1
|
Potent anti-tumor immune response and tumor growth inhibition induced by HER2 subdomain fusion protein in a mouse tumor model. J Cancer Res Clin Oncol 2022; 149:2437-2450. [PMID: 35737089 DOI: 10.1007/s00432-022-04084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Several approaches have so far been employed to establish anti-tumor immunity by targeting HER2 protein. Active immunization with recombinant HER2 subdomains has previously been demonstrated to induce potent immune response and tumor growth inhibition. In the present study, we investigated the immunogenicity and tumor inhibitory effect of a fusion protein consisting of human HER2 extracellular subdomain (ECD-DI + II) together with T-helper cell epitopes of Tetanus toxin (p2 and p30). METHODS BALB/c mice were immunized with two recombinant proteins (DI + II and p2p30-DI + II) emulsified in 4 different adjuvants. Anti-DI + II antibody response, cytokine profile, frequency of splenic CD25+FOXP3+ regulatory T cells (Tregs) and CD8+CD107a+ cytotoxic T lymphocytes (CTLs) were assessed in the immunized mice. To assess the anti-tumor effect, the immunized mice were subcutaneously challenged with HER2-overexpressing tumor cells and the tumor growth was determined. RESULTS Both recombinant proteins were able to induce comparable levels of ECD-DI + II-specific antibodies. Immunization with p2p30-DI + II resulted in a significant increase in the level of Interferon-gamma (IFN-γ) secretion compared to DI + II protein and significantly higher frequency of CTLs and lower frequency of Tregs. The number of mice that remained tumor-free until day 120 was significantly higher in p2p30-DI + II vaccinated groups. CONCLUSIONS Our data suggest that the p2p30-DI + II fusion protein together with CpG adjuvant induces more potent anti-tumor immune responses in a mouse tumor model. Accordingly, this formulation might be considered as a potential immunotherapeutic approach in HER2+ cancers.
Collapse
|
2
|
You Z, Zhou W, Weng J, Feng H, Liang P, Li Y, Shi F. Application of HER2 peptide vaccines in patients with breast cancer: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:489. [PMID: 34526020 PMCID: PMC8442296 DOI: 10.1186/s12935-021-02187-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background The E75 and GP2 vaccines are the few therapeutic vaccines targeting HER2 currently under clinical research for patients with breast cancer. Methods Databases, including the Cochrane Library, PubMed, Medline, Embase, and Web of Science, were used to retrieve clinical studies on E75 and GP2 vaccines. Retrieval time was from the beginning of database construction until May 31st, 2021. Results A total of 24 clinical studies were included in this analysis, including 1704 patients in the vaccinated group and 1248 patients in the control group. For the E75 vaccine, there were significant differences between the vaccinated group and the control group in the delayed-type hypersensitivity reaction (SMD = 0.685 95% CI 0.52–0.85, PHeterogeneity = 0.186, PDTH < 0.05) and the change in CD8+ T-cell numbers (SMD = − 0.864, 95% CI − 1.02 to − 0.709, PHeterogeneity = 0.085, PCD8+ T cell < 0.05) before and after injection. For the GP2 vaccine, there was a significant difference between the vaccinated group and the control group in the change in CD8+ T-cell numbers (SMD = − 0.584, 95% CI − 0.803 to − 0.294, PHeterogeneity = 0.397, PCD8+ T cell < 0.05) before and after injection. In addition, the clinical outcomes, including recurrence rate (RR = 0.568, 95% CI 0.444–0.727, PHeterogeneity = 0.955, PRecurrence < 0.05) and disease-free survival rate (RR = 1.149, 95% CI 1.050–1.256, PHeterogeneity = 0.003, PDFS < 0.05), of the E75-vaccinated group were different from those of the control group. However, we found that the overall survival rate with the E75 vaccine (RR = 1.032, 95% CI 0.998–1.067, PHeterogeneity = 0.476, POS > 0.05) was not different between the two groups. Local and systemic toxicity assessments of the two vaccines showed minimal side effects. Conclusions The E75 vaccine was effective and safe in patients with breast cancer. The GP2 vaccine could elicit a strong immune response, but more trials are needed to confirm its clinical efficacy.
Collapse
Affiliation(s)
- Zicong You
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.,Department of Thoracic and Breast Surgery, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No.6,Qinren Road,Chancheng District, Foshan, 528000, China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Junyan Weng
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Haizhan Feng
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Peiqiao Liang
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No.253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, No. 253, Industrial Avenue, Haizhu District, Guangzhou, 510282, China.
| |
Collapse
|
3
|
Batalha S, Ferreira S, Brito C. The Peripheral Immune Landscape of Breast Cancer: Clinical Findings and In Vitro Models for Biomarker Discovery. Cancers (Basel) 2021; 13:1305. [PMID: 33804027 PMCID: PMC8001103 DOI: 10.3390/cancers13061305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the deadliest female malignancy worldwide and, while much is known about phenotype and function of infiltrating immune cells, the same attention has not been paid to the peripheral immune compartment of breast cancer patients. To obtain faster, cheaper, and more precise monitoring of patients' status, it is crucial to define and analyze circulating immune profiles. This review compiles and summarizes the disperse knowledge on the peripheral immune profile of breast cancer patients, how it departs from healthy individuals and how it changes with disease progression. We propose this data to be used as a starting point for validation of clinically relevant biomarkers of disease progression and therapy response, which warrants more thorough investigation in patient cohorts of specific breast cancer subtypes. Relevant clinical findings may also be explored experimentally using advanced 3D cellular models of human cancer-immune system interactions, which are under intensive development. We review the latest findings and discuss the strengths and limitations of such models, as well as the future perspectives. Together, the scientific advancement of peripheral biomarker discovery and cancer-immune crosstalk in breast cancer will be instrumental to uncover molecular mechanisms and putative biomarkers and drug targets in an all-human setting.
Collapse
Affiliation(s)
- Sofia Batalha
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, University Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia Ferreira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Prof Lima Basto, 1099-023 Lisboa, Portugal;
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, University Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
4
|
Gordon B, Gadi VK. The Role of the Tumor Microenvironment in Developing Successful Therapeutic and Secondary Prophylactic Breast Cancer Vaccines. Vaccines (Basel) 2020; 8:vaccines8030529. [PMID: 32937885 PMCID: PMC7565925 DOI: 10.3390/vaccines8030529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer affects roughly one in eight women over their lifetime and is a leading cause of cancer-related death in women. While outcomes have improved in recent years, prognosis remains poor for patients who present with either disseminated disease or aggressive molecular subtypes. Cancer immunotherapy has revolutionized the treatment of several cancers, with therapeutic vaccines aiming to direct the cytotoxic immune program against tumor cells showing particular promise. However, these results have yet to translate to breast cancer, which remains largely refractory from such approaches. Recent evidence suggests that the breast tumor microenvironment (TME) is an important and long understudied barrier to the efficacy of therapeutic vaccines. Through an improved understanding of the complex and biologically diverse breast TME, it may be possible to advance new combination strategies to render breast carcinomas sensitive to the effects of therapeutic vaccines. Here, we discuss past and present efforts to advance therapeutic vaccines in the treatment of breast cancer, the molecular mechanisms through which the TME contributes to the failure of such approaches, as well as the potential means through which these can be overcome.
