before fragmentation of the peptide bond, carbamidomethylation of the proteins prior to incubation with DHA abolished the formation of DHA*-protein adducts and confirmed that the target was indeed the cysteine thiol group. Future studies are focused on the modification of proteins by DHA* in cells and in vivo.
Collapse
Affiliation(s)
- Phyla Kay
- Department of Pharmacology, ‡Department of Nuclear Medicine and Radiobiology, §Institut de pharmacologie de Sherbrooke and Department of Surgery/Urology division, Faculty of Medicine and Health Sciences, University of Sherbrooke , Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
26
|
Stranahan AM, Mattson MP. Metabolic reserve as a determinant of cognitive aging. J Alzheimers Dis 2012; 30 Suppl 2:S5-13. [PMID: 22045480 DOI: 10.3233/jad-2011-110899] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mild cognitive impairment (MCI) and Alzheimer's disease (AD) represent points on a continuum of cognitive performance in aged populations. Cognition may be impaired or preserved in the context of brain aging. One theory to account for memory maintenance in the context of extensive pathology involves 'cognitive reserve', or the ability to compensate for neuropathology through greater recruitment of remaining neurons. In this review, we propose a complementary hypothesis of 'metabolic reserve', where a brain with high metabolic reserve is characterized by the presence of neuronal circuits that respond adaptively to perturbations in cellular and somatic energy metabolism and thereby protects against declining cognition. Lifestyle determinants of metabolic reserve, such as exercise, reduced caloric intake, and intake of specific dietary components can promote neuroprotection, while pathological states arising from sedentary lifestyles and excessive caloric intake contribute to neuronal endangerment. This bidirectional relationship between metabolism and cognition may be mediated by alterations in central insulin and neurotrophic factor signaling and glucose metabolism, with downstream consequences for accumulation of amyloid-β and hyperphosphorylated tau. The metabolic reserve hypothesis is supported by epidemiological findings and the spectrum of individual cognitive trajectories during aging, with additional data from animal models identifying potential mechanisms for this relationship. Identification of biomarkers for metabolic reserve could assist in generating a predictive model for the likelihood of cognitive decline with aging.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Physiology Department, Georgia Health Sciences University, Augusta, Georgia, GA 30912, USA.
| | | |
Collapse
|
27
|
Li XT, Li HC, Li CB, Dou DQ, Gao MB. Protective Effects on Mitochondria and Anti-Aging Activity of Polysaccharides from Cultivated Fruiting Bodies of Cordyceps militaris. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 38:1093-106. [DOI: 10.1142/s0192415x10008494] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cordyceps militaris (L.) Link is an entomopathogenic fungus parasitic to Lepidoptera larvae, and is widely used as a folk tonic or invigorant for longevity in China. Although C. militaris has been used in traditional Chinese medicine for millennia, there is still a lack convincing evidence for its anti-aging activities. This study was performed to investigate the effects of polysaccharides from cultivated fruiting bodies of C. militaris (CMP) on mitochondrial injury, antioxidation and anti-aging activity. Fruiting bodies of C. militaris were cultivated artificially under optimized conditions. The spectrophotometric method was used to measure thiobarbituric acid reactive substances (TBARS), mitochondrial swelling, and activities of scavenging superoxide anions in vitro. D-galactose (100 mg/kg/day) was injected subcutaneously into back of the neck of mice for 7 weeks to induce an aging model. The effects of CMP on the activities of catalase (CAT), surperoxide dismutase (SOD), glutathione peroxidase (GPx) and anti-hydroxyl radicals were assayed in vivo using commercial monitoring kits. The results showed that CMP could inhibit mitochondrial injury and swelling induced by Fe2+ -L-Cysteine in a concentration- dependent manner and it also had a significant superoxide anion scavenging effect. Moreover, the activities of CAT, SOD, GPx and anti-hydroxyl radicals in mice liver were increased significantly by CMP. These results indicate that CMP protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting mitochondrial swelling, and increasing the activities of antioxidases. Therefore, CMP may have pharmaceutical values for mitochondrial protection and anti-aging. CMP was the major bioactive component in C. militaris.
