1
|
Tarkan AS, Emiroğlu Ö, Aksu S, Kurtul I, Błońska D, Bayçelebi E, Soto I, Chan SS, Haubrock PJ, Bradshaw CJA. Testing the Dispersal-Origin-Status-Impact (DOSI) scheme to prioritise non-native and translocated species management. Sci Rep 2024; 14:31059. [PMID: 39730848 DOI: 10.1038/s41598-024-82284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Assessing actual and potential impacts of non-native species is necessary for prioritising their management. Traditional assessments often occur at the species level, potentially overlooking differences among populations. The recently developed Dispersal-Origin-Status-Impact (DOSI) assessment scheme addresses this by treating biological invasions as population-level phenomena, incorporating the complexities affecting populations of non-native species. We applied the DOSI scheme to the non-native and translocated species reported in a shallow alluvial lake (Lake Gala) and a reservoir (Sığırcı Reservoir) in north-western Türkiye. DOSI identified 12 established species across both ecosystems, including nine fish, two invertebrates, and one mammal. Most species received High and Medium-High priority rankings, in both sites. In contrast, Medium and Low priority rankings were less common, each occurring once in Lake Gala and four times in Sığırcı Reservoir. These high-priority species warrant targeted management interventions due to their established status, autonomous spread, and observed negative impacts. By enabling a more nuanced and context-specific approach, DOSI facilitates the development of targeted strategies for managing species posing the highest risks. Moreover, DOSI's focus on population-level assessment within ecosystems is highly relevant for stakeholders, decision-makers, and environmental managers, because it provides a more detailed and precise unit of evaluation.
Collapse
Affiliation(s)
- Ali Serhan Tarkan
- Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, University of Lodz, Lodz, Poland.
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla, Türkiye.
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, UK.
| | - Özgür Emiroğlu
- Department of Biology, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Sadi Aksu
- Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Türkiye
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, UK
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, İzmir, Türkiye
| | - Dagmara Błońska
- Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, University of Lodz, Lodz, Poland
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, UK
| | - Esra Bayçelebi
- Faculty of Fisheries, Recep Tayyip Erdogan University, Rize, Türkiye
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Samuel S Chan
- Oregon Sea Grant, Corvallis, OR, USA
- Department of Fisheries and Wildlife, Sea Grant Extension, Oregon State University, Corvallis, OR, USA
- Oregon Invasive Species Council, Salem, USA
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Center for Applied Mathematics and Bioinformatics, CAMB, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait
| | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, NSW, Australia
| |
Collapse
|
2
|
Piaggio AJ, Gierus L, Taylor DR, Holmes ND, Will DJ, Gemmell NJ, Thomas PQ. Building an eDNA surveillance toolkit for invasive rodents on islands: can we detect wild-type and gene drive Mus musculus? BMC Biol 2024; 22:261. [PMID: 39548497 PMCID: PMC11566076 DOI: 10.1186/s12915-024-02063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Invasive management strategies range from preventing new invasive species incursions to eliminating established populations, with all requiring effective monitoring to guide action. The use of DNA sampled from the environment (eDNA) is one such tool that provides the ability to surveille and monitor target invasive species through passive sampling. Technology being developed to eliminate invasive species includes genetic biocontrol in the form of gene drive. This approach would drive a trait through a population and could be used to eliminate or modify a target population. Once a gene drive organism is released into a population then monitoring changes in density of the target species and the spread of the drive in the population would be critical. RESULTS In this paper, we use invasive Mus musculus as a model for development of an eDNA assay that detects wild-type M. musculus and gene drive M. musculus. We demonstrate successful development of an assay where environmental samples could be used to detect wild-type invasive M. musculus and the relative density of wild-type to gene drive M. musculus. CONCLUSIONS The development of a method that detects both wild-type M. musculus and a gene drive M. musculus (tCRISPR) from environmental samples expands the utility of environmental DNA. This method provides a tool that can immediately be deployed for invasive wild M. musculus management across the world. This is a proof-of-concept that a genetic biocontrol construct could be monitored using environmental samples.
Collapse
Affiliation(s)
- Antoinette J Piaggio
- U.S. Department of Agriculture, Animal Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA.
| | - Luke Gierus
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Genome Editing Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Daniel R Taylor
- U.S. Department of Agriculture, Animal Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, USA
| | | | | | - Neil J Gemmell
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, University of Adelaide, Adelaide, Australia
- Genome Editing Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
3
|
He J, Chen K, Sun P, Xu H, Pan X. Biological Invasion Data Gaps in China: Examples of Distribution, Inventories, and Impact. BIOLOGY 2024; 13:872. [PMID: 39596827 PMCID: PMC11592064 DOI: 10.3390/biology13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
The impact of invasive alien species (IAS) on nature and society is increasing globally. It is crucial to utilize information systems for evidence-based management, enabling the assessment and supporting survey and control actions. However, the lack of accessible and comprehensive baseline IAS data often impedes the ability to prioritize and allocate resources efficiently. Despite the increased public awareness of biological invasions in China over the past decades, the critical importance of data requirements has not been fully recognized, leading to gaps in available data. Here, we outline the key data demands for the management of biological invasions and highlight the current lack of high-quality data for invasion management in China, and critically assess data gaps in IAS distribution, inventory, and impact. Additionally, we propose a conceptual framework to illustrate the data requirements throughout the invasion management process, along with indicators to assess data quality within three dimensions: relevance, resolution, and reliability.
Collapse
Affiliation(s)
- Jiayao He
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Ke Chen
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Peishan Sun
- Research Center of GACC for International Inspection and Quarantine Standards and Technical Regulations, Beijing 100013, China
| | - Han Xu
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xubin Pan
- Institute of Plant Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
4
|
Jo A, Kim J, Park J, Cho Y, Park SG, Kim DE. Developing a list of Alert Alien Species in South Korea. Biodivers Data J 2024; 12:e125517. [PMID: 39184365 PMCID: PMC11342378 DOI: 10.3897/bdj.12.e125517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/10/2024] [Indexed: 08/27/2024] Open
Abstract
Along with transportation development, climate change and socio-economic changes, invasive alien species (IAS) are causing a significant decline in biodiversity around the world. Internationally, policies for pre-invasion management of IAS are being emphasised to minimise damage from biological invasions. In South Korea, through the 2nd Alien Species Management Plan (2019-2023), IAS that are not yet present in the country but are likely to be introduced are designated as Alert Alien Species (AAS). In this study, the overall process of AAS designation is summarised and improvements to the current system are presented. To select AAS, an invasive alien species database (IASD) of 8,456 species was built by integrating the IAS lists from many countries. Amongst them, 1,534 species, included in IASD at genus, family and order level, were excluded and 3,298 species confirmed to have been introduced to South Korea were excluded from the AAS candidate species. After the creation and review of species profiles by experts, 150 species were finally designated as AAS in 2023. The AAS discovery process needs to reflect international trends of IAS and be continuously supplemented through policy research of other countries. In addition, the IAS management system in South Korea, in which various ministries play their own roles with sufficient data sharing, should be systematically linked from introduction to control of IAS.
Collapse
Affiliation(s)
- Aram Jo
- Invasive Alien Species Team, National Institute of Ecology, Seocheon 33657, Republic of KoreaInvasive Alien Species Team, National Institute of EcologySeocheon 33657Republic of Korea
- Department of Biological Science, Kongju National University, Kongju 32588, Republic of KoreaDepartment of Biological Science, Kongju National UniversityKongju 32588Republic of Korea
| | - Jihee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of KoreaDivision of Life Sciences, Korea Polar Research InstituteIncheon 21990Republic of Korea
| | - Jounghun Park
- Invasive Alien Species Team, National Institute of Ecology, Seocheon 33657, Republic of KoreaInvasive Alien Species Team, National Institute of EcologySeocheon 33657Republic of Korea
| | - Yunjeong Cho
- Invasive Alien Species Team, National Institute of Ecology, Seocheon 33657, Republic of KoreaInvasive Alien Species Team, National Institute of EcologySeocheon 33657Republic of Korea
| | - Su-gon Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of KoreaDepartment of Life Sciences, Yeungnam UniversityGyeongsanRepublic of Korea
| | - Dong Eon Kim
- Research Policy Planning Team, National Institute of Ecology, Seocheon 33657, Republic of KoreaResearch Policy Planning Team, National Institute of EcologySeocheon 33657Republic of Korea
| |
Collapse
|
5
|
McGeoch MA, Clarke DA, Mungi NA, Ordonez A. A nature-positive future with biological invasions: theory, decision support and research needs. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230014. [PMID: 38583473 PMCID: PMC10999266 DOI: 10.1098/rstb.2023.0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/24/2024] [Indexed: 04/09/2024] Open
Abstract
In 2050, most areas of biodiversity significance will be heavily influenced by multiple drivers of environmental change. This includes overlap with the introduced ranges of many alien species that negatively impact biodiversity. With the decline in biodiversity and increase in all forms of global change, the need to envision the desired qualities of natural systems in the Anthropocene is growing, as is the need to actively maintain their natural values. Here, we draw on community ecology and invasion biology to (i) better understand trajectories of change in communities with a mix of native and alien populations, and (ii) to frame approaches to the stewardship of these mixed-species communities. We provide a set of premises and actions upon which a nature-positive future with biological invasions (NPF-BI) could be based, and a decision framework for dealing with uncertain species movements under climate change. A series of alternative management approaches become apparent when framed by scale-sensitive, spatially explicit, context relevant and risk-consequence considerations. Evidence of the properties of mixed-species communities together with predictive frameworks for the relative importance of the ecological processes at play provide actionable pathways to a NPF in which the reality of mixed-species communities are accommodated and managed. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Melodie A. McGeoch
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - David A. Clarke
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Ninad Avinash Mungi
- Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus 8000, Denmark
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Alejandro Ordonez
- Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus 8000, Denmark
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
6
|
Sampaio F, Batista MM, Marchioro CA. Temperature-dependent reproduction of Spodoptera eridania: developing an oviposition model for a novel invasive species. PEST MANAGEMENT SCIENCE 2024; 80:1118-1125. [PMID: 37856447 DOI: 10.1002/ps.7842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Temperature plays a critical role in the development and reproductive process of insects, therefore understanding how insects respond to temperature is vital for comprehending and predicting their population dynamics, particularly when it comes to agricultural pests. Spodoptera eridania Stoll is a polyphagous pest that has recently expanded its distribution beyond its native range. In this study, we assessed the impact of temperature on the reproduction of S. eridania and used the obtained data to develop an oviposition model that could be used to predict egg-laying behavior under field conditions. The reproductive parameters were evaluated at temperatures of 15, 20, 25, 28, and 32 °C. RESULTS Temperature had a significant impact on the reproductive parameters examined. Overall, as temperature increased, the pre-oviposition period, oviposition period, and longevity decreased. Total fecundity exhibited a bell-shaped response to temperature, with peak egg-laying observed at 20 and 25 °C. In line with the experimental data, our model predicted higher rates of oviposition between 20 and 26 °C, thus reinforcing that this temperature range may represent the optimal conditions for the reproduction of S. eridania. CONCLUSION The findings from our study provide a significant contribution to the understanding of the ecology of an important agricultural pest. The information generated can have practical applications in developing control strategies by enabling the aligning of the timing of control measures with peaks of reproductive activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fábio Sampaio
- Graduate Program in Vegetal Production, Department of Zoology, Federal University of Paraná, Paraná, Brazil
| | - Marcelo Maciel Batista
- Graduate Program in Vegetal Production, Department of Zoology, Federal University of Paraná, Paraná, Brazil
| | - Cesar Augusto Marchioro
- Graduate Program in Natural and Agricultural Ecosystems, Department of Agriculture, Biodiversity, and Forests, Federal University of Santa Catarina, Curitibanos, Santa Catarina, Brazil
| |
Collapse
|
7
|
Jin Z, Zhao H, Xian X, Li M, Qi Y, Guo J, Yang N, Lü Z, Liu W. Early warning and management of invasive crop pests under global warming: estimating the global geographical distribution patterns and ecological niche overlap of three Diabrotica beetles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13575-13590. [PMID: 38253826 DOI: 10.1007/s11356-024-32076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Invasive alien pests (IAPs) pose a major threat to global agriculture and food production. When multiple IAPs coexist in the same habitat and use the same resources, the economic loss to local agricultural production increases. Many species of the Diabrotica genus, such as Diabrotica barberi, Diabrotica undecimpunctata, and Diabrotica virgifera, originating from the USA and Mexico, seriously damaged maize production in North America and Europe. However, the potential geographic distributions (PGDs) and degree of ecological niche overlap among the three Diabrotica beetles remain unclear; thus, the potential coexistence zone is unknown. Based on environmental and species occurrence data, we used an ensemble model (EM) to predict the PGDs and overlapping PGD of the three Diabrotica beetles. The n-dimensional hypervolumes concept was used to explore the degree of niche overlap among the three species. The EM showed better reliability than the individual models. According to the EM results, the PGDs and overlapping PGD of the three Diabrotica beetles were mainly distributed in North America, Europe, and Asia. Under the current scenario, D. virgifera has the largest PGD ranges (1615 × 104 km2). In the future, the PGD of this species will expand further and reach a maximum under the SSP5-8.5 scenario in the 2050s (2499 × 104 km2). Diabrotica virgifera showed the highest potential for invasion under the current and future global warming scenarios. Among the three studied species, the degree of ecological niche overlap was the highest for D. undecimpunctata and D. virgifera, with the highest similarity in the PGD patterns and maximum coexistence range. Under global warming, the PGDs of the three Diabrotica beetles are expected to expand to high latitudes. Identifying the PGDs of the three Diabrotica beetles provides an important reference for quarantine authorities in countries at risk of invasion worldwide to develop specific preventive measures against pests.