Collapse
Affiliation(s)
- Benjamin Gordon
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Correspondence:
| | - Vijayakrishna K. Gadi
- Division of Hematology and Oncology, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
5
|
Karimi M, Heshmati M, Fattahi S, Bagheri N, Alibeigi FM, Taheri F, Anjomshoa M, Jami MS, Ghatreh Samani M. The relation between the ghrelin receptor and FOXP3 in bladder cancer. Biotech Histochem 2020; 96:287-295. [PMID: 32744468 DOI: 10.1080/10520295.2020.1799074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Immune responses play an important role in the fate of bladder cancer tumors. Treg cells are immunosuppressive and down-regulate the proliferation of effector T cells, which favor tumor survival. Ghrelin is a hormone that stimulates release of growth hormone and anti-inflammatory response to cancer cells. Ghrelin also is a gastrointestinal hormone that regulates immune responses via the growth hormone secretagogue receptor (GHS-R1a). The relation among ghrelin, its receptor, and Treg cells that surround bladder tumors is not clear. We found that Foxp3+ T and GHS-R1a cells are increased significantly in bladder tumor tissues. Therefore, we suggest that ghrelin may increase the number of Treg cells in the tumor and suppress activity of the immune system against bladder cancer.
Collapse
Affiliation(s)
- Monireh Karimi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoud Heshmati
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soheila Fattahi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Fatemeh Taheri
- Department of Pathology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoa
- Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Saeid Jami
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Mahdi Ghatreh Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
6
|
Hashemi V, Maleki LA, Esmaily M, Masjedi A, Ghalamfarsa G, Namdar A, Yousefi M, Yousefi B, Jadidi-Niaragh F. Regulatory T cells in breast cancer as a potent anti-cancer therapeutic target. Int Immunopharmacol 2019; 78:106087. [PMID: 31841758 DOI: 10.1016/j.intimp.2019.106087] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Despite marked advances in treatment approaches, breast cancer is still going to be more prevalent, worldwide. High levels of regulatory T (Treg) cells have repeatedly been demonstrated in circulation, lymph nodes, and tumor samples from patients with various cancer types. The transcription factor Forkhead box protein 3 (Foxp3)-expressing Treg cells have the high suppressive potential of the immune system and are fundamental in preserving immune homeostasis and self-tolerance. However, they enhance tumor development by curbing efficient anti-tumor immune mechanisms in malignancies. Moreover, the accumulation of Treg cells in breast tumors is related to the short overall survival of patients. Treg cell frequency has been applied as an independent predicting factor to diagnose patients with a high risk of relapse. Pulling out all populations of Treg cells to promote the efficacy of anticancer treatment methods may potentially lead to hazardous autoimmune disorders. Thus, realizing the exact structure of tumor-infiltrating Treg cells is pivotal to efficiently target Treg cells in tumors. There are exclusive and non-exclusive approaches to lower down and degrade the number/function of Treg cells. These approaches can include inhibiting tumoral migration, depletion, interference with function, and utilizing T cell plasticity. This review article attempts to clarify the implications concerning the involvement of Treg cells in breast cancer progression and discuss the current approaches in the treatment of this cancer via modulation of Treg cells function.
Collapse
Affiliation(s)
- Vida Hashemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Esmaily
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Masjedi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Afshin Namdar
- Katz Group Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Canada
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Ayoub NM, Al-Shami KM, Yaghan RJ. Immunotherapy for HER2-positive breast cancer: recent advances and combination therapeutic approaches. BREAST CANCER-TARGETS AND THERAPY 2019; 11:53-69. [PMID: 30697064 PMCID: PMC6340364 DOI: 10.2147/bctt.s175360] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer immunotherapy has evolved dramatically with improved understanding of immune microenvironment and immunosurveillance. The immunogenicity of breast cancer is rather heterogeneous. Specific subtypes of breast cancer such as estrogen receptor (ER)-negative, human EGF receptor 2 (HER2)-positive, and triple-negative breast cancer (TNBC) have shown evidence of immunogenicity based on tumor–immune interactions. Several preclinical and clinical studies have explored the potential for immunotherapy to improve the clinical outcomes for different subtypes of breast cancer. This review describes the immune microenvironment of HER2-positive breast cancer and summarizes recent clinical advances of immunotherapeutic treatments in this breast cancer subtype. The review provides rationale and ongoing clinical evidence to the use of immune checkpoint inhibitors, therapeutic vaccines, and adoptive T cell immunotherapy in breast cancer. In addition, the present paper describes the most relevant clinical progress of strategies for the combination of immunotherapy with standard treatment modalities in HER2-positive breast cancer including chemotherapy, targeted therapy, and radiotherapy.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology (JUST), Irbid, Jordan,
| | - Kamal M Al-Shami
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rami J Yaghan
- Department of General Surgery and Urology, Faculty of Medicine, Jordan University of Science and Technology (JUST), Irbid, Jordan
| |
Collapse
|
8
|
Application of E75 peptide vaccine in breast cancer patients: A systematic review and meta-analysis. Eur J Pharmacol 2018; 831:87-93. [DOI: 10.1016/j.ejphar.2018.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022]
|
9
|
Abstract
Immunotherapy has shown promise in many solid tumors including melanoma and non-small cell lung cancer with an evolving role in breast cancer. Immunotherapy encompasses a wide range of therapies including immune checkpoint inhibition, monoclonal antibodies, bispecific antibodies, vaccinations, antibody-drug conjugates, and identifying other emerging interventions targeting the tumor microenvironment. Increasing efficacy of these treatments in breast cancer patients requires identification of better biomarkers to guide patient selection; recognizing when to initiate these therapies in multi-modality treatment plans; establishing novel assays to monitor immune-mediated responses; and creating combined systemic therapy options incorporating conventional treatments such as chemotherapy and endocrine therapy. This review will focus on the current role and future directions of many of these immunotherapies in breast cancer, as well as highlighting clinical trials that are investigating several of these active issues.
