1
|
Yang X, Yao K, Zhang M, Zhang W, Zu H. New insight into the role of altered brain cholesterol metabolism in the pathogenesis of AD: A unifying cholesterol hypothesis and new therapeutic approach for AD. Brain Res Bull 2025; 224:111321. [PMID: 40164234 DOI: 10.1016/j.brainresbull.2025.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The dysregulation of cholesterol metabolism homeostasis has been universally suggested in the aeotiology of Alzheimer's disease (AD). Initially, studies indicate that alteration of serum cholesterol level might contribute to AD. However, because blood-brain barrier impedes entry of plasma cholesterol, brain cells are not directly influenced by plasma cholesterol. Furthermore, mounting evidences suggest a link between alteration of brain cholesterol metabolism and AD. Interestingly, Amyloid-β proteins (Aβ) can markedly inhibit cellular cholesterol biosynthesis and lower cellular cholesterol content in cultured cells. And Aβ overproduction/overload induces a significant decrease of brain cellular cholesterol content in familial AD (FAD) animals. Importantly, mutations or polymorphisms of genes related to brain cholesterol transportation, such as ApoE4, ATP binding cassette (ABC) transporters, low-density lipoprotein receptor (LDLR) family and Niemann-Pick C disease 1 or 2 (NPC1/2), obviously lead to decreased brain cholesterol transport, resulting in brain cellular cholesterol loss, which could be tightly associated with AD pathological impairments. Additionally, accumulating data show that there are reduction of brain cholesterol biosynthesis and/or disorder of brain cholesterol trafficking in a variety of sporadic AD (SAD) animals and patients. Collectively, compelling evidences indicate that FAD and SAD could share one common and overlapping neurochemical mechanism: brain neuronal/cellular cholesterol deficiency. Therefore, accumulated evidences strongly support a novel hypothesis that deficiency of brain cholesterol contributes to the onset and progression of AD. This review highlights the pivotal role of brain cholesterol deficiency in the pathogenesis of AD. The hypothesis offers valuable insights for the future development of AD treatment.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China; Department of Neurology, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
2
|
Basırlı H, Ateş N, Seyrantepe V. Imbalance in redox homeostasis is associated with neurodegeneration in the murine model of Tay-Sachs disease. Mol Biol Rep 2025; 52:282. [PMID: 40042748 DOI: 10.1007/s11033-025-10380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND Tay-Sachs disease is a neurodegenerative disorder characterized by a build-up of GM2 ganglioside in the brain, which results in progressive central nervous system dysfunction. Our group recently generated Hexa-/-Neu3-/- mice, a murine model with neuropathological abnormalities similar to the infantile form of Tay-Sachs disease. Previously, we reported progressive neurodegeneration with neuronal loss in the brain sections of Hexa-/-Neu3-/- mice. However, the relationship between the severity of neurodegeneration and the imbalance in redox homeostasis was not yet clarified in Hexa-/-Neu3-/- mice. Here, we evaluated whether neurodegeneration is associated with oxidative stress in the tissues and cells of Hexa-/-Neu3-/- mice and neuroglia cells from Tay-Sachs patients. METHODS AND RESULTS Cell death and oxidative stress-related markers were evaluated in four brain regions and fibroblasts of 5-month-old WT, Hexa-/-, Neu3-/-, and Hexa-/-Neu3-/- mice and human neuroglia cells using Western blot, RT-PCR, and immunohistochemistry analyses. We further analyzed oxidative stress levels in the samples using flow cytometry analyses. We discovered neuronal death, alterations in intracellular ROS levels, and damaging effects of oxidative stress, especially in the cerebellum and fibroblasts of Hexa-/-Neu3-/- mice. CONCLUSIONS Our results showed that alteration in redox homeostasis might be related to neurodegeneration in the murine model of Tay-Sachs Disease. These findings suggest that targeting the altered redox balance and increased oxidative stress might be a rational therapeutic approach for alleviating neurodegeneration and treating Tay-Sachs disease.
Collapse
Affiliation(s)
- Hande Basırlı
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce Mah, Urla, 35430, Izmir, Turkey
| | - Nurselin Ateş
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce Mah, Urla, 35430, Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce Mah, Urla, 35430, Izmir, Turkey.
- Izmir Institute of Technology, IYTEDEHAM, Urla, 35430, Izmir, Turkey.
| |
Collapse
|
3
|
Scarcella M, Fecarotta S, Alagia M, Barretta F, Uomo F, De Pasquale V, Patel HS, Strisciuglio P, Parenti G, Frisso G, Pavone LM, Ruoppolo M. Digital microfluidic platform for dried blood spot newborn screening of lysosomal storage diseases in Campania region (Italy): Findings from the first year pilot project. Mol Genet Metab 2025; 144:109008. [PMID: 39788860 DOI: 10.1016/j.ymgme.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Newborn screening (NBS) is a simple, non-invasive test that allows for the early identification of genetic diseases within the first days of a newborn's life. The aim of NBS is to detect potentially fatal or disabling conditions in newborns as early as possible, before the onset of disease symptoms. Early diagnosis enables timely treatments and improves the quality of life for affected patients. RESULTS A pilot project for dried blood spot (DBS) NBS of lysosomal storage diseases (LSDs), including Mucopolysaccharidosis I (MPSI, IDUA α-L-iduronidase deficiency), Pompe disease (GAA α-glucosidase acid deficiency), Gaucher disease (GBA β-glucosidase deficiency) and Fabry disease (GLA α-galactosidase deficiency), was conducted using the digital microfluidic (DMF) technique. DBS were analyzed in a multiplexed assays for the enzymatic activities of four lysosomal enzymes (IDUA, GAA, GBA, GLA), and subjects identified as deficient in any of these enzymes were referred to the clinical reference center for diagnosis confirmation. From June 6th, 2022, to May 12th, 2023, a total of 7650 newborns were analyzed and 1 subject affected by Pompe disease was identified together with two additional subjects, suspected of Pompe and Fabry disease respectively, for whom continued follow-up is mandatory to determine the phenotype. CONCLUSIONS The pilot project for DBS NBS of four LSDs in Campania Region validated the effectiveness of DMF method, established enzymatic activity cut-offs, and identified newborns referred to the clinical center for integrated diagnostics, including genetic analyses. The results suggest that this technique can effectively detect potentially affected newborns, who will require further diagnostic confirmation and clinical follow-up. This diagnostic flow chart provides the opportunity to initiate early treatments and improve LSD patients' life span.
Collapse
Affiliation(s)
- Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy
| | - Simona Fecarotta
- Department of Translational Medical Sciences, Medical School, University of Naples Federico II, 80131 Naples, Italy
| | - Marianna Alagia
- Department of Translational Medical Sciences, Medical School, University of Naples Federico II, 80131 Naples, Italy
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy; DAIMedLab AOU Federico II, 80131 Naples, Italy
| | - Fabiana Uomo
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy
| | - Valeria De Pasquale
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy; Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | | | - Pietro Strisciuglio
- Department of Translational Medical Sciences, Medical School, University of Naples Federico II, 80131 Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medical Sciences, Medical School, University of Naples Federico II, 80131 Naples, Italy; Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy.
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.ar.l., 80145 Naples, Italy.
| |
Collapse
|
4
|
Wang Y, Yang Y, Cai Y, Aobulikasimu A, Wang Y, Hu C, Miao Z, Shao Y, Zhao M, Hu Y, Xu C, Chen X, Li Z, Chen J, Wang L, Chen S. Endo-Lysosomal Network Disorder Reprograms Energy Metabolism in SorL1-Null Rat Hippocampus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407709. [PMID: 39225620 PMCID: PMC11538633 DOI: 10.1002/advs.202407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Sortilin-related receptor 1 (SorL1) deficiency is a genetic predisposition to familial Alzheimer's disease (AD), but its pathology is poorly understood. In SorL1-null rats, a disorder of the global endosome-lysosome network (ELN) is found in hippocampal neurons. Deletion of amyloid precursor protein (APP) in SorL1-null rats could not completely rescue the neuronal abnormalities in the ELN of the hippocampus and the impairment of spatial memory in SorL1-null young rats. These in vivo observations indicated that APP is one of the cargoes of SorL1 in the regulation of the ELN, which affects hippocampal-dependent memory. When SorL1 is depleted, the endolysosome takes up more of the lysosome flux and damages lysosomal digestion, leading to pathological lysosomal storage and disturbance of cholesterol and iron homeostasis in the hippocampus. These disturbances disrupt the original homeostasis of the material-energy-subcellular structure and reprogram energy metabolism based on fatty acids in the SorL1-null hippocampus, instead of glucose. Although fatty acid oxidation increases ATP supply, it cannot reduce the levels of the harmful byproduct ROS during oxidative phosphorylation, as it does in glucose catabolism. Therefore, the SorL1-null rats exhibit hippocampal degeneration, and their spatial memory is impaired. Our research sheds light on the pathology of SorL1 deficiency in AD.
