1
|
Li C, Tang Y, Zhang R, Shi L, Chen J, Zhang P, Zhang N, Li W. Inhibiting glycolysis facilitated checkpoint blockade therapy for triple-negative breast cancer. Discov Oncol 2025; 16:550. [PMID: 40244544 PMCID: PMC12006572 DOI: 10.1007/s12672-025-02320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer cells are characterized by their altered energy metabolism. A hallmark of cancer metabolism is aerobic glycolysis, also called the Warburg effect. Hexokinase 2 (HK2), a crucial glycolytic enzyme converting glucose to glucose-6-phosphate, has been identified as a central player in the Warburg effect. Deletion of HK2 decreases cancer cell proliferation in animal models without explicit side effects, suggesting that targeting HK2 is a promising strategy for cancer therapy. In this study, we discovered a correlation between HK2 and the tumor immune response in triple-negative breast cancer. Inhibition of HK2 led to a reduction in G-CSF expression in 4T1 cells and a decrease in the development of myeloid-derived suppressor cells which, in turn, enhanced T cell immunity and prolonged the survival of 4T1 tumor-bearing mice. Furthermore, the HK2 inhibitor 3-BrPA improved the therapeutic efficacy of anti-PD-L1 therapy in 4T1 tumor-bearing mouse models. This study highlights the potential of glycolysis-targeting interventions as a novel treatment strategy, which can be combined with immunotherapy for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Chong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Tang
- Department of Gastrointestinal Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Ruizhi Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianying Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zhang
- Department of Thyroid Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Vasiyani H, Wadhwa B. STING activation and overcoming the challenges associated with STING agonists using ADC (antibody-drug conjugate) and other delivery systems. Cell Signal 2025; 128:111647. [PMID: 39922441 DOI: 10.1016/j.cellsig.2025.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
In current immunotherapy cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway considered as most focused area after CAR-T cell. Exploitation of host immunity against cancer using STING agonists generates the most interest as a therapeutic target. Classically cGAS activation through cytoplasmic DNA generates 2'3'cGAMP that is naturally identified STING agonist. Activation of STING leads to activation of type-1 interferon response and pro-inflammatory cytokines through TBK/IRF-3, TBK/NF-κB pathways. Pro-inflammatory cytokines attract immune cells to the tumor microenvironment and type-1 interferon exposes tumor antigens to T cells and NK cells, which leads to the activation of cellular immunity against tumor cells and eliminates tumor cells. Initially bacterial-derived c-di-AMP and c-di-GMP were identified as CDNs (Cyclic-dinucleotide) STING agonists. Moreover, chemically modified CDNs and completely synthetic STING agonists have been developed. Even though the breakthrough preclinical development none of the STING agonists were approved the by FDA for cancer therapy. All identified natural CDNs have poor pharmacokinetic properties due to high hydrophilicity and negative charge. Moreover, phosphodiester bonds in CDNs are most vulnerable to enzymatic degradation. Synthetic STING agonists have an off-target effect that generates autoimmunity and cytokine storm. STING agonist needs to improve for pharmacokinetics, efficacy, and safety. In this scenario delivery systems can overcome the challenges associated with STING agonists. Here, we highlight the ways of STING agonisms as direct and indirect, and further, we also discuss the existing STING agonists associated challenges and ongoing efforts for delivery of STING agonists in the tumor microenvironment (TME) via different non-targeted carriers like Nanoparticle, Hydrogel, Micelle, Liposome. We also discussed the most advanced targeted deliveries of ADC (Antibody-drug conjugate) and aptamers-based delivery.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA-23284, USA.