Collapse
|
10
|
Velaei K, Samadi N, Barazvan B, Soleimani Rad J. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast 2016; 30:92-100. [PMID: 27668856 DOI: 10.1016/j.breast.2016.09.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Therapy resistance or tumor relapse in cancer is common. Tumors develop resistance to chemotherapeutic through a variety of mechanisms, with tumor microenvironment (TM) serving pivotal roles. Using breast cancer as a paradigm, we propose that responses of cancer cells to drugs are not exclusively determined by their intrinsic characteristics but are also controlled by deriving signals from TM. Affected microenvironment by chemotherapy is an avenue to promote phenotype which tends to resist on to be ruined. Therefore, exclusively targeting cancer cells does not demolish tumor recurrence after chemotherapy. Regardless of tumor-microenvironment pathways and their profound influence on the responsiveness of treatment, diversity of molecular properties of breast cancer also behave differently in terms of response to chemotherapy. And also it is assumed that there is cross-talk between phenotypic diversity and TM. Collectively, raising complex signal from TM in chemotherapy condition often encourages cancer cells are not killed but strengthen. Here, we summarized how TM modifies responses to chemotherapy in breast cancer. We also discussed successful treatment strategies have been considered TM in breast cancer treatment.
Collapse
Affiliation(s)
- Kobra Velaei
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Barazvan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, Arra C, Maiolino P, Tornesello M, Ciliberto G, Buonaguro FM, Buonaguro L. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med 2016; 14:58. [PMID: 26911136 PMCID: PMC4766679 DOI: 10.1186/s12967-016-0812-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/09/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The tumor immunosuppressive microenvironment represents a major obstacle to an effective tumor-specific cellular immune response. METHODS In the present study, the counterbalance effect of a novel metronomic chemotherapy protocol on such an immunosuppressive microenvironment was evaluated in a mouse model upon sub-cutaneous ectopic implantation of B16 melanoma cells. The chemotherapy consisted of a novel multi-drug cocktail including taxanes and alkylating agents, administered in a daily metronomic fashion. The newly designed strategy was shown to be safe, well tolerated and significantly efficacious. RESULTS Treated animals showed a remarkable delay in tumor growth and prolonged survival as compared to control group. Such an effect was directly correlated with CD4(+) T cell reduction and CD8(+) T cell increase. Furthermore, a significant reduction in the percentage of both CD25(+)FoxP3(+) and CD25(+)CD127(low) regulatory T cell population was found both in the spleens and in the tumor lesions. Finally, the metronomic chemotherapy induced an intrinsic CD8(+) T cell response specific to B16 naturally expressed Trp2 TAA. CONCLUSION The novel multi-drug daily metronomic chemotherapy evaluated in the present study was very effective in counterbalancing the immunosuppressive tumor microenvironment. Consequently, the intrinsic anti-tumor T cell immunity could exert its function, targeting specific TAA and significantly containing tumor growth. Overall, the results show that this represents a promising adjuvant approach to significantly enhance efficacy of intrinsic or vaccine-elicited tumor-specific cellular immunity.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Maria Napolitano
- Laboratory of Clinical Immunology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Domenica Rea
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Claudio Arra
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Marialina Tornesello
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Gennaro Ciliberto
- Scientific Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Franco M Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| | - Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy.
| |
Collapse
|
12
|
Zhang W, Zhang ZZ, Tang LY, Lin Y, Su FX, Xie XM, Su XF, Ren ZF. Genetic variants in EBV reactivation-related genes and the risk and survival of breast cancer. Tumour Biol 2016; 37:8337-47. [PMID: 26729199 DOI: 10.1007/s13277-015-4562-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/01/2015] [Indexed: 12/27/2022] Open
Abstract
Tumor susceptibility gene 101 (TSG101) and activating transcription factor 2 (ATF2) have been suggested to involve in the reactivation of EBV which has implications in the development and progression of breast cancer. Therefore, the polymorphisms of TSG101 and ATF2 may associate with breast cancer risk and prognosis. A case-control study with 1551 breast cancer cases and 1605 age-matched controls were conducted in Guangzhou, China. We have also successfully followed up 1168 cases until December 31, 2014. The variant allele of TSG101 rs2292179 was associated with a non-significant reduced risk of breast cancer, particularly among women with BMI < 24 (kg/m(2)) (P for interaction <0.05). For ATF2 rs3845744, the variant allele was also associated with a significantly reduced breast cancer risk [odds ratio (OR) (95 % confidence interval (CI)) 0.86 (0.74∼1.00)], and the association occurred among only postmenopausal women [OR (95 % CI) 0.69 (0.54∼0.88)] (P for interaction <0.05). Breast cancer risk was further reduced with the increasing numbers of the variant G alleles of the two polymorphisms (P for trend <0.05). We did not find an overall association of the two loci with breast cancer prognosis, while the hazard ratios of the two loci (AG/GG vs. AA) were significantly higher among postmenopausal women than premenopausal women (P = 0.046, 0.016 for TSG101 rs2292179 and ATF2 rs3845744, respectively). In summary, the variant alleles of TSG101 rs2292179 and ATF2 rs3845744 were associated with a reduced risk of breast cancer, particularly for subjects with BMI <24 (kg/m(2)) and postmenopausal women, respectively. The two SNPs and menopausal status may have a significant interaction on breast cancer progression.
Collapse
Affiliation(s)
- Wei Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zheng-Zheng Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Aviation Hygiene Management Division, China Southern Airlines Company Limited, 9/F, Kangda Building, 278 Airport Road, Guangzhou, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ying Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Feng-Xi Su
- The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiao-Ming Xie
- The Sun Yat-Sen University Cancer Center, Guangzhou, 510080, China
| | - Xue-Fen Su
- School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ze-Fang Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Statistics and Epidemiology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China.
| |
Collapse
|
13
|
Wojtowicz ME, Dunn BK, Umar A. Immunologic approaches to cancer prevention-current status, challenges, and future perspectives. Semin Oncol 2015; 43:161-172. [PMID: 26970135 DOI: 10.1053/j.seminoncol.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of the immune system to recognize and reject tumors has been investigated for more than a century. However, only recently impressive breakthroughs in cancer immunotherapy have been seen with the use of checkpoint inhibitors. The experience with various immune-based strategies in the treatment of late cancer highlighted the importance of negative impact advanced disease has on immunity. Consequently, use of immune modulation for cancer prevention rather than therapy has gained considerable attention, with many promising results seen already in preclinical and early clinical studies. Although not without challenges, these results provide much excitement and optimism that successful cancer immunoprevention could be within our reach. In this review we will discuss the current state of predominantly primary and secondary cancer immunoprevention, relevant research, potential barriers, and future directions.