Collapse
Affiliation(s)
- Yajie Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuting Yang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ying Cai
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Ayikaimaier Aobulikasimu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yuexin Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chuanwei Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Zhikang Miao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Shao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Mengna Zhao
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Yue Hu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Chang Xu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Xinjun Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Jincao Chen
- Brain Center, Department of Neurosurgery, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Respiratory Diseases, Institute of PediatricsShenzhen Children's HospitalShenzhen518026China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
- Department of Burn and Plastic SurgeryShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationShenzhen Institute of Translational MedicineMedical Innovation Technology Transformation CenterShenzhen University Medical School, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
5
|
Maya-López M, Monsalvo-Maraver LA, Delgado-Arzate AL, Olivera-Pérez CI, El-Hafidi M, Silva-Palacios A, Medina-Campos O, Pedraza-Chaverri J, Aschner M, Tinkov AA, Túnez I, Retana-Márquez S, Zazueta C, Santamaría A. Anandamide and WIN 55212-2 Afford Protection in Rat Brain Mitochondria in a Toxic Model Induced by 3-Nitropropionic Acid: an In Vitro Study. Mol Neurobiol 2024; 61:6435-6452. [PMID: 38307967 PMCID: PMC11338978 DOI: 10.1007/s12035-024-03967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Mitochondrial dysfunction plays a key role in the development of neurodegenerative disorders. In contrast, the regulation of the endocannabinoid system has been shown to promote neuroprotection in different neurotoxic paradigms. The existence of an active form of the cannabinoid receptor 1 (CB1R) in mitochondrial membranes (mitCB1R), which might exert its effects through the same signaling mechanisms as the cell membrane CB1R, has been shown to regulate mitochondrial activity. Although there is evidence suggesting that some cannabinoids may induce protective effects on isolated mitochondria, substantial evidence on the role of cannabinoids in mitochondria remains to be explored. In this work, we developed a toxic model of mitochondrial dysfunction induced by exposure of brain mitochondria to the succinate dehydrogenase inhibitor 3-nitropropionic acid (3-NP). Mitochondria were also pre-incubated with the endogenous agonist anandamide (AEA) and the synthetic CB1R agonist WIN 55212-2 to evaluate their protective effects. Mitochondrial reduction capacity, reactive oxygen species (ROS) formation, and mitochondrial swelling were assessed as toxic markers. While 3-NP decreased the mitochondrial reduction capacity and augmented mitochondrial ROS formation and swelling, both AEA and WIN 55212-2 ameliorated these toxic effects. To explore the possible involvement of mitCB1R activation on the protective effects of AEA and WIN 55212-2, mitochondria were also pre-incubated in the presence of the selective CB1R antagonist AM281, which completely reverted the protective effects of the cannabinoids to levels similar to those evoked by 3-NP. These results show partial protective effects of cannabinoids, suggesting that mitCB1R activation may be involved in the recovery of compromised mitochondrial activity, related to reduction of ROS formation and further prevention of mitochondrial swelling.
Collapse
Affiliation(s)
- Marisol Maya-López
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana, 09310, Mexico City, Mexico.
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| | | | | | | | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, SSA, 14080, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, SSA, 14080, Mexico City, Mexico
| | - Omar Medina-Campos
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Autónoma de México, 04510, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Autónoma de México, 04510, Mexico City, Mexico
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
- Department of Human Ecology and Bioelementology, and Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Isaac Túnez
- Instituto de Investigaciones Biomedicas Maimónides de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
- Red Española de Excelencia en Estimulación Cerebral (REDESTIM), 14071, Córdoba, Spain
| | - Socorro Retana-Márquez
- Departamento de Biología de La Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09310, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, SSA, 14080, Mexico City, Mexico.
| | - Abel Santamaría
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Ozlu C, Messahel S, Minassian B, Kayani S. Mitochondrial encephalopathies and myopathies: Our tertiary center's experience. Eur J Paediatr Neurol 2024; 50:31-40. [PMID: 38583367 DOI: 10.1016/j.ejpn.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Mitochondrial diseases have a heterogeneous phenotype and can result from mutations in the mitochondrial or nuclear genomes, constituting a diagnostically and therapeutically challenging group of disorders. We report our center's experience with mitochondrial encephalopathies and myopathies with a cohort of 50 genetically and phenotypically diverse patients followed in the Neurology clinic over the last ten years. Seventeen patients had mitochondrial DNA mutations, presented over a wide range of ages with seizures, feeding difficulties, extraocular movements abnormalities, and had high rates of stroke-like episodes and regression. Twenty-seven patients had nuclear DNA mutations, presented early in life with feeding difficulty, failure-to-thrive, and seizures, and had high proportions of developmental delay, wheelchair dependence, spine abnormalities and dystonia. In six patients, a mutation could not be identified, but they were included for having mitochondrial disease confirmed by histopathology, enzyme analysis and clinical features. These patients had similar characteristics to patients with nuclear DNA mutations, suggesting missed underlying mutations in the nuclear genome. Management was variable among patients, but outcomes were universally poor with severe disability in all cases. Therapeutic entryways through elucidation of disease pathways and remaining unknown genes are acutely needed.
Collapse
Affiliation(s)
- Can Ozlu
- University of Texas Southwestern Medical Center ,Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | | | - Berge Minassian
- University of Texas Southwestern Medical Center ,Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA
| | - Saima Kayani
- University of Texas Southwestern Medical Center ,Dallas, TX, USA; Children's Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Delgado CA, Poletto E, Vera LNP, Jacques CED, Vianna P, Reinhardt LS, Baldo G, Vargas CR. Effect of genistein and coenzyme Q10 in oxidative damage and mitochondrial membrane potential in an attenuated type II mucopolysaccharidosis cellular model. Cell Biochem Funct 2024; 42:e3932. [PMID: 38332678 DOI: 10.1002/cbf.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is an inborn error of the metabolism resulting from several possible mutations in the gene coding for iduronate-2-sulfatase (IDS), which leads to a great clinical heterogeneity presented by these patients. Many studies demonstrate the involvement of oxidative stress in the pathogenesis of inborn errors of metabolism, and mitochondrial dysfunction and oxidative stress can be related since most of reactive oxygen species come from mitochondria. Cellular models have been used to study different diseases and are useful in biochemical research to investigate them in a new promising way. The aim of this study is to develop a heterozygous cellular model for MPS II and analyze parameters of oxidative stress and mitochondrial dysfunction and investigate the in vitro effect of genistein and coenzyme Q10 on these parameters for a better understanding of the pathophysiology of this disease. The HP18 cells (heterozygous c.261_266del6/c.259_261del3) showed almost null results in the activity of the IDS enzyme and presented accumulation of glycosaminoglycans (GAGs), allowing the characterization of this knockout cellular model by MPS II gene editing. An increase in the production of reactive species was demonstrated (p < .05 compared with WT vehicle group) and genistein at concentrations of 25 and 50 µm decreased in vitro its production (p < .05 compared with HP18 vehicle group), but there was no effect of coenzyme Q10 in this parameter. There was a tendency for lysosomal pH change in HP18 cells in comparison to WT group and none of the antioxidants tested demonstrated any effect on this parameter. There was no increase in the activity of the antioxidant enzymes superoxide dismutase and catalase and oxidative damage to DNA in HP18 cells in comparison to WT group and neither genistein nor coenzyme q10 had any effect on these parameters. Regarding mitochondrial membrane potential, genistein induced mitochondrial depolarization in both concentrations tested (p < .05 compared with HP18 vehicle group and compared with WT vehicle group) and incubation with coenzyme Q10 demonstrated no effect on this parameter. In conclusion, it is hypothesized that our cellular model could be compared with a milder MPS II phenotype, given that the accumulation of GAGs in lysosomes is not as expressive as another cellular model for MPS II presented in the literature. Therefore, it is reasonable to expect that there is no mitochondrial depolarization and no DNA damage, since there is less lysosomal impairment, as well as less redox imbalance.