Collapse
Affiliation(s)
- Xing-Tai Li
- College of Life Science, Dalian Nationalities University, Dalian 116600, China
| | - Hong-Cheng Li
- Research and Development Department, GeneScience Pharmaceuticals Co., Ltd., High-Tech Development Zone, Changchun 130012, China
| | - Chun-Bin Li
- College of Life Science, Dalian Nationalities University, Dalian 116600, China
| | - De-Qiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Ming-Bo Gao
- College of Life Science, Dalian Nationalities University, Dalian 116600, China
| |
Collapse
|
28
|
Kavanagh K, Wylie AT, Chavanne TJ, Jorgensen MJ, Voruganti VS, Comuzzie AG, Kaplan JR, McCall CE, Kritchevsky SB. Aging does not reduce heat shock protein 70 in the absence of chronic insulin resistance. J Gerontol A Biol Sci Med Sci 2012; 67:1014-21. [PMID: 22403054 DOI: 10.1093/gerona/gls008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein (HSP)70 decreases with age. Often aging is associated with coincident insulin resistance and higher blood glucose levels, which also associate with lower HSP70. We aimed to understand how these factors interrelate through a series of experiments using vervet monkeys (Chlorocebus aethiops sabaeous). Monkeys (n = 284, 4-25 years) fed low-fat diets showed no association of muscle HSP70 with age (r = .04, p = .53), but levels were highly heritable. Insulin resistance was induced in vervet monkeys with high-fat diets, and muscle biopsies were taken after 0.3 or 6 years. HSP70 levels were significantly greater after 0.3 years (+72%, p < .05) but were significantly lower following 6 years of high-fat diet (-77%, p < .05). Associations with glucose also switched from being positive (r = .44, p = .03) to strikingly negative (r = -.84, p < .001) with increasing insulin resistance. In conclusion, a low-fat diet may preserve tissue HSP70 and health with aging, whereas high-fat diets, insulin resistance, and genetic factors may be more important than age for determining HSP70 levels.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Caldés C, Vilanova B, Adrover M, Muñoz F, Donoso J. Understanding non-enzymatic aminophospholipid glycation and its inhibition. Polar head features affect the kinetics of Schiff base formation. Bioorg Med Chem 2011; 19:4536-43. [DOI: 10.1016/j.bmc.2011.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/01/2011] [Accepted: 06/08/2011] [Indexed: 02/02/2023]
|
30
|
Dietary restriction improves systemic and muscular oxidative stress in type 2 diabetic Goto-Kakizaki rats. J Physiol Biochem 2011; 67:613-9. [PMID: 21698418 DOI: 10.1007/s13105-011-0108-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 06/09/2011] [Indexed: 02/03/2023]
Abstract
Type 2 diabetes is a heterogeneous metabolic disease characterized by insulin resistance and β-cell dysfunction leading to hyperglycaemia and dyslipidaemia. Dietary intervention seems to improve some of these cellular complications, namely insulin resistance. Our aim was to evaluate the effects of dietary restriction on systemic and skeletal muscle oxidative stress and insulin resistance in normal Wistar rats and Goto-Kakizaki (GK) rats, a non-obese type 2 diabetic animal model. Four-month-old normal and diabetic rats were separated in four groups. One group of each strain was maintained with ad libitum standard diet, and the other group was submitted to a dietary restriction (50% of control animals daily food intake), during 2 months. Metabolic profile, insulin resistance indexes and muscle lipids were determined. Oxidative stress parameters were also measured at systemic and muscle levels: protein carbonyl, 8-hydroxy-2'-deoxyguanosine and free 8-isoprostane. Dietary restriction improved lipid profile in both strains and urinary free 8-isoprostane and plasma carbonyl compounds in diabetic rats. An improvement of muscle triglycerides accumulation and 8-isoprostane concentration and a reduction of insulin resistance were also observed in GK rats. Our data show that dietary restriction ameliorates systemic and skeletal muscle oxidative stress state in type 2 diabetes, which is associated with improved insulin resistance.