Collapse
Affiliation(s)
- Zhenan Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Ming Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Yuhan Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
8
|
Kumschick S, Fernandez Winzer L, McCulloch-Jones EJ, Chetty D, Fried J, Govender T, Potgieter LJ, Rapetsoa MC, Richardson DM, van Velden J, Van der Colff D, Miza S, Wilson JRU. Considerations for developing and implementing a safe list for alien taxa. Bioscience 2024; 74:97-108. [PMID: 38390311 PMCID: PMC10880065 DOI: 10.1093/biosci/biad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 02/24/2024] Open
Abstract
Many species have been intentionally introduced to new regions for their benefits. Some of these alien species cause damage, others do not (or at least have not yet). There are several approaches to address this problem: prohibit taxa that will cause damage, try to limit damages while preserving benefits, or promote taxa that are safe. In the present article, we unpack the safe list approach, which we define as "a list of taxa alien to the region of interest that are considered of sufficiently low risk of invasion and impact that the taxa can be widely used without concerns of negative impacts." We discuss the potential use of safe lists in the management of biological invasions; disentangle aspects related to the purpose, development, implementation, and impact of safe lists; and provide guidance for those considering to develop and implement such lists.
Collapse
Affiliation(s)
- Sabrina Kumschick
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Laura Fernandez Winzer
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Emily J McCulloch-Jones
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Duran Chetty
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
- Department of Horticultural Sciences at Cape Peninsula University of Technology, Cape Town, South Africa
| | - Jana Fried
- Centre for Agroecology, Water, and Resilience at Coventry University, Coventry, England, United Kingdom
| | - Tanushri Govender
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Luke J Potgieter
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University
- Department of Biological Sciences at the University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Mokgatla C Rapetsoa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University
- Centre for Invasion Biology in the Department of Environmental Sciences, Faculty of Science at Rhodes University, Makhanda, South Africa
| | - David M Richardson
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University
- Institute of Botany at the Czech Academy of Sciences, Průhonice, Czech Republic
| | - Julia van Velden
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University
- Centre for Sustainability Transitions at Stellenbosch University, Stellenbosch, South Africa
| | - Dewidine Van der Colff
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Siyasanga Miza
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - John R U Wilson
- Centre for Invasion Biology in the Department of Botany and Zoology at Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| |
Collapse
|
9
|
Lin L, Deng WD, Li JT, Kang B. Whether including exotic species alters conservation prioritization: a case study in the Min River in southeastern China. JOURNAL OF FISH BIOLOGY 2024; 104:450-462. [PMID: 36843140 DOI: 10.1111/jfb.15356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Conservation practices from the perspective of functional diversity (FD) and conservation prioritization need to account for the impacts of exotic species in freshwater ecosystems. This work first simulated the influence of exotic species on the values of FD in a schemed mechanistic model, and then a practical case study of conservation prioritization was performed in the Min River, the largest river in southeastern China, to discuss whether including exotic species alters prioritization. The mechanistic model revealed that exotic species significantly altered the expected FD if the number of exotic species occupied 2% of the community. Joint species distribution modelling indicated that the highest FD occurred in the west, northwest and north upstreams of the Min River. Values of FD in 64.69% of the basin decreased after the exotic species were removed from calculation. Conservation prioritization with the Zonation software proved that if first the habitats of exotic species were removed during prioritization, 62.75% of the highest prioritized areas were shifted, average species representation of the endemic species was improved and mean conservation efficiency was increased by 7.53%. Existence of exotic species will significantly alter the metrics of biodiversity and the solution for conservation prioritization, and negatively weighting exotic species in the scope of conservation prioritization is suggested to better protect endemic species. This work advocates a thorough estimate of the impacts of exotic species on FD and conservation prioritization, providing complementary evidence for conservation biology and valuable implications for local freshwater fish conservation.
Collapse
Affiliation(s)
- Li Lin
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Wei-De Deng
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Henry Fok College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Jin-Tao Li
- College of Fisheries, Ocean University of China, Qingdao, China
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| | - Bin Kang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
| |
Collapse
|
10
|
Li Y, Yu FH. Managing the risk of biological invasions. iScience 2023; 26:108221. [PMID: 37942008 PMCID: PMC10628845 DOI: 10.1016/j.isci.2023.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
The large environmental impacts and enormous economic costs caused by biological invasions provide a strong impetus for managing invasion risks. Understanding the factors driving the invasion process and their consequences will raise awareness of invasions among the general public, stakeholders, and policymakers and inform effective management strategies. The identification of priority species and introduction pathways and sites and the development of national capabilities for prevention and preparedness, early detection, monitoring, and rapid response will reduce the impacts of invasive species in terms of effectiveness and cost efficiency.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
11
|
Masunungure C, Manyani A, Dalu MTB, Ngorima A, Dalu T. Decision support tools for invasive alien species management should better consider principles of robust decision making. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165606. [PMID: 37474055 DOI: 10.1016/j.scitotenv.2023.165606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Invasive alien species (IAS) pose global threat to economies and biodiversity. With rising number of species and limited resources, IAS management must be prioritised; yet agreed tools to assist decision-making and their application are currently inadequate. There is need for simple decision support tools (DST) that guide stakeholders to optimise investment based on objective and quantifiable criteria. This paper reviews DSTs for IAS management to assess their availability and application of principles of robust decision-making. The aim is to provide guidance towards adopting the principles of robust decision-making to improve applicability and practical use of DST. A literature search conducted to identify relevant studies that report on DST in biological invasion. Results indicate an increase in availability of DST; however, available studies are largely biased in geographical, habitat and taxonomic focus. The results also show challenges in practical use of existing tools as most of them do not apply principles of robust decision-making. Application of these principles has the potential to overcome weakness of the current decision-making process and as such, enable decision-makers to efficiently allocate resources towards IAS management. A call is made for more consideration and adoption of principles of robust decision-making when developing DST for IAS invasions.
Collapse
Affiliation(s)
- Current Masunungure
- Sustainability Research Unit, Nelson Mandela University, George Campus, South Africa.
| | - Amanda Manyani
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Mwazvita T B Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | | | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa; Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
12
|
Clarke DA, McGeoch MA. Invasive alien insects represent a clear but variable threat to biodiversity. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100065. [PMID: 37564301 PMCID: PMC10410178 DOI: 10.1016/j.cris.2023.100065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Invasive alien insects are an important yet understudied component of the general threat that biological invasions pose to biodiversity. We quantified the breadth and level of this threat by performing environmental impact assessments using a modified version of the Environmental Impact Assessment for Alien Taxa (EICAT) framework. This represents the largest effort to date on quantify the environmental impacts of invasive alien insects. Using a relatively large and taxonomically representative set of insect species that have established non-native populations around the globe, we tested hypotheses on: (1) socioeconomic and (2) taxonomic biases, (3) relationship between range size and impact severity and (4) island susceptibility. Socioeconomic pests had marginally more environmental impact information than non-pests and, as expected, impact information was geographically and taxonomically skewed. Species with larger introduced ranges were more likely, on average, to have the most severe local environmental impacts (i.e. a global maximum impact severity of 'Major'). The island susceptibility hypothesis found no support, and both island and mainland systems experience similar numbers of high severity impacts. These results demonstrate the high variability, both within and across species, in the ways and extents to which invasive insects impact biodiversity, even within the highest profile invaders. However, the environmental impact knowledge base requires greater taxonomic and geographic coverage, so that hypotheses about invasion impact can be developed towards identifying generalities in the biogeography of invasion impacts.