Collapse
Affiliation(s)
- Camila Aguilar Delgado
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Edina Poletto
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luisa Natalia Pimentel Vera
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Priscila Vianna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Guilherme Baldo
- Programa de Pós-Graduação em Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Terapia Gênica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
8
|
Hosseini K, Fallahi J, Tabei SMB, Razban V. Gene therapy approaches for GM1 gangliosidosis: Focus on animal and cellular studies. Cell Biochem Funct 2023; 41:1093-1105. [PMID: 38018878 DOI: 10.1002/cbf.3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
One of the most important inherited metabolic disorders is GM1 gangliosidosis, which is a progressive neurological disorder. The main cause of this disease is a genetic defect in the enzyme β-galactosidase due to a mutation in the glb1 gene. Lack of this enzyme in cells (especially neurons) leads to the accumulation of ganglioside substrate in nerve tissues, followed by three clinical forms of GM1 disease (neonatal, juvenile, and adult variants). Genetically, many mutations occur in the exons of the glb1 gene, such as exons 2, 6, 15, and 16, so the most common ones reported in scientific studies include missense/nonsense mutations. Therefore, many studies have examined the genotype-phenotype relationships of this disease and subsequently using gene therapy techniques have been able to reduce the complications of the disease and alleviate the signs and symptoms of the disease. In this regard, the present article reviews the general features of GM1 gangliosidosis and its mutations, as well as gene therapy studies and animal and human models of the disease.
Collapse
Affiliation(s)
- Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed M B Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Comprehensive Medical Genetic Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Tyler SE, Tyler LD. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023; 14:210-234. [PMID: 36880056 PMCID: PMC9984566 DOI: 10.1016/j.ibneur.2023.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/25/2023] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
Key Words
- A-H, Alpers-Huttenlocher syndrome
- AD, Alzheimer’s disease
- ALS, Amyotrophic lateral sclerosis
- BBB, blood-brain barrier
- C. elegans,, Caenorhabditis elegans
- CJD, Creutzfeldt-Jakob disease
- CMT, Charcot–Marie–Tooth disease
- CS, Cockayne syndrome
- Ech A, Echinochrome A
- FDA, Food and Drug Administration
- FRDA, Friedreich’s ataxia
- FTD, Frontotemporal dementia
- HD, Huntington’s disease
- Hsp, Heat shock protein
- LSD, Lysosomal storage diseases
- MS, Multiple sclerosis
- MSA, Multiple system atrophy
- MSP, Multisystem proteinopathy
- Medicinal plant
- ND, neurodegenerative disease
- NPC, Neimann-Pick disease type C
- NSC, neural stem cells
- Neuro-inflammation
- Neurodegeneration
- Neurogenesis
- PC, pharmacological chaperone
- PD, Parkinson’s disease
- Protein misfolding
- SMA, Spinal muscular atrophy
- VD, Vascular dementia
- prion dis, prion diseases
- α-syn, alpha-synuclein
Collapse
Affiliation(s)
- Sheena E.B. Tyler
- John Ray Research Field Station, Cheshire, United Kingdom
- Corresponding author.
| | - Luke D.K. Tyler
- School of Natural Sciences, Bangor University, Gwynedd, United Kingdom
| |
Collapse
|
11
|
Hammerschmidt TG, Encarnação M, Lamberty Faverzani J, de Fátima Lopes F, Poswar de Oliveira F, Fischinger Moura de Sousa C, Ribeiro I, Alves S, Giugliani R, Regla Vargas C. Molecular profile and peripheral markers of neurodegeneration in patients with Niemann-Pick type C: Decrease in Plasminogen Activator Inhibitor type 1 and Platelet-Derived Growth Factor type AA. Arch Biochem Biophys 2023; 735:109510. [PMID: 36608914 DOI: 10.1016/j.abb.2023.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Niemann-Pick type C1 (NPC1) is a fatal inherited disease, caused by pathogenic variants in NPC1 gene, which leads to intracellular accumulation of non-esterified cholesterol and glycosphingolipids. This accumulation leads to a wide range of clinical manifestations, including neurological and cognitive impairment as well as psychiatric disorders. The pathophysiology of cerebral damage involves loss of Purkinje cells, synaptic disturbance, and demyelination. Miglustat, a reversible inhibitor of glucosylceramide synthase, is an approved treatment for NPC1 and can slow neurological damage. The aim of this study was to assess the levels of peripheric neurodegeneration biomarkers of NPC1 patients, namely brain-derived neurotrophic factor (BDNF), platelet-derived growth factors (PDGF-AA and PDGF-AB/BB), neural cell adhesion molecule (NCAM), PAI-1 Total and Cathepsin-D, as well as the levels of cholestane-3β,5α,6β-triol (3β,5α,6β-triol), a biomarker for NPC1. Molecular analysis of the NPC1 patients under study was performed by next generation sequencing (NGS) in cultured fibroblasts. We observed that NPC1 patients treated with miglustat have a significant decrease in PAI-1 total and PDGF-AA concentrations, and no alteration in BDNF, NCAM, PDGF-AB/BB and Cathepsin D. We also found that NPC1 patients treated with miglustat have normalized levels of 3β,5α,6β-triol. The molecular analysis showed four described mutations, and for two patients was not possible to identify the second mutated allele. Our results indicate that the decrease of PAI-1 and PDGF-AA in NPC1 patients could be involved in the pathophysiology of this disease. This is the first work to analyze those plasmatic markers of neurodegenerative processes in NPC1 patients.
Collapse
Affiliation(s)
| | - Marisa Encarnação
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | - Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franciele de Fátima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil
| | | | | | - Isaura Ribeiro
- Unidade de Bioquímica Genética, Centro de Genética Médica, Centro Hospitalar Universitário do Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, ICBAS-UP, Porto, Portugal; Espero Centro Referência Doenças Hereditárias do Metabolismo, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sandra Alves
- Research & Development Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, Porto, Portugal
| | | | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
12
|
Vantaggiato L, Shaba E, Carleo A, Bezzini D, Pannuzzo G, Luddi A, Piomboni P, Bini L, Bianchi L. Neurodegenerative Disorder Risk in Krabbe Disease Carriers. Int J Mol Sci 2022; 23:13537. [PMID: 36362324 PMCID: PMC9654610 DOI: 10.3390/ijms232113537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Krabbe disease (KD) is a rare autosomal recessive disorder caused by mutations in the galactocerebrosidase gene (GALC). Defective GALC causes aberrant metabolism of galactolipids present almost exclusively in myelin, with consequent demyelinization and neurodegeneration of the central and peripheral nervous system (NS). KD shares some similar features with other neuropathies and heterozygous carriers of GALC mutations are emerging with an increased risk in developing NS disorders. In this work, we set out to identify possible variations in the proteomic profile of KD-carrier brain to identify altered pathways that may imbalance its homeostasis and that may be associated with neurological disorders. The differential analysis performed on whole brains from 33-day-old twitcher (galc -/-), heterozygous (galc +/-), and wild-type mice highlighted the dysregulation of several multifunctional factors in both heterozygous and twitcher mice. Notably, the KD-carrier mouse, despite its normal phenotype, presents the deregulation of vimentin, receptor of activated protein C kinase 1 (RACK1), myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), transitional endoplasmic reticulum ATPase (VCP), and N-myc downstream regulated gene 1 protein (NDRG1) as well as changes in the ubiquitinated-protein pattern. Our findings suggest the carrier may be affected by dysfunctions classically associated with neurodegeneration: (i) alteration of (mechano) signaling and intracellular trafficking, (ii) a generalized affection of proteostasis and lipid metabolism, with possible defects in myelin composition and turnover, and (iii) mitochondrion and energy supply dysfunctions.
Collapse
Affiliation(s)
- Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Enxhi Shaba
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Daiana Bezzini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Giovanna Pannuzzo
- Department of Biochemical and Biotechnological Sciences, Section of Physiology, University of Catania, 95121 Catania, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
13
|
Pathogenic Roles of Heparan Sulfate and Its Use as a Biomarker in Mucopolysaccharidoses. Int J Mol Sci 2022; 23:ijms231911724. [PMID: 36233030 PMCID: PMC9570396 DOI: 10.3390/ijms231911724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Heparan sulfate (HS) is an essential glycosaminoglycan (GAG) as a component of proteoglycans, which are present on the cell surface and in the extracellular matrix. HS-containing proteoglycans not only function as structural constituents of the basal lamina but also play versatile roles in various physiological processes, including cell signaling and organ development. Thus, inherited mutations of genes associated with the biosynthesis or degradation of HS can cause various diseases, particularly those involving the bones and central nervous system (CNS). Mucopolysaccharidoses (MPSs) are a group of lysosomal storage disorders involving GAG accumulation throughout the body caused by a deficiency of GAG-degrading enzymes. GAGs are stored differently in different types of MPSs. Particularly, HS deposition is observed in patients with MPS types I, II, III, and VII, all which involve progressive neuropathy with multiple CNS system symptoms. While therapies are available for certain symptoms in some types of MPSs, significant unmet medical needs remain, such as neurocognitive impairment. This review presents recent knowledge on the pathophysiological roles of HS focusing on the pathogenesis of MPSs. We also discuss the possible use and significance of HS as a biomarker for disease severity and therapeutic response in MPSs.