Collapse
Affiliation(s)
- Malgorzata E Wojtowicz
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Barbara K Dunn
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Asad Umar
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Arra C, Maiolino P, Izzo F, Tornesello ML, Aurisicchio L, Ciliberto G, Buonaguro FM, Buonaguro L. Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother 2015; 64:1305-1314. [PMID: 25944003 PMCID: PMC11028459 DOI: 10.1007/s00262-015-1698-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/13/2015] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and represents the third and the fifth leading cause of cancer-related death worldwide in men and women, respectively. Hepatitis B virus (HBV) and hepatitis C virus (HCV) chronic infections account for pathogenesis of more than 80 % of primary HCC. HCC prognosis greatly varies according to stage at beginning of treatment, but the overall 5-year survival rate is approximately 5-6 %. Given the limited number of effective therapeutic strategies available, immunotherapies and therapeutic cancer vaccines may help in improving the clinical outcome for HCC patients. However, the few clinical trials conducted to date have shown contrasting results, indicating the need for improvements. In the present study, a novel combinatorial strategy, based on metronomic chemotherapy plus vaccine, is evaluated in a mouse model. The chemotherapy is a multi-drug cocktail including taxanes and alkylating agents, which is administered in a metronomic-like fashion. The vaccine is a multi-peptide cocktail including HCV as well as universal tumor antigen TERT epitopes. The combinatorial strategy designed and evaluated in the present study induces an enhanced specific T cell response, when compared to vaccine alone, which correlates to a reduced Treg frequency. Such results are highly promising and may pave way to relevant improvements in immunotherapeutic strategies for HCC and beyond.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Maria Napolitano
- Laboratory of Clinical Immunology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Claudio Arra
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Francesco Izzo
- Hepato-Biliary Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Maria Lina Tornesello
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | | | - Gennaro Ciliberto
- Scientific Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Franco M. Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| |
Collapse
|
15
|
Park J, Gerber MH, Babensee JE. Phenotype and polarization of autologous T cells by biomaterial-treated dendritic cells. J Biomed Mater Res A 2014; 103:170-84. [PMID: 24616366 DOI: 10.1002/jbm.a.35150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/06/2014] [Accepted: 02/19/2014] [Indexed: 12/27/2022]
Abstract
Given the central role of dendritic cells (DCs) in directing T-cell phenotypes, the ability of biomaterial-treated DCs to dictate autologous T-cell phenotype was investigated. In this study, we demonstrate that differentially biomaterial-treated DCs differentially directed autologous T-cell phenotype and polarization, depending on the biomaterial used to pretreat the DCs. Immature DCs (iDCs) were derived from human peripheral blood monocytes and treated with biomaterial films of alginate, agarose, chitosan, hyaluronic acid, or 75:25 poly(lactic-co-glycolic acid) (PLGA), followed by co-culture of these biomaterial-treated DCs and autologous T cells. When autologous T cells were co-cultured with DCs treated with biomaterial film/antigen (ovalbumin, OVA) combinations, different biomaterial films induced differential levels of T-cell marker (CD4, CD8, CD25, CD69) expression, as well as differential cytokine profiles [interferon (IFN)-γ, interleukin (IL)-12p70, IL-10, IL-4] in the polarization of T helper (Th) types. Dendritic cells treated with agarose films/OVA induced CD4+CD25+FoxP3+ (T regulatory cells) expression, comparable to untreated iDCs, on autologous T cells in the DC-T co-culture system. Furthermore, in this co-culture, agarose treatment induced release of IL-12p70 and IL-10 at higher levels as compared with DC treatment with other biomaterial films/OVA, suggesting Th1 and Th2 polarization, respectively. Dendritic cells treated with PLGA film/OVA treatment induced release of IFN-γ at higher levels compared with that observed for co-cultures with iDCs or DCs treated with all other biomaterial films. These results indicate that DC treatment with different biomaterial films has potential as a tool for immunomodulation by directing autologous T-cell responses.
Collapse
Affiliation(s)
- Jaehyung Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, Georgia, 30332
| | | | | |
Collapse
|
16
|
IL-6 restores dendritic cell maturation inhibited by tumor-derived TGF-β through interfering Smad 2/3 nuclear translocation. Cytokine 2013; 62:352-9. [PMID: 23579028 DOI: 10.1016/j.cyto.2013.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 03/01/2013] [Accepted: 03/08/2013] [Indexed: 12/15/2022]
Abstract
We previously found, in a canine transferable tumor model, that high concentration of IL-6 produced by tumor-infiltrating lymphocytes effectively restores the MHC expression of the tumor cells and T-cell activation inhibited by tumor-derived TGF-β. This tumor also significantly suppresses monocyte-derived dendritic cells (DCs) differentiation and the functions of differentiated DCs with unknown mechanisms. In this study, we have demonstrated that a strong reaction of IL-6 was present to neutralize TGF-β-down-regulated surface marker expression on DCs (MHC II, CD1a, CD40, CD80, CD83, CD86), TGF-β-hampered DC functions and DC-associated T-cell activation. Western blotting and confocal microscopy results indicated that the presence of IL-6 markedly decreased the nuclear concentration of a TGF-β signaling transducer, Smad 2/3. In addition, while Smad 7 is a potent molecule inhibiting Smad 2/3 nuclear translocation, no significant increase in Smad 7 gene expression upon addition of IL-6 in TGF-β-pretreated DCs was detected, which suggested that the blockage of Smad 2/3 nuclear translocation by IL-6 did not occur through a Smad 7-inhibitory mechanism. In conclusion, IL-6 inhibited TGF-β signaling and concomitantly antagonized the suppression activities of TGF-β on DC maturation and activity. This study enables further understandings of host/cancer interactions an also provide hints facilitating improvements of DC-based cancer immunotherapy.
Collapse
|
17
|
Emens LA. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther 2012; 12:1597-611. [PMID: 23253225 PMCID: PMC3587160 DOI: 10.1586/era.12.147] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is immunogenic, and infiltrating immune cells in primary breast tumors convey important clinical prognostic and predictive information. Furthermore, the immune system is critically involved in clinical responses to some standard cancer therapies. Early breast cancer vaccine trials have established the safety and bioactivity of breast cancer immunotherapy, with hints of clinical activity. Novel strategies for modulating regulators of immunity, including regulatory T cells, myeloid-derived suppressor cells and immune checkpoint pathways (monoclonal antibodies specific for the cytotoxic T-lymphocyte antigen-4 or programmed death), are now available. In particular, immune checkpoint blockade has enormous therapeutic potential. Integrative breast cancer immunotherapies that strategically combine established breast cancer therapies with breast cancer vaccines, immune checkpoint blockade or both should result in durable clinical responses and increased cures.