| | - Bhumika Wadhwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| |
Collapse
|
3
|
Sigurjonsdottir G, De Marchi T, Ehinger A, Hartman J, Ullén S, Leandersson K, Bosch A, Staaf J, Killander F, Niméus E. Evaluation of alternative prognostic thresholds for SP142 and 22C3 immunohistochemical PD-L1 expression in triple-negative breast cancer: results from a population-based cohort. Breast Cancer Res Treat 2025; 210:271-284. [PMID: 39656429 PMCID: PMC11930886 DOI: 10.1007/s10549-024-07561-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors are now a part of the treatment arsenal for triple-negative breast cancer (TNBC) but refinement of PD-L1 as a prognostic and predictive biomarker is a clinical priority. We aimed to evaluate the relevance of novel PD-L1 immunohistochemical (IHC) thresholds in TNBC with regard to PD-L1 gene expression, prognostic value, tumor infiltrating lymphocytes (TILs), and TNBC molecular subtypes. MATERIAL & METHODS PD-L1 was scored in a tissue microarray with the SP142 (immune cell (IC) score) and the 22C3 (combined positive score; CPS) IHC assays and TIL abundance evaluated in whole slides in a population-based cohort of 237 early-stage TNBC patients. Survival analysis was performed and RNA sequencing data employed for molecular profiling. RESULTS As expected, PD-L1 positivity (IC ≥ 1% and/or CPS ≥ 1) was significantly associated with better prognosis compared to zero PD-L1 expression. Importantly however, also patients with intermediate expression (IC > 0%, < 1%; CPS > 0, < 1) showed a trend toward improved outcome. Tumors with intermediate PD-L1 IHC expression also had intermediate PD-L1 (CD274) gene expression (mRNA). Patients who were both low in TILs (< 30%) and PD-L1 (IC < 1%; CPS < 1) tended to have the poorest prognosis. PD-L1 positive tumors clustered significantly more often as Immunomodulatory-high and Basal-Like 1-high TNBC molecular subtypes and were enriched in immune response and cell cycle/proliferation signaling pathways. PD-L1-zero tumors on the other hand were enriched in cell growth, differentiation, and metastatic potential pathways and clustered more prevalently as Luminal-Androgen-Receptor-high and Mesenchymal-high. PD-L1-intermediate tumors categorized with neither PD-L1-positive nor PD-L1-zero tumors on the hierarchical clustering level, consigning them as a unique subgroup. CONCLUSION With both SP142 and 22C3, we identified an intermediate IHC PD-L1 group within TNBCs that was supported on the molecular level. Any PD-L1 IHC expression, even though it is < 1, tended to have positive prognostic impact. We suggest that the generally accepted threshold of PD-L1 IHC positivity in TNBC should be investigated further. The Swedish Cancerome Analysis Network - Breast (SCAN-B) study was retrospectively registered 2nd Dec 2014 at ClinicalTrials.gov; ID NCT02306096.
Collapse
Affiliation(s)
- Gudbjörg Sigurjonsdottir
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19 - BMC F12, 221 84, Lund, Sweden.
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Skåne, Sweden.
| | - Tommaso De Marchi
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19 - BMC F12, 221 84, Lund, Sweden
| | - Anna Ehinger
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19 - BMC F12, 221 84, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Laboratory Medicine, Region Skåne, Lund, Sweden
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Susann Ullén
- Clinical Studies Sweden, Skåne University Hospital, Lund, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Clinical Research Center, Lund University, Malmö, Sweden
| | - Ana Bosch
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19 - BMC F12, 221 84, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Skåne, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19 - BMC F12, 221 84, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, Sweden
| | - Fredrika Killander
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19 - BMC F12, 221 84, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Skåne, Sweden
| | - Emma Niméus
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Sölvegatan 19 - BMC F12, 221 84, Lund, Sweden.
- Divison of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
- Department of Surgery, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
4
|
Li F, Gao C, Huang Y, Qiao Y, Xu H, Liu S, Wu H. Unraveling the breast cancer tumor microenvironment: crucial factors influencing natural killer cell function and therapeutic strategies. Int J Biol Sci 2025; 21:2606-2628. [PMID: 40303301 PMCID: PMC12035885 DOI: 10.7150/ijbs.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/04/2025] [Indexed: 05/02/2025] Open
Abstract
Natural killer (NK) cells have emerged as a novel and effective treatment for breast cancer. Nevertheless, the breast cancer tumor microenvironment (TME) manifests multiple immunosuppressive mechanisms, impeding the proper execution of NK cell functions. This review summarizes recent research on the influence of the TME on the functionality of NK cells in breast cancer. It delves into the effects of the internal environment of the TME on NK cells and elucidates the roles of diverse stromal components, immune cells, and signaling molecules in regulating NK cell activity within the TME. It also summarizes therapeutic strategies based on small-molecule inhibitors, antibody therapies, and natural products, as well as the progress of research in preclinical and clinical trials. By enhancing our understanding of the immunosuppressive TME and formulating strategies to counteract its effects, we could fully harness the therapeutic promise of NK cells in breast cancer treatment.