Collapse
|
14
|
Secondary Mitochondrial Dysfunction as a Cause of Neurodegenerative Dysfunction in Lysosomal Storage Diseases and an Overview of Potential Therapies. Int J Mol Sci 2022; 23:ijms231810573. [PMID: 36142486 PMCID: PMC9503973 DOI: 10.3390/ijms231810573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
Mitochondrial dysfunction has been recognised a major contributory factor to the pathophysiology of a number of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs is as yet uncertain, but appears to be triggered by a number of different factors, although oxidative stress and impaired mitophagy appear to be common inhibitory mechanisms shared amongst this group of disorders, including Gaucher’s disease, Niemann–Pick disease, type C, and mucopolysaccharidosis. Many LSDs resulting from defects in lysosomal hydrolase activity show neurodegeneration, which remains challenging to treat. Currently available curative therapies are not sufficient to meet patients’ needs. In view of the documented evidence of mitochondrial dysfunction in the neurodegeneration of LSDs, along with the reciprocal interaction between the mitochondrion and the lysosome, novel therapeutic strategies that target the impairment in both of these organelles could be considered in the clinical management of the long-term neurodegenerative complications of these diseases. The purpose of this review is to outline the putative mechanisms that may be responsible for the reported mitochondrial dysfunction in LSDs and to discuss the new potential therapeutic developments.
Collapse
|
15
|
Chen FW, Davies JP, Calvo R, Chaudhari J, Dolios G, Taylor MK, Patnaik S, Dehdashti J, Mull R, Dranchack P, Wang A, Xu X, Hughes E, Southall N, Ferrer M, Wang R, Marugan JJ, Ioannou YA. Activation of mitochondrial TRAP1 stimulates mitochondria-lysosome crosstalk and correction of lysosomal dysfunction. iScience 2022; 25:104941. [PMID: 36065186 PMCID: PMC9440283 DOI: 10.1016/j.isci.2022.104941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Fannie W. Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joanna P. Davies
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raul Calvo
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Jagruti Chaudhari
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, 1250 1st Avenue, New York, NY 10065, USA
| | - Georgia Dolios
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mercedes K. Taylor
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Samarjit Patnaik
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Jean Dehdashti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca Mull
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Patricia Dranchack
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Amy Wang
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Emma Hughes
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Noel Southall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan J. Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
- Corresponding author
| | - Yiannis A. Ioannou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author
| |
Collapse
|
16
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
17
|
Lopez-Fabuel I, Garcia-Macia M, Buondelmonte C, Burmistrova O, Bonora N, Alonso-Batan P, Morant-Ferrando B, Vicente-Gutierrez C, Jimenez-Blasco D, Quintana-Cabrera R, Fernandez E, Llop J, Ramos-Cabrer P, Sharaireh A, Guevara-Ferrer M, Fitzpatrick L, Thompton CD, McKay TR, Storch S, Medina DL, Mole SE, Fedichev PO, Almeida A, Bolaños JP. Aberrant upregulation of the glycolytic enzyme PFKFB3 in CLN7 neuronal ceroid lipofuscinosis. Nat Commun 2022; 13:536. [PMID: 35087090 PMCID: PMC8795187 DOI: 10.1038/s41467-022-28191-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
CLN7 neuronal ceroid lipofuscinosis is an inherited lysosomal storage neurodegenerative disease highly prevalent in children. CLN7/MFSD8 gene encodes a lysosomal membrane glycoprotein, but the biochemical processes affected by CLN7-loss of function are unexplored thus preventing development of potential treatments. Here, we found, in the Cln7∆ex2 mouse model of CLN7 disease, that failure in autophagy causes accumulation of structurally and bioenergetically impaired neuronal mitochondria. In vivo genetic approach reveals elevated mitochondrial reactive oxygen species (mROS) in Cln7∆ex2 neurons that mediates glycolytic enzyme PFKFB3 activation and contributes to CLN7 pathogenesis. Mechanistically, mROS sustains a signaling cascade leading to protein stabilization of PFKFB3, normally unstable in healthy neurons. Administration of the highly selective PFKFB3 inhibitor AZ67 in Cln7∆ex2 mouse brain in vivo and in CLN7 patients-derived cells rectifies key disease hallmarks. Thus, aberrant upregulation of the glycolytic enzyme PFKFB3 in neurons may contribute to CLN7 pathogenesis and targeting PFKFB3 could alleviate this and other lysosomal storage diseases.
Collapse
Affiliation(s)
- Irene Lopez-Fabuel
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Marina Garcia-Macia
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Costantina Buondelmonte
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | | | - Nicolo Bonora
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Paula Alonso-Batan
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Brenda Morant-Ferrando
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Carlos Vicente-Gutierrez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Ruben Quintana-Cabrera
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Emilio Fernandez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Aseel Sharaireh
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Marta Guevara-Ferrer
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Lorna Fitzpatrick
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | | | - Tristan R McKay
- Centre for Bioscience, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Stephan Storch
- University Children's Research@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), High Content Screening Facility, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, 80138, Naples, Italy
| | - Sara E Mole
- MRC Laboratory for Molecular Biology and GOS Institute of Child Health, University College London, London, UK
| | | | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
18
|
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease – more than just a rare lipid storage disease. J Mol Med (Berl) 2022; 100:499-518. [DOI: 10.1007/s00109-021-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
|
19
|
Wu L, Liao X, Yang S, Gan S. Krabbe Disease Associated With Mitochondrial Dysfunction in a Chinese Family. Front Neurol 2022; 12:750095. [PMID: 34975718 PMCID: PMC8717148 DOI: 10.3389/fneur.2021.750095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Krabbe disease is caused by biallelic mutations of GALC gene. NDUFAF1 gene mutations are related to mitochondrial encephalopathy. To date, there has been no report on the co-pathogenesis of these two gene mutations. There were three children in a family who presented with global developmental retardation. MRI showed lesions in the white matter and dentate nucleus of the cerebellum. Methods: Clinical data of the proband and her family members were gathered in a retrospective manner. Karyotype, FISH, whole exome sequencing was performed using genomic DNAs extracted from peripheral blood samples. Enzyme activities of galactosylceramidase (GALC) and mitochondria were determined to verify gene functions. Results: This study reported a pedigree of leukoencephalopathy, in which 3 of the 4 children showed phenotypes of developmental delay, hearing/visual impairment, and peripheral neuropathy. Mutations of NDUFAF1 (c.278A>G; p. His93Arg, c.247G> A; p. Asp83Asn) and GALC (c.599C>A; p.Ser200*) were identified in all three cases. The proband's parents carried these mutations as a heterozygous state. Clinical features, MRI changes, enzyme activity of GALC, and mitochondrial function analysis demonstrated that this pedigree was caused by GALC and NDUFAF1 gene mutations working together. Conclusion: We first report a pedigree of Krabbe disease with biallelic mitochondrial gene NDUFAF1 mutations. For multiple gene mutations found in genetic testing, clinical phenotypes, gene functions, and family history should be comprehensively analyzed. Gene panel examination may miss pathogenic mutations, and prenatal diagnosis of patients with polygenic inheritance needs careful consideration.
Collapse
Affiliation(s)
- Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Xiangfu Liao
- The First People's Hospital of Yue Yang, Yueyang, China
| | - Sai Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Siyi Gan
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
20
|
Disrupted expression of mitochondrial NCLX sensitizes neuroglial networks to excitotoxic stimuli and renders synaptic activity toxic. J Biol Chem 2021; 298:101508. [PMID: 34942149 PMCID: PMC8808183 DOI: 10.1016/j.jbc.2021.101508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial sodium/calcium/lithium exchanger (NCLX) is an important mediator of calcium extrusion from mitochondria. In this study, we tested the hypothesis that physiological expression levels of NCLX are essential for maintaining neuronal resilience in the face of excitotoxic challenge. Using a short hairpin RNA (shRNA)-mediated approach, we showed that reduced NCLX expression exacerbates neuronal mitochondrial calcium dysregulation, mitochondrial membrane potential (ΔΨm) breakdown, and reactive oxygen species (ROS) generation during excitotoxic stimulation of primary hippocampal cultures. Moreover, NCLX knockdown-which affected both neurons and glia-resulted not only in enhanced neurodegeneration following an excitotoxic insult, but also in neuronal and astrocytic cell death under basal conditions. Our data also revealed that synaptic activity, which promotes neuroprotective signaling, can become lethal upon NCLX depletion; expression of NCLX-targeted shRNA impaired the clearance of mitochondrial calcium following action potential bursts and was associated both with ΔΨmbreakdown and substantial neurodegeneration in hippocampal cultures undergoing synaptic activity. Finally, we showed that NCLX knockdown within the hippocampal cornu ammonis 1 (CA1) region in vivo causes substantial neuro- and astrodegeneration. In summary, we demonstrated that dysregulated NCLX expression not only sensitizes neuroglial networks to excitotoxic stimuli but notably also renders otherwise neuroprotective synaptic activity toxic. These findings may explain the emergence of neuro- and astrodegeneration in patients with disorders characterized by disrupted NCLX expression or function, and suggest that treatments aimed at enhancing or restoring NCLX function may prevent central nervous system damage in these disease states.