Collapse
Affiliation(s)
- Leisha A Emens
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University, 1650 Orleans Street, Room 409, Bunting Blaustein Cancer Research Building, Baltimore, MD 21231-1000, USA.
| |
Collapse
|
18
|
TGF-β1 and BRCA2 expression are associated with clinical factors in breast cancer. Cell Biochem Biophys 2011; 60:245-8. [PMID: 21222048 DOI: 10.1007/s12013-010-9146-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The objective of this study was to investigate the possible association between the expression of transforming growth factor beta-1 (TGF-β1) and breast cancer type2 susceptibility protein (BRCA2) with clinical factors in breast cancer. TGF-β1, BRCA2, human epidermal growth factor receptor2 (HER2), estrogen receptor, and progesterone receptor protein levels were measured in 67 samples from breast cancer patients by immunohistochemistry. The expression of these proteins was correlated with various clinical factors including age, pathohistological grade and status of axillary lymph node implication. TGF-β1 and BRCA2 were expressed in breast cancer tissues and expression of HER2 and TGF-β1 was significantly correlated with BRCA2. The authors conclude that elevated expression of BRCA2 correlates with TGF-β1 and HER2 in breast cancer and these three factors act in synergy to promote cancer. Thus, detection of both TGF-β1 and BRCA2 may therefore assist in the prognosis and treatment of breast cancer.
Collapse
|
19
|
Rezvani K, Yong ASM, Mielke S, Jafarpour B, Savani BN, Le RQ, Eniafe R, Musse L, Boss C, Kurlander R, Barrett AJ. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 2010; 96:432-40. [PMID: 21134985 DOI: 10.3324/haematol.2010.031674] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND We previously showed that vaccination with one dose of PR1 and WT1 peptides induces transient anti-leukemia immunity. We hypothesized that maintenance of a sustained anti-leukemia response may require frequent boost injections. DESIGN AND METHODS Eight patients with myeloid malignancies were enrolled in this phase II study, and 6 completed 6 injections of PR1 and WT1 peptides in Montanide-adjuvant with GM-CSF, every two weeks. RESULTS Both high- and low-avidity PR1 or WT1-specific CD8(+) T cells were detected in all evaluable patients after the first vaccine dose. Repeated vaccination led to selective deletion of high avidity PR1- and WT1-specific CD8(+) T cells and was not associated with significant reduction in WT1-expression. Additional boosting failed to increase vaccine-induced CD8(+) T-cell frequencies further and in all patients the response was lost before the 6(th) dose. PR1- or WT1-specific CD8(+) T cells were not detected in bone marrow samples, excluding their preferential localization to this site. Following a booster injection three months after the 6(th) vaccine dose, no high-avidity PR1 or WT1-specific CD8(+) T cells could be detected, whereas low-avidity T cells were readily expanded. CONCLUSIONS These data support the immunogenicity of PR1 and WT1 peptide vaccines. However, repeated delivery of peptides with Montanide-adjuvant and GM-CSF leads to rapid loss of high-avidity peptide-specific CD8(+) T cells. These results may offer an explanation for the lack of correlation between immune and clinical responses observed in a number of clinical trials of peptide vaccination. New approaches are needed to induce long-term high-avidity memory responses against leukemia antigens.
Collapse
Affiliation(s)
- Katayoun Rezvani
- Department of Hematology, Imperial College, Hammersmith Campus, 4th Floor, Commonwealth Building, DuCane Rd, London W12 0NN, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Circulating regulatory T cells (CD4+CD25+FOXP3+) decrease in breast cancer patients after vaccination with a modified MHC class II HER2/neu (AE37) peptide. Vaccine 2010; 28:7476-82. [DOI: 10.1016/j.vaccine.2010.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022]
|
21
|
Ammirati E, Cianflone D, Banfi M, Vecchio V, Palini A, De Metrio M, Marenzi G, Panciroli C, Tumminello G, Anzuini A, Palloshi A, Grigore L, Garlaschelli K, Tramontana S, Tavano D, Airoldi F, Manfredi AA, Catapano AL, Norata GD. Circulating CD4+CD25hiCD127lo regulatory T-Cell levels do not reflect the extent or severity of carotid and coronary atherosclerosis. Arterioscler Thromb Vasc Biol 2010; 30:1832-41. [PMID: 20539016 DOI: 10.1161/atvbaha.110.206813] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Regulatory T (Treg) cells play a protective role in experimental atherosclerosis. In the present study, we investigated whether the levels of circulating Treg cells relate to the degree of atherosclerosis in carotid and coronary arteries. METHODS AND RESULTS We studied 2 distinct populations: (1) 113 subjects, selected from a free-living population (carotid study), in which we measured the intima-media thickness of the common carotid artery, as a surrogate marker of initial atherosclerosis; and (2) 75 controls and 125 patients with coronary artery disease (coronary study): 36 with chronic stable angina, 50 with non-ST-elevation acute coronary syndrome, 39 with ST-elevation acute myocardial infarction. Treg-cell levels were evaluated by flow cytometry (Treg cells identified as CD3(+)CD4(+)CD25(high)CD127(low)) and by mRNA expression of forkhead box P3 or of Treg-associated cytokine interleukin 10. In the carotid study, no correlation was observed between Treg-cell levels and intima-media thickness. No differences in Treg-cell levels were observed comparing rapid versus slow intima-media thickness progressors from a subgroup of patients (n=65), in which prospective data on 6-year intima-media thickness progression were available. In the coronary group, Treg-cell levels were not altered in chronic stable angina patients. In contrast, nonunivocal variations were observed in patients suffering an acute coronary syndrome (with a Treg-cell increase in ST-elevation acute myocardial infarction and a Treg-cell decrease in non-ST-elevation acute coronary syndrome patients). CONCLUSIONS The results suggest that determination of circulating Treg-cell levels based on flow cytometry or mRNA assessment is not a useful indicator of the extent or severity of atherosclerosis.
Collapse
Affiliation(s)
- Enrico Ammirati
- Clinical Cardiovascular Biology Research Centre, San Raffaele Scientific Institute and the Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ladjemi MZ, Jacot W, Chardès T, Pèlegrin A, Navarro-Teulon I. Anti-HER2 vaccines: new prospects for breast cancer therapy. Cancer Immunol Immunother 2010; 59:1295-312. [PMID: 20532501 DOI: 10.1007/s00262-010-0869-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 05/11/2010] [Indexed: 12/24/2022]
Abstract
Each year, breast cancer accounts for more than 400,000 new cancer cases and more than 130,000 cancer deaths in Europe. Prognosis of nonmetastatic breast cancer patients is directly related to the extent of the disease, mainly nodal spreading and tumor size, and to the molecular profile, particularly HER2 over-expression. In patients with HER2-over-expressing tumors, different studies have shown cellular and/or humoral immune responses against HER2 associated with a lower tumor development at early stages of the disease. These findings have led to the hypothesis that the generation of an anti-HER2 immune response should protect patients from HER2-over-expressing tumor growth. Taken together with the clinical efficiency of trastuzumab-based anti-HER2 passive immunotherapy, these observations allowed to envisage various vaccine strategies against HER2. The induction of a stable and strong immunity by cancer vaccines is expected to lead to establishment of immune memory, thereby preventing tumor recurrence. However, an immunological tolerance against HER2 antigen exists representing a barrier to effective vaccination against this oncoprotein. As a consequence, the current challenge for vaccines is to find the best conditions to break this immunological tolerance. In this review, we will discuss the different anti-HER2 vaccine strategies currently developed; considering the strategies having reached the clinical phases as well as those still in preclinical development. The used antigen can be either composed of tumoral allogenic cells or autologous cells, or specific to HER2. It can be delivered by dendritic cells or in a DNA, peptidic or proteic form. Another area of research concerns the use of anti-idiotypic antibodies mimicking HER2.
