1
|
Papa F, Grinda T, Rassy E, Cheickh-Hussin R, Ribeiro J, Antonuzzo L, Pistilli B. Long road towards effective HER3 targeting in breast cancer. Cancer Treat Rev 2024; 129:102786. [PMID: 38885540 DOI: 10.1016/j.ctrv.2024.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 06/09/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer is a heterogeneous disease, encompassing multiple different subtypes. Thanks to the increasing knowledge of the diverse biological features of each subtype, most patients receive personalized treatment based on known biomarkers. However, the role of some biomarkers in breast cancer evolution is still unknown, and their potential use as a therapeutic target is still underexplored. HER3 is a member of the human epidermal growth factors receptor family, overexpressed in 50%-70% of breast cancers. HER3 plays a key role in cancer progression, metastasis development, and drug resistance across all the breast cancer subtypes. Owing to its critical role in cancer progression, many HER3-targeting therapies have been developed over the past decade with conflicting findings. Next-generation antibody-drug conjugates have recently shown promising results in solid tumors expressing HER3, including breast cancer. In this review, we discuss the HER3 role in the pathogenesis of breast cancer and its relevance across all subtypes. We also explore the new anti-HER3 treatment strategies, calling into question the significance of HER3 detection as crucial information in breast cancer treatment.
Collapse
Affiliation(s)
- Francesca Papa
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; Department of Medical Oncology, Florence University, Italy
| | - Thomas Grinda
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | | | - Joana Ribeiro
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | | | - Barbara Pistilli
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France; INSERM U1279, Gustave Roussy, Villejuif, France.
| |
Collapse
|
2
|
Chen X, Wei C, Zhao J, Zhou D, Wang Y, Zhang S, Zuo H, Dong J, Zhao Z, Hao M, He X, Bian Y. Carnosic acid: an effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol Res 2024; 206:107288. [PMID: 38977208 DOI: 10.1016/j.phrs.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuntao Wei
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dandan Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yue Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Man Hao
- Clinical Medical College of Acuupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Ortho and MSK Science, University College London, London WC1E 6BT, UK.
| | - Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China; UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London WC1E 6BT, UK.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
3
|
Zhang J, Liu J, Yue Y, Wang L, He Q, Xu S, Li J, Liao Y, Chen Y, Wang S, Xie Y, Zhang B, Bian Y, Dimitrov DS, Yuan Y, Zhu J. The immunotoxin targeting PRLR increases tamoxifen sensitivity and enhances the efficacy of chemotherapy in breast cancer. J Exp Clin Cancer Res 2024; 43:173. [PMID: 38898487 PMCID: PMC11188579 DOI: 10.1186/s13046-024-03099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Though tamoxifen achieves success in treating estrogen receptor α (ERα)-positive breast cancer, the followed development of tamoxifen resistance is a common challenge in clinic. Signals downstream of prolactin receptor (PRLR) could synergize with ERα in breast cancer progression. However, the potential effect of targeting PRL-PRLR axis combined with tamoxifen has not been thoroughly investigated. METHODS High-throughput RNA-seq data obtained from TCGA, Metabric and GEO datasets were analyzed to explore PRLR expression in breast cancer cell and the association of PRLR expression with tamoxifen treatment. Exogenous or PRL overexpression cell models were employed to investigate the role of activated PRLR pathway in mediating tamoxifen insensitivity. Immunotoxin targeting PRLR (N8-PE24) was constructed with splicing-intein technique, and the efficacy of N8-PE24 against breast cancer was evaluated using in vitro and in vivo methods, including analysis of cells growth or apoptosis, 3D spheroids culture, and animal xenografts. RESULTS PRLR pathway activated by PRL could significantly decrease sensitivity of ERα-positive breast cancer cells to tamoxifen. Tamoxifen treatment upregulated transcription of PRLR and could induce significant accumulation of PRLR protein in breast cancer cells by alkalizing lysosomes. Meanwhile, tamoxifen-resistant MCF7 achieved by long-term tamoxifen pressure exhibited both upregulated transcription and protein level of PRLR. Immunotoxin N8-PE24 enhanced sensitivity of breast cancer cells to tamoxifen both in vitro and in vivo. In xenograft models, N8-PE24 significantly enhanced the efficacy of tamoxifen and paclitaxel when treating PRLR-positive triple-negative breast cancer. CONCLUSIONS PRL-PRLR axis potentially associates with tamoxifen insensitivity in ERα-positive breast cancer cells. N8-PE24 could inhibit cell growth of the breast cancers and promote drug sensitivity of PRLR-positive breast cancer cells to tamoxifen and paclitaxel. Our study provides a new perspective for targeting PRLR to treat breast cancer.
Collapse
Affiliation(s)
- Jiawei Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junjun Liu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yali Yue
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Qunye He
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Shuyi Xu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Junyan Li
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yunji Liao
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yu Chen
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | | | - Yueqing Xie
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Yanlin Bian
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China
| | - Dimiter S Dimitrov
- University of Pittsburgh Department of Medicine, Pittsburgh, PA, 15261, USA
| | - Yunsheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, MOE, School of Pharmacy, Shanghai Jiao Tong University, Building 6, Room 208, 800 Dongchuan road, Shanghai, 200240, China.
- Jecho Laboratories, Inc, Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd, Tianjin, 300467, China.
| |
Collapse
|
4
|
Vafeiadou V, Hany D, Picard D. Hyperactivation of MAPK Induces Tamoxifen Resistance in SPRED2-Deficient ERα-Positive Breast Cancer. Cancers (Basel) 2022; 14:954. [PMID: 35205702 PMCID: PMC8870665 DOI: 10.3390/cancers14040954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the number one cause of cancer-related mortality in women worldwide. Most breast tumors depend on the expression of the estrogen receptor α (ERα) for their growth. For this reason, targeting ERα with antagonists such as tamoxifen is the therapy of choice for most patients. Although initially responsive to tamoxifen, about 40% of the patients will develop resistance and ultimately a recurrence of the disease. Thus, finding new biomarkers and therapeutic approaches to treatment-resistant tumors is of high significance. SPRED2, an inhibitor of the MAPK signal transduction pathway, has been found to be downregulated in various cancers. In the present study, we found that SPRED2 is downregulated in a large proportion of breast-cancer patients. Moreover, the knockdown of SPRED2 significantly increases cell proliferation and leads to tamoxifen resistance of breast-cancer cells that are initially tamoxifen-sensitive. We found that resistance occurs through increased activation of the MAPKs ERK1/ERK2, which enhances the transcriptional activity of ERα. Treatment of SPRED2-deficient breast cancer cells with a combination of the ERK 1/2 inhibitor ulixertinib and 4-hydroxytamoxifen (4-OHT) can inhibit cell growth and proliferation and overcome the induced tamoxifen resistance. Taken together, these results indicate that SPRED2 may also be a tumor suppressor for breast cancer and that it is a key regulator of cellular sensitivity to 4-OHT.
Collapse
Affiliation(s)
- Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| |
Collapse
|
5
|
Booth L, West C, Moore RP, Von Hoff D, Dent P. GZ17-6.02 and palbociclib interact to kill ER+ breast cancer cells. Oncotarget 2022; 13:92-104. [PMID: 35035775 PMCID: PMC8754587 DOI: 10.18632/oncotarget.28177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
GZ17-6.02 is presently undergoing clinical evaluation in solid tumors and lymphoma. The present studies were performed to define its biology in estrogen receptor positive breast cancer cells and to determine whether it interacted with palbociclib to enhance tumor cell killing. GZ17-6.02 interacted in an additive fashion with palbociclib to kill ER+ breast cancer cells. GZ17-6.02 and palbociclib cooperated to inactivate mTOR and AKT and to activate ULK1 and PERK. The drugs interacted to increase the expression of FAS-L and BAX, and to decrease the levels of MCL1, the estrogen receptor, and HDACs 1–3. Palbociclib activated ERBB3, an effect blocked by GZ17-6.02. GZ17-6.02 and palbociclib interacted to increase the expression of multiple toxic BH3 domain proteins and to reduce MCL1 and BCL-XL expression. Knock down of FAS-L reduced the lethality of [GZ17-6.02 + palbociclib]. GZ17-6.02 and palbociclib interacted to enhance autophagosome formation and autophagic flux. Knock down of Beclin1, ATG5, BAG3, eIF2α, toxic BH3 domain proteins or CD95 significantly reduced drug combination lethality. GZ17-6.02 and palbociclib increased the expression of Beclin1 and ATG5, effects blocked by knock down of eIF2α. The drugs also increased the phosphorylation of the AMPK and ATG13, effects blocked by knock down of ATM. Knock down of ATM or the AMPK, or expression of activated mTOR significantly reduced the abilities of GZ17-6.02 and palbociclib to enhance autophagosome formation and autophagic flux.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cameron West
- Genzada Pharmaceuticals, Sterling, KS 67579, USA
| | | | - Daniel Von Hoff
- Physician-in-Chief, Distinguished Professor, Translational Genomics Research Institute (TGEN), Phoenix, AZ 85004, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Das P, Gupta A, Desai KV. JMJD6 orchestrates a transcriptional program in favor of endocrine resistance in ER+ breast cancer cells. Front Endocrinol (Lausanne) 2022; 13:1028616. [PMID: 36419768 PMCID: PMC9678079 DOI: 10.3389/fendo.2022.1028616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
High expression of Jumonji domain containing protein 6 (JMJD6) is strongly associated with poor prognosis in estrogen receptor positive (ER+) breast cancer. We overexpressed JMJD6 in MCF7 cells (JOE cells) and performed RNA-seq analysis. 76% of differentially expressed genes (DEGs) overlapped with ER target genes. Pathway analysis revealed that JMJD6 upregulated a larger subset of genes related to cell proliferation as compared to ER. Interestingly, JOE cells showed a decrease in ER target gene expression prompting us to check ER levels. Indeed, JOE cells showed a significant decrease in both ESR1 and ER levels and JMJD6 siRNA transfection increased the expression of both. Additionally, JOE cells showed increased RET and ERK1 expression, events associated with resistance to endocrine therapy. Accordingly, JOE cells displayed lower sensitivity and survived better at higher doses of 4-hydroxy tamoxifen (Tam) as compared to parental MCF-7 cells. Conversely, LTED-I and TAM R that resist Tam induced death, showed high expression of JMJD6. Further, JMJD6 siRNA treatment decreased growth and improved Tam sensitivity in TAM R. Comparison of JOE DEGs with known Tam signature genes showed a substantial overlap. Overall, these data suggest that blocking ER alone in patients may not eradicate proliferation of JMJD6 expressing ER+ cells and JMJD6 may predispose and sustain endocrine therapy resistance. We propose that immunostaining for JMJD6 could be developed as a potential marker for predicting endocrine therapy resistance. Further, antagonizing JMJD6 action in women expressing higher amounts of this protein, may offer a greater clinical benefit than endocrine therapy.
Collapse
|
7
|
Yde CW. Aurora A and Mcl-1: new potential treatment targets in antiestrogen-resistant breast cancer. Mol Cell Oncol 2021; 8:998898. [PMID: 35419472 PMCID: PMC8997248 DOI: 10.1080/23723556.2014.998898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 06/14/2023]
Abstract
Antiestrogen resistance is a major clinical limitation in treatment of breast cancer. We have recently reported that Aurora A and Mcl-1 (myeloid cell leukemia 1) are potential novel treatment targets in antiestrogen-resistant breast cancer cells and that Aurora A expression is a biomarker for tamoxifen resistance in breast cancer patients. Abbreviations: Bcl-2, B-cell lymphoma 2; EGF, epidermal growth factor; ERα, estrogen receptor α; Mcl-1, myeloid cell leukemia 1; VEGF, vascular endothelial growth factor.
Collapse
Affiliation(s)
- Christina W. Yde
- Breast Cancer Group, Unit of Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
8
|
Schaduangrat N, Malik AA, Nantasenamat C. ERpred: a web server for the prediction of subtype-specific estrogen receptor antagonists. PeerJ 2021; 9:e11716. [PMID: 34285834 PMCID: PMC8274494 DOI: 10.7717/peerj.11716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/11/2021] [Indexed: 11/22/2022] Open
Abstract
Estrogen receptors alpha and beta (ERα and ERβ) are responsible for breast cancer metastasis through their involvement of clinical outcomes. Estradiol and hormone replacement therapy targets both ERs, but this often leads to an increased risk of breast and endometrial cancers as well as thromboembolism. A major challenge is posed for the development of compounds possessing ER subtype specificity. Herein, we present a large-scale classification structure-activity relationship (CSAR) study of inhibitors from the ChEMBL database which consisted of an initial set of 11,618 compounds for ERα and 7,810 compounds for ERβ. The IC50 was selected as the bioactivity unit for further investigation and after the data curation process, this led to a final data set of 1,593 and 1,281 compounds for ERα and ERβ, respectively. We employed the random forest (RF) algorithm for model building and of the 12 fingerprint types, models built using the PubChem fingerprint was the most robust (Ac of 94.65% and 92.25% and Matthews correlation coefficient (MCC) of 89% and 76% for ERα and ERβ, respectively) and therefore selected for feature interpretation. Results indicated the importance of features pertaining to aromatic rings, nitrogen-containing functional groups and aliphatic hydrocarbons. Finally, the model was deployed as the publicly available web server called ERpred at http://codes.bio/erpred where users can submit SMILES notation as the input query for prediction of the bioactivity against ERα and ERβ.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
An J, Kim JB, Yang EY, Kim HO, Lee WH, Yang J, Kwon H, Paik NS, Lim W, Kim YK, Moon BI. Bacterial extracellular vesicles affect endocrine therapy in MCF7 cells. Medicine (Baltimore) 2021; 100:e25835. [PMID: 33950995 PMCID: PMC8104188 DOI: 10.1097/md.0000000000025835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND : The microbiome is important in the development and progression of breast cancer. This study investigated the effects of microbiome derived from Klebsiella on endocrine therapy of breast cancer using MCF7 cells. The bacterial extracellular vesicles (EVs) that affect endocrine therapy were established through experiments focused on tamoxifen efficacy. METHODS : The microbiomes of breast cancer patients and healthy controls were analyzed using next-generation sequencing. Among microbiome, Klebsiella was selected as the experimental material for the effect on endocrine therapy in MCF7 cells. MCF7 cells were incubated with tamoxifen in the absence/presence of bacterial EVs derived from Klebsiella pneumoniae and analyzed by quantitative real-time polymerase chain reaction and Western blot. RESULTS : Microbiome derived from Klebsiella is abundant in breast cancer patients especially luminal A subtype compared to healthy controls. The addition of EVs derived from K pneumoniae enhances the anti-hormonal effects of tamoxifen in MCF7 cells. The increased efficacy of tamoxifen is mediated via Cyclin E2 and p-ERK. CONCLUSION : Based on experiments, the EVs derived from K pneumoniae are important in hormone therapy on MCF7 cells. This result provides new insight into breast cancer mechanisms and hormone therapy using Klebsiella found in the microbiome.