Collapse
Affiliation(s)
- Feifei Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunfang Gao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yu Qiao
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Hongxiao Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| |
Collapse
|
5
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
6
|
Chen H, Chen Y, Chung W, Loh Z, Lee K, Hsu H. Circulating CD3 +CD8 + T Lymphocytes as Indicators of Disease Status in Patients With Early Breast Cancer. Cancer Med 2025; 14:e70547. [PMID: 39749673 PMCID: PMC11696249 DOI: 10.1002/cam4.70547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
Circulating CD3+CD8+ cell levels were lower in breast cancer patients, elevated posttreatment, and subsequently declining upon recurrence. Elevated plasma chemokine (C-C motif) ligand 2 (CCL2) levels distinguished patients with breast cancer from healthy controls. In summary, circulating CD3+CD8+ CTL and plasma CCL2 levels emerged as promising dual-purpose biomarkers and therapeutic targets in breast cancer management.
Collapse
Affiliation(s)
- Han‐Kun Chen
- Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of NursingMeiho UniversityPingtungTaiwan
| | - Yi‐Ling Chen
- Department of Health and NutritionChia Nan University of Pharmacy and ScienceTainanTaiwan
| | - Wei‐Pang Chung
- Department of Oncology, College of MedicineNational Cheng Kung University Hospital, National Cheng Kung UniversityTainanTaiwan
- Center of Applied NanomedicineNational Cheng Kung UniversityTainanTaiwan
| | - Zhu‐Jun Loh
- Department of Surgery, College of MedicineNational Cheng Kung University Hospital, National Cheng Kung UniversityTainanTaiwan
| | - Kuo‐Ting Lee
- Department of Surgery, College of MedicineNational Cheng Kung University Hospital, National Cheng Kung UniversityTainanTaiwan
| | - Hui‐Ping Hsu
- Department of Surgery, College of MedicineNational Cheng Kung University Hospital, National Cheng Kung UniversityTainanTaiwan
- Department of Biochemistry and Molecular BiologyCollege of Medicine, National Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
7
|
Rabani S, Gunes EG, Gunes M, Pellegrino B, Lampert B, David K, Pillai R, Li A, Becker-Herman S, Rosen ST, Shachar I. CD84 as a therapeutic target for breaking immune tolerance in triple-negative breast cancer. Cell Rep 2024; 43:114920. [PMID: 39466774 DOI: 10.1016/j.celrep.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. The tumor microenvironment (TME) plays a major regulatory role in TNBC progression and is highly infiltrated by suppressive immune cells that reduce anti-tumor immune activity. Although regulatory B cells (Bregs) are a key TME component, knowledge of their function in TNBC is limited. CD84 is a homophilic adhesion molecule that promotes the survival of blood tumors. In the current study, we followed the role of CD84 in the regulation of the TME in TNBC. We demonstrate that CD84 induces a cascade in Bregs that involves the β-catenin and Tcf4 pathway, which induces the transcription of interleukin-10 by binding to its promoter and the promoter of its regulator, AhR. This leads to the expansion of Bregs, which in turn control the activity of other immune cells and immune suppression. Accordingly, we suggest CD84 as a therapeutic target for breaking immune tolerance in TNBC.