Collapse
Affiliation(s)
- David A. Clarke
- Department of Environment and Genetics, La Trobe University, Victoria 3086, Australia
- Securing Antarctica's Environmental Future, La Trobe University, Victoria 3086, Australia
| | - Melodie A. McGeoch
- Department of Environment and Genetics, La Trobe University, Victoria 3086, Australia
- Securing Antarctica's Environmental Future, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
13
|
Carvalho S, Shchepanik H, Aylagas E, Berumen ML, Costa FO, Costello MJ, Duarte S, Ferrario J, Floerl O, Heinle M, Katsanevakis S, Marchini A, Olenin S, Pearman JK, Peixoto RS, Rabaoui LJ, Ruiz G, Srėbalienė G, Therriault TW, Vieira PE, Zaiko A. Hurdles and opportunities in implementing marine biosecurity systems in data-poor regions. Bioscience 2023; 73:494-512. [PMID: 37560322 PMCID: PMC10408360 DOI: 10.1093/biosci/biad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 08/11/2023] Open
Abstract
Managing marine nonindigenous species (mNIS) is challenging, because marine environments are highly connected, allowing the dispersal of species across large spatial scales, including geopolitical borders. Cross-border inconsistencies in biosecurity management can promote the spread of mNIS across geopolitical borders, and incursions often go unnoticed or unreported. Collaborative surveillance programs can enhance the early detection of mNIS, when response may still be possible, and can foster capacity building around a common threat. Regional or international databases curated for mNIS can inform local monitoring programs and can foster real-time information exchange on mNIS of concern. When combined, local species reference libraries, publicly available mNIS databases, and predictive modeling can facilitate the development of biosecurity programs in regions lacking baseline data. Biosecurity programs should be practical, feasible, cost-effective, mainly focused on prevention and early detection, and be built on the collaboration and coordination of government, nongovernment organizations, stakeholders, and local citizens for a rapid response.
Collapse
Affiliation(s)
- Susana Carvalho
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Hailey Shchepanik
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Eva Aylagas
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
- Red Sea Global, Riyadh 12382-6726, Saudi Arabia
| | - Michael L Berumen
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Filipe O Costa
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | - Sofia Duarte
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Jasmine Ferrario
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | | | - Moritz Heinle
- Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- International Centre for Water Resources and Global Change, Federal Institute of Hydrology, Koblenz, Germany
| | | | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| | - Sergej Olenin
- Marine Research Institute, Klaipeda University, Lithuania
| | | | - Raquel S Peixoto
- King Abdullah University of Science and Technology, Red Sea Research Center, 23955-6900 Thuwal, Saudi Arabia
| | - Lotfi J Rabaoui
- Applied Research Center for Environment & Marine Studies, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
- National Center for Wildlife, Riyadh, Saudi Arabia
| | - Greg Ruiz
- Smithsonian Environmental Research Center, Edgewater, Maryland
| | | | | | - Pedro E Vieira
- Centre of Molecular and Environmental Biology (CBMA) and Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Anastasija Zaiko
- Cawthron Institute, Nelson, New Zealand
- Institute of Marine Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Hui C, Pyšek P, Richardson DM. Disentangling the relationships among abundance, invasiveness and invasibility in trait space. NPJ BIODIVERSITY 2023; 2:13. [PMID: 39242656 PMCID: PMC11332024 DOI: 10.1038/s44185-023-00019-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/26/2023] [Indexed: 09/09/2024]
Abstract
Identifying conditions and traits that allow an introduced species to grow and spread, from being initially rare to becoming abundant (defined as invasiveness), is the crux of invasion ecology. Invasiveness and abundance are related but not the same, and we need to differentiate these concepts. Predicting both species abundance and invasiveness and their relationship in an invaded community is highly contextual, being contingent on the community trait profile and its invasibility. We operationalised a three-pronged invasion framework that considers traits, environmental context, and propagule pressure. Specifically, we measure the invasiveness of an alien species by combining three components (performance reflecting environmental suitability, product of species richness and the covariance between interaction strength and species abundance, and community-level interaction pressure); the expected population growth rate of alien species simply reflects the total effect of propagule pressure and the product of their population size and invasiveness. The invasibility of a community reflects the size of opportunity niches (the integral of positive invasiveness in the trait space) under the given abiotic conditions of the environment. Both species abundance and the surface of invasiveness over the trait space can be dynamic and variable. Whether an introduced species with functional traits similar to those of an abundant species in the community exhibits high or low invasiveness depends largely on the kernel functions of performance and interaction strength with respect to traits and environmental conditions. Knowledge of the covariance between interaction strength and species abundance and these kernel functions, thus, holds the key to accurate prediction of invasion dynamics.
Collapse
Affiliation(s)
- Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa.
- Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Muizenberg, South Africa.
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch University, Stellenbosch, South Africa.
| | - Petr Pyšek
- Institute of Botany, Czech Academy of Sciences, Prague, Czech Republic
- Department of Ecology, Charles University, Prague, Czech Republic
| | - David M Richardson
- Institute of Botany, Czech Academy of Sciences, Prague, Czech Republic
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
15
|
Ibáñez I, Petri L, Barnett DT, Beaury EM, Blumenthal DM, Corbin JD, Diez J, Dukes JS, Early R, Pearse IS, Sorte CJB, Vilà M, Bradley B. Combining local, landscape, and regional geographies to assess plant community vulnerability to invasion impact. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2821. [PMID: 36806368 DOI: 10.1002/eap.2821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 06/02/2023]
Abstract
Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability. Here, we introduce an analytical framework that quantifies the scale-dependent impact of biological invasions on native richness from the shape of the native species-area relationship (SAR). We leveraged newly available, biogeographically extensive vegetation data from the U.S. National Ecological Observatory Network to assess plant community vulnerability to invasion impact as a function of factors acting across scales. We analyzed more than 1000 SARs widely distributed across the USA along environmental gradients and under different levels of non-native plant cover. Decreases in native richness were consistently associated with non-native species cover, but native richness was compromised only at relatively high levels of non-native cover. After accounting for variation in baseline ecosystem diversity, net primary productivity, and human modification, ecoregions that were colder and wetter were most vulnerable to losses of native plant species at the local level, while warmer and wetter areas were most susceptible at the landscape level. We also document how the combined effects of cross-scale factors result in a heterogeneous spatial pattern of vulnerability. This pattern could not be predicted by analyses at any single scale, underscoring the importance of accounting for factors acting across scales. Simultaneously assessing differences in vulnerability between distinct plant communities at local, landscape, and regional scales provided outputs that can be used to inform policy and management aimed at reducing vulnerability to the impact of plant invasions.
Collapse
Affiliation(s)
- Inés Ibáñez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Laís Petri
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - David T Barnett
- Battelle, National Ecological Observatory Network, Boulder, Colorado, USA
| | - Evelyn M Beaury
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Dana M Blumenthal
- USDA-ARS Rangeland Resources & Systems Research Unit, Fort Collins, Colorado, USA
| | - Jeffrey D Corbin
- Department of Biological Sciences, Union College, Schenectady, New York, USA
| | - Jeffrey Diez
- Institute of Ecology and Evolution, Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Jeffrey S Dukes
- Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA
| | - Regan Early
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| | - Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Cascade J B Sorte
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - Bethany Bradley
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
16
|
Oficialdegui FJ, Zamora-Marín JM, Guareschi S, Anastácio PM, García-Murillo P, Ribeiro F, Miranda R, Cobo F, Gallardo B, García-Berthou E, Boix D, Arias A, Cuesta JA, Medina L, Almeida D, Banha F, Barca S, Biurrun I, Cabezas MP, Calero S, Campos JA, Capdevila-Argüelles L, Capinha C, Casals F, Clavero M, Encarnação J, Fernández-Delgado C, Franco J, Guillén A, Hermoso V, Machordom A, Martelo J, Mellado-Díaz A, Morcillo F, Oscoz J, Perdices A, Pou-Rovira Q, Rodríguez-Merino A, Ros M, Ruiz-Navarro A, Sánchez MI, Sánchez-Fernández D, Sánchez-González JR, Sánchez-Gullón E, Teodósio MA, Torralva M, Vieira-Lanero R, Oliva-Paterna FJ. A horizon scan exercise for aquatic invasive alien species in Iberian inland waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161798. [PMID: 36702272 DOI: 10.1016/j.scitotenv.2023.161798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As the number of introduced species keeps increasing unabatedly, identifying and prioritising current and potential Invasive Alien Species (IAS) has become essential to manage them. Horizon Scanning (HS), defined as an exploration of potential threats, is considered a fundamental component of IAS management. By combining scientific knowledge on taxa with expert opinion, we identified the most relevant aquatic IAS in the Iberian Peninsula, i.e., those with the greatest geographic extent (or probability of introduction), severe ecological, economic and human health impacts, greatest difficulty and acceptability of management. We highlighted the 126 most relevant IAS already present in Iberian inland waters (i.e., Concern list) and 89 with a high probability of being introduced in the near future (i.e., Alert list), of which 24 and 10 IAS, respectively, were considered as a management priority after receiving the highest scores in the expert assessment (i.e., top-ranked IAS). In both lists, aquatic IAS belonging to the four thematic groups (plants, freshwater invertebrates, estuarine invertebrates, and vertebrates) were identified as having been introduced through various pathways from different regions of the world and classified according to their main functional feeding groups. Also, the latest update of the list of IAS of Union concern pursuant to Regulation (EU) No 1143/2014 includes only 12 top-ranked IAS identified for the Iberian Peninsula, while the national lists incorporate the vast majority of them. This fact underlines the great importance of taxa prioritisation exercises at biogeographical scales as a step prior to risk analyses and their inclusion in national lists. This HS provides a robust assessment and a cost-effective strategy for decision-makers and stakeholders to prioritise the use of limited resources for IAS prevention and management. Although applied at a transnational level in a European biodiversity hotspot, this approach is designed for potential application at any geographical or administrative scale, including the continental one.
Collapse
Affiliation(s)
- Francisco J Oficialdegui
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain.