Collapse
Affiliation(s)
- Jeongshin An
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Jong Bin Kim
- Research Center for Cellular Homeostasis, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu
| | - Eun Yeol Yang
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Hye Ok Kim
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Won-Hee Lee
- MD Healthcare, Room 1303, Woori Technology Inc. building, Sangam-dong, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Jinho Yang
- MD Healthcare, Room 1303, Woori Technology Inc. building, Sangam-dong, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Hyungju Kwon
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Nam Sun Paik
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Woosung Lim
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| | - Yoon-Keun Kim
- MD Healthcare, Room 1303, Woori Technology Inc. building, Sangam-dong, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University School of Medicine, 1071 Anyangcheon-ro, Yangcheon-gu
| |
Collapse
|
10
|
Obesity and Androgen Receptor Signaling: Associations and Potential Crosstalk in Breast Cancer Cells. Cancers (Basel) 2021; 13:cancers13092218. [PMID: 34066328 PMCID: PMC8125357 DOI: 10.3390/cancers13092218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is an increasing health challenge and is recognized as a breast cancer risk factor. Although obesity-related breast cancer mechanisms are not fully understood, this association has been linked to impaired hormone secretion by the dysfunctional obese adipose tissue (hyperplasic and hypertrophic adipocytes). Among these hormones, altered production of androgens and adipokines is observed, and both, are independently associated with breast cancer development. In this review, we describe and comment on the relationships reported between these factors and breast cancer, focusing on the biological associations that have helped to unveil the mechanisms by which signaling from androgens and adipokines modifies the behavior of mammary epithelial cells. Furthermore, we discuss the potential crosstalk between the two most abundant adipokines produced by the adipose tissue (adiponectin and leptin) and the androgen receptor, an emerging marker in breast cancer. The identification and understanding of interactions among adipokines and the androgen receptor in cancer cells are necessary to guide the development of new therapeutic approaches in order to prevent and cure obesity and breast cancer.
Collapse
|
11
|
Pascual T, Oliveira M, Ciruelos E, Bellet Ezquerra M, Saura C, Gavilá J, Pernas S, Muñoz M, Vidal MJ, Margelí Vila M, Cejalvo JM, González-Farré B, Espinosa-Bravo M, Cruz J, Salvador-Bofill FJ, Guerra JA, Luna Barrera AM, Arumi de Dios M, Esker S, Fan PD, Martínez-Sáez O, Villacampa G, Paré L, Ferrero-Cafiero JM, Villagrasa P, Prat A. SOLTI-1805 TOT-HER3 Study Concept: A Window-of-Opportunity Trial of Patritumab Deruxtecan, a HER3 Directed Antibody Drug Conjugate, in Patients With Early Breast Cancer. Front Oncol 2021; 11:638482. [PMID: 33968735 PMCID: PMC8103897 DOI: 10.3389/fonc.2021.638482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Preclinical data support a key role for the human epidermal growth factor receptor 3 (HER3) pathway in hormone receptor (HR)-positive breast cancer. Recently, new HER3 directed antibody drug conjugates have shown activity in breast cancer. Given the need to better understand the molecular biology, tumor microenvironment, and mechanisms of drug resistance in breast cancer, we designed this window-of-opportunity study with the HER3 directed antibody drug conjugate patritumab deruxtecan (HER3-DXd; U3-1402). Trial Design: Based on these data, a prospective, multicenter, single-arm, window-of-opportunity study was designed to evaluate the biological effect of patritumab deruxtecan in the treatment of naïve patients with HR-positive/HER2-negative early breast cancer whose primary tumors are ≥1 cm by ultrasound evaluation. Patients will be enrolled in four cohorts according to the mRNA-based ERBB3 expression by central assessment. The primary endpoint is a CelTIL score after one single dose. A translational research plan is also included to provide biological information and to evaluate secondary and exploratory objectives of the study. Trial Registration Number: EudraCT 2019-004964-23; NCT number: NCT04610528.
Collapse
Affiliation(s)
- Tomás Pascual
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain
| | - Mafalda Oliveira
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain.,Breast Cancer Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Eva Ciruelos
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital 12 de Octubre, Madrid, Spain
| | - Meritxell Bellet Ezquerra
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain.,Breast Cancer Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Cristina Saura
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain.,Breast Cancer Program, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Joaquin Gavilá
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, IVO-Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Sonia Pernas
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Institut Catala d' Oncologia (ICO), H. U. Bellvitge-Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Montserrat Muñoz
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain
| | - Maria J Vidal
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain
| | - Mireia Margelí Vila
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, ICO-Institut Català d' Oncologia Badalona, Hospital Universitario Germans Trias i Pujol, Badalona, Spain
| | - Juan M Cejalvo
- Medical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain.,Breast Cancer Biology Research Group, Biomedical Research Institute Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana, Valencia, Spain
| | - Blanca González-Farré
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain.,Pathology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | | | - Josefina Cruz
- Medical Oncology Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | | | - Juan Antonio Guerra
- Medical Oncology Department, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | | | - Miriam Arumi de Dios
- Medical Oncology Department, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Stephen Esker
- Research and Development, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Pang-Dian Fan
- Research and Development, Daiichi Sankyo, Inc., Basking Ridge, NJ, United States
| | - Olga Martínez-Sáez
- Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Guillermo Villacampa
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Oncology Data Science, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laia Paré
- SOLTI Innovative Cancer Research, Barcelona, Spain
| | | | | | - Aleix Prat
- SOLTI Innovative Cancer Research, Barcelona, Spain.,Medical Oncology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (Instituto de Investigaciones Biomédicas August Pi i Sunyer), Barcelona, Spain.,Medicine Department, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Sharaky M, Kamel M, Aziz MA, Omran M, Rageh MM, Abouzid KAM, Shouman SA. Design, synthesis and biological evaluation of a new thieno[2,3- d]pyrimidine-based urea derivative with potential antitumor activity against tamoxifen sensitive and resistant breast cancer cell lines. J Enzyme Inhib Med Chem 2021; 35:1641-1656. [PMID: 32781854 PMCID: PMC7470147 DOI: 10.1080/14756366.2020.1804383] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Breast cancer (BC) and endocrine resistance to chemotherapy are challenging problems where angiogenesis plays fundamental roles. Thus, targeting of VEGFR-2 signalling pathway has been an attractive approach. In this study, we synthesised a new sorafenib analogue, thieno[2,3-d]pyrimidine based urea derivative, KM6. It showed 65% inhibition of VEGF2 tyrosine kinase activity and demonstrated a potential antitumor activity in TAM-resistant, LCC2, and its parental MCF7 BC cells. KM6 retained the sensitivity of LCC2 through upregulation of key enzymes of apoptosis and proteins of cell death including caspases 3, 8, 9, P53, BAX/BCL-2 ratio and LDH in media. It downregulated mRNA expression of Ki-67, survivin, Akt, and reduced levels of ROS and glucose uptake. Moreover, KM6 reduced the levels of inflammation markers PGE2, COX2, IL-1β and IL6 and metastasis markers MMP-2 and MMP-9. In conclusion, KM6 is a promising compound for ER + and TAM-resistant BC with many potential antitumor and polypharmacological mechanisms.
Collapse
Affiliation(s)
- Marwa Sharaky
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa Kamel
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Marwa A Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | - Mervat Omran
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Monira M Rageh
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Samia A Shouman
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Joo MK, Shin S, Ye DJ, An HG, Kwon TU, Baek HS, Kwon YJ, Chun YJ. Combined treatment with auranofin and trametinib induces synergistic apoptosis in breast cancer cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:84-94. [PMID: 33103613 DOI: 10.1080/15287394.2020.1835762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Auranofin is a gold complex used as an anti-rheumatic agent and may act as a potent anticancer drug against breast tumors. Trametinib is a specific mitogen-activated protein kinase inhibitor, approved for the treatment of metastatic melanoma. The aim of this study was to examine the synergistic effects of auranofin and trametinib on apoptosis in MCF-7 human breast cancer cells. The combination treatment inhibited cancer cell proliferation and induced cell cycle arrest at the sub-G1 phase and apoptosis via poly (ADP-ribose) polymerase cleavage and caspase-3/7 activation. It is noteworthy that this treatment significantly increased p38 mitogen-activated protein kinase (MAPK) phosphorylation to induce mitochondrial stress, subsequently promoting cancer cell apoptosis through release of apoptosis-inducing factor. Further data demonstrated that combined treatment significantly induced increase in nuclear translocation of AIF. These results indicated that activation of the p38 MAPK signaling pathway and mitochondrial apoptosis may contribute to the synergistic consequences in MCF-7 cells. Collectively, our data demonstrated that combined treatment with auranofin and trametinib exhibited synergistic breast cancer cell death and this combination might be utilized as a novel therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Min-Kyung Joo
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Sangyun Shin
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Dong-Jin Ye
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Hong-Gyu An
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Tae-Uk Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Hyoung-Seok Baek
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Yeo-Jung Kwon
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| | - Young-Jin Chun
- Center for Metareceptome Research, College of Pharmacy, Chung-Ang University , Dongjak-gu, Republic of Korea
| |
Collapse
|
14
|
Løkkegaard S, Elias D, Alves CL, Bennetzen MV, Lænkholm AV, Bak M, Gjerstorff MF, Johansen LE, Vever H, Bjerre C, Kirkegaard T, Nordenskjöld B, Fornander T, Stål O, Lindström LS, Esserman LJ, Lykkesfeldt AE, Andersen JS, Leth-Larsen R, Ditzel HJ. MCM3 upregulation confers endocrine resistance in breast cancer and is a predictive marker of diminished tamoxifen benefit. NPJ Breast Cancer 2021; 7:2. [PMID: 33398005 PMCID: PMC7782683 DOI: 10.1038/s41523-020-00210-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Resistance to endocrine therapy in estrogen receptor-positive (ER+) breast cancer is a major clinical problem with poorly understood mechanisms. There is an unmet need for prognostic and predictive biomarkers to allow appropriate therapeutic targeting. We evaluated the mechanism by which minichromosome maintenance protein 3 (MCM3) influences endocrine resistance and its predictive/prognostic potential in ER+ breast cancer. We discovered that ER+ breast cancer cells survive tamoxifen and letrozole treatments through upregulation of minichromosome maintenance proteins (MCMs), including MCM3, which are key molecules in the cell cycle and DNA replication. Lowering MCM3 expression in endocrine-resistant cells restored drug sensitivity and altered phosphorylation of cell cycle regulators, including p53(Ser315,33), CHK1(Ser317), and cdc25b(Ser323), suggesting that the interaction of MCM3 with cell cycle proteins is an important mechanism of overcoming replicative stress and anti-proliferative effects of endocrine treatments. Interestingly, the MCM3 levels did not affect the efficacy of growth inhibitory by CDK4/6 inhibitors. Evaluation of MCM3 levels in primary tumors from four independent cohorts of breast cancer patients receiving adjuvant tamoxifen mono-therapy or no adjuvant treatment, including the Stockholm tamoxifen (STO-3) trial, showed MCM3 to be an independent prognostic marker adding information beyond Ki67. In addition, MCM3 was shown to be a predictive marker of response to endocrine treatment. Our study reveals a coordinated signaling network centered around MCM3 that limits response to endocrine therapy in ER+ breast cancer and identifies MCM3 as a clinically useful prognostic and predictive biomarker that allows personalized treatment of ER+ breast cancer patients.
Collapse
Affiliation(s)
- Sanne Løkkegaard
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Daniel Elias
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Carla L Alves
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Martin V Bennetzen
- Center of Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK-5230, Denmark
| | - Anne-Vibeke Lænkholm
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, DK-4000, Denmark
| | - Martin Bak
- Department of Pathology, Odense University Hospital, Odense, DK-5000, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Lene E Johansen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Henriette Vever
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Christina Bjerre
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, DK-2100, Copenhagen, Denmark
| | - Tove Kirkegaard
- Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, DK-2100, Denmark
| | - Bo Nordenskjöld
- Department of Clinical and Experimental Medicine, Division of Oncology, Linköping University, Linköping, SE-58185, Sweden
| | - Tommy Fornander
- Department of Oncology, Karolinska University Hospital, Stockholm, SE-11883, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine, Division of Oncology, Linköping University, Linköping, SE-58185, Sweden
| | - Linda S Lindström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, SE-14183, Sweden
| | - Laura J Esserman
- Department of Surgery, UCSF Carol Franc Buck Breast Care Center, University of California, San Francisco, San Francisco, 94115, CA, USA
| | - Anne E Lykkesfeldt
- Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, DK-2100, Denmark
| | - Jens S Andersen
- Center of Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK-5230, Denmark
| | - Rikke Leth-Larsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, DK-5000, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, DK-5000, Denmark.