Collapse
Affiliation(s)
- Maha Zohra Ladjemi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U896, Université Montpellier1, Montpellier, France
| | | | | | | | | |
Collapse
|
23
|
Reinartz S, Pfisterer J, du Bois A, Jackisch C, Baumann KH, Wagner U. Suppressive activity rather than frequency of FoxP3+ regulatory T cells is essential for CA-125–specific T-cell activation after abagovomab treatment. Hum Immunol 2010; 71:36-44. [DOI: 10.1016/j.humimm.2009.09.356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/01/2009] [Accepted: 09/17/2009] [Indexed: 01/15/2023]
|
24
|
Ryu WS, Son GS. Cancer Vaccines Targeting HER2/neu for Early Breast Cancer. J Breast Cancer 2010. [DOI: 10.4048/jbc.2010.13.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Woo Sang Ryu
- Department of Surgery, Ansan Hospital, Korea University School of Medicine, Ansan, Korea
| | - Gil Soo Son
- Department of Surgery, Ansan Hospital, Korea University School of Medicine, Ansan, Korea
| |
Collapse
|
25
|
Ha TY. The role of regulatory T cells in cancer. Immune Netw 2009; 9:209-35. [PMID: 20157609 PMCID: PMC2816955 DOI: 10.4110/in.2009.9.6.209] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/11/2009] [Indexed: 12/18/2022] Open
Abstract
There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA.
Collapse
Affiliation(s)
- Tai-You Ha
- Department of Immunology, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
| |
Collapse
|
26
|
Kmieciak M, Gowda M, Graham L, Godder K, Bear HD, Marincola FM, Manjili MH. Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. J Transl Med 2009; 7:89. [PMID: 19849846 PMCID: PMC2770477 DOI: 10.1186/1479-5876-7-89] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 10/22/2009] [Indexed: 12/13/2022] Open
Abstract
Background Foxp3 has been suggested to be a standard marker for murine Tregs whereas its role as marker for human Tregs is controversial. While some reports have shown that human Foxp3+ T cells had no regulatory function others have shown their role in the inhibition of T cell proliferation. Methods T cell activation was performed by means of brayostatin-1/ionomycin (B/I), mixed lymphocyte reaction (MLR), and CD3/CD28 activation. T cell proliferation was performed using BrdU and CFSE staining. Flow cytometry was performed to determine Foxp3 expression, cell proliferation, viabilities and phenotype analyses of T cells. Results Both CD4+ and CD8+ T cells expressed Foxp3 upon activation in vitro. Expression of Foxp3 remained more stable in CD4+CD25+ T cells compared to that in CD8+CD25+ T cells. The CD4+CD25+Foxp3+ T cells expressed CD44 and CD62L, showing their effector and memory phenotypes. Both FoxP3- responder T cells and CD4+FoxP3+ T cells underwent proliferation upon CD3/CD28 activation. Conclusion Expression of Foxp3 does not necessarily convey regulatory function in human CD4+CD25+ T cells. Increased FoxP3 on CD44+ effector and CD44+CD62L+ memory T cells upon stimulation suggest the activation-induced regulation of FoxP3 expression.
Collapse
Affiliation(s)
- Maciej Kmieciak
- Department of Microbiology & Immunology, Virginia Commonwealth University Massey Cancer Center, Richmond, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Jandus C, Bioley G, Dojcinovic D, Derré L, Baitsch L, Wieckowski S, Rufer N, Kwok WW, Tiercy JM, Luescher IF, Speiser DE, Romero P. Tumor antigen-specific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts. Cancer Res 2009; 69:8085-93. [PMID: 19808957 DOI: 10.1158/0008-5472.can-09-2226] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.
Collapse
Affiliation(s)
- Camilla Jandus
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research Ltd, Lausanne Branch, Hôpital Orthopédique, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stewart TJ, Christine Lutsiak ME, Abrams SI. Immune Consequences of Protracted Host-Tumor Interactions in a Transgenic Mouse Model of Mammary Carcinoma. Cancer Invest 2009; 26:237-49. [DOI: 10.1080/07357900701708419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Ladjemi MZ, Jacot W, Pèlegrin A, Navarro-Teulon I. [Anti-HER2 vaccines: The HER2 immunotargeting future?]. ACTA ACUST UNITED AC 2009; 59:173-82. [PMID: 19481373 DOI: 10.1016/j.patbio.2009.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 04/03/2009] [Indexed: 11/17/2022]
Abstract
Breast cancer is a widely spread women's disease. In spite of progress in the field of surgery and adjuvant therapies, the risk of breast cancer metastatic relapses remains high especially in those overexpressing HER2. Different studies have shown cellular and/or humoral immune responses against HER2 in patients with HER2-overexpressing tumors. This immune response is associated with a lower tumor development at early stages of the disease. These observations, associated with the efficiency today demonstrated by a trastuzumab-based anti-HER2 immunotherapy, allowed to envisage various vaccinal strategies against HER2. These findings have so led to the hypothesis that the generation of an anti-HER2 immune response should protect patients from HER2-overexpressing tumor growth, and induction of a stable and strong immunity by cancer vaccines is expected to lead to establishment of immune memory, thereby preventing tumor recurrence. However, an immunological tolerance against HER2 antigen exists representing a barrier to effective vaccination against this oncoprotein. As a consequence, the current challenge for vaccines is to find the best conditions to break this immunological tolerance. In this review, we will discuss the different anti-HER2 vaccine strategies currently developed; considering the strategies having reached the clinical phases as well as those still in preclinical development. The used antigen can be composed of tumoral allogenic cells or autologous cells or be specific of HER2. It can be delivered by denditric cells or in a DNA, peptidic or proteic form. Another area of the research concerns the use of anti-idiotypic antibodies mimicking HER2.