| | - José M Zamora-Marín
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Simone Guareschi
- Geography and Environment Division, Loughborough University, Loughborough, United Kingdom; Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | - Pedro M Anastácio
- Departamento de Paisagem, Ambiente e Ordenamento, MARE-Centro de Ciências do Mar e do Ambiente, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Pablo García-Murillo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Filipe Ribeiro
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rafael Miranda
- Instituto de Biodiversidad y Medioambiente (BIOMA), Universidad de Navarra, Pamplona, Spain
| | - Fernando Cobo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Belinda Gallardo
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología (IPE)-CSIC, Zaragoza, Spain
| | | | - Dani Boix
- GRECO, Institut d'Ecologia Aquàtica, Universitat de Girona, Girona, Spain
| | - Andrés Arias
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, Spain
| | - Jose A Cuesta
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN)-CSIC, Cádiz, Spain
| | | | - David Almeida
- Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Filipe Banha
- Departamento de Paisagem, Ambiente e Ordenamento, MARE-Centro de Ciências do Mar e do Ambiente, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Sandra Barca
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Idoia Biurrun
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - M Pilar Cabezas
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Calero
- Planificación y Gestión Hídrica, Tragsatec, Grupo Tragsa-SEPI, Madrid, Spain
| | - Juan A Campos
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | | | - César Capinha
- Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Lisboa, Portugal
| | - Frederic Casals
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain; Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Lleida, Spain
| | - Miguel Clavero
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | - João Encarnação
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Javier Franco
- AZTI, Marine Research, Marine and Coastal Environmental Management, Pasaia, Gipuzkoa, Spain
| | - Antonio Guillén
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Virgilio Hermoso
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN)-CSIC, Madrid, Spain
| | - Joana Martelo
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andrés Mellado-Díaz
- Planificación y Gestión Hídrica, Tragsatec, Grupo Tragsa-SEPI, Madrid, Spain
| | - Felipe Morcillo
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Oscoz
- Departamento de Biología Ambiental, Universidad de Navarra, Pamplona, Spain
| | - Anabel Perdices
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN)-CSIC, Madrid, Spain
| | | | | | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ana Ruiz-Navarro
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain; Departamento de Didáctica de las Ciencias Experimentales, Facultad de Educación, Universidad de Murcia, Murcia, Spain
| | - Marta I Sánchez
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | | | - Jorge R Sánchez-González
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain; Sociedad Ibérica de Ictiología, Departamento de Biología Ambiental, Universidad de Navarra, Pamplona/Iruña, Spain
| | - Enrique Sánchez-Gullón
- Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, Huelva, Spain
| | - M Alexandra Teodósio
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Mar Torralva
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Rufino Vieira-Lanero
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Francisco J Oliva-Paterna
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| |
Collapse
|
17
|
Finley D, Dovciak M, Dean J. A data driven method for prioritizing invasive species to aid policy and management. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03041-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
18
|
Beesley A, Whibley A, Santure AW, Battles HT. The introduction and distribution history of the common myna ( Acridotheres tristis) in New Zealand. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2182332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Annika Beesley
- Anthropology, School of Social Sciences, University of Auckland, Auckland, New Zealand
| | - Annabel Whibley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Anna W. Santure
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Heather T. Battles
- Anthropology, School of Social Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Feng X, Zhu R, Jia Y, Tong J, Yu X, Pang M, Liu C, Sui X, Chen Y. Genetic diversity and population structure of the invasive populations of goldfish Carassius auratus complex in Tibet. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
20
|
Fenouillas P, Ah-Peng C, Amy E, Bracco I, Calichiama L, Cazal E, Gosset M, Ingrassia F, Lavergne C, Lequette B, Notter JC, Pausé JM, Payet G, Payet N, Picot F, Prolhac E, Strasberg D, Thomas H, Triolo J, Turquet V, Rouget M. A research-action process to implement priority areas for alien plant clearing on Reunion Island. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Chinchio E, Romeo C, Crotta M, Ferrari N. Knowledge gaps in invasive species infections: Alien mammals of European Union concern as a case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157448. [PMID: 35863572 DOI: 10.1016/j.scitotenv.2022.157448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Invasive Alien Species (IAS), i.e. species introduced by humans outside their natural geographic range, may act as host or vectors of pathogens of both human and animal health relevance. Although it has been recognized that IAS should deserve more attention from a public and animal health perspective, data on the pathogens hosted by these species are not systematically collected and this prevents accurate assessments of IAS-specific risks of disease transmission. To support the future development of disease risk assessments, we systematically reviewed the scientific literature related to the pathogens of the eleven mammal species included in the European list of IAS of concern to gain insight in the amount and quality of data available. Data were analyzed to assess the current knowledge on the pathogens harbored by mammal IAS in natural conditions, through the identification of the main factors associated with research intensity on IAS pathogens and with the IAS observed pathogen species richness, the estimation of the true pathogen species richness for each IAS, and a meta-analysis of prevalence for the pathogens of health relevance. While the review confirmed that mammal IAS harbor pathogens of human and animal health relevance such as rabies virus, West Nile Virus, Borrelia burgdorferi and Mycobacterium bovis, results also highlighted strong information gaps and biases in research on IAS pathogens. In addition, the analyses showed an underestimation of the number of pathogens harbored by these species and the existence of high levels of uncertainty in the prevalence of the pathogens of health significance identified. These results highlight the need towards more efforts in making the available information on IAS pathogens accessible and systematically collected in order to provide data for future investigations and risk assessments, as well as the need of relying on alternative sources of information to assess IAS disease risk, like expert opinions.
Collapse
Affiliation(s)
- Eleonora Chinchio
- Department of Veterinary Medicine and Animal Sciences, Universitá degli Studi di Milano, via dell'Universitá 6, Lodi, Italy.
| | - Claudia Romeo
- Department of Veterinary Medicine and Animal Sciences, Universitá degli Studi di Milano, via dell'Universitá 6, Lodi, Italy
| | - Matteo Crotta
- Veterinary Epidemiology, Economics and Public Health Group, WOAH Collaborating Centre for Risk Analysis and Modelling, The Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA Hatfield, UK
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Sciences, Universitá degli Studi di Milano, via dell'Universitá 6, Lodi, Italy
| |
Collapse
|
22
|
Bernardo-Madrid R, González-Moreno P, Gallardo B, Bacher S, Vilà M. Consistency in impact assessments of invasive species is generally high and depends on protocols and impact types. NEOBIOTA 2022. [DOI: 10.3897/neobiota.76.83028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Impact assessments can help prioritising limited resources for invasive species management. However, their usefulness to provide information for decision-making depends on their repeatability, i.e. the consistency of the estimated impact. Previous studies have provided important insights into the consistency of final scores and rankings. However, due to the criteria to summarise protocol responses into one value (e.g. maximum score observed) or to categorise those final scores into prioritisation levels, the real consistency at the answer level remains poorly understood. Here, we fill this gap by quantifying and comparing the consistency in the scores of protocol questions with inter-rater reliability metrics. We provide an overview of impact assessment consistency and the factors altering it, by evaluating 1,742 impact assessments of 60 terrestrial, freshwater and marine vertebrates, invertebrates and plants conducted with seven protocols applied in Europe (EICAT; EPPO; EPPO prioritisation; GABLIS; GB; GISS; and Harmonia+). Assessments include questions about diverse impact types: environment, biodiversity, native species interactions, hybridisation, economic losses and human health. Overall, the great majority of assessments (67%) showed high consistency; only a small minority (13%) presented low consistency. Consistency of responses did not depend on species identity or the amount of information on their impacts, but partly depended on the impact type evaluated and the protocol used, probably due to linguistic uncertainties (pseudo-R2 = 0.11 and 0.10, respectively). Consistency of responses was highest for questions on ecosystem and human health impacts and lowest for questions regarding biological interactions amongst alien and native species. Regarding protocols, consistency was highest with Harmonia+ and GISS and lowest with EPPO. The presence of few, but very low, consistent assessments indicates that there is room for improvement in the repeatability of assessments. As no single factor explained largely the variance in consistency, low values can rely on multiple factors. We thus endorse previous studies calling for diverse and complementary actions, such as improving protocols and guidelines or consensus assessment to increase impact assessment repeatability. Nevertheless, we conclude that impact assessments were generally highly consistent and, therefore, useful in helping to prioritise resources against the continued relentless rise of invasive species.
Collapse
|
23
|
Balzani P, Haubrock PJ. Expanding the invasion toolbox: including stable isotope analysis in risk assessment. NEOBIOTA 2022. [DOI: 10.3897/neobiota.76.77944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Species introductions are a major concern for ecosystem functioning, socio-economic wealth, and human well-being. Preventing introductions proved to be the most effective management strategy, and various tools such as species distribution models and risk assessment protocols have been developed or applied to this purpose. These approaches use information on a species to predict its potential invasiveness and impact in the case of its introduction into a new area. At the same time, much biodiversity has been lost due to multiple drivers. Ways to determine the potential for successful reintroductions of once native but now extinct species as well as assisted migrations are yet missing. Stable isotope analyses are commonly used to reconstruct a species’ feeding ecology and trophic interactions within communities. Recently, this method has been used to predict potentially arising trophic interactions in the absence of the target species. Here we propose the implementation of stable isotope analysis as an approach for assessment schemes to increase the accuracy in predicting invader impacts as well as the success of reintroductions and assisted migrations. We review and discuss possibilities and limitations of this methods usage, suggesting promising and useful applications for scientists and managers.
Collapse
|
24
|
Pagad S, Bisset S, Genovesi P, Groom Q, Hirsch T, Jetz W, Ranipeta A, Schigel D, Sica YV, McGeoch MA. Country Compendium of the Global Register of Introduced and Invasive Species. Sci Data 2022; 9:391. [PMID: 35810161 PMCID: PMC9271038 DOI: 10.1038/s41597-022-01514-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
The Country Compendium of the Global Register of Introduced and Invasive Species (GRIIS) is a collation of data across 196 individual country checklists of alien species, along with a designation of those species with evidence of impact at a country level. The Compendium provides a baseline for monitoring the distribution and invasion status of all major taxonomic groups, and can be used for the purpose of global analyses of introduced (alien, non-native, exotic) and invasive species (invasive alien species), including regional, single and multi-species taxon assessments and comparisons. It enables exploration of gaps and inferred absences of species across countries, and also provides one means for updating individual GRIIS Checklists. The Country Compendium is, for example, instrumental, along with data on first records of introduction, for assessing and reporting on invasive alien species targets, including for the Convention on Biological Diversity and Sustainable Development Goals. The GRIIS Country Compendium provides a baseline and mechanism for tracking the spread of introduced and invasive alien species across countries globally.Design Type(s) | Data integration objective ● Observation design | Measurement Type(s) | Alien species occurrence ● Evidence of impact invasive alien species assessment objective | Technology Type(s) | Agent expert ● Data collation | Factor Type(s) | Geographic location ● Origin / provenance ● Habitat | Sample Characteristics - Organism | Animalia ● Bacteria ● Chromista ● Fungi ● Plantae ● Protista (Protozoa) ● Viruses | Sample Characteristics - Location | Global countries |
Measurement(s) | Presence of invasive alien species | Technology Type(s) | Literature and datasets | Factor Type(s) | scientificName | Sample Characteristic - Organism | Multitaxon | Sample Characteristic - Environment | Multihabitat | Sample Characteristic - Location | Global |
Collapse
Affiliation(s)
- Shyama Pagad
- University of Auckland, Auckland, New Zealand. .,IUCN SSC Invasive Species Specialist Group, Auckland, New Zealand.
| | - Stewart Bisset
- Department of Environment and Genetics, LaTrobe University, Melbourne, 3086, Victoria, Australia
| | - Piero Genovesi
- IUCN SSC Invasive Species Specialist Group, Auckland, New Zealand.,Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | | | - Tim Hirsch
- Global Biodiversity Information Facility (GBIF) Secretariat, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - Walter Jetz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity & Global Change, Yale University, New Haven, CT, USA
| | - Ajay Ranipeta
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity & Global Change, Yale University, New Haven, CT, USA
| | - Dmitry Schigel
- Global Biodiversity Information Facility (GBIF) Secretariat, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
| | - Yanina V Sica
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity & Global Change, Yale University, New Haven, CT, USA
| | - Melodie A McGeoch
- IUCN SSC Invasive Species Specialist Group, Auckland, New Zealand. .,Department of Environment and Genetics, LaTrobe University, Melbourne, 3086, Victoria, Australia.
| |
Collapse
|
25
|
Latombe G, Catford JA, Essl F, Lenzner B, Richardson DM, Wilson JRU, McGeoch MA. GIRAE: a generalised approach for linking the total impact of invasion to species' range, abundance and per-unit effects. Biol Invasions 2022; 24:3147-3167. [PMID: 36131994 PMCID: PMC9482606 DOI: 10.1007/s10530-022-02836-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/11/2022] [Indexed: 12/27/2022]
Abstract
The total impact of an alien species was conceptualised as the product of its range size, local abundance and per-unit effect in a seminal paper by Parker et al. (Biol Invasions 1:3-19, 1999). However, a practical approach for estimating the three components has been lacking. Here, we generalise the impact formula and, through use of regression models, estimate the relationship between the three components of impact, an approach we term GIRAE (Generalised Impact = Range size × Abundance × per-unit Effect). We discuss how GIRAE can be applied to multiple types of impact, including environmental impacts, damage and management costs. We propose two methods for applying GIRAE. The species-specific method computes the relationship between impact, range size, abundance and per-unit effect for a given species across multiple invaded sites or regions of different sizes. The multi-species method combines data from multiple species across multiple sites or regions to calculate a per-unit effect for each species and is computed using a single regression model. The species-specific method is more accurate, but it requires a large amount of data for each species and assumes a constant per-unit effect for a species across the invaded area. The multi-species method is more easily applicable and data-parsimonious, but assumes the same relationship between impact, range size and abundance for all considered species. We illustrate these methods using data about money spent managing plant invasions in different biomes of South Africa. We found clear differences between species in terms of money spent per unit area invaded, with per-unit expenditure varying substantially between biomes for some species-insights that are useful for monitoring and evaluating management. GIRAE offers a versatile and practical method that can be applied to many different types of data to better understand and manage the impacts of biological invasions. Supplementary Information The online version contains supplementary material available at 10.1007/s10530-022-02836-0.