- Department of Oncology, Odense University Hospital; Department of Clinical Research, University of Southern Deanmark, Odense, DK-5000, Denmark.
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, DK-5000, Denmark.
| |
Collapse
|
15
|
Rangel N, Rondon-Lagos M, Annaratone L, Aristizábal-Pachon AF, Cassoni P, Sapino A, Castellano I. AR/ER Ratio Correlates with Expression of Proliferation Markers and with Distinct Subset of Breast Tumors. Cells 2020; 9:cells9041064. [PMID: 32344660 PMCID: PMC7226480 DOI: 10.3390/cells9041064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023] Open
Abstract
The co-expression of androgen (AR) and estrogen (ER) receptors, in terms of higher AR/ER ratio, has been recently associated with poor outcome in ER-positive (ER+) breast cancer (BC) patients. The aim of this study was to analyze if the biological aggressiveness, underlined in ER+ BC tumors with higher AR/ER ratio, could be due to higher expression of genes related to cell proliferation. On a cohort of 47 ER+ BC patients, the AR/ER ratio was assessed by immunohistochemistry and by mRNA analysis. The expression level of five gene proliferation markers was defined through TaqMan®-qPCR assays. Results were validated using 979 BC cases obtained from gene expression public databases. ER+ BC tumors with ratios of AR/ER ≥ 2 have higher expression levels of cellular proliferation genes than tumors with ratios of AR/ER < 2, in both the 47 ER+ BC patients (P < 0.001) and in the validation cohort (P = 0.005). Moreover, BC cases with ratios of AR/ER ≥ 2 of the validation cohort were mainly assigned to luminal B and HER2-enriched molecular subtypes, typically characterized by higher proliferation and poorer prognosis. These data suggest that joint routine evaluation of AR and ER expression may identify a unique subset of tumors, which show higher levels of cellular proliferation and therefore a more aggressive behavior.
Collapse
Affiliation(s)
- Nelson Rangel
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: or (N.R.); (I.C.); Tel.: +57-3185087624 (N.R.); +39-3298368290 (I.C.)
| | - Milena Rondon-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | | | - Paola Cassoni
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Pathology Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Isabella Castellano
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: or (N.R.); (I.C.); Tel.: +57-3185087624 (N.R.); +39-3298368290 (I.C.)
| |
Collapse
|
16
|
Histone methyltransferases regulate the transcriptional expression of ERα and the proliferation of tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat 2020; 180:45-54. [PMID: 31897900 PMCID: PMC7031178 DOI: 10.1007/s10549-019-05517-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/26/2019] [Indexed: 12/31/2022]
Abstract
Purpose Although tamoxifen remains the frontline treatment for ERα-positive breast cancers, resistance to this drug limits its clinical efficacy. Most tamoxifen-resistant patients retain ERα expression which may support growth and progression of breast cancers. Therefore, we investigated epigenetic regulation of ERα that may provide a rationale for targeting ERα in these patients. Methods Expression levels of the mixed-lineage leukemia (MLL) family of proteins in tamoxifen-resistant breast cancer cells and publicly available breast cancer patient data sets were analyzed. Histone methylation levels in ERα promoter regions were assessed using chromatin immunoprecipitation. Expression levels of ERα and its target gene were analyzed using western blotting and real-time qPCR. Cell-cycle was analyzed by flow cytometry. Results The expression of MLL3 and SET-domain-containing 1A (SET1A) were increased in tamoxifen-resistant breast cancers. An MLL3 chromatin immunoprecipitation-sequencing data analysis and chromatin immunoprecipitation experiments for MLL3 and SET1A suggested that these proteins bound to enhancer or intron regions of the ESR1 gene and regulated histone H3K4 methylation status. Depletion of MLL3 or SET1A downregulated the expression level of ERα and inhibited the growth of tamoxifen-resistant breast cancer cells. Additional treatment with fulvestrant resulted in a synergistic reduction of ERα levels and the growth of the cells. Conclusions The enhanced expression of MLL3 and SET1A in tamoxifen-resistant breast cancer cells supported the ERα-dependent growth of these cells by increasing ERα expression. Our results suggest that targeting these histone methyltransferases might provide an attractive strategy to overcome endocrine resistance. Electronic supplementary material The online version of this article (10.1007/s10549-019-05517-0) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Zheng Y, Sowers JY, Houston KD. IGFBP-1 Expression Promotes Tamoxifen Resistance in Breast Cancer Cells via Erk Pathway Activation. Front Endocrinol (Lausanne) 2020; 11:233. [PMID: 32435229 PMCID: PMC7218143 DOI: 10.3389/fendo.2020.00233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/31/2020] [Indexed: 01/18/2023] Open
Abstract
Insulin-like growth factor (IGF) system plays a significant role in many cellular processes, including proliferation, and survival. In estrogen receptor positive breast cancer, the level of circulating IGF-1 is positively associated with the incidence and at least 50% of cases have elevated IGF-1R signaling. Tamoxifen, a selective estrogen receptor modulator and antagonist for estrogen receptor alpha (ERα) in breast tissue, is a commonly prescribed adjuvant treatment for patients presenting with ERα-positive breast cancer. Unfortunately, tamoxifen resistance is a frequent occurrence in patients receiving treatment and the molecular mechanisms that underlie tamoxifen resistance not adequately defined. It has recently been reported that the inhibition of IGF-1R activation and the proliferation of breast cancer cells upon tamoxifen treatment is mediated by the accumulation of extracellular insulin-like growth factor binding protein 1 (IGFBP-1). Elevated IGFBP-1 expression was observed in tamoxifen-resistant (TamR) MCF-7 and T-47D cells lines suggesting that the tamoxifen-resistant state is associated with IGFBP-1 accumulation. MCF-7 and T-47D breast cancer cells stably transfected with and IGFBP-1 expression vector were generated (MCF7-BP1 and T47D-BP1) to determine the impact of breast cancer cell culture in the presence of increased IGFBP-1 expression. In these cells, the expression of IGF-1R was significantly reduced compared to controls and was similar to our observations in tamoxifen-resistant MCF-7 and T-47D cells. Also similar to TamR breast cancer cells, MCF7-BP1 and T47D-BP1 were resistant to tamoxifen treatment, had elevated epidermal growth factor receptor (EGFR) expression, increased phospho-EGFR (pEGFR), and phospho-Erk (pErk). Furthermore, tamoxifen sensitivity was restored in the MCF7-BP1 and T47D-BP1 upon inhibition of Erk phosphorylation. Lastly, the transient knockdown of IGFBP-1 in MCF7-BP1 and T47D-BP1 inhibited pErk accumulation and increased tamoxifen sensitivity. Taken together, these data support the conclusion that IGFBP-1 is a key component of the development of tamoxifen resistance in breast cancer cells.
Collapse
|
18
|
Porsch M, Özdemir E, Wisniewski M, Graf S, Bull F, Hoffmann K, Ignatov A, Haybaeck J, Grosse I, Kalinski T, Nass N. Time resolved gene expression analysis during tamoxifen adaption of MCF-7 cells identifies long non-coding RNAs with prognostic impact. RNA Biol 2019; 16:661-674. [PMID: 30760083 DOI: 10.1080/15476286.2019.1581597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Acquired tamoxifen resistance is a persistent problem for the treatment of estrogen receptor positive, premenopausal breast cancer patients and predictive biomarkers are still elusive. We here analyzed gene expression changes in a cellular model to identify early and late changes upon tamoxifen exposure and thereby novel prognostic biomarkers. Estrogen receptor positive MCF-7 cells were incubated with 4OH-tamoxifen (10 nM) and gene expression analyzed by array hybridization during 12 weeks. Array results were confirmed by nCounter- and qRT-PCR technique. Pathway enrichment analysis revealed that early responses concerned mainly amine synthesis and NRF2-related signaling and evolved into a stable gene expression pattern within 4 weeks characterized by changes in glucuronidation-, estrogen metabolism-, nuclear receptor- and interferon signaling pathways. As a large number of long non coding RNAs was subject to regulation, we investigated 5 of these (linc01213, linc00632 linc0992, LOC101929547 and XR_133213) in more detail. From these, only linc01213 was upregulated but all were less abundant in estrogen-receptor negative cell lines (MDA-MB 231, SKBR-3 and UACC3199). In a web-based survival analysis linc01213 and linc00632 turned out to have prognostic impact. Linc01213 was investigated further by plasmid-mediated over-expression as well as siRNA down-regulation in MCF-7 cells. Nevertheless, this had no effect on proliferation or expression of tamoxifen regulated genes, but migration was increased. In conclusion, the cellular model identified a set of lincRNAs with prognostic relevance for breast cancer. One of these, linc01213 although regulated by 4OH-tamoxifen, is not a central regulator of tamoxifen adaption, but interferes with the regulation of migration.
Collapse
Affiliation(s)
- Martin Porsch
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Esra Özdemir
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Martin Wisniewski
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Sebastian Graf
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Fabian Bull
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Katrin Hoffmann
- b Institute of Human Genetics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Atanas Ignatov
- e Department of Obstetrics and Gynecology , Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Johannes Haybaeck
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany.,f Diagnostic and Research Institute of Pathology , Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz , Graz , Austria.,g Department of Pathology , Medical University of Innsbruck , Innsbruck , Austria
| | - Ivo Grosse
- a Insitute of Computer Science , Martin Luther University Halle-Wittenberg , Halle , Germany.,c German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Leipzig , Germany
| | - Thomas Kalinski
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| | - Norbert Nass
- d Institute of Pathology, Otto von Guericke University Magdeburg , Magdeburg , Germany
| |
Collapse
|
19
|
Wang B, Li D, Rodriguez-Juarez R, Farfus A, Storozynsky Q, Malach M, Carpenter E, Filkowski J, Lykkesfeldt AE, Kovalchuk O. A suppressive role of guanine nucleotide-binding protein subunit beta-4 inhibited by DNA methylation in the growth of anti-estrogen resistant breast cancer cells. BMC Cancer 2018; 18:817. [PMID: 30103729 PMCID: PMC6090602 DOI: 10.1186/s12885-018-4711-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Breast cancer is the most common malignancy in women worldwide. Although the endocrine therapy that targets estrogen receptor α (ERα) signaling has been well established as an effective adjuvant treatment for patients with ERα-positive breast cancers, long-term exposure may eventually lead to the development of acquired resistance to the anti-estrogen drugs, such as fulvestrant and tamoxifen. A better understanding of the mechanisms underlying antiestrogen resistance and identification of the key molecules involved may help in overcoming antiestrogen resistance in breast cancer. METHODS The whole-genome gene expression and DNA methylation profilings were performed using fulvestrant-resistant cell line 182R-6 and tamoxifen-resistant cell line TAMR-1 as a model system. In addition, qRT-PCR and Western blot analysis were performed to determine the levels of mRNA and protein molecules. MTT, apoptosis and cell cycle analyses were performed to examine the effect of either guanine nucleotide-binding protein beta-4 (GNB4) overexpression or knockdown on cell proliferation, apoptosis and cell cycle. RESULTS Among 9 candidate genes, GNB4 was identified and validated by qRT-PCR as a potential target silenced by DNA methylation via DNA methyltransferase 3B (DNMT3B). We generated stable 182R-6 and TAMR-1 cell lines that are constantly expressing GNB4 and determined the effect of the ectopic GNB4 on cell proliferation, cell cycle, and apoptosis of the antiestrogen-resistant cells in response to either fulvestrant or tamoxifen. Ectopic expression of GNB4 in two antiestrogen resistant cell lines significantly promoted cell growth and shortened cell cycle in the presence of either fulvestrant or tamoxifen. The ectopic GNB4 induced apoptosis in 182R-6 cells, whereas it inhibited apoptosis in TAMR-1 cells. Many regulators controlling cell cycle and apoptosis were aberrantly expressed in two resistant cell lines in response to the enforced GNB4 expression, which may contribute to GNB4-mediated biologic and/or pathologic processes. Furthermore, knockdown of GNB4 decreased growth of both antiestrogen resistant and sensitive breast cancer cells. CONCLUSION GNB4 is important for growth of breast cancer cells and a potential target for treatment.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Department of Biochemistry, Qiqihar Medical University, Qiqihar, People’s Republic of China
| | | | - Allison Farfus
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Quinn Storozynsky
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Megan Malach
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Emily Carpenter
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Jody Filkowski
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
| | - Anne E. Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden, Copenhagen, Denmark
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB Canada
- Hepler Hall, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4 Canada
| |
Collapse
|
20
|
Liu J, Li X, Wang M, Xiao G, Yang G, Wang H, Li Y, Sun X, Qin S, Du N, Ren H, Pang Y. A miR-26a/E2F7 feedback loop contributes to tamoxifen resistance in ER-positive breast cancer. Int J Oncol 2018; 53:1601-1612. [PMID: 30066905 DOI: 10.3892/ijo.2018.4492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Tamoxifen (TAM) resistance is a substantial challenge in the treatment of estrogen receptor (ER)-positive breast cancer. Previous studies have revealed an important role of microRNA (miRNA/miR)-26a in TAM resistance in breast cancer. However, the mechanism underlying the regulatory effects of miR-26a on TAM resistance remains to be elucidated. The expression levels of miR-26a in ER-positive breast cancer were detected by reverse transcription-quantitative polymerase chain reaction. E2F transcription factor 7 (E2F7) and MYC proto-oncogene, bHLH transcription factor (MYC) levels were detected by western blotting. The present study demonstrated that miR-26a expression was reduced in ER-positive breast cancer compared with in normal breast tissues, whereas E2F7 expression was significantly elevated. Furthermore, an inverse correlation between miR-26a and E2F7 expression was detected in ER-positive breast cancer. The results indicated that miR-26a directly inhibited E2F7 expression through translational inhibition and indirectly inhibited MYC expression partly via E2F7 repression. E2F7, in turn, decreased miR-26a expression via MYC-induced transcriptional inhibition of miRNAs. Furthermore, transfection with miR-26a mimics increased the expression of its host genes (CTD small phosphatase like and CTD small phosphatase 2), whereas ectopic E2F7 expression abrogated the effects of miR-26a. These findings indicated that miR-26a and E2F7 may form a double-negative feedback loop, resulting in downregulation of miR-26a and upregulation of E2F7 in ER-positive breast cancer. Both miR-26a knockdown and E2F7 overexpression conferred resistance to TAM in MCF-7 cells. Conversely, miR-26a overexpression and E2F7 silencing resensitized MCF-7 resistant cells to TAM. These findings revealed that a feedback loop between miR-26a and E2F7 may promote TAM resistance in ER-positive breast cancer.