Collapse
Affiliation(s)
- Stav Rabani
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Emine Gulsen Gunes
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, USA
| | - Martin Gunes
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Duarte, CA, USA
| | - Bianca Pellegrino
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Lampert
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Keren David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Raju Pillai
- Pathology Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Aimin Li
- Pathology Core, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | | | - Steven T Rosen
- Department of Hematology and Stem Cell Transplantation, City of Hope and Beckman Research Institute, Duarte, CA, USA
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Lenart NA, Rao SS. Cell-cell interactions mediating primary and metastatic breast cancer dormancy. Cancer Metastasis Rev 2024; 44:6. [PMID: 39585533 DOI: 10.1007/s10555-024-10223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Breast cancer remains one of the leading causes of death in women around the world. A majority of deaths from breast cancer occur due to cancer cells colonizing distant organ sites. When colonizing these distant organ sites, breast cancer cells have been known to enter into a state of dormancy for extended periods of time. However, the mechanisms that promote dormancy as well as dormant-to-proliferative switch are not fully understood. The tumor microenvironment plays a key role in mediating cancer cell phenotype including regulation of the dormant state. In this review, we highlight cell-cell interactions in the tumor microenvironment mediating breast cancer dormancy at the primary and metastatic sites. Specifically, we describe how immune cells from the lymphoid lineage, tumor-associated myeloid lineage cells, and stromal cells of non-hematopoietic origin as well as tissue resident stromal cells impact dormancy vs. proliferation in breast cancer cells as well as the associated mechanisms. In addition, we highlight the importance of developing model systems and the associated considerations that will be critical in unraveling the mechanisms that promote primary and metastatic breast cancer dormancy mediated via cell-cell interactions.
Collapse
Affiliation(s)
- Nicholas A Lenart
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Shreyas S Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487-0203, USA.
| |
Collapse
|
9
|
Flores-Campos R, García-Domínguez DJ, Hontecillas-Prieto L, Jiménez-Cortegana C, de la Cruz-Merino L, Sánchez-Margalet V. Flow cytometry analysis of myeloid derived suppressor cells using 6 color labeling. Methods Cell Biol 2024; 190:1-10. [PMID: 39515873 DOI: 10.1016/bs.mcb.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) encompass a diverse population of immature myeloid cells categorized into granulocytic and monocytic groups. These cells exert immune-suppressive functions within the tumor microenvironment, primarily influenced by cytokines and tumor-associated factors. Research has consistently linked elevated MDSC levels to unfavorable cancer prognosis and poor responses to immunotherapies. Here, we detail the materials, equipment, and methods involved in MDSC analysis in human peripheral blood by flow cytometry, emphasizing the importance of selecting appropriate antibody clones and fluorochromes for precise cell population discrimination. The gating strategy is described, with particular attention to the challenges associated with defining conjugated antibody labeling positive and negative populations.
Collapse
Affiliation(s)
- Rocío Flores-Campos
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain
| | - Daniel J García-Domínguez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Department of Clinical Oncology, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Department of Medicine, University of Seville, Seville, Spain.
| | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Hospital Universitario Virgen Macarena, University of Seville, Seville, Spain; Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
10
|
Roman JA, Girgis MY, Prisby RS, Araujo RP, Russo P, Oktay E, Luchini A, Liotta LA, Veneziano R, Haymond A. A Multivalent DNA Nanoparticle/Peptide Hybrid Molecular Modality for the Modulation of Protein-Protein Interactions in the Tumor Microenvironment. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300159. [PMID: 39328775 PMCID: PMC11423619 DOI: 10.1002/anbr.202300159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Despite success in the treatment of some blood cancers and melanoma, positive response to immunotherapies remains disappointingly low in the treatment of solid tumors. The context of the molecular crosstalk within the tumor microenvironment can result in dysfunctional immune cell activation, leading to tumor tolerance and progression. Although modulating these protein-protein interactions (PPIs) is vital for appropriate immune cell activation and recognition, targeting nonenzymatic PPIs has proven to be fraught with challenges. To address this, we introduce a synthetic, multivalent molecular modality comprised of small interfering peptides precisely hybridized to a semi-rigid DNA scaffold. Herein, we describe a prototype of this modality that targets the IL-33/ST2 signaling axis, which is associated with tumor tolerance and immunotherapy treatment failure. Using peptides that mimic the specific high energy "hotspot" residues with which the IL-33/ST2 co-receptor, IL-1RAcP, interacts with the initial binary complex, we show this platform to effectively bind IL-33/ST2 with aK D of 110 nM. Additionally, this molecule effectively abrogates signal transduction in cell models at high nanomolar concentrations and is exquisitely selective for this complex over structurally similar PPIs within the same cytokine superfamily.