Collapse
Affiliation(s)
- Guillaume Latombe
- Institute of Ecology and Evolution, The University of Edinburgh, King’s Buildings, EH9 3FL Edinburgh, UK
| | - Jane A. Catford
- Department of Geography, King’s College London, 30 Aldwych, London, WC2B 4BG UK
- School of Ecosystem and Forest Sciences, University of Melbourne, VIC 3121 Richmond, Australia
| | - Franz Essl
- Bioinvasions, Global Change, Macroecology Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Bernd Lenzner
- Bioinvasions, Global Change, Macroecology Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - David M. Richardson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - John R. U. Wilson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Melodie A. McGeoch
- Department of Ecology, Environment and Evolution, LaTrobe University, Melbourne, VIC 3086 Australia
| |
Collapse
|
26
|
Mota JDS, Barbosa LR, Marchioro CA. Suitable areas for invasive insect pests in Brazil and the potential impacts for eucalyptus forestry. PEST MANAGEMENT SCIENCE 2022; 78:2596-2606. [PMID: 35338563 DOI: 10.1002/ps.6891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/06/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Brazil is among the world's largest producers of eucalyptus and the damage caused by native and invasive insect pests is one of the main factors affecting eucalyptus yield. The recent history of biological invasions of eucalyptus pests in Brazil prompts demand for phytosanitary measures to prevent new invasions. This study used ecological niche models to estimate suitable areas for nine eucalyptus pests. This information was used to assess the potential ports of entry, generate invasion risk maps considering the likelihood of introducing invasive species, and estimate the eucalyptus producing municipalities and areas within the species' suitable range. RESULTS A large distribution range was predicted for Eucalyptolyma maideni (Hempitera: Aphalaridae), Orgya postica (Lepidoptera: Erebidae), Sinoxylon anale (Coleoptera: Bostrichidae), and Trachymela sloanei (Coleoptera: Chrysomelidae) in Brazil, while a comparatively smaller distribution was predicted for Ophelimus maskelli (Hymenoptera: Eulophidae), Mnesampela privata (Lepidoptera: Geometridae), Paropsis atomaria (Coleoptera: Chrysomelidae), Paropsisterna beata, and P. cloelia (Coleoptera: Chrysomelidae). High-risk areas of invasion near airports and seaports were predicted mainly in southern, southeastern, and northeastern Brazil. A large proportion of the municipalities (24.4% to 93.7%) and areas with eucalyptus plantations (31.9% to 98.3%) are within the climatically suitable areas estimated for the pests, especially in southern and southeastern regions, which comprises 61.5% of the Brazilian eucalyptus production. CONCLUSION The results indicate that eucalyptus forestry may be significantly impacted by biological invasion. The findings provided by our study can assist decision-makers in developing phytosanitary measures to prevent new invasions of forest pests in Brazil. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Juliana Dos Santos Mota
- Graduate Program in Natural and Agricultural Ecosystems, Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Santa Catarina, Brazil
| | | | - Cesar Augusto Marchioro
- Graduate Program in Natural and Agricultural Ecosystems, Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
27
|
Turbelin AJ, Diagne C, Hudgins EJ, Moodley D, Kourantidou M, Novoa A, Haubrock PJ, Bernery C, Gozlan RE, Francis RA, Courchamp F. Introduction pathways of economically costly invasive alien species. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02796-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIntroduction pathways play a pivotal role in the success of Invasive Alien Species (IAS)—the subset of alien species that have a negative environmental and/or socio-economic impact. Pathways refer to the fundamental processes that leads to the introduction of a species from one geographical location to another—marking the beginning of all alien species invasions. Increased knowledge of pathways is essential to help reduce the number of introductions and impacts of IAS and ultimately improve their management. Here we use the InvaCost database, a comprehensive repository on the global monetary impacts of IAS, combined with pathway data classified using the Convention on Biological Diversity (CBD) hierarchical classification and compiled from CABI Invasive Species Compendium, the Global Invasive Species Database (GISD) and the published literature to address five key points. Data were available for 478 individual IAS. For these, we found that both the total and annual average cost per species introduced through the ‘Stowaway’ (US$144.9bn; US$89.4m) and ‘Contaminant’ pathways (US$99.3bn; US$158.0m) were higher than species introduced primarily through the ‘Escape’ (US$87.4bn; US$25.4m) and ‘Release’ pathways (US$64.2bn; US$16.4m). Second, the recorded costs (both total and average) of species introduced unintentionally was higher than that from species introduced intentionally. Third, insects and mammals, respectively, accounted for the greatest proportion of the total cost of species introduced unintentionally and intentionally respectively, at least of the available records; ‘Stowaway’ had the highest recorded costs in Asia, Central America, North America and Diverse/Unspecified regions. Fourthly, the total cost of a species in a given location is not related to the year of first record of introduction, but time gaps might blur the true pattern. Finally, the total and average cost of IAS were not related to their number of introduction pathways. Although our findings are directly limited by the available data, they provide important material which can contribute to pathway priority measures, notably by complementing studies on pathways associated with ecologically harmful IAS. They also highlight the crucial need to fill the remaining data gaps—something that will be critical in prioritising limited management budgets to combat the current acceleration of species invasions.
Collapse
|
28
|
Saccaggi DL, Wilson JRU, Robinson AP, Terblanche JS. Arthropods on imported plant products: Volumes predict general trends while contextual details enhance predictive power. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2554. [PMID: 35114041 DOI: 10.1002/eap.2554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
Agricultural biosecurity interventions are aimed at minimizing introductions of harmful non-native organisms to new areas via agricultural trade. To prioritize such interventions, historical data on interceptions have been used to elucidate which factors determine the likelihood that a particular import is carrying a harmful organism. Here we use an interception data set of arthropod contaminants recorded on plant imports arriving in South Africa from 2005 to 2019, comprising 13,566 samples inspected for arthropod contaminants, of which 4902 were positive for the presence of at least one arthropod. We tested 29 predictor variables that have previously been used to explain variation in rates of detection and three variables describing possible sources of additional variation and grouped these into six mutually exclusive "factor classes." We used boosted regression trees as a non-parametric stochastic machine-learning method to build models for each factor class and interactions between them. We explored the influence of these variables with data split either randomly or chronologically. While we identified some specific patterns that could be explained post-hoc by historical events, only inspected volumes were reliably correlated with detection of arthropod contaminants across the whole data set. However, inspected volumes could not predict future interceptions of arthropods, which instead relied on contextual factors such as country, crop or year of import. This suggests that, although certain factors may be important in certain circumstances or for particular crops or commodities, there is little general predictive power in the current data. Instead, an idiographic approach would be most beneficial in biosecurity to ascertain the details of why a particular pest arrived on a particular pathway and how it might move (and be stopped) in future.
Collapse
Affiliation(s)
- Davina L Saccaggi
- Department of Agriculture, Land Reform and Rural Development, Plant Health Diagnostic Services, Stellenbosch, South Africa
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - John R U Wilson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa
| | - Andrew P Robinson
- Centre of Excellence for Biosecurity Risk Analysis, School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - John S Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
29
|
Hudgins EJ, Koch FH, Ambrose MJ, Leung B. Hotspots of pest‐induced US urban tree death, 2020–2050. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Frank H. Koch
- USDA Forest Service Southern Research Station Research Triangle Park NC USA
| | - Mark J. Ambrose
- Department of Forestry and Environmental Resources North Carolina State University Research Triangle Park NC USA
| | - Brian Leung
- Department of Biology McGill University Montreal QC Canada
- Bieler School of Environment McGill University Montreal QC Canada
| |
Collapse
|
30
|
Li Y, Bateman C, Skelton J, Wang B, Black A, Huang YT, Gonzalez A, Jusino MA, Nolen ZJ, Freeman S, Mendel Z, Kolařík M, Knížek M, Park JH, Sittichaya W, Pham TH, Ito SI, Torii M, Gao L, Johnson AJ, Lu M, Sun J, Zhang Z, Adams DC, Hulcr J. Preinvasion Assessment of Exotic Bark Beetle-Vectored Fungi to Detect Tree-Killing Pathogens. PHYTOPATHOLOGY 2022; 112:261-270. [PMID: 34261341 DOI: 10.1094/phyto-01-21-0041-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exotic diseases and pests of trees have caused continental-scale disturbances in forest ecosystems and industries, and their invasions are considered largely unpredictable. We tested the concept of preinvasion assessment of not yet invasive organisms, which enables empirical risk assessment of potential invasion and impact. Our example assesses fungi associated with Old World bark and ambrosia beetles and their potential to impact North American trees. We selected 55 Asian and European scolytine beetle species using host use, economic, and regulatory criteria. We isolated 111 of their most consistent fungal associates and tested their effect on four important southeastern American pine and oak species. Our test dataset found no highly virulent pathogens that should be classified as an imminent threat. Twenty-two fungal species were minor pathogens, which may require context-dependent response for their vectors at North American borders, while most of the tested fungi displayed no significant impact. Our results are significant in three ways; they ease the concerns over multiple overseas fungus vectors suspected of heightened potential risk, they provide a basis for the focus on the prevention of introduction and establishment of species that may be of consequence, and they demonstrate that preinvasion assessment, if scaled up, can support practical risk assessment of exotic pathogens.