Collapse
Affiliation(s)
- Jian Liu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiang Li
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Meng Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guodong Xiao
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ganghua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huangzhen Wang
- Department of Surgical Oncology, Baoji Central Hospital, Baoji, Shaanxi 721008, P.R. China
| | - Yanbo Li
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Sun
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sida Qin
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ning Du
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hong Ren
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
Crosstalk between ERα and Receptor Tyrosine Kinase Signalling and Implications for the Development of Anti-Endocrine Resistance. Cancers (Basel) 2018; 10:cancers10060209. [PMID: 29925812 PMCID: PMC6025235 DOI: 10.3390/cancers10060209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/18/2023] Open
Abstract
Although anti-endocrine therapies have significantly advanced the treatment of breast cancer, they pose the problem of acquired drug resistance. The oestrogen receptor (ER)-expressing breast cancer cell lines MCF-7 and T47D alongside their in vitro derived resistant counterparts MCF-7-TR (tamoxifen-resistant) and T47D-FR (fulvestrant-resistant) showed dual resistance to fulvestrant and tamoxifen in the presence of upregulated HER1 and HER2 growth factor receptors. Our study demonstrated that tamoxifen resistance and fulvestrant resistance are associated with collateral sensitivity to the tyrosine kinase inhibitors (TKIs) lapatinib (p < 0.0001) and afatinib (p < 0.0001). Further, we found that over time, the TKIs reactivated ERα protein and/or mRNA in tamoxifen- and fulvestrant-resistant cells. Combinations of anti-endocrine agents with afatinib gave rise to significantly enhanced levels of apoptosis in both T47D-FR and MCF-7-TR in a synergistic manner versus additive effects of agents used singly. This was associated with p27kip1 induction for anti-endocrine-resistant cells versus parental cells. Our data supports the use of combination treatment utilising dual HER1/2 inhibitors in breast cancer patients showing resistance to multiple anti-endocrine agents.
Collapse
|
22
|
Lykkesfeldt AE, Iversen BR, Jensen MB, Ejlertsen B, Giobbie-Hurder A, Reiter BE, Kirkegaard T, Rasmussen BB. Aurora kinase A as a possible marker for endocrine resistance in early estrogen receptor positive breast cancer. Acta Oncol 2018; 57:67-73. [PMID: 29202611 DOI: 10.1080/0284186x.2017.1404126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Cell culture studies have disclosed that the mitotic Aurora kinase A is causally involved in both tamoxifen and aromatase inhibitor resistant cell growth and thus may be a potential new marker for endocrine resistance in the clinical setting. MATERIAL AND METHODS Archival tumor tissue was available from 1323 Danish patients with estrogen receptor (ER) positive primary breast cancer, who participated in the Breast International Group (BIG) 1-98 trial, comparing treatment with tamoxifen and letrozole and both in a sequence. The expression of Aurora A was determined by immunohistochemistry in 980 tumors and semi quantitively scored into three groups; negative/weak, moderate and high. The Aurora A expression levels were compared to other clinico-pathological parameters and outcome, defined as disease-free survival (DFS) and overall survival (OS). RESULTS High expression of Aurora A was found in 26.9% of patients and moderate in 57.0%. High expression was significantly associated with high malignancy grade and HER2 amplification. High Aurora A expression was significantly more frequent in ductal compared to lobular carcinomas. We found no significant association between Aurora A expression and DFS or OS and no evidence of interaction between Aurora A expression and benefits from tamoxifen versus letrozole. CONCLUSIONS Aurora A expression in breast tumors was associated with high malignancy grade III and with HER2 amplification. A trend as a prognostic factor for OS was found in patients with high Aurora A expression. No predictive property was observed in this study with early breast cancer.
Collapse
Affiliation(s)
- Anne E. Lykkesfeldt
- Unit of Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Maj-Britt Jensen
- Danish Breast Cancer Cooperative Group (DBCG), Rigshospitalet, Copenhagen, Denmark
| | - Bent Ejlertsen
- Danish Breast Cancer Cooperative Group (DBCG), Rigshospitalet, Copenhagen, Denmark
| | - Anita Giobbie-Hurder
- International Breast Cancer Study Group (IBCSG), Department of Biostatistics & Computational Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Birgit E. Reiter
- Unit of Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Tove Kirkegaard
- Department of Surgery, Zealand University Hospital, Koege, Denmark
| | | |
Collapse
|
23
|
Alam MW, Persson CU, Reinbothe S, Kazi JU, Rönnstrand L, Wigerup C, Ditzel HJ, Lykkesfeldt AE, Påhlman S, Jögi A. HIF2α contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells. Oncotarget 2017; 7:11238-50. [PMID: 26849233 PMCID: PMC4905469 DOI: 10.18632/oncotarget.7167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/22/2016] [Indexed: 12/26/2022] Open
Abstract
The majority of breast cancers express estrogen receptor α (ERα), and most patients with ERα-positive breast cancer benefit from antiestrogen therapy. The ERα-modulator tamoxifen and ERα-downregulator fulvestrant are commonly employed antiestrogens. Antiestrogen resistance remains a clinical challenge, with few effective treatments available for patients with antiestrogen-resistant breast cancer. Hypoxia, which is intrinsic to most tumors, promotes aggressive disease, with the hypoxia-inducible transcription factors HIF1 and HIF2 regulating cellular responses to hypoxia. Here, we show that the ERα-expressing breast cancer cells MCF-7, CAMA-1, and T47D are less sensitive to antiestrogens when hypoxic. Furthermore, protein and mRNA levels of HIF2α/HIF2A were increased in a panel of antiestrogen-resistant cells, and antiestrogen-exposure further increased HIF2α expression. Ectopic expression of HIF2α in MCF-7 cells significantly decreased sensitivity to antiestrogens, further implicating HIF2α in antiestrogen resistance. EGFR is known to contribute to antiestrogen resistance: we further show that HIF2α drives hypoxic induction of EGFR and that EGFR induces HIF2α expression. Downregulation or inhibition of EGFR led to decreased HIF2α levels. This positive and bilateral HIF2-EGFR regulatory crosstalk promotes antiestrogen resistance and, where intrinsic hypoxic resistance exists, therapy itself may exacerbate the problem. Finally, inhibition of HIFs by FM19G11 restores antiestrogen sensitivity in resistant cells. Targeting HIF2 may be useful for counteracting antiestrogen resistance in the clinic.
Collapse
Affiliation(s)
- Muhammad Wasi Alam
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Camilla Ulrika Persson
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Susann Reinbothe
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Lars Rönnstrand
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Caroline Wigerup
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Henrik Jorn Ditzel
- Department of Cancer and Inflammation Research, University of Southern Denmark, and Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Anne E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Sven Påhlman
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| | - Annika Jögi
- Department of Laboratory Medicine, Translational Cancer Research, Lund University Cancer Center at Medicon Village, Lund University, Sweden
| |
Collapse
|
24
|
Zhuang T, Yu S, Zhang L, Yang H, Li X, Hou Y, Liu Z, Shi Y, Wang W, Yu N, Li A, Li X, Li X, Niu G, Xu J, Hasni MS, Mu K, Wang H, Zhu J. SHARPIN stabilizes estrogen receptor α and promotes breast cancer cell proliferation. Oncotarget 2017; 8:77137-77151. [PMID: 29100376 PMCID: PMC5652769 DOI: 10.18632/oncotarget.20368] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022] Open
Abstract
Estrogen receptor α is expressed in the majority of breast cancers and promotes estrogen-dependent cancer progression. In our study, we identified the novel E3 ubiquitin ligase SHARPIN function to facilitate ERα signaling. SHARPIN is highly expressed in human breast cancer and correlates with ERα protein level by immunohistochemistry. SHARPIN expression level correlates with poor prognosis in ERα positive breast cancer patients. SHARPIN depletion based RNA-sequence data shows that ERα signaling is a potential SHARPIN target. SHARPIN depletion significantly decreases ERα protein level, ERα target genes expression and estrogen response element activity in breast cancer cells, while SHARPIN overexpression could reverse these effects. SHARPIN depletion significantly decreases estrogen stimulated cell proliferation in breast cancer cells, which effect could be further rescued by ERα overexpression. Further mechanistic study reveals that SHARPIN mainly localizes in the cytosol and interacts with ERα both in the cytosol and the nuclear. SHARPIN regulates ERα signaling through protein stability, not through gene expression. SHARPIN stabilizes ERα protein via prohibiting ERα protein poly-ubiquitination. Further study shows that SHARPIN could facilitate the mono-ubiquitinaiton of ERα at K302/303 sites and facilitate ERE luciferase activity. Together, our findings propose a novel ERα modulation mechanism in supporting breast cancer cell growth, in which SHARPIN could be one suitable target for development of novel therapy for ERα positive breast cancer.
Collapse
Affiliation(s)
- Ting Zhuang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Sifan Yu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Renal Cancer and Melanoma, Peking University School of Oncology, Beijing Cancer Hospital and Institute, Beijing, China
| | - Lichen Zhang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Laboratory of Genetic Regulators in the Immune System, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Huijie Yang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xin Li
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yingxiang Hou
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhenhua Liu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Synthetic Biology Remaking Engineering and Application Laboratory, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuanyuan Shi
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Weilong Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Na Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Anqi Li
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,School of International Education, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xuefeng Li
- Department of Medical Oncology, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.,Center for Cancer Research, Xinxiang Medical University, Xinxiang, Henan, China
| | - Gang Niu
- Department of Cancer genomics, LemonData biotech (Shenzhen) Ltd, Shenzhen, Guangdong, China.,Phil Rivers Technology (Beijing) Ltd. Beijing, China.,Institute of Biochemistry University of Balochistan, Quetta, Pakistan
| | - Juntao Xu
- Department of Cancer genomics, LemonData biotech (Shenzhen) Ltd, Shenzhen, Guangdong, China.,Phil Rivers Technology (Beijing) Ltd. Beijing, China.,Institute of Biochemistry University of Balochistan, Quetta, Pakistan
| | - Muhammad Sharif Hasni
- Institute of Biochemistry University of Balochistan, Quetta, Pakistan.,Department of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Kun Mu
- Department of Pathology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Wang
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jian Zhu
- Research Center for Immunology, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Collins D, Jacob W, Cejalvo JM, Ceppi M, James I, Hasmann M, Crown J, Cervantes A, Weisser M, Bossenmaier B. Direct estrogen receptor (ER) / HER family crosstalk mediating sensitivity to lumretuzumab and pertuzumab in ER+ breast cancer. PLoS One 2017; 12:e0177331. [PMID: 28493933 PMCID: PMC5426757 DOI: 10.1371/journal.pone.0177331] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022] Open
Abstract
Bidirectional cross talk between members of the human epidermal growth factor family of receptors (HER) and the estrogen receptor (ER) is believed to underlie resistance mechanisms that develop in response to treatment with anti-HER agents and endocrine therapy. We investigated the interaction between HER2, HER3 and the ER in vitro using human embryonic kidney cells transfected with human HER2, HER3, and ERα. We also investigated the additive efficacy of combination regimens consisting of anti-HER3 (lumretuzumab), anti-HER2 (pertuzumab), and endocrine (fulvestrant) therapy in vivo. Our data show that both HER2 and HER3 can directly complex with the ER and can mediate phosphorylation of the ER. Phosphorylation of the ER was only observed in cells that expressed both HER2 and ERα or in heregulin-stimulated cells that expressed both HER3 and ERα. Using a mouse xenograft model of ER+/HER2-low (HER2 immunohistochemistry 1+ or 2+ without gene amplification) human breast cancer we show that the combination of lumretuzumab and pertuzumab is highly efficacious and induces long-lasting tumor regression in vivo and adding endocrine therapy (fulvestrant) to this combination further improved efficacy. In addition, a prolonged clinical response was observed with the combination of lumretuzumab and pertuzumab in a patient with ER+/HER2-low breast cancer who had failed endocrine therapy. These preclinical data confirm that direct cross talk exists between HER2/HER3 and ER which may explain the resistance mechanisms to endocrine therapy and monoclonal antibodies that target HER2 and HER3. Our data also indicate that the triplet of anti-HER2, anti-HER3, and endocrine therapy might be an efficacious combination for treating patients with ER+/HER2-low breast cancer, which is an area of significant unmet medical need.