Collapse
Affiliation(s)
- M Z Ladjemi
- Inserm U896, CRLC Val-d'Aurelle Paul-Lamarque, institut de recherche en cancérologie de Montpellier (IRCM), université Montpellier-1, 34298 Montpellier cedex 5, France.
| | | | | | | |
Collapse
|
30
|
Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood 2009; 113:18-27. [DOI: 10.1182/blood-2008-06-165654] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Eighteen relapsed patients with measurable indolent non-Hodgkin lymphoma (NHL) were vaccinated with dendritic cells (DCs) loaded with killed autologous tumor cells. Six patients had objective clinical responses including 3 continuous complete responses (CRs) and 3 partial responses (PRs), with a median follow up of 50.5 months. Eight patients had stable disease, whereas 4 had progressive disease. Clinical responses were significantly associated with a reduction in CD4+CD25+FOXP3+ regulatory T cells, an increase in CD3−CD56dimCD16+ natural killer (NK) cells, and maturation of lymphocytes to the effector memory stage in either postvaccination peripheral blood or tumor specimen samples. In partial responding patients, vaccination significantly boosted the IFN-γ–producing T-cell response to autologous tumor challenge. In one HLA-A*0201+ patient who achieved CR, IL-4 release by circulating T cells in response to tumor-specific IgH-encoded peptides was also documented. Immunohistochemical analysis of tumor biopsies using biotin-conjugated autologous serum samples revealed a tumor-restricted humoral response only in the postvaccination serum from responding patients. Collectively these results demonstrate that vaccination with tumor-loaded DCs may induce both T- and B-cell responses and produces clinical benefits in indolent NHL patients with measurable disease. This study is registered with the Istituto Superiore di Sanità: http://www.iss.it with protocol number 7578-PRE 21-801.
Collapse
|
31
|
Mittendorf EA, Holmes JP, Ponniah S, Peoples GE. The E75 HER2/neu peptide vaccine. Cancer Immunol Immunother 2008; 57:1511-21. [PMID: 18536917 PMCID: PMC11029853 DOI: 10.1007/s00262-008-0540-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
Abstract
E75 (HER2/neu 369-377) is an immunogenic peptide from the HER2/neu protein which is overexpressed in many breast cancer patients. A large amount of preclinical work and a small number of Phase I trials have been completed evaluating the vaccine potential of the E75 peptide mixed with an immunoadjuvant. Our group has performed two concurrent E75 + GM-CSF Phase II trials in node-positive and node-negative disease-free breast cancer patients. These trials, totaling 186 patients, were designed to assess the ability of the E75 vaccine to prevent disease recurrence in these high risk patients. In this review article, we discuss the safety of the vaccine, the immunologic response to the peptide, and most importantly, the potential clinical benefit of the vaccine. The recurrence rate, mortality associated with recurrence, and the distribution of recurrences are presented and discussed. Additionally, the lessons learned from these trials to include optimal dosing and the need for booster inoculations are addressed. We also present data exploring possible explanations and mechanisms behind the potential clinical utility of this simple single epitope vaccine. Finally, we present some of the future directions for our Cancer Vaccine Development Program assessing multi-epitope peptide vaccines and combination immunotherapies.
Collapse
Affiliation(s)
- Elizabeth A. Mittendorf
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX USA
| | - Jarrod P. Holmes
- Division of Hematology and Medical Oncology, Department of Medicine, Naval Medical Center San Diego, San Diego, CA USA
- Cancer Vaccine Development Program, Department of Surgery, United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Sathibalan Ponniah
- Cancer Vaccine Development Program, Department of Surgery, United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - George E. Peoples
- Cancer Vaccine Development Program, Department of Surgery, United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD USA
- Department of Surgery, General Surgery Service, Brooke Army Medical Center, 3851 Roger Brooke Drive, Ft. Sam, Houston, TX 78234 USA
| |
Collapse
|
32
|
Interferon-alpha (IFN-alpha)-conditioned DC preferentially stimulate type-1 and limit Treg-type in vitro T-cell responses from RCC patients. J Immunother 2008; 31:254-62. [PMID: 18317362 DOI: 10.1097/cji.0b013e318167b023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) are potent antigen presenting cells and represent attractive candidates for use in novel immunotherapies for patients with renal cell carcinoma (RCC), a disease that has proven refractory to conventional treatment modalities, such as chemotherapy and radiotherapy. Given the perceived need to augment antitumor type-1 immunity (TC1 and Th1) as a therapeutic end point, and the known functional plasticity of DC populations that may display heterogeneous capacity to promote T-cell responses, we sought to identify a preferred DC preparation with this capacity. We compared 2 different preparations of monocyte-derived DC using interferon-alpha (IFN-alpha) (IFN-DC and alphaDC1) with classic DCs "matured" (mDCs) using interleukin-1beta/interleukin-6/tumor necrosis factor-alpha/prostaglandin E2, for their ability to promote autologous TC1 antitumor responses from RCC patients in vitro. IFN-alpha-conditioned DC promoted significantly higher numbers of RCC-specific CD8+ T cells exhibiting a cytotoxic phenotype after in vitro stimulation (IVS) than cytokine cocktail-mDCs. Furthermore, IVS using IFN-DCs was able to diminish regulatory-type T cells among CD4+ T-cell responder populations versus IVS using conventional mDC-based vaccines. These data emphasize an important role for IFN-alpha in modulating the immunologic functions of DCs toward a polarized DC1-type capable of coordinately promoting TH1-type and TC1-type T-cell mediated immunity and supports the translational development of patient-derived IFN-alpha-conditioned DC for use in novel immunotherapies for patients with RCC, and in whom, endogenous tumor-specific TC1 effector cells may be dysfunctional, anergic, or prone to undergo apoptosis.
Collapse
|
33
|
Holmes JP, Benavides LC, Gates JD, Carmichael MG, Hueman MT, Mittendorf EA, Murray JL, Amin A, Craig D, von Hofe E, Ponniah S, Peoples GE. Results of the first phase I clinical trial of the novel II-key hybrid preventive HER-2/neu peptide (AE37) vaccine. J Clin Oncol 2008; 26:3426-33. [PMID: 18612158 DOI: 10.1200/jco.2007.15.7842] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE HER-2/neu is overexpressed in breast cancer and is the source of immunogenic peptides. CD4(+) T-helper peptides for HER-2/neu are being evaluated in vaccine trials. The addition of Ii-Key, a four-amino-acid LRMK modification, increases vaccine potency when compared with unmodified class II epitopes. We present the results of the first human phase I trial of the Ii-Key hybrid HER-2/neu peptide (AE37) vaccine in disease-free, node-negative breast cancer patients. PATIENTS AND METHODS The dose escalation trial included five dose groups, to determine safety and optimal dose of the hybrid peptide (100 microg, 500 microg, 1,000 microg) and granulocyte-macrophage colony-stimulating factor (GM-CSF; range, 0 to 250 microg). In the event of significant local toxicity, GM-CSF (or peptide in absence of GM-CSF) was reduced by 50%. Immunologic response was monitored by delayed-type hypersensitivity and [(3)H]thymidine proliferative assays for both the hybrid AE37 (LRMK-positive HER-2/neu:776-790) and AE36 (unmodified HER-2/neu:776-790). RESULTS All 15 patients completed the trial with no grade 3 to 5 toxicities. Dose reductions occurred in 47% of patients. In the second group (peptide, 500 microg; GM-CSF, 250 microg), all patients required dose reductions, prompting peptide-only inoculations in the third group. The vaccine induced dose-dependent immunologic responses in vitro and in vivo to AE37, as well as AE36. CONCLUSION The hybrid AE37 vaccine seems safe and well tolerated with minimal toxicity if properly dosed. AE37 is capable of eliciting HER-2/neu-specific immune responses, even without the use of an adjuvant. This trial represents the first human experience with the Ii-Key modification, and to our knowledge, AE37 is the first peptide vaccine to show potency in the absence of an immunoadjuvant.