Collapse
|
21
|
Oxidative Stress in Mucopolysaccharidoses: Pharmacological Implications. Molecules 2021; 26:molecules26185616. [PMID: 34577086 PMCID: PMC8468662 DOI: 10.3390/molecules26185616] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Although mucopolysaccharidoses (MPS) are caused by mutations in genes coding for enzymes responsible for degradation of glycosaminoglycans, storage of these compounds is crucial but is not the only pathomechanism of these severe, inherited metabolic diseases. Among various factors and processes influencing the course of MPS, oxidative stress appears to be a major one. Oxidative imbalance, occurring in MPS and resulting in increased levels of reactive oxidative species, causes damage of various biomolecules, leading to worsening of symptoms, especially in the central nervous system (but not restricted to this system). A few therapeutic options are available for some types of MPS, including enzyme replacement therapy and hematopoietic stem cell transplantation, however, none of them are fully effective in reducing all symptoms. A possibility that molecules with antioxidative activities might be useful accompanying drugs, administered together with other therapies, is discussed in light of the potential efficacy of MPS treatment.
Collapse
|
22
|
Wiweger M, Majewski L, Adamek-Urbanska D, Wasilewska I, Kuznicki J. npc2-Deficient Zebrafish Reproduce Neurological and Inflammatory Symptoms of Niemann-Pick Type C Disease. Front Cell Neurosci 2021; 15:647860. [PMID: 33986646 PMCID: PMC8111220 DOI: 10.3389/fncel.2021.647860] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is an autosomal recessive lysosomal storage disease that is caused by a mutation of the NPC1 or NPC2 gene, in which un-esterified cholesterol and sphingolipids accumulate mainly in the liver, spleen, and brain. Abnormal lysosomal storage leads to cell damage, neurological problems, and premature death. The time of onset and severity of symptoms of NPC disease are highly variable. The molecular mechanisms that are responsible for NPC disease pathology are far from being understood. The present study generated and characterized a zebrafish mutant that lacks Npc2 protein that may be useful for studies at the organismal, cellular, and molecular levels and both small-scale and high-throughput screens. Using CRISPR/Cas9 technology, we knocked out the zebrafish homolog of NPC2. Five-day-old npc2 mutants were morphologically indistinguishable from wildtype larvae. We found that live npc2-/- larvae exhibited stronger Nile blue staining. The npc2-/- larvae exhibited low mobility and a high anxiety-related response. These behavioral changes correlated with downregulation of the mcu (mitochondrial calcium uniporter) gene, ppp3ca (calcineurin) gene, and genes that are involved in myelination (mbp and mpz). Histological analysis of adult npc2-/- zebrafish revealed that pathological changes in the nervous system, kidney, liver, and pancreas correlated with inflammatory responses (i.e., the upregulation of il1, nfκβ, and mpeg; i.e., hallmarks of NPC disease). These findings suggest that the npc2 mutant zebrafish may be a model of NPC disease.
Collapse
Affiliation(s)
- Malgorzata Wiweger
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Dobrochna Adamek-Urbanska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iga Wasilewska
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Jacek Kuznicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Balouch B, Nagorsky H, Pham T, LaGraff JT, Chu-LaGraff Q. Human INCL fibroblasts display abnormal mitochondrial and lysosomal networks and heightened susceptibility to ROS-induced cell death. PLoS One 2021; 16:e0239689. [PMID: 33561134 PMCID: PMC7872282 DOI: 10.1371/journal.pone.0239689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/09/2021] [Indexed: 01/31/2023] Open
Abstract
Infantile Neuronal Ceroid Lipofuscinosis (INCL) is a pediatric neurodegenerative disorder characterized by progressive retinal and central nervous system deterioration during infancy. This lysosomal storage disorder results from a deficiency in the Palmitoyl Protein Thioesterase 1 (PPT1) enzyme—a lysosomal hydrolase which cleaves fatty acid chains such as palmitate from lipid-modified proteins. In the absence of PPT1 activity, these proteins fail to be degraded, leading to the accumulation of autofluorescence storage material in the lysosome. The underlying molecular mechanisms leading to INCL pathology remain poorly understood. A role for oxidative stress has been postulated, yet little evidence has been reported to support this possibility. Here we present a comprehensive cellular characterization of human PPT1-deficient fibroblast cells harboring Met1Ile and Tyr247His compound heterozygous mutations. We detected autofluorescence storage material and observed distinct organellar abnormalities of the lysosomal and mitochondrial structures, which supported previous postulations about the role of ER, mitochondria and oxidative stress in INCL. An increase in the number of lysosomal structures was found in INCL patient fibroblasts, which suggested an upregulation of lysosomal biogenesis, and an association with endoplasmic reticulum stress response. The mitochondrial network also displayed abnormal spherical punctate morphology instead of normal elongated tubules with extensive branching, supporting the involvement of mitochondrial and oxidative stress in INCL cell death. Autofluorescence accumulation and lysosomal pathologies can be mitigated in the presence of conditioned wild type media suggesting that a partial restoration via passive introduction of the enzyme into the cellular environment may be possible. We also demonstrated, for the first time, that human INCL fibroblasts have a heightened susceptibility to exogenous reactive oxygen species (ROS)-induced cell death, which suggested an elevated basal level of endogenous ROS in the mutant cell. Collectively, these findings support the role of intracellular organellar networks in INCL pathology, possibly due to oxidative stress.
Collapse
Affiliation(s)
- Bailey Balouch
- Neuroscience Program, Union College, Schenectady, New York, United States of America
| | - Halle Nagorsky
- Neuroscience Program, Union College, Schenectady, New York, United States of America
| | - Truc Pham
- Department of Biology, Union College, Schenectady, New York, United States of America
| | - James Thai LaGraff
- Department of Biology, Union College, Schenectady, New York, United States of America
| | - Quynh Chu-LaGraff
- Neuroscience Program, Union College, Schenectady, New York, United States of America
- Department of Biology, Union College, Schenectady, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
25
|
Sazonova MA, Sinyov VV, Ryzhkova AI, Sazonova MD, Kirichenko TV, Khotina VA, Khasanova ZB, Doroschuk NA, Karagodin VP, Orekhov AN, Sobenin IA. Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis. Int J Mol Sci 2021; 22:E699. [PMID: 33445687 PMCID: PMC7828120 DOI: 10.3390/ijms22020699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Tatiana V. Kirichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Zukhra B. Khasanova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Natalya A. Doroschuk
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily P. Karagodin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Department of Commodity Science and Expertise, Plekhanov Russian University of Economics, 125993 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Centre, 143024 Moscow, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| |
Collapse
|
26
|
Cheng A, Kawahata I, Fukunaga K. Fatty Acid Binding Protein 5 Mediates Cell Death by Psychosine Exposure through Mitochondrial Macropores Formation in Oligodendrocytes. Biomedicines 2020; 8:biomedicines8120635. [PMID: 33419250 PMCID: PMC7766880 DOI: 10.3390/biomedicines8120635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Oligodendrocytes, the myelinating cells in the central nervous system (CNS), are critical for producing myelin throughout the CNS. The loss of oligodendrocytes is associated with multiple neurodegenerative disorders mediated by psychosine. However, the involvement of psychosine in the critical biochemical pathogenetic mechanism of the loss of oligodendrocytes and myelin in krabbe disease (KD) remains unclear. Here, we addressed how oligodendrocytes are induced by psychosine treatment in both KG-1C human oligodendroglial cells and mouse oligodendrocyte precursor cells. We found that fatty acid binding protein 5 (FABP5) expressed in oligodendrocytes accelerates mitochondria-induced glial death by inducing mitochondrial macropore formation through voltage-dependent anion channels (VDAC-1) and BAX. These two proteins mediate mitochondrial outer membrane permeabilization, thereby leading to the release of mitochondrial DNA and cytochrome C into the cytosol, and the activation of apoptotic caspases. Furthermore, we confirmed that the inhibition of FABP5 functions by shRNA and FABP5-specific ligands blocking mitochondrial macropore formation, thereby rescuing psychosine-induced oligodendrocyte death. Taken together, we identified FABP5 as a critical factor in mitochondrial injury associated with psychosine-induced apoptosis in oligodendrocytes.