Collapse
Affiliation(s)
- Denis Collins
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- * E-mail: (DC); (MW)
| | | | - Juan Miguel Cejalvo
- Department of Medical Oncology, Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | | | - Ian James
- A4P Consulting Ltd, Sandwich, United Kingdom
| | - Max Hasmann
- Roche Innovation Center Munich, Penzberg, Germany
| | - John Crown
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin, Ireland
| | - Andrés Cervantes
- Department of Medical Oncology, Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Martin Weisser
- Roche Innovation Center Munich, Penzberg, Germany
- * E-mail: (DC); (MW)
| | | |
Collapse
|
26
|
Carnosic acid cooperates with tamoxifen to induce apoptosis associated with Caspase-3 activation in breast cancer cells in vitro and in vivo. Biomed Pharmacother 2017; 89:827-837. [DOI: 10.1016/j.biopha.2017.01.084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
|
27
|
Thewes V, Simon R, Hlevnjak M, Schlotter M, Schroeter P, Schmidt K, Wu Y, Anzeneder T, Wang W, Windisch P, Kirchgäßner M, Melling N, Kneisel N, Büttner R, Deuschle U, Sinn HP, Schneeweiss A, Heck S, Kaulfuss S, Hess-Stumpp H, Okun JG, Sauter G, Lykkesfeldt AE, Zapatka M, Radlwimmer B, Lichter P, Tönjes M. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer. Oncogene 2017; 36:4124-4134. [PMID: 28319069 DOI: 10.1038/onc.2017.32] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 12/24/2022]
Abstract
Antiestrogen-resistant and triple-negative breast tumors pose a serious clinical challenge because of limited treatment options. We assessed global gene expression changes in antiestrogen-sensitive compared with antiestrogen-resistant (two tamoxifen resistant and two fulvestrant resistant) MCF-7 breast cancer cell lines. The branched-chain amino acid transaminase 1 (BCAT1), which catalyzes the first step in the breakdown of branched-chain amino acids, was among the most upregulated transcripts in antiestrogen-resistant cells. Elevated BCAT1 expression was confirmed in relapsed tamoxifen-resistant breast tumor specimens. High intratumoral BCAT1 levels were associated with a reduced relapse-free survival in adjuvant tamoxifen-treated patients and overall survival in unselected patients. On a tissue microarray (n=1421), BCAT1 expression was detectable in 58% of unselected primary breast carcinomas and linked to a higher Ki-67 proliferation index, as well as histological grade. Interestingly, BCAT1 was predominantly expressed in estrogen receptor-α-negative/human epidermal growth factor receptor-2-positive (ERα-negative/HER-2-positive) and triple-negative breast cancers in independent patient cohorts. The inverse relationship between BCAT1 and ERα was corroborated in various breast cancer cell lines and pharmacological long-term depletion of ERα induced BCAT1 expression in vitro. Mechanistically, BCAT1 indirectly controlled expression of the cell cycle inhibitor p27Kip1 thereby affecting pRB. Correspondingly, phenotypic analyses using a lentiviral-mediated BCAT1 short hairpin RNA knockdown revealed that BCAT1 sustains proliferation in addition to migration and invasion and that its overexpression enhanced the capacity of antiestrogen-sensitive cells to grow in the presence of antiestrogens. Importantly, silencing of BCAT1 in an orthotopic triple-negative xenograft model resulted in a massive reduction of tumor volume in vivo, supporting our findings that BCAT1 is necessary for the growth of hormone-independent breast tumors.
Collapse
Affiliation(s)
- V Thewes
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M Hlevnjak
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schlotter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Schroeter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Schmidt
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Y Wu
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Anzeneder
- PATH Foundation Biobank-Patients' Tumor Bank of Hope, Munich, Germany
| | - W Wang
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Windisch
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kirchgäßner
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - N Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - N Kneisel
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - R Büttner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - U Deuschle
- Phenex Pharmaceuticals AG, Heidelberg, Germany
| | - H P Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - A Schneeweiss
- Gynecologic Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - S Heck
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - J G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - G Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A E Lykkesfeldt
- Breast Cancer Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - M Zapatka
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - B Radlwimmer
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Tönjes
- Division of Molecular Genetics, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Cheng S, Castillo V, Welty M, Alvarado M, Eliaz I, Temm CJ, Sandusky GE, Sliva D. BreastDefend enhances effect of tamoxifen in estrogen receptor-positive human breast cancer in vitro and in vivo. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:115. [PMID: 28209156 PMCID: PMC5314617 DOI: 10.1186/s12906-017-1621-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/02/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Tamoxifen (TAM) has been widely used for the treatment of estrogen receptor (ER)-positive breast cancer and its combination with other therapies is being actively investigated as a way to increase efficacy and decrease side effects. Here, we evaluate the therapeutic potential of co-treatment with TAM and BreastDefend (BD), a dietary supplement formula, in ER-positive human breast cancer. METHODS Cell proliferation and apoptosis were determined in ER-positive human breast cancer cells MCF-7 by MTT assay, quantitation of cytoplasmic histone-associated DNA fragments and expression of cleaved PARP, respectively. The molecular mechanism was identified using RNA microarray analysis and western blotting. Tumor tissues from xenograft mouse model were analyzed by immunohistochemistry. RESULTS Our data clearly demonstrate that a combination of 4-hydroxytamoxifen (4-OHT) with BD lead to profound inhibition of cell proliferation and induction of apoptosis in MCF-7 cells. This effect is consistent with the regulation of apoptotic and TAM resistant genes at the transcription and translation levels. Importantly, TAM and BD co-treatment significantly enhanced apoptosis, suppressed tumor growth and reduced tumor weight in a xenograft model of human ER-positive breast cancer. CONCLUSION BD sensitized ER-positive human breast cancer cells to 4-OHT/TAM treatment in vitro and in vivo. BreastDefend can be used in an adjuvant therapy to increase the therapeutic effect of tamoxifen in patients with ER-positive breast cancer.
Collapse
|
29
|
Reineri S, Agati S, Miano V, Sani M, Berchialla P, Ricci L, Iannello A, Coscujuela Tarrero L, Cutrupi S, De Bortoli M. A Novel Functional Domain of Tab2 Involved in the Interaction with Estrogen Receptor Alpha in Breast Cancer Cells. PLoS One 2016; 11:e0168639. [PMID: 27992601 PMCID: PMC5167418 DOI: 10.1371/journal.pone.0168639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Tab2, originally described as a component of the inflammatory pathway, has been implicated in phenomena of gene de-repression in several contexts, due to its ability to interact with the NCoR corepressor. Tab2 interacts also with steroid receptors and dismisses NCoR from antagonist-bound Estrogen and Androgen Receptors on gene regulatory regions, thus modifying their transcriptional activity and leading to pharmacological resistance in breast and prostate cancer cells. We demonstrated previously that either Tab2 knock-down, or a peptide mimicking the Estrogen Receptor alpha domain interacting with Tab2, restore the antiproliferative response to Tamoxifen in Tamoxifen-resistant breast cancer cells. In this work, we map the domain of Tab2 responsible of Estrogen Receptor alpha interaction. First, using both co-immunoprecipitation and pull-down with recombinant proteins, we found that the central part of Tab2 is primarily responsible for this interaction, and that this region also interacts with Androgen Receptor. Then, we narrowed down the essential interaction region by means of competition assays using recombinant protein pull-down. The interaction motif was finally identified as a small region adjacent to, but not overlapping, the Tab2 MEKK1 phosphorylation sites. A synthetic peptide mimicking this motif efficiently displaced Tab2 from interacting with recombinant Estrogen Receptor alpha in vitro, prompting us to test its efficacy using derivatives of the MCF7 breast carcinoma cell lines that are spontaneously resistant to Tamoxifen. Indeed, we observed that this mimic peptide, made cell-permeable by addition of the TAT minimal carrier domain, reduced the growth of Tamoxifen-resistant MCF7 cells in the presence of Tamoxifen. These data indicate a novel functional domain of the Tab2 protein with potential application in drug design.
Collapse
Affiliation(s)
- Stefania Reineri
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Silvia Agati
- Bioindustry Park Silvano Fumero, Colleretto Giacosa, Turin, Italy
| | - Valentina Miano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
| | - Monica Sani
- CNR, i.c.r.m. Institute of Chemistry of Molecular Recognition, Milan, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Laura Ricci
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Bioindustry Park Silvano Fumero, Colleretto Giacosa, Turin, Italy
| | - Andrea Iannello
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- * E-mail:
| |
Collapse
|
30
|
Joshi T, Elias D, Stenvang J, Alves CL, Teng F, Lyng MB, Lykkesfeldt AE, Brünner N, Wang J, Gupta R, Workman CT, Ditzel HJ. Integrative analysis of miRNA and gene expression reveals regulatory networks in tamoxifen-resistant breast cancer. Oncotarget 2016; 7:57239-57253. [PMID: 27528030 PMCID: PMC5302986 DOI: 10.18632/oncotarget.11136] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
Tamoxifen is an effective anti-estrogen treatment for patients with estrogen receptor-positive (ER+) breast cancer, however, tamoxifen resistance is frequently observed. To elucidate the underlying molecular mechanisms of tamoxifen resistance, we performed a systematic analysis of miRNA-mediated gene regulation in three clinically-relevant tamoxifen-resistant breast cancer cell lines (TamRs) compared to their parental tamoxifen-sensitive cell line. Alterations in the expression of 131 miRNAs in tamoxifen-resistant vs. parental cell lines were identified, 22 of which were common to all TamRs using both sequencing and LNA-based quantitative PCR technologies. Although the target genes affected by the altered miRNA in the three TamRs differed, good agreement in terms of affected molecular pathways was observed. Moreover, we found evidence of miRNA-mediated regulation of ESR1, PGR1, FOXM1 and 14-3-3 family genes. Integrating the inferred miRNA-target relationships, we investigated the functional importance of 2 central genes, SNAI2 and FYN, which showed increased expression in TamR cells, while their corresponding regulatory miRNA were downregulated. Using specific chemical inhibitors and siRNA-mediated gene knockdown, we showed that both SNAI2 and FYN significantly affect the growth of TamR cell lines. Finally, we show that a combination of 2 miRNAs (miR-190b and miR-516a-5p) exhibiting altered expression in TamR cell lines were predictive of treatment outcome in a cohort of ER+ breast cancer patients receiving adjuvant tamoxifen mono-therapy. Our results provide new insight into the molecular mechanisms of tamoxifen resistance and may form the basis for future medical intervention for the large number of women with tamoxifen-resistant ER+ breast cancer.
Collapse
Affiliation(s)
- Tejal Joshi
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniel Elias
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Stenvang
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Carla L. Alves
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Fei Teng
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- BGI (Beijing Genomics Institute), Beishan Industrial Zone, Shenzhen, China
| | - Maria B. Lyng
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne E. Lykkesfeldt
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nils Brünner
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Section of Molecular Disease Biology, Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jun Wang
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- BGI (Beijing Genomics Institute), Beishan Industrial Zone, Shenzhen, China
| | - Ramneek Gupta
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christopher T. Workman
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henrik J. Ditzel
- Sino-Danish Breast Cancer Research Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
31
|
Nass N, Sel S, Ignatov A, Roessner A, Kalinski T. Oxidative stress and glyoxalase I activity mediate dicarbonyl toxicity in MCF-7 mamma carcinoma cells and a tamoxifen resistant derivative. Biochim Biophys Acta Gen Subj 2016; 1860:1272-80. [PMID: 26971627 DOI: 10.1016/j.bbagen.2016.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/25/2016] [Accepted: 03/06/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acquired tamoxifen resistance is a significant problem in estrogen receptor positive breast cancer. In a cellular model, tamoxifen resistance was associated with increased sensitivity towards toxic dicarbonyls and reduced free sulfhydryl group content. We here analyzed the role of oxidative stress and glyoxalase I activity on dicarbonyl resistance and the significance of glyoxalase I expression for survival. METHODS Reactive oxygen species were determined by 2,7-dihydrochlorofluorescein diacetate. Inhibitors for NADPH-oxidase (diphenyleneiodonium), p38 MAPK (SB203580) and ERK1/2 (UO126) were applied to investigate interactions of these signaling molecules. N-acetyl cysteine was used to evaluate the effect of oxidative stress on cell viability, which was assessed by the resazurin assay. Gene expression was analyzed by real time qRT-PCR. Glyoxalase activity was inhibited by the specific inhibitor CS-0683 and siRNA. The relevance of glyoxalase 1 mRNA abundance on survival of breast cancer patients was evaluated by the KM-plotter web interface. RESULTS α-Oxo-aldehydes caused an immediate increase in reactive oxygen species where the tamoxifen resistant cell line (TamR) responded at lower concentrations than the MCF-7 parental cell line. Inhibitor studies placed ROS production by NADPH-oxidase downstream of p38 MAPK. The antioxidant N-acetyl cysteine (NAC) increased survival, whereas glyoxalase (GLO1) inhibition increased dicarbonyl toxicity. GLO1 mRNA abundance was correlated with unfavorable prognosis of breast cancer patients. CONCLUSIONS Dicarbonyl toxicity was mediated by oxidative stress and GLO1 activity determines aldehyde toxicity in tamoxifen resistant cells. GENERAL SIGNIFICANCE Glyoxalases might be predictive biomarkers for tamoxifen resistance and a putative target for the treatment of tamoxifen resistant breast cancer patients.