Collapse
|
31
|
Preventive Effects of Vitamin E Against Oxidative Damage in Aged Diabetic Rat Bladders. Urology 2011; 77:508.e10-4. [DOI: 10.1016/j.urology.2010.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 07/29/2010] [Accepted: 08/14/2010] [Indexed: 11/18/2022]
|
32
|
Wu CH, Huang SM, Lin JA, Yen GC. Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct 2011; 2:224-34. [DOI: 10.1039/c1fo10026b] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Karhumaa K, Wu B, Kielland-Brandt MC. Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae. J Cell Biochem 2010; 110:920-5. [PMID: 20564191 DOI: 10.1002/jcb.22605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gene expression in micro-organisms is regulated according to extracellular conditions and nutrient concentrations. In Saccharomyces cerevisiae, non-transporting sensors with high sequence similarity to transporters, that is, transporter-like sensors, have been identified for sugars as well as for amino acids. An alternating-access model of the function of transporter-like sensors has been previously suggested based on amino acid sensing, where intracellular ligand inhibits binding of extracellular ligand. Here we studied the effect of intracellular glucose on sensing of extracellular glucose through the transporter-like sensor Snf3 in yeast. Sensing through Snf3 was determined by measuring degradation of Mth1 protein. High intracellular glucose concentrations were achieved by using yeast strains lacking monohexose transporters which were grown on maltose. The apparent affinity of extracellular glucose to Snf3 was measured for cells grown in non-fermentative medium or on maltose. The apparent affinity for glucose was lowest when the intracellular glucose concentration was high. The results conform to an alternating-access model for transporter-like sensors.
Collapse
|
34
|
|
35
|
Salminen A, Kaarniranta K. Genetics vs. entropy: longevity factors suppress the NF-kappaB-driven entropic aging process. Ageing Res Rev 2010; 9:298-314. [PMID: 19903538 DOI: 10.1016/j.arr.2009.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 01/11/2023]
Abstract
Molecular studies in model organisms have identified potent longevity genes which can delay the aging process and extend the lifespan. Longevity factors promote stress resistance and cellular survival. It seems that the aging process itself is not genetically programmed but a random process involving the loss of molecular fidelity and subsequent accumulation of waste products. This age-related increase in cellular entropy is compatible with the disposable soma theory of aging. A large array of host defence systems has been linked to the NF-kappaB system which is an ancient signaling pathway specialized to host defence, e.g. functioning in immune system. Emerging evidence demonstrates that the NF-kappaB system is activated during aging. Oxidative stress and DNA damage increase with aging and elicit a sustained activation of the NF-kappaB system which has negative consequences, e.g. chronic inflammatory response, increase in apoptotic resistance, decline in autophagic cleansing, and tissue atrophy, i.e. processes that enhance the aging process. We will discuss the role of NF-kappaB system in the pro-aging signaling and will emphasize that several longevity factors seem to be inhibitors of NF-kappaB signaling and in that way they can suppress the NF-kappaB-driven entropic host defence catastrophe.
Collapse
|
36
|
Hammer MJ, Motzer SA, Voss JG, Berry DL. Glycemic control among older adult hematopoietic cell transplant recipients. J Gerontol Nurs 2010; 36:40-50. [PMID: 20047243 DOI: 10.3928/00989134-20091207-99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 08/26/2009] [Indexed: 12/23/2022]
Abstract
Adults age 55 and older with hematological malignancies who require hematopoietic cell transplantation (HCT) for survival are at risk for a number of nonmalignancy-related, potentially life-threatening outcomes, often due to suboptimal immune function. Evidence is emerging regarding how abnormal glycemic levels-newly termed malglycemia-impair cells of the immune system. Further, older adult HCT recipients appear highly susceptible to malglycemic states, particularly hyperglycemia, due to treatment regimens, nutritional imbalances, states of immobility, and stress, all coupled with the natural aging process. Patients with preexisting diabetes may be at further risk for malglycemic states. The growing number of older adults receiving HCT will substantially increase the likelihood nurses will have to provide care to HCT survivors. Therefore, it is important nurses in all practice settings have an understanding of the short-and long-term effects of glycemic status on immune function.