Collapse
Affiliation(s)
- Jessica A Roman
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Michael Y Girgis
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Rocìo S Prisby
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Robyn P Araujo
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Esra Oktay
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Remi Veneziano
- Department of Bioengineering, 19020 George Mason Circle, Manassas, VA, 20110, USA
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, 19020 George Mason Circle, Manassas, VA, 20110, USA
| |
Collapse
|
11
|
Otterlei Fjørtoft M, Huse K, Rye IH. The Tumor Immune Microenvironment in Breast Cancer Progression. Acta Oncol 2024; 63:359-367. [PMID: 38779867 PMCID: PMC11332517 DOI: 10.2340/1651-226x.2024.33008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The tumor microenvironment significantly influences breast cancer development, progression, and metastasis. Various immune cell populations, including T cells, B cells, NK cells, and myeloid cells exhibit diverse functions in different breast cancer subtypes, contributing to both anti-tumor and pro-tumor activities. PURPOSE This review provides an overview of the predominant immune cell populations in breast cancer subtypes, elucidating their suppressive and prognostic effects. We aim to outline the role of the immune microenvironment from normal breast tissue to invasive cancer and distant metastasis. METHODS A comprehensive literature review was conducted to analyze the involvement of immune cells throughout breast cancer progression. RESULTS In breast cancer, tumors exhibit increased immune cell infiltration compared to normal tissue. Variations exist across subtypes, with higher levels observed in triple-negative and HER2+ tumors are linked to better survival. In contrast, ER+ tumors display lower immune infiltration, associated with poorer outcomes. Furthermore, metastatic sites commonly exhibit a more immunosuppressive microenvironment. CONCLUSION Understanding the complex interaction between tumor and immune cells during breast cancer progression is essential for future research and the development of immune-based strategies. This comprehensive understanding may pave the way for more effective treatment approaches and improved patients outcomes.
Collapse
Affiliation(s)
- Marit Otterlei Fjørtoft
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kanutte Huse
- Department of Cancer Immunology, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway
| | - Inga Hansine Rye
- Department of Cancer Genetics, Institute for Cancer Research, Division of Cancer Medicine, Oslo University Hospital, Radium Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
12
|
Fang M, Yin W, Qiu C, Song T, Lin B, Wang Y, Xiong H, Wu S. Stromal B Lymphocytes Affecting Prognosis in Triple-Negative Breast Cancer by Opal/TSA Multiplexed Immunofluorescence. Int J Womens Health 2024; 16:755-767. [PMID: 38706691 PMCID: PMC11067943 DOI: 10.2147/ijwh.s444202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/28/2023] [Indexed: 05/07/2024] Open
Abstract
Objective Immune cells play a key role in tumor microenvironment. The purpose of this study was to investigate the infiltration and clinical indication of immune cells including their combined prognostic value in microenvironment of triple negative breast cancer. Methods We investigated 100 patients with triple negative breast cancer by Opal/Tyramide Signal Amplification multispectral immunofluorescence between 2003 and 2017 at Zhejiang Provincial people's Hospital. Intratumoral and stromal immune cells of triple negative breast cancer were classified and quantitatively analyzed. Survival outcomes were compared using the Kaplan-Meier method and further analyzed with multivariate analysis. Results Infiltration level of stromal B lymphocytes, stromal and intratumoral CD8+ T cells, stromal CD4+ T cells, stromal PD-L1 and intratumoral tumor associated macrophages 2 cells were shown as independent factors affecting disease-free survival and overall survival in univariate analysis. Stromal B lymphocytes, T stage, N stage and pathological type were independent predictive factors for both DFS and OS in multivariate analysis. We firstly found that patients with B lymphocytes-enriched subtypes have a better prognosis than those with T lymphocytes-enriched subtypes and tumor-associated macrophage-enriched subtypes. Conclusion The present study identified a bunch of immune targets and subtypes, which could be exploited in future combined immunotherapy/chemotherapy strategies for triple negative breast cancer patients.