Collapse
Affiliation(s)
- You Li
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
- Fujian Province Key Laboratory of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Craig Bateman
- Florida Museum of Natural History, University of Florida, Gainesville 32611, U.S.A
| | - James Skelton
- Department of Biology, William and Mary, Williamsburg 23185, U.S.A
| | - Bo Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Adam Black
- Peckerwood Garden Conservation Foundation, Hempstead 77445, U.S.A
| | - Yin-Tse Huang
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Allan Gonzalez
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | | | | | - Stanley Freeman
- Plant Protection Institute, The Volcani Center, Rishon LeZion, Israel
| | - Zvi Mendel
- Plant Protection Institute, The Volcani Center, Rishon LeZion, Israel
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miloš Knížek
- Forestry and Game Management Research Institute, 156 04 Prague 5-Zbraslav, Czech Republic
| | - Ji-Hyun Park
- National Institute of Forest Science, Seoul, South Korea
| | - Wisut Sittichaya
- Department of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| | - Thai-Hong Pham
- Mientrung Institute for Scientific Research, VNMN and Graduate School of Science and Technology, Vietnam Academy of Science and Technology, Hue, Vietnam
| | | | - Masato Torii
- Department of Mushroom Science and Forest Microbiology, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
| | - Lei Gao
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai, China
| | - Andrew J Johnson
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Min Lu
- School of Life Sciences, Hubei University, Wuhan, China
| | - Jianghua Sun
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Damian C Adams
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| | - Jiri Hulcr
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville 32611, U.S.A
| |
Collapse
|
31
|
New Sets of Primers for DNA Identification of Non-Indigenous Fish Species in the Volga-Kama Basin (European Russia). WATER 2022. [DOI: 10.3390/w14030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Adequate species’ identification is critical for the detection and monitoring of biological invasions. In this study, we proposed and assessed the efficiency of newly created primer sets for the genetic identification of non-indigenous species (NIS) of fishes in the Volga basin based on: (a) a “long” fragment of cytochrome c oxidase subunit one of the mitochondrial gene (COI) (0.7 kb), used in “classical” DNA barcoding; (b) a short 3’-fragment (0.3 kb) of COI, suitable for use in high-throughput sequencing systems (i.e., for dietary analysis); (c) fragment of 16S mitochondrial rRNA, including those designed to fill the library of reference sequences for work on the metabarcoding of communities and eDNA studies; (d) a fragment of 18S nuclear rRNA, including two hypervariable regions V1-V2, valuable for animal phylogeny. All four sets of primers demonstrated a high amplification efficiency and high specificity for freshwater fish. Also, we proposed the protocols for the cost-effective isolation of total DNA and purification of the PCR product without the use of commercial kits. We propose an algorithm to carry out extremely cheap studies on the assessment of biological diversity without expensive equipment. We also present original data on the genetic polymorphism of all mass NIS fish species in the Volga-Kama region. The high efficiency of DNA identification based on our primers is shown relative to the traditional monitoring of biological invasions.
Collapse
|
32
|
Bougherara D, Courtois P, David M, Weill J. Spatial preferences for invasion management: a choice experiment on controlling Ludwigia grandiflora in a French regional park. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02707-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Saito T. Monitoring and databasing nonnative species to manage establishment debt in aquatic ecosystems. Ecol Res 2022. [DOI: 10.1111/1440-1703.12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takumi Saito
- Department of Biology, Faculty of Science Toho University Funabashi Chiba Japan
| |
Collapse
|
34
|
Flight plan for the future: floatplane pilots and researchers team up to predict invasive species dispersal in Alaska. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractAircraft can transport aquatic invasive species (AIS) from urban sources to remote waterbodies, yet little is known about this long-distance pathway. In North America and especially Alaska, aircraft with landing gear for water called floatplanes are used for recreation access to remote, often road-less wilderness destinations. Human-mediated dispersal of AIS is particularly concerning for the conservation of pristine wildlands, yet resource managers are often challenged by limited monitoring and response capacity given the vast areas they manage. We collected pathway data through a survey with floatplane pilots and used a Bayesian hierarchical model to inform early detection in a data-limited situation. The study was motivated by Alaska’s first known AIS, Elodea spp. (Elodea) and its floatplane-related dispersal. For 682 identified floatplane destinations, a Bayesian hierarchical model predicts the chance of flights originating from AIS source locations in freshwater and estimates the expected number of flights from these sources. Model predictions show the potential for broad spread across remote regions currently not known to have Elodea and informed monitoring and early detection efforts. Our result underlines the small window of opportunity for Arctic conservation strategies targeting an AIS free Arctic. We recommend management that focuses on long-distance connectivity, keeping urban sources free of AIS. We discuss applicability of the approach for other data-limited situations supporting data-informed AIS management responses.
Collapse
|
35
|
Removal of invasive Scotch broom increases its negative effects on soil chemistry and plant communities. Oecologia 2022; 198:243-254. [PMID: 34981220 DOI: 10.1007/s00442-021-05099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
Recovery of ecosystem properties following removal of invasive plants likely varies with characteristics of the plant and the relative soil quality at a given site. These factors may influence the occurrence of soil legacies and secondary invasions, hindering the effectiveness of restoration strategies. We assessed the potential for ecosystem recovery following removal of N-fixing Scotch broom for 4 years at two sites that contrasted strongly in soil quality in western Washington and Oregon, USA. Comparisons were made among plots, where Scotch broom was never present (uninvaded), retained, or removed. Scotch broom removal increased PAR and soil temperature but had limited effects on soil moisture. Concentrations of soil Ca, Mg, K, and P were significantly lower with Scotch broom removal, with the effect being most pronounced at the low-quality site. NMS ordinations indicated that the treatments differed in vegetation composition, with limited recovery following broom removal. Non-native and native species varied inversely in their abundance responses, where non-native species abundance was greatest in the removal treatment, intermediate in the retained treatment, and lowest in the uninvaded treatment, indicating occurrence of a secondary invasion following removal. As with the soil response, effects were more pronounced at the low-quality site. Our findings indicate that Scotch broom removal exacerbates negative effects on soil chemistry and plant communities, with little evidence of recovery over our study period. These findings highlight the importance of controlling Scotch broom invasions immediately after the species establishes, especially on low-quality sites that are more susceptible to Scotch broom invasion.
Collapse
|
36
|
García-Díaz P, Montti L, Powell PA, Phimister E, Pizarro JC, Fasola L, Langdon B, Pauchard A, Raffo E, Bastías J, Damasceno G, Fidelis A, Huerta MF, Linardaki E, Moyano J, Núñez MA, Ortiz MI, Rodríguez-Jorquera I, Roesler I, Tomasevic JA, Burslem DFRP, Cava M, Lambin X. Identifying Priorities, Targets, and Actions for the Long-term Social and Ecological Management of Invasive Non-Native Species. ENVIRONMENTAL MANAGEMENT 2022; 69:140-153. [PMID: 34586487 PMCID: PMC8758626 DOI: 10.1007/s00267-021-01541-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Formulating effective management plans for addressing the impacts of invasive non-native species (INNS) requires the definition of clear priorities and tangible targets, and the recognition of the plurality of societal values assigned to these species. These tasks require a multi-disciplinary approach and the involvement of stakeholders. Here, we describe procedures to integrate multiple sources of information to formulate management priorities, targets, and high-level actions for the management of INNS. We follow five good-practice criteria: justified, evidence-informed, actionable, quantifiable, and flexible. We used expert knowledge methods to compile 17 lists of ecological, social, and economic impacts of lodgepole pines (Pinus contorta) and American mink (Neovison vison) in Chile and Argentina, the privet (Ligustrum lucidum) in Argentina, the yellow-jacket wasp (Vespula germanica) in Chile, and grasses (Urochloa brizantha and Urochloa decumbens) in Brazil. INNS plants caused a greater number of impacts than INNS animals, although more socio-economic impacts were listed for INNS animals than for plants. These impacts were ranked according to their magnitude and level of confidence on the information used for the ranking to prioritise impacts and assign them one of four high-level actions-do nothing, monitor, research, and immediate active management. We showed that it is possible to formulate management priorities, targets, and high-level actions for a variety of INNS and with variable levels of available information. This is vital in a world where the problems caused by INNS continue to increase, and there is a parallel growth in the implementation of management plans to deal with them.
Collapse
Affiliation(s)
- Pablo García-Díaz
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Lía Montti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN-Universidad Nacional de Mar del Plata-CONICET, CC 1260, 7600, Mar del Plata, Argentina
- Instituto de Geología de Costas y del Cuaternario (IGCyC), FCEyN-Universidad Nacional de Mar del Plata-CIC, Funes 3350, 7600, Mar del Plata, Argentina
| | - Priscila Ana Powell
- Instituto de Ecología Regional (IER, UNT, CONICET) and Facultad de Ciencias Naturales e IMl, UNT, Residencia Universitaria de Horco Molle, Yerba Buena, Tucumán, Argentina
| | - Euan Phimister
- Business School, University of Aberdeen, Aberdeen, AB24 3QY, UK
- Business School, University of Stellenbosch, PO Box 610, Bellville, 7535, South Africa
| | - José Cristóbal Pizarro
- Laboratorio de Estudios del Antropoceno (LEA), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Laura Fasola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Dirección Regional Patagonia Norte de la Administración de Parques Nacionales, O'Connor 1188, 8400-San Carlos de Bariloche, Río Negro, Argentina
| | - Bárbara Langdon
- Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile
| | - Eduardo Raffo
- Servicio Agrícola y Ganadero, Gobierno de Chile, Valdivia, Chile
| | - Joselyn Bastías
- Laboratorio de Estudios del Antropoceno (LEA), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | - Gabriella Damasceno
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A, Rio Claro, 13506-900, Brazil
| | - Alessandra Fidelis
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A, Rio Claro, 13506-900, Brazil
| | - Magdalena F Huerta
- Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Valdivia, Chile
| | - Eirini Linardaki
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Jaime Moyano
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina
| | - Martín A Núñez
- Grupo de Ecología de Invasiones, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche, CP 8400, Argentina
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - María Ignacia Ortiz
- Laboratorio de Estudios del Antropoceno (LEA), Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile
| | | | - Ignacio Roesler
- Programa Patagonia, Departamento de Conservación de Aves Argentinas/Asociación Ornitológica del Plata, Buenos Aires, C1249 AAB, Argentina
- Departamento de Análisis de Sistemas Complejos, Fundación Bariloche, CONICET, Av. Bustillo 9400, San Carlos de Bariloche, CP 8400, Argentina
- EDGE of Existence-Zoological Society of London, London, UK
| | - Jorge A Tomasevic
- Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Valdivia, Chile
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Mário Cava
- Lab of Vegetation Ecology, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Av. 24A, Rio Claro, 13506-900, Brazil
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
37
|
Potgieter LJ, Shrestha N, Cadotte MW. Prioritizing terrestrial invasive alien plant species for management in urban ecosystems. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.14103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luke J. Potgieter
- Department of Biological Sciences University of Toronto‐Scarborough Toronto ON Canada
| | | | - Marc W. Cadotte
- Department of Biological Sciences University of Toronto‐Scarborough Toronto ON Canada
| |
Collapse
|
38
|
Alien flora of D.R. Congo: improving the checklist with digitised herbarium collections. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Jourdan J, Riesch R, Cunze S. Off to new shores: Climate niche expansion in invasive mosquitofish ( Gambusia spp.). Ecol Evol 2021; 11:18369-18400. [PMID: 35003679 PMCID: PMC8717293 DOI: 10.1002/ece3.8427] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 01/04/2023] Open
Abstract
AIM Formerly introduced for their presumed value in controlling mosquito-borne diseases, the two mosquitofish Gambusia affinis and G. holbrooki (Poeciliidae) are now among the world's most widespread invasive alien species, negatively impacting aquatic ecosystems around the world. These inconspicuous freshwater fish are, once their presence is noticed, difficult to eradicate. It is, therefore, of utmost importance to assess their geographic potential and to identify their likely ability to persist under novel climatic conditions. LOCATION Global. METHODS We build species distribution models using occurrence data from the native and introduced distribution ranges to identify putative niche shifts and further ascertain the areas climatically suitable for the establishment and possible spread of mosquitofish. RESULTS We found significant niche expansions into climatic regions outside their natural climatic conditions, emphasizing the importance of integrating climatic niches of both native and invasive ranges into projections. In particular, there was a marked shift toward tropical regions in Asia and a clear niche shift of European G. holbrooki. This ecological flexibility partly explains the massive success of the two species, and substantially increases the risk for further range expansion. We also showed that the potential for additional expansion resulting from climate change is enormous-especially in Europe. MAIN CONCLUSIONS Despite the successful invasion history and ongoing range expansions, many countries still lack proper preventive measures. Thus, we urge policy makers to carefully evaluate the risk both mosquitofish pose to a particular area and to initiate appropriate management strategies.