Collapse
Affiliation(s)
- Marilyn J Hammer
- New York University College of Nursing, New York, New York 10003, USA.
| | | | | | | |
Collapse
|
37
|
Wu M, Desai DH, Kakarla SK, Katta A, Paturi S, Gutta AK, Rice KM, Walker EM, Blough ER. Acetaminophen prevents aging-associated hyperglycemia in aged rats: effect of aging-associated hyperactivation of p38-MAPK and ERK1/2. Diabetes Metab Res Rev 2009; 25:279-86. [PMID: 19177471 DOI: 10.1002/dmrr.932] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Aging-related hyperglycemia is associated with increased oxidative stress and diminished muscle glucose transporter-4 (Glut4) that may be regulated, at least in part, by the mitogen-activated protein kinases (MAPK). METHODS To test the possibility that aging-related hyperglycemia can be prevented by pharmacological manipulation of MAPK hyperactivation, aged (27-month old) Fischer 344/NNiaHSD x Brown Norway/BiNia F1 (F344BN) rats were administered acetaminophen (30 mg/kg body weight/day) for 6 months in drinking water. RESULTS Hepatic histopathology, serum aspartate aminotransferase and alanine aminotransferase analyses suggested that chronic acetaminophen did not cause hepatotoxicity. Compared with adult (6-month) and aged (27-month) rats, very aged rats (33-month) had higher levels of blood glucose, phosphorylation of soleus p38-MAPK and extracellular-regulated kinase 1/2 (ERK1/2), superoxide and oxidatively modified proteins (p<0.05), and these changes were associated with decreased soleus Glut4 protein abundance (p<0.05). Chronic acetaminophen treatment attenuated age-associated increase in blood glucose by 61.3% (p<0.05) and increased soleus Glut4 protein by 157.2% (p<0.05). These changes were accompanied by diminished superoxide levels, decrease in oxidatively modified proteins (-60.8%; p<0.05) and reduced p38-MAPK and ERK1/2 hyperactivation (-50.4% and -35.4%, respectively; p<0.05). CONCLUSIONS These results suggest that acetaminophen may be useful for the treatment of age-associated hyperglycemia.
Collapse
Affiliation(s)
- Miaozong Wu
- Department of Biological Sciences, Marshall University, Huntington, WV 25755-1090, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
39
|
Carnes BA, Staats DO, Sonntag WE. Does senescence give rise to disease? Mech Ageing Dev 2008; 129:693-9. [PMID: 18977242 PMCID: PMC3045748 DOI: 10.1016/j.mad.2008.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 08/26/2008] [Accepted: 09/26/2008] [Indexed: 01/09/2023]
Abstract
The distinctions between senescence and disease are blurred in the literature of evolutionary biology, biodemography, biogerontology and medicine. Theories of senescence that have emerged over the past several decades are based on the concepts that organisms are a byproduct of imperfect structural designs built with imperfect materials and maintained by imperfect processes. Senescence is a complex mixture of processes rather than a monolithic process. Senescence and disease have overlapping biological consequences. Senescence gives rise to disease, but disease does not give rise to senescence. Current data indicate that treatment of disease can delay the age of death but there are no convincing data that these interventions alter senescence. An understanding of these basic tenets suggests that there are biological limits to duration of life and the life expectancy of populations and reveal biological domains where the development of interventions and/or treatments may modulate senescence.