Collapse
|
27
|
Hillen AEJ, Heine VM. Glutamate Carrier Involvement in Mitochondrial Dysfunctioning in the Brain White Matter. Front Mol Biosci 2020; 7:151. [PMID: 32793632 PMCID: PMC7385250 DOI: 10.3389/fmolb.2020.00151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/18/2020] [Indexed: 11/24/2022] Open
Abstract
Glutamate homeostasis is an important determinant of health of the central nervous system (CNS). Mitochondria play crucial roles in glutamate metabolism, especially in processes with a high energy demand such as action potential generation. Mitochondrial glutamate carriers (GCs) and aspartate-GCs (AGCs) regulate the transport of glutamate from the cytoplasm across the mitochondrial membrane, which is needed to control energy demand, lipid metabolism, and metabolic activity including oxidative phosphorylation and glycolysis. Dysfunction in these carriers are associated with seizures, spasticity, and/or myelin deficits, all of which are associated with inherited metabolic disorders. Since solute carrier functioning and associated processes are cell type- and context-specific, selective vulnerability to glutamate excitotoxicity and mitochondrial dysfunctioning is expected. Understanding this could offer important insights into the pathomechanisms of associated disorders. This perspective aims to explore the link between functions of both AGCs and GCs and their role in metabolic disorders, with a focus on a subclass of lysosomal storage disorders called leukodystrophies (LDs).
Collapse
Affiliation(s)
- Anne E J Hillen
- Pediatric Neurology, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vivi M Heine
- Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Pathogenesis of Mucopolysaccharidoses, an Update. Int J Mol Sci 2020; 21:ijms21072515. [PMID: 32260444 PMCID: PMC7178160 DOI: 10.3390/ijms21072515] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
The recent advancements in the knowledge of lysosomal biology and function have translated into an improved understanding of the pathophysiology of mucopolysaccharidoses (MPSs). The concept that MPS manifestations are direct consequences of lysosomal engorgement with undegraded glycosaminoglycans (GAGs) has been challenged by new information on the multiple biological roles of GAGs and by a new vision of the lysosome as a signaling hub involved in many critical cellular functions. MPS pathophysiology is now seen as the result of a complex cascade of secondary events that lead to dysfunction of several cellular processes and pathways, such as abnormal composition of membranes and its impact on vesicle fusion and trafficking; secondary storage of substrates; impairment of autophagy; impaired mitochondrial function and oxidative stress; dysregulation of signaling pathways. The characterization of this cascade of secondary cellular events is critical to better understand the pathophysiology of MPS clinical manifestations. In addition, some of these pathways may represent novel therapeutic targets and allow for the development of new therapies for these disorders.
Collapse
|
29
|
Gaffke L, Pierzynowska K, Podlacha M, Brokowska J, Węgrzyn G. Changes in cellular processes occurring in mucopolysaccharidoses as underestimated pathomechanisms of these diseases. Cell Biol Int 2020; 45:498-506. [PMID: 31855304 DOI: 10.1002/cbin.11275] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/06/2019] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidoses (MPS) are a group of genetic disorders belonging to lysosomal storage diseases. They are caused by genetic defects leading to a lack or severe deficiency of activity of one of lysosomal hydrolases involved in degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate in lysosomes, which results in dysfunctions of cells, tissues, and organs. Until recently, it was assumed that GAG accumulation in cells is the major, if not the only, mechanism of pathogenesis in MPS, as GAGs may be a physical ballast for lysosomes causing inefficiency of cells due to a large amount of a stored material. However, recent reports suggest that in MPS cells there are changes in many different processes, which might be even more important for pathogenesis than lysosomal accumulation of GAGs per se. Moreover, there are many recently published results indicating that lysosomes not only are responsible for degradation of various macromolecules, but also play crucial roles in the regulation of cellular metabolism. Therefore, it appears plausible that previous failures in treatment of MPS (i.e., possibility to correct only some symptoms and slowing down of the disease rather than fully effective management of MPS) might be caused by underestimation of changes in cellular processes and concentration solely on decreasing GAG levels in cells.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Joanna Brokowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
30
|
Addressing neurodegeneration in lysosomal storage disorders: Advances in Niemann Pick diseases. Neuropharmacology 2019; 171:107851. [PMID: 31734384 DOI: 10.1016/j.neuropharm.2019.107851] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Most lysosomal storage disorders (LSDs) cause progressive neurodegeneration leading to early death. While the genetic defects that cause these disorders impact all cells of the body, neurons are particularly affected. This vulnerability may be explained by neuronal cells' critical dependence on the lysosomal degradative capacity, as they cannot use division to eliminate their waste. However, mounting evidence supports the extension of storage beyond lysosomes to other cellular compartments (mitochondria, plasma membrane and synapses) as a key event in pathogenesis. Impaired energy supply, oxidative stress, calcium imbalance, synaptic failure and glial alterations may all contribute to neuronal death and thus could be suitable therapeutic targets for these disorders. Here we review the pathological mechanisms underlying neurodegeneration in Niemann Pick diseases and therapeutic strategies developed in animal models and patients suffering from these devastating disorders. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
31
|
Xiao Q, Che X, Cai B, Tao Z, Zhang H, Shao Q, Pu J. Macrophage autophagy regulates mitochondria-mediated apoptosis and inhibits necrotic core formation in vulnerable plaques. J Cell Mol Med 2019; 24:260-275. [PMID: 31660692 PMCID: PMC6933382 DOI: 10.1111/jcmm.14715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/19/2022] Open
Abstract
The vulnerable plaque is a key distinguishing feature of atherosclerotic lesions that can cause acute atherothrombotic vascular disease. This study was designed to explore the effect of autophagy on mitochondria-mediated macrophage apoptosis and vulnerable plaques. Here, we generated the mouse model of vulnerable carotid plaque in ApoE-/- mice. Application of ApoE-/- mice with rapamycin (an autophagy inducer) inhibited necrotic core formation in vulnerable plaques by decreasing macrophage apoptosis. However, 3-methyladenine (an autophagy inhibitor) promoted plaque vulnerability through deteriorating these indexes. To further explore the mechanism of autophagy on macrophage apoptosis, we used macrophage apoptosis model in vitro and found that 7-ketocholesterol (7-KC, one of the primary oxysterols in oxLDL) caused macrophage apoptosis with concomitant impairment of mitochondria, characterized by the impairment of mitochondrial ultrastructure, cytochrome c release, mitochondrial potential dissipation, mitochondrial fragmentation, excessive ROS generation and both caspase-9 and caspase-3 activation. Interestingly, such mitochondrial apoptotic responses were ameliorated by autophagy activator, but exacerbated by autophagy inhibitor. Finally, we found that MAPK-NF-κB signalling pathway was involved in autophagy modulation of 7-KC-induced macrophage apoptosis. So, we provide strong evidence for the potential therapeutic benefit of macrophage autophagy in regulating mitochondria-mediated apoptosis and inhibiting necrotic core formation in vulnerable plaques.