Collapse
Affiliation(s)
- Jonas Jourdan
- Department Aquatic EcotoxicologyGoethe University of FrankfurtFrankfurt am MainGermany
| | - Rüdiger Riesch
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Sarah Cunze
- Department of Integrative Parasitology and ZoophysiologyGoethe University of FrankfurtFrankfurt am MainGermany
| |
Collapse
|
40
|
Castro KL, Battini N, Giachetti CB, Trovant B, Abelando M, Basso NG, Schwindt E. Early detection of marine invasive species following the deployment of an artificial reef: Integrating tools to assist the decision-making process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113333. [PMID: 34329910 DOI: 10.1016/j.jenvman.2021.113333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/18/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Early detection and rapid response plans are a set of principles to reduce the establishment, spread and impact of invasive species and it is a critical step in management in marine ecosystems. Two potentially invasive ascidians attached to the hull of a recently sunk fishing vessel were early detected in Patagonia. With the aim of assisting in the management decision-making process during the early steps of a rapid response, we conducted several analyses through different approaches. First, we identified the species through classic taxonomical and genetic analyses. Then, we evaluated the regional and international shipping connectivity to study potential donor regions and finally, we used species distribution models (SDMs) to predict the potential distribution of these species. The potentially invasive ascidians were identified as Styela clava and Styela plicata, and this is the first record for both species in the Nuevo gulf, Patagonia Argentina. Both species have a widespread distribution around the world with strong ecological and economic impacts documented. Shipping traffic analysis suggested that S. plicata could have arrived by secondary spread from regional ports, while the arrival of S. clava was likely to be associated with international shipping traffic. Furthermore, the SDM predicted that S. clava has suitable coastal areas along the entire Southwestern Atlantic shoreline, where it is currently absent. On the contrary, the SDM predicted that further southward spread of S. plicata is unlikely, being limited by the minimum annual temperature. We discussed the different approaches, tools, and expertise integrated in this work in the light of the decision-making process for the early detection of marine invasive species in the Southwestern Atlantic. Moreover, we call attention to the increased creation of artificial habitats through the intentional sinking of ships and the potential consequences of these actions in the conservation of marine ecosystems.
Collapse
Affiliation(s)
- Karen Lidia Castro
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina; Centro Regional Universitario Bariloche, Universidad Nacional Del Comahue (CRUB, UNCo), Quintral 1250, San Carlos de Bariloche, Río Negro, Argentina.
| | - Nicolás Battini
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Clara Belen Giachetti
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Berenice Trovant
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina; Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), 9 de Julio 25, Trelew, Chubut, Argentina
| | - Mariana Abelando
- Dirección de Protección Ambiental, Prefectura Naval Argentina, Av. E. Madero 235, Ciudad Autónoma de Buenos Aires, Argentina; Instituto Universitario de Seguridad Marítima, Prefectura Naval Argentina, Av. Corrientes 345, Ciudad Autónoma de Buenos Aires, Argentina
| | - Néstor Guillermo Basso
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| | - Evangelina Schwindt
- Grupo de Ecología en Ambientes Costeros (GEAC), Argentina; Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
41
|
Marchioro CA, Krechemer FS. Prevention is better than cure: Integrating habitat suitability and invasion threat to assess global biological invasion risk by insect pests under climate change. PEST MANAGEMENT SCIENCE 2021; 77:4510-4520. [PMID: 34032370 DOI: 10.1002/ps.6486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Invasive alien species cause substantial impacts on ecosystem, economy, and public health. Therefore, identifying areas at risk of invasion and establishment is essential for the development and implementation of preventive measures. In this study, we integrated information on species habitat suitability, location of airports and ports, and invasion threat maps to assess global invasion risk under climate change using the cucurbit beetle, Diabrotica speciosa (Germar, 1824), as a model organism. RESULTS Suitable and optimal habitats for D. speciosa were estimated in several regions beyond its native range and comprised all continents. A decrease in the extent of suitable and optimal habitats for D. speciosa was predicted in different climate change scenarios, resulting in a reduction in invasion risk in most regions. However, regions such as western Europe and isolated areas in southern Asia and Oceania were predicted to face an increase in invasion risk under climate change. Invasion pathways via airports and ports were identified in all continents. CONCLUSION Our findings can be used in the development of phytosanitary measures against D. speciosa in high-risk areas. Furthermore, the approach used in this study provides a framework for estimating the global risk of invasion by insect pests and other terrestrial organisms in different climate change scenarios. This information can be used by policy makers to develop preventive measures against species with potential to invade and spread in regions beyond their native range. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cesar A Marchioro
- Graduate Program in Natural and Agricultural Ecosystems, Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Flavia S Krechemer
- Federal University of Santa Catarina, Campus of Curitibanos, Curitibanos, Brazil
| |
Collapse
|
42
|
Moore JL, Camaclang AE, Moore AL, Hauser CE, Runge MC, Picheny V, Rumpff L. A framework for allocating conservation resources among multiple threats and actions. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:1639-1649. [PMID: 33909929 DOI: 10.1111/cobi.13748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Land managers decide how to allocate resources among multiple threats that can be addressed through multiple possible actions. Additionally, these actions vary in feasibility, effectiveness, and cost. We sought to provide a way to optimize resource allocation to address multiple threats when multiple management options are available, including mutually exclusive options. Formulating the decision as a combinatorial optimization problem, our framework takes as inputs the expected impact and cost of each threat for each action (including do nothing) and for each overall budget identifies the optimal action to take for each threat. We compared the optimal solution to an easy to calculate greedy algorithm approximation and a variety of plausible ranking schemes. We applied the framework to management of multiple introduced plant species in Australian alpine areas. We developed a model of invasion to predict the expected impact in 50 years for each species-action combination that accounted for each species' current invasion state (absent, localized, widespread); arrival probability; spread rate; impact, if present, of each species; and management effectiveness of each species-action combination. We found that the recommended action for a threat changed with budget; there was no single optimal management action for each species; and considering more than one candidate action can substantially increase the management plan's overall efficiency. The approximate solution (solution ranked by marginal cost-effectiveness) performed well when the budget matched the cost of the prioritized actions, indicating that this approach would be effective if the budget was set as part of the prioritization process. The ranking schemes varied in performance, and achieving a close to optimal solution was not guaranteed. Global sensitivity analysis revealed a threat's expected impact and, to a lesser extent, management effectiveness were the most influential parameters, emphasizing the need to focus research and monitoring efforts on their quantification.
Collapse
Affiliation(s)
- Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Australian Research Centre for Urban Ecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abbey E Camaclang
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Alana L Moore
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Unité de Mathématiques et Informatique Appliquées (MIAT), Toulouse INRA, Auzeville, France
| | - Cindy E Hauser
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael C Runge
- Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, Maryland, USA
| | - Victor Picheny
- Unité de Mathématiques et Informatique Appliquées (MIAT), Toulouse INRA, Auzeville, France
| | - Libby Rumpff
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Piquet JC, Warren DL, Saavedra Bolaños JF, Sánchez Rivero JM, Gallo-Barneto R, Cabrera-Pérez MÁ, Fisher RN, Fisher SR, Rochester CJ, Hinds B, Nogales M, López-Darias M. Could climate change benefit invasive snakes? Modelling the potential distribution of the California Kingsnake in the Canary Islands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112917. [PMID: 34119983 DOI: 10.1016/j.jenvman.2021.112917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The interaction between climate change and biological invasions is a global conservation challenge with major consequences for invasive species management. However, our understanding of this interaction has substantial knowledge gaps; this is particularly relevant for invasive snakes on islands because they can be a serious threat to island ecosystems. Here we evaluated the potential influence of climate change on the distribution of invasive snakes on islands, using the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria. We analysed the potential distribution of L. californiae under current and future climatic conditions in the Canary Islands, with the underlying hypothesis that the archipelago might be suitable for the species under these climate scenarios. Our results indicate that the Canary Islands are currently highly suitable for the invasive snake, with increased suitability under the climate change scenarios tested here. This study supports the idea that invasive reptiles represent a substantial threat to near-tropical regions, and builds on previous studies suggesting that the menace of invasive reptiles may persist or even be exacerbated by climate change. We suggest future research should continue to fill the knowledge gap regarding invasive reptiles, in particular snakes, to clarify their potential future impacts on global biodiversity.