Collapse
Affiliation(s)
- Bruce A Carnes
- Reynolds Department of Geriatric Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | |
Collapse
|
40
|
Chevallet M, Luche S, Diemer H, Strub JM, Van Dorsselaer A, Rabilloud T. Sweet silver: A formaldehyde-free silver staining using aldoses as developing agents, with enhanced compatibility with mass spectrometry. Proteomics 2008; 8:4853-61. [DOI: 10.1002/pmic.200800321] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
41
|
Gul A, Rahman MA, Hasnain SN, Salim A, Simjee SU. Could oxidative stress associate with age products in cataractogenesis? Curr Eye Res 2008; 33:669-675. [PMID: 18696342 DOI: 10.1080/02713680802250939] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Oxidative stress has been reported to contribute to aging and cataract formation in the lens. The aim was to determine the association of oxidative stress with advanced glycation end products (AGEs) in elderly diabetic and non-diabetic patients with cataract. METHODS In the present study, malondialdehyde, vitamin E, serum AGEs, and glycemic control were investigated. The study included 156 subjects. Out of them, 30 were normal elderly subjects, 31 were elderly diabetic patients without cataract, 33 were elderly diabetic patients with cataract, 32 were elderly non-diabetic with cataract, and 30 were normal young subjects. The patients were selected on clinical grounds from Eye Ward, Jinnah Postgraduate Medical Centre, Karachi, Pakistan. RESULTS Positive significant correlation was observed between s-AGEs and malondialdehyde in elderly diabetic and non-diabetic patients with cataract. Negative significant correlation was observed between s-AGEs and vitamin E in elderly diabetic and non-diabetic patients with cataract. However, the malondialdehyde and serum AGEs were found to be significantly increased (p < 0.001) in elderly diabetic and non-diabetic patients with and without cataract compared with elderly control subjects. In contrast to all four senile groups, the serum AGEs was significantly lower (p < 0.001) in young control subjects. Serum vitamin E was found to be significantly decreased (p < 0.001) in elderly diabetic patients with and without cataract compared with elderly control subjects. Fasting blood glucose, HbA(1C) and serum fructosamine levels were significantly increased (p < 0.001) in elderly diabetic patients with and without cataract compared with non-diabetic elderly patients with cataract and elderly control subjects. CONCLUSIONS This study revealed that increased AGEs were associated with oxidative stress in the elderly groups. AGE, as a result of oxidative stress, might have a role in cataract formation, which, in diabetic patients, occurs vigorously as compared with non-diabetic cataract patients.
Collapse
Affiliation(s)
- Anjuman Gul
- Department of Biochemistry, Ziauddin University, Shahrah-e-Ghalib, Clifton, Karachi, Pakistan.
| | | | | | | | | |
Collapse
|
42
|
Wrodnigg TM, Kartusch C, Illaszewicz C. The Amadori rearrangement as key reaction for the synthesis of neoglycoconjugates. Carbohydr Res 2008; 343:2057-66. [DOI: 10.1016/j.carres.2008.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/20/2008] [Accepted: 02/26/2008] [Indexed: 11/28/2022]
|
43
|
Abstract
Abstract
Aging at the molecular level is characterized by the progressive accumulation of molecular damage. The sources of damage act randomly through environmental and metabolically generated free radicals, through spontaneous errors in biochemical reactions, and through nutritional components. However, damage to a macromolecule may depend on its structure, localization and interactions with other macromolecules. Damage to the maintenance and repair pathways comprising homeodynamic machinery leads to age-related failure of homeodynamics, increased molecular heterogeneity, altered cellular functioning, reduced stress tolerance, diseases and ultimate death. Novel approaches for testing and developing effective means of intervention, prevention and modulation of aging involve means to minimize the occurrence and accumulation of molecular damage. Mild stress-induced hormesis by physical, biological and nutritional methods, including hormetins, represents a promising strategy for achieving healthy aging and for preventing age-related diseases.
Collapse
|
44
|
Involvement of advanced glycation end products in the pathogenesis of diabetic complications: the protective role of regular physical activity. Eur Rev Aging Phys Act 2008. [DOI: 10.1007/s11556-008-0032-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Advanced glycation end products (AGEs) may play an important role in the pathogenesis of chronic diabetic complications and in the natural process of biological aging. In fact, maintained hyperglycaemia favours the formation of AGEs at the tissue level in diabetic patients, which may influence the triggering of different chronic pathologies of diabetes such as retinopathy, nephropathy, neuropathy and macro- and micro-vascular diseases. Moreover, the literature has also demonstrated the involvement of AGEs in biological aging, which may explain the accelerated process of aging in diabetic patients. The practice of regular physical activity appears to positively influence glycaemic control, particularly in type 2 diabetes mellitus patients. This occurs through the diminution of fasting glycaemia, with a consequent reduction of glycation of plasmatic components suggested by the normalisation of HbA1c plasmatic levels. This exercise-induced positive effect is evident in the blood of diabetic patients and may also reach the endothelium and connective tissues of different organs, such as the kidneys and eyes, and systems, such as the cardiovascular and nervous systems, with a local reduction of AGEs production and further deceleration of organ dysfunction. The aim of this paper was to review the literature concerning this topic to coherently describe the harmful effects of AGEs in organ dysfunction induced by diabetes in advanced age as well as the mechanisms behind the apparent protection given by the practice of regular physical activity.