Collapse
Affiliation(s)
- Norbert Nass
- Otto von Guericke University Magdeburg, Department of Pathology, Leipziger Str. 44, House 28, D-39120 Magdeburg, Germany.
| | - Saadettin Sel
- University of Heidelberg, Department of Ophthalmology, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Atanas Ignatov
- Otto von Guericke University Magdeburg, Department of Obstetrics and Gynecology, Gerhart-Hauptmann Str. 35, 39108 Magdeburg, Germany
| | - Albert Roessner
- Otto von Guericke University Magdeburg, Department of Pathology, Leipziger Str. 44, House 28, D-39120 Magdeburg, Germany
| | - Thomas Kalinski
- Otto von Guericke University Magdeburg, Department of Pathology, Leipziger Str. 44, House 28, D-39120 Magdeburg, Germany
| |
Collapse
|
32
|
Androgen receptor promotes tamoxifen agonist activity by activation of EGFR in ERα-positive breast cancer. Breast Cancer Res Treat 2015; 154:225-37. [PMID: 26487496 DOI: 10.1007/s10549-015-3609-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022]
Abstract
Tamoxifen (Tam) resistance represents a significant clinical problem in estrogen receptor (ER) α-positive breast cancer. We previously showed that decreased expression of Rho guanine nucleotide dissociation inhibitor (Rho GDI) α, a negative regulator of the Rho GTPase pathway, is associated with Tam resistance. We now discover that androgen receptor (AR) is overexpressed in cells with decreased Rho GDIα and seek to determine AR's contribution to resistance. We engineered ERα-positive cell lines with stable knockdown (KD) of Rho GDIα (KD cells). Resistance mechanisms were examined using microarray profiling, protein-interaction studies, growth and reporter gene assays, and Western blot analysis combined with a specific AR antagonist and other signaling inhibitors. Tam-resistant tumors and cell lines with low Rho GDIα levels exhibited upregulated AR expression. Microarray of Rho GDIα KD cells indicated that activation of EGFR and ERα was associated with Tam treatment. When AR levels were elevated, interaction between AR and EGFR was detected. Constitutive and Tam-induced phosphorylation of EGFR and ERK1/2 was blocked by the AR antagonist Enzalutamide, suggesting that AR-mediated EGFR activation was a mechanism of resistance in these cells. Constitutive ERα phosphorylation and transcriptional activity was inhibited by Enzalutamide and the EGFR inhibitor gefitinib, demonstrating that AR-mediated EGFR signaling activated ERα. Tam exhibited agonist activity in AR overexpressing cells, stimulating ERα transcriptional activity and proliferation, which was blocked by Enzalutamide and gefitinib. We describe a novel model of AR-mediated Tam resistance through activation of EGFR signaling leading to ER activation in ERα-positive cells with low expression of Rho GDIα.
Collapse
|
33
|
Saunus JM, Quinn MCJ, Patch AM, Pearson JV, Bailey PJ, Nones K, McCart Reed AE, Miller D, Wilson PJ, Al-Ejeh F, Mariasegaram M, Lau Q, Withers T, Jeffree RL, Reid LE, Da Silva L, Matsika A, Niland CM, Cummings MC, Bruxner TJC, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Anderson MJ, Fink JL, Holmes O, Kazakoff S, Leonard C, Newell F, Taylor D, Waddell N, Wood S, Xu Q, Kassahn KS, Narayanan V, Taib NA, Teo SH, Chow YP, kConFab, Jat PS, Brandner S, Flanagan AM, Khanna KK, Chenevix-Trench G, Grimmond SM, Simpson PT, Waddell N, Lakhani SR. Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. J Pathol 2015; 237:363-78. [DOI: 10.1002/path.4583] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Jodi M Saunus
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Michael CJ Quinn
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Peter J Bailey
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences; University of Glasgow; UK
| | - Katia Nones
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Amy E McCart Reed
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - David Miller
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Kinghorn Centre for Clinical Genomics; Garvan Institute of Medical Research; Darlinghurst NSW Australia
| | - Peter J Wilson
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Mythily Mariasegaram
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Queenie Lau
- Pathology Queensland; Gold Coast Hospital; Southport Queensland Australia
| | - Teresa Withers
- Department of Neurosurgery; Gold Coast Hospital; Southport Queensland Australia
| | - Rosalind L Jeffree
- Kenneth G Jamieson Department of Neurosurgery; Royal Brisbane and Women's Hospital; Herston Queensland Australia
| | - Lynne E Reid
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Leonard Da Silva
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- University of Queensland School of Medicine; Herston Queensland Australia
| | - Admire Matsika
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- Pathology Queensland; Royal Brisbane and Women's Hospital; Herston Queensland Australia
| | - Colleen M Niland
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Margaret C Cummings
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- University of Queensland School of Medicine; Herston Queensland Australia
- Pathology Queensland; Royal Brisbane and Women's Hospital; Herston Queensland Australia
| | - Timothy JC Bruxner
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Angelika N Christ
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Ivon Harliwong
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Senel Idrisoglu
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Suzanne Manning
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Craig Nourse
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences; University of Glasgow; UK
| | - Ehsan Nourbakhsh
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Shivangi Wani
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Matthew J Anderson
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - J Lynn Fink
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Oliver Holmes
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Stephen Kazakoff
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Felicity Newell
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Darrin Taylor
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Nick Waddell
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Qinying Xu
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Karin S Kassahn
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Genetic and Molecular Pathology, SA Pathology; Women's and Children's Hospital; North Adelaide South Australia Australia
- School of Molecular and Biomedical Science; University of Adelaide; South Australia Australia
| | - Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - Nur Aishah Taib
- Breast Unit, Department of Surgery, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
- University Malaya Cancer Research Institute; University of Malaya; Kuala Lumpur Malaysia
| | - Soo-Hwang Teo
- University Malaya Cancer Research Institute; University of Malaya; Kuala Lumpur Malaysia
- Cancer Research Initiatives Foundation; Sime Darby Medical Centre; Selangor Malaysia
| | - Yock Ping Chow
- Cancer Research Initiatives Foundation; Sime Darby Medical Centre; Selangor Malaysia
| | - kConFab
- Peter MacCallum Cancer Centre; University of Melbourne; Victoria Australia
| | - Parmjit S Jat
- Department of Neurodegenerative Disease and MRC Prion Unit; UCL Institute of Neurology; London UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease; UCL Institute of Neurology; London UK
| | - Adrienne M Flanagan
- Histopathology; Royal National Orthopaedic Hospital NHS Trust; Stanmore UK
- University College London Cancer Institute; London UK
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | | | - Sean M Grimmond
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences; University of Glasgow; UK
| | - Peter T Simpson
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- University of Queensland School of Medicine; Herston Queensland Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Sunil R Lakhani
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- University of Queensland School of Medicine; Herston Queensland Australia
- Pathology Queensland; Royal Brisbane and Women's Hospital; Herston Queensland Australia
| |
Collapse
|
34
|
Meng D, Wu W, Li Z, Qin G. IQGAP1 modulates the proliferation and invasion of thyroid cancer cells in response to estrogen. Int J Mol Med 2015; 36:588-94. [PMID: 26046126 DOI: 10.3892/ijmm.2015.2232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/22/2015] [Indexed: 11/06/2022] Open
Abstract
Thyroid cancer is an endocrine malignancy with a high incidence rate, which is affected by female hormones, particularly estrogens, in its growth and progression. IQ-domain GTPase-activating protein 1 (IQGAP1) is overexpressed in a range of types of cancer and is reported to interact with estrogen receptor α (ERα) in breast cancer cells. However, the association between IQGAP1 and ERα in thyroid cancer cells remains to be elucidated. In this study, the role of IQGAP1 in thyroid cancer cells was examined. The expression of IQGAP1 (190 kDa) was analyzed using western blot analysis, which indicated that IQGAP1 was overexpressed in thyroid cancer tissues and FTC133 cells. However, IQGAP1 knockdown in the FTC133 cells led to a significant downregulation in ERα transcriptional activity, cell proliferation, cell adhesion and cell invasion under 17β-estradiol (E2) conditions. Furthermore, ERα knockdown inhibited the enhanced protein expression levels of phosphorylated ERK1/2 and cyclin D1, which were induced by the overexpression of IQGAP1. Co-immunoprecipitation was also performed in thyroid cancer cells and the results suggested that IQGAP1 directly interacted with ERα in the FTC133 cells and the co-transfected COS-7 cells. Taken together, these findings revealed that IQGAP1 may directly interact with ERα and serve as a signal integrator, mediating ERα transcriptional activity, cell proliferation and cell invasion during the progression of thyroid cancer.
Collapse
Affiliation(s)
- Dongdong Meng
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenxun Wu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhifu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
35
|
Arif K, Hussain I, Rea C, El-Sheemy M. The role of Nanog expression in tamoxifen-resistant breast cancer cells. Onco Targets Ther 2015; 8:1327-34. [PMID: 26082649 PMCID: PMC4461083 DOI: 10.2147/ott.s67835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There is an accumulation of evidence that shows a significant role of cancer stem cells in tumor initiation, proliferation, relapse, and metastasis. Nanog is the most important core transcription marker of stem cells, known by its role in maintaining pluripotency, proliferation, and differentiation. Therefore, this study aimed to examine the role of Nanog in breast cancer cell tamoxifen resistance and its implications in breast cancer treatment. In this study, the expression of the three core transcription markers Nanog, Oct3/4, and Sox2 were quantitatively evaluated using flow cytometry. Then, small interfering RNA (siRNA) against human Nanog was transfected into tamoxifen-resistant breast cancer cells via Lipofectamine 2000. Nanog gene expression in the cells was detected using reverse transcription polymerase chain reaction (RT-PCR). The change in cell proliferation was evaluated using the tetrazolium bromide method. An enzyme-linked immunosorbent assay was used to detect apoptosis of the transfected cells alone and in combination with 4-hydroxytamoxifen. The results showed a high level expression of Nanog, Oct3/4, and Sox2 in MDA-MB-231 and MCF7/tamoxifen resistant cells compared with MCF7/wild-type. siRNA-mediated Nanog gene silencing can efficiently inhibit cell proliferation and induce apoptosis of tamoxifen-resistant breast cancer cells. This study provides a basis for further study of the role of Nanog in developing resistance to tamoxifen, its implication in breast cancer management, and as a new strategy to enhance response to endocrine therapy.
Collapse
Affiliation(s)
- Khalid Arif
- School of Life Sciences, University of Lincoln, Brayford Pool, UK
| | - Issam Hussain
- School of Life Sciences, University of Lincoln, Brayford Pool, UK
| | - Carol Rea
- School of Life Sciences, University of Lincoln, Brayford Pool, UK
| | | |
Collapse
|
36
|
Aurora kinase B is important for antiestrogen resistant cell growth and a potential biomarker for tamoxifen resistant breast cancer. BMC Cancer 2015; 15:239. [PMID: 25885472 PMCID: PMC4392616 DOI: 10.1186/s12885-015-1210-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/18/2015] [Indexed: 11/11/2022] Open
Abstract
Background Resistance to antiestrogen therapy is a major clinical challenge in the treatment of estrogen receptor α (ER)-positive breast cancer. The aim of the study was to explore the growth promoting pathways of antiestrogen resistant breast cancer cells to identify biomarkers and novel treatment targets. Methods Antiestrogen sensitive and resistant T47D breast cancer cell lines were used as model systems. Parental and fulvestrant resistant cell lines were subjected to a kinase inhibitor library. Kinase inhibitors preferentially targeting growth of fulvestrant resistant cells were identified and the growth inhibitory effect verified by dose–response cell growth experiments. Protein expression and phosphorylation were investigated by western blot analysis. Cell cycle phase distribution and cell death were analyzed by flow cytometry. To evaluate Aurora kinase B as a biomarker for endocrine resistance, immunohistochemistry was performed on archival primary tumor tissue from breast cancer patients who have received adjuvant endocrine treatment with tamoxifen. Results The selective Aurora kinase B inhibitor barasertib was identified to preferentially inhibit growth of fulvestrant resistant T47D breast cancer cell lines. Compared with parental cells, phosphorylation of Aurora kinase B was higher in the fulvestrant resistant T47D cells. Barasertib induced degradation of Aurora kinase B, caused mitotic errors, and induced apoptotic cell death as measured by accumulation of SubG1 cells and PARP cleavage in the fulvestrant resistant cells. Barasertib also exerted preferential growth inhibition of tamoxifen resistant T47D cell lines. Finally, high percentage of Aurora kinase B positive tumor cells was significantly associated with reduced disease-free and overall survival in 261 ER-positive breast cancer patients, who have received tamoxifen as first-line adjuvant endocrine treatment. Conclusions Our results indicate that Aurora kinase B is a driving factor for growth of antiestrogen resistant T47D breast cancer cell lines, and a biomarker for reduced benefit of tamoxifen treatment. Thus, inhibition of Aurora kinase B, e.g. with the highly selective kinase inhibitor barasertib, could be a candidate new treatment for breast cancer patients with acquired resistance to antiestrogens.