Collapse
Affiliation(s)
- Julien C Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Dan L Warren
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt, Germany; Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jorge Fernando Saavedra Bolaños
- Área de Medio Ambiente. Gestión y Planeamiento Territorial y Ambiental (GESPLAN S. A.), 35002, Las Palmas, Gran Canaria, Canary Islands, Spain
| | - José Miguel Sánchez Rivero
- Área de Medio Ambiente. Gestión y Planeamiento Territorial y Ambiental (GESPLAN S. A.), 35002, Las Palmas, Gran Canaria, Canary Islands, Spain
| | - Ramón Gallo-Barneto
- Área de Medio Ambiente. Gestión y Planeamiento Territorial y Ambiental (GESPLAN S. A.), 35002, Las Palmas, Gran Canaria, Canary Islands, Spain
| | - Miguel Ángel Cabrera-Pérez
- Servicio de Biodiversidad, Dirección General de Protección de la Naturaleza, Gobierno de Canarias, Las Palmas, Gran Canaria, Canary Islands, Spain
| | - Robert N Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | | | - Carlton J Rochester
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | - Brian Hinds
- Herpetological Education and Research Project, Whittier, CA, USA
| | - Manuel Nogales
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
44
|
Stringham OC, García‐Díaz P, Toomes A, Mitchell L, Ross JV, Cassey P. Live reptile smuggling is predicted by trends in the legal exotic pet trade. Conserv Lett 2021. [DOI: 10.1111/conl.12833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Oliver C. Stringham
- Invasion Science & Wildlife Ecology Lab University of Adelaide South Australia Australia
- School of Mathematical Sciences University of Adelaide South Australia Australia
| | | | - Adam Toomes
- Invasion Science & Wildlife Ecology Lab University of Adelaide South Australia Australia
| | - Lewis Mitchell
- School of Mathematical Sciences University of Adelaide South Australia Australia
| | - Joshua V. Ross
- School of Mathematical Sciences University of Adelaide South Australia Australia
| | - Phillip Cassey
- Invasion Science & Wildlife Ecology Lab University of Adelaide South Australia Australia
| |
Collapse
|
45
|
|
46
|
Angulo E, Ballesteros-Mejia L, Novoa A, Duboscq-Carra VG, Diagne C, Courchamp F. Economic costs of invasive alien species in Spain. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.59181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Economic assessments for invasive alien species (IAS) are an urgent requirement for informed decision-making, coordinating and motivating the allocation of economic and human resources for the management of IAS. We searched for economic costs of IAS occurring in Spain, by using the InvaCost database and requesting data to regional governments and national authorities, which resulted in over 3,000 cost entries. Considering only robust data (i.e. excluding extrapolated, potential (not-incurred or expected) and low reliability costs), economic costs in Spain were estimated at US$ 261 million (€ 232 million) from 1997 to 2022. There was an increase from US$ 4 million per year before 2000 to US$ 15 million per year in the last years (from € 4 to 13 million). Robust data showed that most reported costs of IAS in Spain (> 90%) corresponded to management costs, while damage costs were only found for 2 out of the 174 species with reported costs. Economic costs relied mostly on regional and inter-regional administrations that spent 66% of costs in post-invasion management actions, contrary to all international guidelines, which recommend investing more in prevention. Regional administrations unequally reported costs. Moreover, 36% of the invasive species, reported to incur management costs, were not included in national or European regulations (i.e. Black Lists), suggesting the need to review these policies; besides, neighbouring regions seem to manage different groups of species. We suggest the need of a national lead agency to effectively coordinate actions, facilitate communication and collaboration amongst regional governments, national agencies and neighbouring countries. This will motivate the continuity of long-lasting management actions and the increase in efforts to report IAS costs by regional and inter-regional managers which will adequately provide information for future budgets gaining management effectiveness.
Collapse
|
47
|
Liu C, Diagne C, Angulo E, Banerjee AK, Chen Y, Cuthbert RN, Haubrock PJ, Kirichenko N, Pattison Z, Watari Y, Xiong W, Courchamp F. Economic costs of biological invasions in Asia. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.58147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Invasive species have caused severe impacts on biodiversity and human society. Although the estimation of environmental impacts caused by invasive species has increased in recent years, economic losses associated with biological invasions are only sporadically estimated in space and time. In this study, we synthesized the losses incurred by invasions in Asia, based on the most comprehensive database of economic costs of invasive species worldwide, including 560 cost records for 88 invasive species in 22 countries. We also assessed the differences in economic costs across taxonomic groups, geographical regions and impacted sectors, and further identified the major gaps of current knowledge in Asia. Reported economic costs of biological invasions were estimated between 1965 and 2017, and reached a total of US$ 432.6 billion (2017 value), with dramatic increases in 2000–2002 and in 2004. The highest costs were recorded for terrestrial ectotherms, for species estimated in South Asia, and for species estimated at the country level, and were related to more than one impacted sector. Two taxonomic groups with the highest reported costs were insects and mammals, and two countries with the highest costs were India and China. Non-English data covered all of 12 taxonomic groups, whereas English data only covered six groups, highlighting the importance of considering data from non-English sources to have a more comprehensive estimation of economic costs associated with biological invasions. However, we found that the estimation of economic costs was lacking for most Asian countries and for more than 96% of introduced species in Asia. Further, the estimation is heavily biased towards insects and mammals and is very limited concerning expenditures on invasion management. To optimize the allocation of limited resources, there is an important need to better and more widely study the economic costs of invasive alien species. In this way, improved cost reporting and more collaborations between scientists and stakeholders are needed across Asia.
Collapse
|
48
|
Song C, Uricchio LH, Mordecai EA, Saavedra S. Understanding the emergence of contingent and deterministic exclusion in multispecies communities. Ecol Lett 2021; 24:2155-2168. [PMID: 34288350 DOI: 10.1111/ele.13846] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Competitive exclusion can be classified as deterministic or as historically contingent. While competitive exclusion is common in nature, it has remained unclear when multispecies communities formed by more than two species should be dominated by deterministic or contingent exclusion. Here, we take a fully parameterised model of an empirical competitive system between invasive annual and native perennial plant species to explain both the emergence and sources of competitive exclusion in multispecies communities. Using a structural approach to understand the range of parameters promoting deterministic and contingent exclusions, we then find heuristic theoretical support for the following three general conclusions. First, we find that the life-history of perennial species increases the probability of observing contingent exclusion by increasing their effective intrinsic growth rates. Second, we find that the probability of observing contingent exclusion increases with weaker intraspecific competition, and not with the level of hierarchical competition. Third, we find a shift from contingent exclusion to deterministic exclusion with increasing numbers of competing species. Our work provides a heuristic framework to increase our understanding about the predictability of species persistence within multispecies communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.,Department of Biology, McGill University, Montreal, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| |
Collapse
|
49
|
Morey AC, Venette RC. A participatory method for prioritizing invasive species: Ranking threats to Minnesota's terrestrial ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112556. [PMID: 33882413 DOI: 10.1016/j.jenvman.2021.112556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Terrestrial invasive species threaten the integrity of diverse and highly-valued ecosystems. The Minnesota Invasive Terrestrial Plants and Pests Center (MITPPC) was established by the state of Minnesota to fund research projects aimed at minimizing harms posed by the most threatening terrestrial invasive species to the state's prairies, wetlands, forests, and agriculture. MITPPC used the Analytic Hierarchy Process (AHP) to identify and prioritize diverse invasive species threats. We describe how MITPPC tailored AHP to establish its research priorities and highlight major outcomes and challenges with our approach. We found that subject matter experts considered factors associated with the severity of impact from invasion, rather than the potential for invasion, to be the greatest contributors in identifying the most threatening species. Specifically, out of the 17 total criteria identified by the experts to rank species, negative environmental impact was the most influential threat criterion. Currently, narrowleaf cattail, mountain pine beetle, and the causative agent of Dutch elm disease are top threats to Minnesota terrestrial ecosystems. AHP does not handle data-poor situations well; however, it allows for easy incorporation of new information over time for a species without undoing the original framework. The MITPPC prioritization has encouraged interdisciplinary, cross-project synergy among its research projects. Such outcomes, coupled with the transparent and evidence-based decision structure, strengthen the credibility of MITPPC activities with many stakeholders.
Collapse
Affiliation(s)
- A C Morey
- Minnesota Invasive Terrestrial Plants and Pests Center, University of Minnesota, 1992 Folwell Ave., St. Paul, MN, 55108-6125, USA
| | - R C Venette
- Minnesota Invasive Terrestrial Plants and Pests Center, University of Minnesota, 1992 Folwell Ave., St. Paul, MN, 55108-6125, USA; USDA, Forest Service, Northern Research Station, 1561 Lindig Street, St. Paul, MN, 55108-6125, USA.
| |
Collapse
|
50
|
Cuthbert RN, Pattison Z, Taylor NG, Verbrugge L, Diagne C, Ahmed DA, Leroy B, Angulo E, Briski E, Capinha C, Catford JA, Dalu T, Essl F, Gozlan RE, Haubrock PJ, Kourantidou M, Kramer AM, Renault D, Wasserman RJ, Courchamp F. Global economic costs of aquatic invasive alien species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145238. [PMID: 33715860 DOI: 10.1016/j.scitotenv.2021.145238] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 05/15/2023]
Abstract
Much research effort has been invested in understanding ecological impacts of invasive alien species (IAS) across ecosystems and taxonomic groups, but empirical studies about economic effects lack synthesis. Using a comprehensive global database, we determine patterns and trends in economic costs of aquatic IAS by examining: (i) the distribution of these costs across taxa, geographic regions and cost types; (ii) the temporal dynamics of global costs; and (iii) knowledge gaps, especially compared to terrestrial IAS. Based on the costs recorded from the existing literature, the global cost of aquatic IAS conservatively summed to US$345 billion, with the majority attributed to invertebrates (62%), followed by vertebrates (28%), then plants (6%). The largest costs were reported in North America (48%) and Asia (13%), and were principally a result of resource damages (74%); only 6% of recorded costs were from management. The magnitude and number of reported costs were highest in the United States of America and for semi-aquatic taxa. Many countries and known aquatic alien species had no reported costs, especially in Africa and Asia. Accordingly, a network analysis revealed limited connectivity among countries, indicating disparate cost reporting. Aquatic IAS costs have increased in recent decades by several orders of magnitude, reaching at least US$23 billion in 2020. Costs are likely considerably underrepresented compared to terrestrial IAS; only 5% of reported costs were from aquatic species, despite 26% of known invaders being aquatic. Additionally, only 1% of aquatic invasion costs were from marine species. Costs of aquatic IAS are thus substantial, but likely underreported. Costs have increased over time and are expected to continue rising with future invasions. We urge increased and improved cost reporting by managers, practitioners and researchers to reduce knowledge gaps. Few costs are proactive investments; increased management spending is urgently needed to prevent and limit current and future aquatic IAS damages.
Collapse
Affiliation(s)
- Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa.
| | - Zarah Pattison
- Modelling, Evidence and Policy Research Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Nigel G Taylor
- Tour du Valat, Research Institute for the Conservation of Mediterranean Wetlands, 13200 Arles, France
| | - Laura Verbrugge
- University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences, P.O. Box 27, 00014 Helsinki, Finland; Aalto University, Department of Built Environment, Water & Development Research Group, Tietotie 1E, FI-00076 Aalto, Finland
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics (CAMB), Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Kuwait
| | - Boris Leroy
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle, CNRS, IRD, Sorbonne Université, Université Caen-Normandie, Université des Antilles, 43 rue Cuvier, CP 26, 75005 Paris, France
| | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território - IGOT, Universidade de Lisboa, Lisboa, Portugal
| | - Jane A Catford
- Department of Geography, King's College London, Strand WC2B 4BG, UK; School of BioSciences, University of Melbourne, Vic 3010, Australia
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Franz Essl
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Rodolphe E Gozlan
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, 34090 Montpellier, France
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum, Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Melina Kourantidou
- Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA 02543, United States; Institute of Marine Biological Resources and Inland Waters, Hellenic Center for Marine Research, Athens 164 52, Greece; University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg 6705, Denmark
| | - Andrew M Kramer
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, United States
| | - David Renault
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], - UMR 6553, F 35000 Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France
| | - Ryan J Wasserman
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa; South African Institute for Aquatic Biodiversity, Makhanda 6140, South Africa
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| |
Collapse
|