Collapse
|
45
|
Herczenik E, Gebbink MFBG. Molecular and cellular aspects of protein misfolding and disease. FASEB J 2008; 22:2115-33. [PMID: 18303094 DOI: 10.1096/fj.07-099671] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins are essential elements for life. They are building blocks of all organisms and the operators of cellular functions. Humans produce a repertoire of at least 30,000 different proteins, each with a different role. Each protein has its own unique sequence and shape (native conformation) to fulfill its specific function. The appearance of incorrectly shaped (misfolded) proteins occurs on exposure to environmental changes. Protein misfolding and the subsequent aggregation is associated with various, often highly debilitating, diseases for which no sufficient cure is available yet. In the first part of this review we summarize the structural composition of proteins and the current knowledge of underlying forces that lead proteins to lose their native structure. In the second and third parts we describe the molecular and cellular mechanisms that are associated with protein misfolding in disease. Finally, in the last part we portray recent efforts to develop treatments for protein misfolding diseases.
Collapse
Affiliation(s)
- Eszter Herczenik
- Laboratory of Thrombosis and Haemostasis, Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
46
|
Sibille E, Su J, Leman S, Le Guisquet AM, Ibarguen-Vargas Y, Joeyen-Waldorf J, Glorioso C, Tseng GC, Pezzone M, Hen R, Belzung C. Lack of serotonin1B receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity. Mol Psychiatry 2007; 12:1042-56, 975. [PMID: 17420766 PMCID: PMC2515886 DOI: 10.1038/sj.mp.4001990] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 01/18/2007] [Accepted: 02/08/2007] [Indexed: 12/28/2022]
Abstract
Normal aging of the brain differs from pathological conditions and is associated with increased risk for psychiatric and neurological disorders. In addition to its role in the etiology and treatment of mood disorders, altered serotonin (5-HT) signaling is considered a contributing factor to aging; however, no causative role has been identified in aging. We hypothesized that a deregulation of the 5-HT system would reveal its contribution to age-related processes and investigated behavioral and molecular changes throughout adult life in mice lacking the regulatory presynaptic 5-HT(1B) receptor (5-HT(1B)R), a candidate gene for 5-HT-mediated age-related functions. We show that the lack of 5-HT(1B)R (Htr1b(KO) mice) induced an early age-related motor decline and resulted in decreased longevity. Analysis of life-long transcriptome changes revealed an early and global shift of the gene expression signature of aging in the brain of Htr1b(KO) mice. Moreover, molecular changes reached an apparent maximum effect at 18-months in Htr1b(KO) mice, corresponding to the onset of early death in that group. A comparative analysis with our previous characterization of aging in the human brain revealed a phylogenetic conservation of age-effect from mice to humans, and confirmed the early onset of molecular aging in Htr1b(KO) mice. Potential mechanisms appear independent of known central mechanisms (Bdnf, inflammation), but may include interactions with previously identified age-related systems (IGF-1, sirtuins). In summary, our findings suggest that the onset of age-related events can be influenced by altered 5-HT function, thus identifying 5-HT as a modulator of brain aging, and suggesting age-related consequences to chronic manipulation of 5-HT.