Collapse
|
37
|
Tamoxifen resistance: From cell culture experiments towards novel biomarkers. Pathol Res Pract 2015; 211:189-97. [DOI: 10.1016/j.prp.2015.01.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 12/21/2022]
|
38
|
Raha P, Thomas S, Thurn KT, Park J, Munster PN. Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast Cancer Res 2015; 17:26. [PMID: 25848915 PMCID: PMC4367983 DOI: 10.1186/s13058-015-0533-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/06/2015] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION The emergence of hormone therapy resistance, despite continued expression of the estrogen receptor (ER), is a major challenge to curing breast cancer. Recent clinical studies suggest that epigenetic modulation by histone deacetylase (HDAC) inhibitors reverses hormone therapy resistance. However, little is known about epigenetic modulation of the ER during acquired hormone resistance. Our recent phase II study demonstrated that HDAC inhibitors re-sensitize hormone therapy-resistant tumors to the anti-estrogen tamoxifen. In this study, we sought to understand the mechanism behind the efficacy of this combination. METHODS We generated cell lines resistant to tamoxifen, named TAMRM and TAMRT, by continuous exposure of ER-positive MCF7 and T47D cells, respectively to 4-hydroxy tamoxifen for over 12 months. HDAC inhibition, along with pharmacological and genetic manipulation of key survival pathways, including ER and Bcl-2, were used to characterize these resistant models. RESULTS The TAMRM cells displayed decreased sensitivity to tamoxifen, fulvestrant and estrogen deprivation. Consistent with previous models, ER expression was retained and the gene harbored no mutations. Compared to parental MCF7 cells, ER expression in TAMRM was elevated, while progesterone receptor (PGR) was lost. Sensitivity of ER to ligands was greatly reduced and classic ER response genes were suppressed. This model conveyed tamoxifen resistance through transcriptional upregulation of Bcl-2 and c-Myc, and downregulation of the cell cycle checkpoint protein p21, manifesting in accelerated growth and reduced cell death. Similar to TAMRM cells, the TAMRT cell line exhibited substantially decreased tamoxifen sensitivity, increased ER and Bcl-2 expression and significantly reduced PGR expression. Treatment with HDAC inhibitors reversed the altered transcriptional events and reestablished the sensitivity of the ER to tamoxifen resulting in substantial Bcl-2 downregulation, growth arrest and apoptosis. Selective inhibition of Bcl-2 mirrored these effects in presence of an HDAC inhibitor. CONCLUSIONS Our model implicates elevated ER and Bcl-2 as key drivers of anti-estrogen resistance, which can be reversed by epigenetic modulation through HDAC inhibition.
Collapse
|
39
|
SRC drives growth of antiestrogen resistant breast cancer cell lines and is a marker for reduced benefit of tamoxifen treatment. PLoS One 2015; 10:e0118346. [PMID: 25706943 PMCID: PMC4338193 DOI: 10.1371/journal.pone.0118346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/13/2015] [Indexed: 01/09/2023] Open
Abstract
The underlying mechanisms leading to antiestrogen resistance in estrogen-receptor α (ER)-positive breast cancer is still poorly understood. The aim of this study was therefore to identify biomarkers and novel treatments for antiestrogen resistant breast cancer. We performed a kinase inhibitor screen on antiestrogen responsive T47D breast cancer cells and T47D-derived tamoxifen and fulvestrant resistant cell lines. We found that dasatinib, a broad-spectrum kinase inhibitor, inhibited growth of the antiestrogen resistant cells compared to parental T47D cells. Furthermore western blot analysis showed increased expression and phosphorylation of Src in the resistant cells and that dasatinib inhibited phosphorylation of Src and also signaling via Akt and Erk in all cell lines. Immunoprecipitation revealed Src: ER complexes only in the parental T47D cells. In fulvestrant resistant cells, Src formed complexes with the Human Epidermal growth factor Receptor (HER)1 and HER2. Neither HER receptors nor ER were co-precipitated with Src in the tamoxifen resistant cell lines. Compared to treatment with dasatinib alone, combined treatment with dasatinib and fulvestrant had a stronger inhibitory effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined treatment with dasatinib and fulvestrant was superior to treatment with dasatinib alone. Src located at the membrane has potential as a new biomarker for reduced benefit of tamoxifen.
Collapse
|
40
|
Thewes V, Simon R, Schroeter P, Schlotter M, Anzeneder T, Büttner R, Benes V, Sauter G, Burwinkel B, Nicholson RI, Sinn HP, Schneeweiss A, Deuschle U, Zapatka M, Heck S, Lichter P. Reprogramming of the ERRα and ERα target gene landscape triggers tamoxifen resistance in breast cancer. Cancer Res 2015; 75:720-31. [PMID: 25643697 DOI: 10.1158/0008-5472.can-14-0652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endocrine treatment regimens for breast cancer that target the estrogen receptor-α (ERα) are effective, but acquired resistance remains a limiting drawback. One mechanism of acquired resistance that has been hypothesized is functional substitution of the orphan receptor estrogen-related receptor-α (ERRα) for ERα. To examine this hypothesis, we analyzed ERRα and ERα in recurrent tamoxifen-resistant breast tumors and conducted a genome-wide target gene profiling analysis of MCF-7 breast cancer cell populations that were sensitive or resistant to tamoxifen treatment. This analysis uncovered a global redirection in the target genes controlled by ERα, ERRα, and their coactivator AIB1, defining a novel set of target genes in tamoxifen-resistant cells. Beyond differences in the ERα and ERRα target gene repertoires, both factors were engaged in similar pathobiologic processes relevant to acquired resistance. Functional analyses confirmed a requirement for ERRα in tamoxifen- and fulvestrant-resistant MCF-7 cells, with pharmacologic inhibition of ERRα sufficient to partly restore sensitivity to antiestrogens. In clinical specimens (n = 1041), increased expression of ERRα was associated with enhanced proliferation and aggressive disease parameters, including increased levels of p53 in ERα-positive cases. In addition, increased ERRα expression was linked to reduced overall survival in independent tamoxifen-treated patient cohorts. Taken together, our results suggest that ERα and ERRα cooperate to promote endocrine resistance, and they provide a rationale for the exploration of ERRα as a candidate drug target to treat endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Verena Thewes
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Schroeter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Magdalena Schlotter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, University Women's Clinic, Heidelberg, Germany
| | | | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schneeweiss
- Gynecologic Oncology, National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | | | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Heck
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
41
|
Aurora kinase A and B as new treatment targets in aromatase inhibitor-resistant breast cancer cells. Breast Cancer Res Treat 2015; 149:715-26. [PMID: 25667100 DOI: 10.1007/s10549-015-3284-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/23/2015] [Indexed: 10/23/2022]
Abstract
Aromatase inhibitors (AIs) are used for treatment of estrogen receptor α (ER)-positive breast cancer; however, resistance is a major obstacle for optimal outcome. This preclinical study aimed at identifying potential new treatment targets in AI-resistant breast cancer cells. Parental MCF-7 breast cancer cells and four newly established cell lines, resistant to the AIs exemestane or letrozole, were used for a functional kinase inhibitor screen. A library comprising 195 different compounds was tested for preferential growth inhibition of AI-resistant cell lines. Selected targets were validated by analysis of cell growth, cell cycle phase distribution, protein expression, and subcellular localization. We identified 24 compounds, including several inhibitors of Aurora kinases e.g., JNJ-7706621 and barasertib. Protein expression of Aurora kinase A and B was found upregulated in AI-resistant cells compared with MCF-7, and knockdown studies showed that Aurora kinase A was essential for AI-resistant cell growth. In AI-resistant cell lines, the clinically relevant Aurora kinase inhibitors alisertib and danusertib blocked cell cycle progression at the G2/M phase, interfered with chromosome alignment and spindle pole formation, and resulted in preferential growth inhibition compared with parental MCF-7 cells. Even further growth inhibition was obtained when combining the Aurora kinase inhibitors with the antiestrogen fulvestrant. Our study is the first to demonstrate that Aurora kinase A and B may be treatment targets in AI-resistant cells, and our data suggest that therapy targeting both ER and Aurora kinases may be a potent treatment strategy for overcoming AI resistance in breast cancer.
Collapse
|
42
|
Ping Y, Deng Y, Wang L, Zhang H, Zhang Y, Xu C, Zhao H, Fan H, Yu F, Xiao Y, Li X. Identifying core gene modules in glioblastoma based on multilayer factor-mediated dysfunctional regulatory networks through integrating multi-dimensional genomic data. Nucleic Acids Res 2015; 43:1997-2007. [PMID: 25653168 PMCID: PMC4344511 DOI: 10.1093/nar/gkv074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The driver genetic aberrations collectively regulate core cellular processes underlying cancer development. However, identifying the modules of driver genetic alterations and characterizing their functional mechanisms are still major challenges for cancer studies. Here, we developed an integrative multi-omics method CMDD to identify the driver modules and their affecting dysregulated genes through characterizing genetic alteration-induced dysregulated networks. Applied to glioblastoma (GBM), the CMDD identified a core gene module of 17 genes, including seven known GBM drivers, and their dysregulated genes. The module showed significant association with shorter survival of GBM. When classifying driver genes in the module into two gene sets according to their genetic alteration patterns, we found that one gene set directly participated in the glioma pathway, while the other indirectly regulated the glioma pathway, mostly, via their dysregulated genes. Both of the two gene sets were significant contributors to survival and helpful for classifying GBM subtypes, suggesting their critical roles in GBM pathogenesis. Also, by applying the CMDD to other six cancers, we identified some novel core modules associated with overall survival of patients. Together, these results demonstrate integrative multi-omics data can identify driver modules and uncover their dysregulated genes, which is useful for interpreting cancer genome.
Collapse
Affiliation(s)
- Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yulan Deng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongyi Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Fulong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150086, China
| |
Collapse
|
43
|
Luzhna L, Lykkesfeldt AE, Kovalchuk O. Altered radiation responses of breast cancer cells resistant to hormonal therapy. Oncotarget 2015; 6:1678-94. [PMID: 25682200 PMCID: PMC4359324 DOI: 10.18632/oncotarget.3188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/01/2014] [Indexed: 01/13/2023] Open
Abstract
Endocrine therapy agents (the selective estrogen receptor (ER) modulators such as tamoxifen or the selective ER down-regulators such as ICI 182,780) are key treatment regimens for hormone receptor-positive breast cancers. While these drugs are very effective in controlling ER-positive breast cancer, many tumors that initially respond well to treatment often acquire drug resistance, which is a major clinical problem. In clinical practice, hormonal therapy agents are commonly used in combination or sequence with radiation therapy. Tamoxifen treatment and radiotherapy improve both local tumor control and patient survival. However, tamoxifen treatment may render cancer cells less responsive to radiation therapy. Only a handful of data exist on the effects of radiation on cells resistant to hormonal therapy agents. These scarce data show that cells that were resistant to tamoxifen were also resistant to radiation. Yet, the existence and mechanisms of cross-resistance to endocrine therapy and radiation therapy need to be established. Here, we for the first time examined and compared radiation responses of MCF-7 breast adenocarcinoma cells (MCF-7/S0.5) and two antiestrogen resistant cell lines derived from MCF-7/S0.5: the tamoxifen resistant MCF-7/TAMR-1 and ICI 182,780 resistant MCF-7/182R-6 cell lines. Specifically, we analyzed the radiation-induced changes in the expression of genes involved in DNA damage, apoptosis, and cell cycle regulation. We found that the tamoxifen-resistant cell line in contrast to the parental and ICI 182,780-resistant cell lines displayed a significantly less radiation-induced decrease in the expression of genes involved in DNA repair. Furthermore, we show that MCF-7/TAMR-1 and MCF-7/182R-6 cells were less susceptible to radiation-induced apoptosis as compared to the parental line. These data indicate that tamoxifen-resistant breast cancer cells have a reduced sensitivity to radiation treatment. The current study may therefore serve as a roadmap to the future analysis of the mechanisms of cross-resistance between hormonal therapy and radiation.
Collapse
Affiliation(s)
- Lidiya Luzhna
- Department of Biological Sciences, University of Lethbridge, University Drive, Lethbridge, AB, Canada
| | - Anne E. Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden, Copenhagen, Denmark
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, University Drive, Lethbridge, AB, Canada
| |
Collapse
|
44
|
Hole S, Pedersen AM, Hansen SK, Lundqvist J, Yde CW, Lykkesfeldt AE. New cell culture model for aromatase inhibitor-resistant breast cancer shows sensitivity to fulvestrant treatment and cross-resistance between letrozole and exemestane. Int J Oncol 2015; 46:1481-90. [PMID: 25625755 PMCID: PMC4356498 DOI: 10.3892/ijo.2015.2850] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/12/2014] [Indexed: 01/13/2023] Open
Abstract
Aromatase inhibitor (AI) treatment is first-line systemic treatment for the majority of postmenopausal breast cancer patients with estrogen receptor (ER)-positive primary tumor. Although many patients benefit from treatment, some will develop resistance, and models mimicking acquired resistance will be valuable tools to unravel the resistance mechanisms and to find new treatments and biomarkers. Cell culture models for acquired resistance to the three clinically relevant AIs letrozole, anastrozole and exemestane were developed by selection and expansion of colonies of MCF-7 breast cancer cells surviving long-term AI treatment under conditions where endogenous aromatase-mediated conversion of androgen to estrogen was required for growth. Four cell lines resistant to each of the AIs were established and characterized. Maintenance of ER expression and function was a general finding, but ER loss was seen in one of twelve cell lines. HER receptor expression was increased, in particular EGFR expression in letrozole-resistant cell lines. The AI-resistant cell lines had acquired ability to grow without aromatase-mediated conversion of testosterone to estradiol, but upon withdrawal of AI treatment, testosterone induced minor growth stimulation. Letrozole, exemestane and tamoxifen were able to abrogate the testosterone stimulation but could not reduce growth to below the level in standard growth medium with AI, demonstrating cross-resistance between letrozole, exemestane and tamoxifen. In contrast, fulvestrant totally blocked growth of the AI resistant cell lines both after withdrawal of AI and with AI treatment. These data show that ER is the main driver of growth of the AI-resistant cell lines and indicate ligand-independent activation of ER. Fulvestrant is an efficient treatment option for these AI-resistant breast cancer cells, and the cell lines will be useful tools to disclose the underlying molecular mechanism for resistance to the different AIs.