Collapse
Affiliation(s)
- Qingqing Xiao
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Che
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Cai
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu Tao
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengyuan Zhang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Shao
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Dasgupta S, Ray SK. Ceramide and Sphingosine Regulation of Myelinogenesis: Targeting Serine Palmitoyltransferase Using microRNA in Multiple Sclerosis. Int J Mol Sci 2019; 20:E5031. [PMID: 31614447 PMCID: PMC6834223 DOI: 10.3390/ijms20205031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ceramide and sphingosine display a unique profile during brain development, indicating their critical role in myelinogenesis. Employing advanced technology such as gas chromatography-mass spectrometry, high performance liquid chromatography, and immunocytochemistry, along with cell culture and molecular biology, we have found an accumulation of sphingosine in brain tissues of patients with multiple sclerosis (MS) and in the spinal cord of rats induced with experimental autoimmune encephalomyelitis. The elevated sphingosine leads to oligodendrocyte death and fosters demyelination. Ceramide elevation by serine palmitoyltransferse (SPT) activation was the primary source of the sphingosine elevation as myriocin, an inhibitor of SPT, prevented sphingosine elevation and protected oligodendrocytes. Supporting this view, fingolimod, a drug used for MS therapy, reduced ceramide generation, thus offering partial protection to oligodendrocytes. Sphingolipid synthesis and degradation in normal development is regulated by a series of microRNAs (miRNAs), and hence, accumulation of sphingosine in MS may be prevented by employing miRNA technology. This review will discuss the current knowledge of ceramide and sphingosine metabolism (synthesis and breakdown), and how their biosynthesis can be regulated by miRNA, which can be used as a therapeutic approach for MS.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
33
|
The Link between Gaucher Disease and Parkinson's Disease Sheds Light on Old and Novel Disorders of Sphingolipid Metabolism. Int J Mol Sci 2019; 20:ijms20133304. [PMID: 31284408 PMCID: PMC6651136 DOI: 10.3390/ijms20133304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipid metabolism starts with the biosynthesis of ceramide, a bioactive lipid and the backbone for the biosynthesis of complex sphingolipids such as sphingomyelin and glycosphingolipids. These are degraded back to ceramide and then to sphingosine, which enters the ceramide–sphingosine-1-phosphate signaling pathway or is further degraded. Several enzymes with multiple catalytic properties and subcellular localizations are thus involved in such metabolism. Hereditary defects of lysosomal hydrolases have been known for several years to be the cause of lysosomal storage diseases such as gangliosidoses, Gaucher disease, Niemann–Pick disease, Krabbe disease, Fabry disease, and Farber disease. More recently, many other inborn errors of sphingolipid metabolism have been recognized, involving enzymes responsible for the biosynthesis of ceramide, sphingomyelin, and glycosphingolipids. Concurrently, epidemiologic and biochemical evidence has established a link between Gaucher disease and Parkinson’s disease, showing that glucocerebrosidase variants predispose individuals to α-synuclein accumulation and neurodegeneration even in the heterozygous status. This appears to be due not only to lysosomal overload of non-degraded glucosylceramide, but to the derangement of vesicle traffic and autophagy, including mitochondrial autophagy, triggered by both sphingolipid intermediates and misfolded proteins. In this review, old and novel disorders of sphingolipid metabolism, in particular those of ganglioside biosynthesis, are evaluated in light of recent investigations of the link between Gaucher disease and Parkinson’s disease, with the aim of better understanding their pathogenic mechanisms and addressing new potential therapeutic strategies.
Collapse
|
34
|
Fiorenza MT, Moro E, Erickson RP. The pathogenesis of lysosomal storage disorders: beyond the engorgement of lysosomes to abnormal development and neuroinflammation. Hum Mol Genet 2019; 27:R119-R129. [PMID: 29718288 DOI: 10.1093/hmg/ddy155] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023] Open
Abstract
There is growing evidence that the complex clinical manifestations of lysosomal storage diseases (LSDs) are not fully explained by the engorgement of the endosomal-autophagic-lysosomal system. In this review, we explore current knowledge of common pathogenetic mechanisms responsible for the early onset of tissue abnormalities of two LSDs, Mucopolysaccharidosis type II (MPSII) and Niemann-Pick type C (NPC) diseases. In particular, perturbations of the homeostasis of glycosaminoglycans (GAGs) and cholesterol (Chol) in MPSII and NPC diseases, respectively, affect key biological processes, including morphogen signaling. Both GAGs and Chol finely regulate the release, reception and tissue distribution of Shh. Hence, not surprisingly, developmental processes depending on correct Shh signaling have been found altered in both diseases. Besides abnormal signaling, exaggerated activation of microglia and impairment of autophagy and mitophagy occur in both diseases, largely before the appearance of typical pathological signs.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology and "Daniel Bovet" Neurobiology Research Center, Sapienza University of Rome, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Enrico Moro
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
35
|
Saxena S, Mathur A, Kakkar P. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy. J Cell Physiol 2019; 234:19223-19236. [DOI: 10.1002/jcp.28712] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Sugandh Saxena
- Herbal Research Laboratory CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow India
- Biological Sciences Academy of Scientific and Innovative Research (AcSIR), CSIR‐IITR Campus Lucknow Uttar Pradesh India
| | - Alpana Mathur
- Herbal Research Laboratory CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow India
- Department of Biochemistry Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Poonam Kakkar
- Herbal Research Laboratory CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow India
- Biological Sciences Academy of Scientific and Innovative Research (AcSIR), CSIR‐IITR Campus Lucknow Uttar Pradesh India
| |
Collapse
|
36
|
Piscianz E, Vecchi Brumatti L, Tommasini A, Marcuzzi A. Is autophagy an elective strategy to protect neurons from dysregulated cholesterol metabolism? Neural Regen Res 2019; 14:582-587. [PMID: 30632494 PMCID: PMC6352582 DOI: 10.4103/1673-5374.247441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/30/2018] [Indexed: 01/25/2023] Open
Abstract
The balance of autophagy, apoptosis and necroptosis is crucial to determine the outcome of the cellular response to cholesterol dysregulation. Cholesterol plays a major role in regulating the properties of cell membranes, especially as regards their fluidity, and the regulation of its biosynthesis influences the shape and functions of these membranes. Whilst dietary cholesterol can easily be distributed to most organs, the central nervous system, whose membranes are particularly rich in cholesterol, mainly relies on de novo synthesis. For this reason, defects in the biosynthesis of cholesterol can variably affect the development of central nervous system. Moreover, defective synthesis of cholesterol and its intermediates may reflect both on structural cell anomalies and on the response to inflammatory stimuli. Examples of such disorders include mevalonate kinase deficiency, and Smith-Lemli-Opitz syndrome, due to deficiency in biosynthetic enzymes, and type C Niemann-Pick syndrome, due to altered cholesterol trafficking across cell compartments. Autophagy, as a crucial pathway dedicated to the degradation of cytosolic proteins and organelles, plays an essential role in the maintenance of homeostasis and in the turnover of the cytoplasmic material especially in the presence of imbalances such as those resulting from alteration of cholesterol metabolism. Manipulating the process of autophagy can offer possible strategies for improving neuronal cell viability and function in these genetic disorders.
Collapse
Affiliation(s)
- Elisa Piscianz
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Liza Vecchi Brumatti
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Alberto Tommasini
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Annalisa Marcuzzi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
37
|
Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose. Sci Rep 2019; 9:544. [PMID: 30679445 PMCID: PMC6345801 DOI: 10.1038/s41598-018-35811-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023] Open
Abstract
Cell-to-cell propagation of aggregated alpha synuclein (aSyn) has been suggested to play an important role in the progression of alpha synucleinopathies. A critical step for the propagation process is the accumulation of extracellular aSyn within recipient cells. Here, we investigated the trafficking of distinct exogenous aSyn forms and addressed the mechanisms influencing their accumulation in recipient cells. The aggregated aSyn species (oligomers and fibrils) exhibited more pronounced accumulation within recipient cells than aSyn monomers. In particular, internalized extracellular aSyn in the aggregated forms was able to seed the aggregation of endogenous aSyn. Following uptake, aSyn was detected along endosome-to-lysosome and autophagosome-to-lysosome routes. Intriguingly, aggregated aSyn resulted in lysosomal activity impairment, accompanied by the accumulation of dilated lysosomes. Moreover, analysis of autophagy-related protein markers suggested decreased autophagosome clearance. In contrast, the endocytic pathway, proteasome activity, and mitochondrial homeostasis were not substantially affected in recipient cells. Our data suggests that extracellularly added aggregated aSyn primarily impairs lysosomal activity, consequently leading to aSyn accumulation within recipient cells. Importantly, the autophagy inducer trehalose prevented lysosomal alterations and attenuated aSyn accumulation within aSyn-exposed cells. Our study underscores the importance of lysosomes for the propagation of aSyn pathology, thereby proposing these organelles as interventional targets.
Collapse
|
38
|
Jaquenod De Giusti C, Roman B, Das S. The Influence of MicroRNAs on Mitochondrial Calcium. Front Physiol 2018; 9:1291. [PMID: 30298016 PMCID: PMC6160583 DOI: 10.3389/fphys.2018.01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/27/2018] [Indexed: 01/13/2023] Open
Abstract
Abnormal mitochondrial calcium ([Ca2+]m) handling and energy deficiency results in cellular dysfunction and cell death. Recent studies suggest that nuclear-encoded microRNAs (miRNA) are able to translocate in to the mitochondrial compartment, and modulate mitochondrial activities, including [Ca2+]m uptake. Apart from this subset of miRNAs, there are several miRNAs that have been reported to target genes that play a role in maintaining [Ca2+]m levels in the cytoplasm. It is imperative to validate miRNAs that alter [Ca2+]m handling, and thereby alter cellular fate. The focus of this review is to highlight the mitochondrial miRNAs (MitomiRs), and other cytosolic miRNAs that target mRNAs which play an important role in [Ca2+]m handling.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
39
|
Dominko K, Dikic D, Hecimovic S. Enhanced activity of superoxide dismutase is a common response to dietary and genetically induced increased cholesterol levels. Nutr Neurosci 2018; 23:398-410. [PMID: 30118401 DOI: 10.1080/1028415x.2018.1511027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Objectives: Hypercholesterolaemia has been implicated in the pathogenesis of neurodegenerative diseases. In this work, we tested whether cholesterol-mediated neurodegeneration induced either by cholesterol-rich diet or genetic mutation may share a common mechanism involving increased oxidative stress and mitochondria oxidant status. Additionally, we analysed whether upon cholesterol-rich diet, different brain regions (prefrontal cortex, cortex, hippocampus, and cerebellum) show distinct vulnerability to an oxidative stress response.Methods: Oxidative stress parameters were measured both in vivo (in the liver and in different brain regions) in cholesterol-fed mice and in vitro in genetically induced cholesterol accumulation in NPC1-null cells.Results: Increased superoxide dismutase (SOD) activity was a common feature of cholesterol-mediated antioxidant response in both models. Moreover, upon high-cholesterol diet, all four brain regions analysed responded via somewhat different capacity of antioxidant defence, hippocampus showing the highest basal activity of SOD. Increased activity of SOD upon cholesterol accumulation in vitro involves mitochondrial SOD2. We found that SOD/SOD2 activities are modulated by cholesterol levels.Discussion: Hypercholesterolaemia could potentiate brain dysfunction and neurodegenerative processes via oxidative stress, and activity of mitochondrial SOD2 may play a key role in this process. Our findings suggest that preventing/reducing mitochondrial oxidative stress may represent a common approach against neurodegenerative diseases.