Collapse
Affiliation(s)
- E Sibille
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Su
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Leman
- EA3248 Psychobiologie des émotions, Faculté des Sciences et Techniques, Université François Rabelais, Tours, France
| | - AM Le Guisquet
- EA3248 Psychobiologie des émotions, Faculté des Sciences et Techniques, Université François Rabelais, Tours, France
| | - Y Ibarguen-Vargas
- EA3248 Psychobiologie des émotions, Faculté des Sciences et Techniques, Université François Rabelais, Tours, France
| | - J Joeyen-Waldorf
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - C Glorioso
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - GC Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Pezzone
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - R Hen
- Center for Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - C Belzung
- EA3248 Psychobiologie des émotions, Faculté des Sciences et Techniques, Université François Rabelais, Tours, France
| |
Collapse
|
47
|
Gadgil HS, Bondarenko PV, Pipes G, Rehder D, McAuley A, Perico N, Dillon T, Ricci M, Treuheit M. The LC/MS Analysis of Glycation of IGG Molecules in Sucrose Containing Formulations. J Pharm Sci 2007; 96:2607-21. [PMID: 17621682 DOI: 10.1002/jps.20966] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycation of a recombinant monoclonal IgG2 molecule, in sucrose containing liquid formulations, was studied using reversed-phase LC/MS analysis of the intact IgG, the F(ab')2 fragments and after complete tryptic digestion. The extent of glycation in sucrose containing formulations was monitored at different temperatures over a period of 21 months using the Hexose index (Hex(I)). Hex(I) represents the average number of hexose molecules per molecule of IgG and was calculated by using the intensity values of peaks corresponding to hexose isoforms in the deconvoluted mass spectra. The rate of glycation in mildly acidic sucrose containing formulations was proportional to the incubation temperature. No glycation was observed in sucrose containing formulations incubated at 4 degrees C even after 18 months. However, when the same formulations were incubated at 37 degrees C glycation was observed after just 1 month. The glycation sites were mapped to 10 lysine residues distributed throughout the molecule. The amino terminal end of the light chain was also shown to contain glycation. The surface accessibility of the lysine side chain could influence its susceptibility to glycation.
Collapse
Affiliation(s)
- Himanshu S Gadgil
- Department of Pharmaceutics, Amgen Inc., 1201 Amgen Court West, Seattle, Washington 99119-3105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Torigian DA, Alavi A. The Evolving Role of Structural and Functional Imaging in Assessment of Age-Related Changes in the Body. Semin Nucl Med 2007; 37:64-8. [PMID: 17289455 DOI: 10.1053/j.semnuclmed.2006.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aging is an extremely complex, multifactorial, and inevitable process that varies in rate from person to person and that is not fully understood at its most basic levels. Despite this complexity, knowledge of age-related changes and normal variation in organ structure and function is essential to differentiate them from alterations that are associated with pathology. Combined structural and functional imaging, which increasingly is used to assess a multitude of disorders, including cancer, cardiovascular disease, and central nervous system abnormalities, can be applied to study changes in structure and function related to aging. This article reviews the major theories of biological aging and presents our approach and rationale to study age-related changes through quantitative tomographic radiological and scintigraphic approaches. In the series of articles that follow, we have made an attempt to determine age-related changes in volume, attenuation, and function as measured by computed tomography, magnetic resonance imaging, and position emission tomography in the following organs and systems: central nervous system, head and neck, heart and major arteries, lungs, abdominal and pelvic parenchymal organs, gastrointestinal tract, genitourinary tract, breast, bone and bone marrow, joints, and skin. The population examined includes a large number of subjects in all decades of life. We have also made an effort to introduce some new concepts such as partial volume correction and measurements of global metabolic activity of the organs examined, and emphasize the importance of quantitative techniques in such applications. It is our hope that this new initiative will further enhance the role of novel imaging techniques in the management of patients with cancer and other disorders.
Collapse
Affiliation(s)
- Drew A Torigian
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA.
| | | |
Collapse
|
49
|
DNA damage during glycation of lysine by methylglyoxal: assessment of vitamins in preventing damage. Amino Acids 2007; 33:615-21. [DOI: 10.1007/s00726-007-0498-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 12/06/2006] [Indexed: 11/28/2022]
|
50
|
Velavan S, Begum VMH. Modulatory Role of Asparagus racemosus on Glucose Homeostasis in Aged Rats. INT J PHARMACOL 2007. [DOI: 10.3923/ijp.2007.149.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|