Collapse
Affiliation(s)
- Stine Hole
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Astrid M Pedersen
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Susanne K Hansen
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Johan Lundqvist
- Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7028, SE-750 07 Uppsala, Sweden
| | - Christina W Yde
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| | - Anne E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
45
|
Mourouzis I, Tzovaras A, Armonis B, Ardavanis A, Skondra M, Misitzis J, Pectasides D, Pantos C. Are Thyroid Hormone and Tumor Cell Proliferation in Human Breast Cancers Positive for HER2 Associated? Int J Endocrinol 2015; 2015:765406. [PMID: 25699081 PMCID: PMC4324948 DOI: 10.1155/2015/765406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/11/2015] [Indexed: 12/27/2022] Open
Abstract
Objective. This study investigated whether thyroid hormone (TH) levels are correlated to cell proliferation (Ki67), in euthyroid breast cancer patients. Design and Methods. 86 newly diagnosed breast cancer patients with estrogen receptor (ER) positive tumors, who referred for surgery, were included in the study. Results. FT3, FT4, and TSH were within normal range. No correlation was seen between Ki67 and FT3 (r = -0.17, P = 0.15), FT4 (r = -0.13, P = 0.25), or TSH (r = -0.10, P = 0.39) in all patients studied. However, subgroup analysis showed that, in HER2(+) patients, a negative correlation existed between FT3 levels and Ki67 (r = -0.60 and P = 0.004) but not between Ki67 and FT4 (r = 0.04 and P = 0.85) or TSH (r = -0.23 and P = 0.30). In HER2(-) patients, there was no significant correlation between Ki67 and FT3 (r = -0.06, P = 0.67), FT4 (r = -0.15, P = 0.26), or TSH (r = -0.09, P = 0.49). Phospho-p44/total p44 ERK levels were found to be increased by 2-fold in HER2(+) versus HER2(-) tumors. No difference was detected in phospho-p42/total p42 ERK levels. Conclusions. TH profile is not altered in patients with newly diagnosed breast cancer. However, FT3 levels, even within normal range, are negatively correlated with cell proliferation in HER2(+) breast cancer tumors. This response may be due to the interaction between ERK and TH signaling.
Collapse
Affiliation(s)
- Iordanis Mourouzis
- Department of Pharmacology, University of Athens, 75 Mikras Asias Avenue, Goudi, 11527 Athens, Greece
| | - Alexandros Tzovaras
- Second Department of Internal Medicine, Hippokration Hospital, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Basil Armonis
- Department of Pharmacology, University of Athens, 75 Mikras Asias Avenue, Goudi, 11527 Athens, Greece
| | - Alexandros Ardavanis
- First Department of Medical Oncology, “Saint Savvas” Anticancer Hospital, 11522 Athens, Greece
| | - Maria Skondra
- Second Department of Internal Medicine, Hippokration Hospital, School of Medicine, University of Athens, 11527 Athens, Greece
| | - John Misitzis
- First Department of Medical Oncology, “Saint Savvas” Anticancer Hospital, 11522 Athens, Greece
| | - Demetrios Pectasides
- Second Department of Internal Medicine, Hippokration Hospital, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, University of Athens, 75 Mikras Asias Avenue, Goudi, 11527 Athens, Greece
- *Constantinos Pantos:
| |
Collapse
|
46
|
Thrane S, Pedersen AM, Thomsen MBH, Kirkegaard T, Rasmussen BB, Duun-Henriksen AK, Lænkholm AV, Bak M, Lykkesfeldt AE, Yde CW. A kinase inhibitor screen identifies Mcl-1 and Aurora kinase A as novel treatment targets in antiestrogen-resistant breast cancer cells. Oncogene 2014; 34:4199-210. [DOI: 10.1038/onc.2014.351] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 09/15/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
|
47
|
Pedersen AM, Thrane S, Lykkesfeldt AE, Yde CW. Sorafenib and nilotinib resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen receptor α. Int J Oncol 2014; 45:2167-75. [PMID: 25175082 DOI: 10.3892/ijo.2014.2619] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/17/2014] [Indexed: 11/05/2022] Open
Abstract
Tamoxifen‑resistant breast cancer is a major clinical problem and new treatment strategies are highly warranted. In this study, the multitargeting kinase inhibitors sorafenib and nilotinib were investigated as potential new treatment options for tamoxifen‑resistant breast cancer. The two compounds inhibited cell growth, reduced expression of total estrogen receptor α (ER), Ser118-phosphorylated ER, FOXA1 and AIB1 and resensitized tamoxifen‑resistant cells to tamoxifen. The ER downmodulator fulvestrant exerted strong growth inhibition of tamoxifen‑resistant cells and addition of sorafenib and nilotinib could not further suppress growth, showing that sorafenib and nilotinib exerted growth inhibition via ER. In support of this, estradiol prevented sorafenib and nilotinib mediated growth inhibition. These results demonstrate that sorafenib and nilotinib act via ER and ER-associated proteins, indicating that these kinase inhibitors in combination with tamoxifen may be potential new treatments for tamoxifen‑resistant breast cancer.
Collapse
Affiliation(s)
- Astrid M Pedersen
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, 2100 Copenhagen Ø, Denmark
| | - Susan Thrane
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, 2100 Copenhagen Ø, Denmark
| | - Anne E Lykkesfeldt
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, 2100 Copenhagen Ø, Denmark
| | - Christina W Yde
- Breast Cancer Group, Cell Death and Metabolism, Danish Cancer Society Research Center, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
48
|
Nass N, Brömme HJ, Hartig R, Korkmaz S, Sel S, Hirche F, Ward A, Simm A, Wiemann S, Lykkesfeldt AE, Roessner A, Kalinski T. Differential response to α-oxoaldehydes in tamoxifen resistant MCF-7 breast cancer cells. PLoS One 2014; 9:e101473. [PMID: 24983248 PMCID: PMC4077828 DOI: 10.1371/journal.pone.0101473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 06/06/2014] [Indexed: 01/09/2023] Open
Abstract
Tamoxifen is the standard adjuvant endocrine therapy for estrogen-receptor positive premenopausal breast cancer patients. However, tamoxifen resistance is frequently observed under therapy. A tamoxifen resistant cell line has been generated from the estrogen receptor positive mamma carcinoma cell line MCF-7 and was analyzed for putative differences in the aldehyde defence system and accumulation of advanced glycation end products (AGE). In comparison to wt MCF-7 cells, these tamoxifen resistant cells were more sensitive to the dicarbonyl compounds glyoxal and methylglyoxal and displayed increased caspase activity, p38-MAPK- and IκBα-phosphorylation. However, mRNA accumulation of the aldehyde- and AGE-defence enzymes glyoxalase-1 and -2 (GLO1, GLO2) as well as fructosamine-3-kinase (FN3K) was not significantly altered. Tamoxifen resistant cells contained less free sulfhydryl-groups (glutathione) suggesting that the increased sensitivity towards the dicarbonyls was due to a higher sensitivity towards reactive oxygen species which are associated with dicarbonyl stress. To further analyse, if these data are of more general importance, key experiments were replicated with tamoxifen resistant MCF-7 cell lines from two independent sources. These cell lines were also more sensitive to aldehydes, especially glyoxal, but were different in their cellular signalling responses to the aldehydes. In conclusion, glyoxalases and other aldehyde defence enzymes might represent a promising target for the therapy of tamoxifen resistant breast cancers.
Collapse
Affiliation(s)
- Norbert Nass
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
- * E-mail:
| | - Hans-Jürgen Brömme
- Martin-Luther-University Halle-Wittenberg, Centre for Basic Medical Research (ZMG), Halle, Germany
| | - Roland Hartig
- Otto-von-Guericke-University Medical Faculty, Multidimensional Microscopy and Cellular Diagnostics, Magdeburg, Germany
| | - Sevil Korkmaz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Saadettin Sel
- Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany
| | - Frank Hirche
- Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle/Saale, Germany
| | - Aoife Ward
- German Cancer Research Center DKFZ, Division of Molecular Genome Analysis, Heidelberg, Germany
| | - Andreas Simm
- Martin-Luther-University Halle-Wittenberg, Centre for Basic Medical Research (ZMG), Halle, Germany
| | - Stefan Wiemann
- German Cancer Research Center DKFZ, Division of Molecular Genome Analysis, Heidelberg, Germany
| | - Anne E. Lykkesfeldt
- Danish Cancer Society Research Center, Breast Cancer Group, Cell Death and Metabolism, Copenhagen, Denmark
| | - Albert Roessner
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Kalinski
- Department of Pathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
49
|
Lundqvist J, Yde CW, Lykkesfeldt AE. 1α,25-dihydroxyvitamin D3 inhibits cell growth and NFκB signaling in tamoxifen-resistant breast cancer cells. Steroids 2014; 85:30-5. [PMID: 24747771 DOI: 10.1016/j.steroids.2014.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/01/2014] [Accepted: 04/06/2014] [Indexed: 12/18/2022]
Abstract
Resistance to antiestrogens is a major clinical problem in current breast cancer treatment and development of new treatment strategies for these tumors is highly prioritized. In this study, we have investigated the effects of 1α,25-dihydroxyvitamin D3 on the proliferation of tamoxifen-resistant cells. Further, we have investigated on a molecular level the effects of vitamin D on NFkB signaling in tamoxifen-resistant breast cancer cells. Parental human breast cancer MCF-7 cells and four tamoxifen-resistant sublines have been used to investigate the effects of 1α,25-dihydroxyvitamin D3 on cell proliferation using a colorimetric method, gene expression using quantitative PCR, protein phosphorylation using Western blot analysis and cellular localization of proteins using immunofluorescence microscopy. We found that 1α,25-dihydroxyvitamin D3 is able to strongly decrease the growth of both tamoxifen-sensitive and -resistant breast cancer cells and that this antiproliferative effect of 1α,25-dihydroxyvitamin D3 might be mediated via inhibition of the NFκB pathway. We found that 1α,25-dihydroxyvitamin D3 stimulates the gene expression of IkB, an NFκB-inhibiting protein, and that cells pretreated with 1α,25-dihydroxyvitamin D3 have a decreased sensitivity to TNFα stimulation. Further, we show that 1α,25-dihydroxyvitamin D3 treatment strongly decreases the TNFα-induced translocation of p65 into the nucleus. This manuscript reports novel findings regarding the effects of 1α,25-dihydroxyvitamin D3 on NFκB signaling in tamoxifen-resistant breast cancer cells and suggests that vitamin D might be interesting for further evaluation as a new strategy to treat antiestrogen-resistant breast cancers.
Collapse
Affiliation(s)
- Johan Lundqvist
- Danish Cancer Society Research Center, Unit of Cell Death and Metabolism, Breast Cancer Group, Strandboulevarden 49, DK-2100 Copenhagen, Denmark; Swedish University of Agricultural Sciences, Department of Biomedicine and Veterinary Public Health, Box 7028, SE-750 07 Uppsala, Sweden.
| | - Christina W Yde
- Danish Cancer Society Research Center, Unit of Cell Death and Metabolism, Breast Cancer Group, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | - Anne E Lykkesfeldt
- Danish Cancer Society Research Center, Unit of Cell Death and Metabolism, Breast Cancer Group, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| |
Collapse
|
50
|
Weldon DJ, Saulsbury MD, Goh J, Rowland L, Campbell P, Robinson L, Miller C, Christian J, Amis L, Taylor N, Dill C, Davis W, Evans SL, Brantley E. One-pot synthesis of cinnamylideneacetophenones and their in vitro cytotoxicity in breast cancer cells. Bioorg Med Chem Lett 2014; 24:3381-4. [PMID: 24957352 DOI: 10.1016/j.bmcl.2014.05.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/11/2022]
Abstract
A series of cinnamylideneacetophenones were synthesized via a modified Claisen-Schmidt condensation reaction and evaluated for cytotoxicity against breast cancer cells using the Alamar Blue™ assay. Derivatives 17 and 18 bearing a 2-nitro group on the B ring, exhibited sub-micromolar cytotoxicity in MCF-7 cells (IC50=71 and 1.9 nM), respectively. Derivative 17 also displayed sub-micromolar (IC50=780 nM) cytotoxicity in MDA-MB-468 cells. Additionally, 17 and 18 displayed significantly less cytotoxicity than the chemotherapeutic doxorubicin in non-tumorigenic MCF-10A cells. This study provides evidence supporting the continued development of nitro-substituted cinnamylideneacetophenones as small molecules to treat breast cancer.
Collapse
Affiliation(s)
- David J Weldon
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, United States
| | - Marilyn D Saulsbury
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA, United States
| | - Joshua Goh
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, United States
| | - Leah Rowland
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Petreena Campbell
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Laijia Robinson
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Department of Chemistry, Geology and Physics, School of Mathematics, Science & Technology, Elizabeth City State University, Elizabeth City, NC, United States
| | - Calvin Miller
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, United States
| | - Joshua Christian
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, United States
| | - Louisa Amis
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Nia Taylor
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Cassandra Dill
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Willie Davis
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, United States; Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Stanley L Evans
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Eileen Brantley
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA, United States; Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States; Department of Chemistry, University of California, Riverside, CA 92521, United States.
| |
Collapse
|