Collapse
Affiliation(s)
- Kristina Dominko
- Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Domagoj Dikic
- Department of Animal Physiology, Biology Division, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Silva Hecimovic
- Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
40
|
Abstract
One of the fundamental properties of the cell is the capability to digest and remodel its own components according to metabolic and developmental needs. This is accomplished via the autophagy-lysosome system, a pathway of critical importance in the brain, where it contributes to neuronal plasticity and must protect nonreplaceable neurons from the potentially harmful accumulation of cellular waste. The study of lysosomal biogenesis and function in the context of common and rare neurodegenerative diseases has revealed that a dysfunctional autophagy-lysosome system is the shared nexus where multiple, interconnected pathogenic events take place. The characterization of pathways and mechanisms regulating the lysosomal system and autophagic clearance offers unprecedented opportunities for the development of polyvalent therapeutic strategies based on the enhancement of the autophagy-lysosome pathway to maintain cellular homeostasis and achieve neuroprotection.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA;
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA;
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA;
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA;
| |
Collapse
|
41
|
Suzuki M, Sango K, Wada K, Nagai Y. Pathological role of lipid interaction with α-synuclein in Parkinson's disease. Neurochem Int 2018; 119:97-106. [PMID: 29305919 DOI: 10.1016/j.neuint.2017.12.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022]
Abstract
Alpha-synuclein (αSyn) plays a central role in the pathogenesis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB). In sporadic PD and DLB, normally harmless αSyn proteins without any mutations might gain toxic functions by unknown mechanisms. Thus, it is important to elucidate the factors promoting the toxic conversion of αSyn, towards understanding the pathogenesis of and developing disease-modifying therapies for PD and DLB. Accumulating biophysical and biochemical studies have demonstrated that αSyn interacts with lipid membrane, and the interaction influences αSyn oligomerization and aggregation. Furthermore, genetic and clinicopathological studies have revealed mutations in the glucocerebrosidase 1 (GBA1) gene, which encodes a degrading enzyme for the glycolipid glucosylceramide (GlcCer), as strong risk factors for PD and DLB, and we recently demonstrated that GlcCer promotes toxic conversion of αSyn. Moreover, pathological studies have shown the existence of αSyn pathology in lysosomal storage disorders (LSDs) patient' brain, in which glycosphingolipids (GSLs) is found to be accumulated. In this review, we focus on the lipids as a key factor for inducing wild-type (WT) αSyn toxic conversion, we summarize the knowledge about the interaction between αSyn and lipid membrane, and propose our hypothesis that aberrantly accumulated GSLs might contribute to the toxic conversion of αSyn. Identifying the trigger for toxic conversion of αSyn would open a new therapeutic road to attenuate or prevent crucial events leading to the formation of toxic αSyn.
Collapse
Affiliation(s)
- Mari Suzuki
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan; Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan.
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, 156-8506, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8502, Japan.
| |
Collapse
|
42
|
Dasgupta S, Ray SK. Diverse Biological Functions of Sphingolipids in the CNS: Ceramide and Sphingosine Regulate Myelination in Developing Brain but Stimulate Demyelination during Pathogenesis of Multiple Sclerosis. ACTA ACUST UNITED AC 2017; 5. [PMID: 30338269 PMCID: PMC6190913 DOI: 10.13188/2332-3469.1000035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids are enriched in the Central Nervous System (CNS) and display multiple biological functions. They participate in tissue development, cell recognition and adhesion, and act as receptors for toxins. During myelination, a variety of interactive molecules such as myelin basic protein, myelin associated glycoprotein, phospholipids, cholesterol, sphingolipids, etc., participate in a complex fashion. Precise roles of some sphingolipids in myelination still remain unexplored. Our investigation delineated participation of several sphingolipids in myelination during rat brain development as well as in human brain demyelination during pathogenesis of Multiple Sclerosis (MS). These sphingolipids included Ceramide (Cer)/dihydroceramide (dhCer), Sphingosine (Sph)/dihydrosphingosine (dhSph), and glucosyl/galactosylceramide (glc/galCer) as we detected these by column chromatography, high performance thin-layer chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. Cer/dhCer level rises during rat brain development starting at Embryonic stage (E) until postnatal day (P21), then gradually falls until the maturity (P30 and onwards), and remains steady maintaining a constant ratio (4–4.5:1) throughout the brain development. GlcCer is the initial Monoglycosylceramide (MGC) that appears at early Postnatal stage (P8) and then GalCer appears at P10 with an increasing trend until P21 and its concentration remains unaltered. Sph and dhSph profiles show a similar trend with an initial peak at P10 and then a comparatively smaller peak at P21 maintaining a ratio of (2–2.5:1) of Sph:dhSph. The profiles of all these sphingolipids, specifically at P21, clearly indicate their importance during rat brain development but somewhat unspecified roles in myelination. While Cer has been reported to involve in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, Sph being a potent inhibitor of protein kinase C has recently been implicated in CNS demyelination due to MS. Inflammatory cytokines stimulate Sph elevation in MS brains and lead to demyelination due to oligodendrocyte death as we examined by using human oligodendroglioma culture. In conclusions, sphingolipids are essential for brain development but they have deleterious effects in demyelinating diseases such as MS.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Augusta University, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, USA
| |
Collapse
|
43
|
Torres S, Balboa E, Zanlungo S, Enrich C, Garcia-Ruiz C, Fernandez-Checa JC. Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease. Front Physiol 2017; 8:982. [PMID: 29249985 PMCID: PMC5714892 DOI: 10.3389/fphys.2017.00982] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022] Open
Abstract
Lysosomal storage disorders (LSD) are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B) and type C diseases Niemann-Pick type C (NPC) are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochemical features, including the accumulation of sphingolipids and cholesterol, predominantly in endolysosomes. Besides these alterations in lysosomal homeostasis and function due to accumulation of specific lipid species, the lysosomal functional defects can have far-reaching consequences, disrupting intracellular trafficking of sterols, lipids and calcium through membrane contact sites (MCS) of apposed compartments. Although MCS between endoplasmic reticulum and mitochondria have been well studied and characterized in different contexts, emerging evidence indicates that lysosomes also exhibit close proximity with mitochondria, which translates in their mutual functional regulation. Indeed, as best illustrated in NPC disease, alterations in the lysosomal-mitochondrial liaisons underlie the secondary accumulation of specific lipids, such as cholesterol in mitochondria, resulting in mitochondrial dysfunction and defective antioxidant defense, which contribute to disease progression. Thus, a better understanding of the lysosomal and mitochondrial interactions and trafficking may identify novel targets for the treatment of Niemann-Pick disease.
Collapse
Affiliation(s)
- Sandra Torres
- Department of Cell Death and Proliferation, Intituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.,Liver Unit and Hospital Clinc I Provincial, Centro de Investigación Biomédica en Red (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Elisa Balboa
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Enrich
- Departamento de Biomedicina, Unidad de Biología Celular, Centro de Investigación Biomédica CELLEX, Facultad de Medicina y Ciencias de la Salud, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Intituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.,Liver Unit and Hospital Clinc I Provincial, Centro de Investigación Biomédica en Red (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| | - Jose C Fernandez-Checa
- Department of Cell Death and Proliferation, Intituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain.,Liver Unit and Hospital Clinc I Provincial, Centro de Investigación Biomédica en Red (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| |
Collapse
|