Collapse
Affiliation(s)
- Jarrod P Holmes
- Department of Surgery, General Surgery Service, Brooke Army Medical Center, 3851 Roger Brooke Dr, Fort Sam Houston, TX, 78234, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gritzapis AD, Voutsas IF, Lekka E, Tsavaris N, Missitzis I, Sotiropoulou P, Perez S, Papamichail M, Baxevanis CN. Identification of a Novel Immunogenic HLA-A*0201-Binding Epitope of HER-2/neu with Potent Antitumor Properties. THE JOURNAL OF IMMUNOLOGY 2008; 181:146-54. [DOI: 10.4049/jimmunol.181.1.146] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Coleman CA, Muller-Trutwin MC, Apetrei C, Pandrea I. T regulatory cells: aid or hindrance in the clearance of disease? J Cell Mol Med 2008; 11:1291-325. [PMID: 18205702 PMCID: PMC4401294 DOI: 10.1111/j.1582-4934.2007.00087.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CD4+ CD25+ T regulatory cells (Tregs) are classified as a subset of T cells whose role is the suppression and regulation of immune responses to self and non-self. Since their discovery in the early 1970s, the role of CD4+ CD25+ Tregs in both autoimmune and infectious disease has continued to expand. This review exam-ines the recent advances on the role CD4+ CD25+ Tregs may be playing in various diseases regarding pro-gression or protection. In addition, advances made in the purification and manipulation of CD4+ CD25+ Tregs using new cell markers, techniques and antibodies are discussed. Ultimately, an overall understanding of the exact mechanism which CD4+ CD25+ Tregs implement during disease progression will enhance our ability to manipulate CD4+ CD25+ Tregs in a clinically beneficial manner.
Collapse
Affiliation(s)
- Clint A Coleman
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | | | | |
Collapse
|
36
|
Chen L, Huang TG, Meseck M, Mandeli J, Fallon J, Woo SLC. Rejection of metastatic 4T1 breast cancer by attenuation of Treg cells in combination with immune stimulation. Mol Ther 2007; 15:2194-202. [PMID: 17968355 DOI: 10.1038/sj.mt.6300310] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
4T1 breast carcinoma is a highly malignant and poorly immunogenic murine tumor model that resembles advanced breast cancer in humans, and is refractory to most immune stimulation-based treatments. We hypothesize that the ineffectiveness of immune stimulatory treatment is mediated by the suppressive effects of CD4(+)CD25(+) regulatory T (Treg) cells, which can be attenuated by engaging the glucocorticoid-induced tumor necrosis factor receptor family-related protein with its natural ligand (GITRL); further, combination treatment with existing immune stimulation regimens will augment anti-tumor immunity and eradicate metastatic 4T1 tumors in mice.A soluble homodimeric form of mouse GITRL (mIg-mGITRLs) was molecularly constructed and used to treat orthotopic 4T1 tumors established in immune-competent, syngeneic Balb/c mice. When applied in combination with adenovirus-mediated intratumoral murine granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-12 (IL-12) gene delivery plus systemic 4-1BB activation, mIg-mGITRLs attenuated the immune-suppressive function of splenic Treg cells, which led to elevated interferon-gamma (IFN-gamma) production, tumor-specific cytolytic T-cell activities, tumor rejection and long-term survival in 65% of the animals without apparent toxicities. The results demonstrate that addition of mIg-mGITRLs to an immune-stimulatory treatment regimen significantly improved long-term survival without apparent toxicity, and could potentially be clinically translated into an effective and safe treatment modality for metastatic breast cancer in patients.
Collapse
Affiliation(s)
- Li Chen
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | |
Collapse
|
37
|
Perez SA, Karamouzis MV, Skarlos DV, Ardavanis A, Sotiriadou NN, Iliopoulou EG, Salagianni ML, Orphanos G, Baxevanis CN, Rigatos G, Papamichail M. CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clin Cancer Res 2007; 13:2714-21. [PMID: 17473204 DOI: 10.1158/1078-0432.ccr-06-2347] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE CD4(+)CD25(bright) regulatory T cells (Tregs) are increased in patients with several malignancies and correlate with disease stage and prognosis. Breast cancer patients represent a heterogeneous population with unpredictable disease progression even at advanced stages. Circulating Tregs in correlation with HER-2/neu (HER) status and treatment with chemotherapy, either alone or in combination with trastuzumab therapy, were monitored in advanced-stage breast cancer patients. EXPERIMENTAL DESIGN Circulating Treg frequency and absolute counts of 46 HER(+) and 28 HER(-), stage III and IV, breast cancer patients before therapy and during trastuzumab therapy and/or chemotherapy have been compared with 24 healthy donors and correlated with plasma HER extracellular domain concentration and clinical outcome. RESULTS Treg frequency in HER(+) patients was significantly increased compared with both HER(-) patients and healthy donors. Trastuzumab therapy, with or without combined chemotherapy, resulted in a progressive decrease of circulating Tregs. Percentage change in Tregs statistically correlated with percentage change in plasma HER extracellular domain. Furthermore, decrease in Tregs correlated with either objective clinical response or stable disease, whereas increased Treg frequency during trastuzumab therapy coincided with disease progression. No statistically significant change in Treg frequency following chemotherapy was observed in HER(-) patients. CONCLUSIONS Treg cell frequency does not directly correlate with clinical stage in breast cancer, as stage III and IV HER(+) and HER(-) patients exhibit significantly different Treg profiles. Trastuzumab therapy, either alone or combined with chemotherapy, results in decreased Treg frequency in HER(+) advanced patients with an objective clinical response.
Collapse
Affiliation(s)
- Sonia A Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|