Collapse
Affiliation(s)
- Min Fang
- Department of Radiation Oncology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Yin
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Chunyan Qiu
- National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, People’s Republic of China
| | - Tao Song
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Baihua Lin
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Ying Wang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital(Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, People’s Republic of China
| | - Shixiu Wu
- Department of Radiation Oncology, The Affiliated Hangzhou Hospital of Nanjing Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Rathore AS, Chirmule N, Dash R, Chowdhury A. Current status and future prospective of breast cancer immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:293-326. [PMID: 38762272 DOI: 10.1016/bs.apcsb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
The immune system is complicated, interconnected, and offers a powerful defense system that protects its host from foreign pathogens. Immunotherapy involves boosting the immune system to kill cancer cells, and nowadays, is a major emerging treatment for cancer. With the advances in our understanding of the immunology of cancer, there has been an explosion of studies to develop and evaluate therapies that engage the immune system in the fight against cancer. Nevertheless, conventional therapies have been effective in reducing tumor burden and prolonging patient life, but the overall efficacy of these treatment regimens has been somewhat mixed and often with severe side effects. A common reason for this is the activation of molecular mechanisms that lead to apoptosis of anti-tumor effector cells. The competency to block tumor escape entirely depends on our understanding of the cellular and molecular pathways which operate in the tumor microenvironment. Numerous strategies have been developed for activating the immune system to kill tumor cells. Breast cancer is one of the major causes of cancer death in women, and is characterized by complex molecular and cellular events that closely intertwine with the host immune system. In this regard, predictive biomarkers of immunotherapy, use of nanotechnology, personalized cancer vaccines, antibodies to checkpoint inhibitors, engineered chimeric antigen receptor-T cells, and the combination with other therapeutic modalities have transformed cancer therapy and optimized the therapeutic effect. In this chapter, we will offer a holistic view of the different therapeutic modalities and recent advances in immunotherapy. Additionally, we will summarize the recent advances and future prospective of breast cancer immunotherapies, as a case study.
Collapse
|
14
|
Liu T, Rosek A, Gonzalez De Los Santos F, Phan SH. Detection of myeloid-derived suppressor cells by flow cytometry. Methods Cell Biol 2023; 184:1-15. [PMID: 38555150 DOI: 10.1016/bs.mcb.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Recently discovered heterogeneous myeloid-derived suppressor cells (MDSCs) are some of the most discussed immunosuppressive cells in contemporary immunology, especially in the tumor microenvironment, and are defined primarily by their T cell immunosuppressive function. The importance of these cells extend to other chronic pathological conditions as well, including chronic infection, inflammation, and tissue remodeling. In many of these conditions, their accumulation/expansion correlates with disease progression, poor prognosis, and reduced survival, which highlights the potential of how these cells may be used in a clinical setting as both prognostic factor and therapeutic target. In healthy individuals, these cells are usually not present in the circulation. Therefore, monitoring this cell population is of potential clinical significance, and utility in basic research. However, these cells have a complex phenotype without one single marker of sufficient specificity for their identification. Flow cytometry is a powerful tool allowing multi-parameter analysis of heterogeneous cell populations, which makes it ideally suitable for the complex phenotypic analysis essential for identification and enumeration of circulating MDSCs. This approach has the potential to provide a novel clinically useful tool for assessment of prognosis and treatment outcomes. The protocol in this chapter describes a flow cytometric analysis to identify and quantify MDSCs from human or mouse whole blood leukocytes and peripheral blood mononuclear cells, as well as a single cell suspension from solid tissue, by using multicolor fluorescence-conjugated antibodies against their surface markers.
Collapse
Affiliation(s)
- Tianju Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Alyssa Rosek
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Sem H Phan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
15
|
Chaudhri A, Bu X, Wang Y, Gomez M, Torchia JA, Hua P, Hung SH, Davies MA, Lizee GA, von Andrian U, Hwu P, Freeman GJ. The CX3CL1-CX3CR1 chemokine axis can contribute to tumor immune evasion and blockade with a novel CX3CR1 monoclonal antibody enhances response to anti-PD-1 immunotherapy. Front Immunol 2023; 14:1237715. [PMID: 37771579 PMCID: PMC10524267 DOI: 10.3389/fimmu.2023.1237715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yunfei Wang
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Michael Gomez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - James A. Torchia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Michael A. Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gregory A. Lizee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ulrich von Andrian
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, United States
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Patrick Hwu
- Department of Clinical Science, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Li S, Hao L, Zhang J, Deng J, Hu X. Focus on T cell exhaustion: new advances in traditional Chinese medicine in infection and cancer. Chin Med 2023; 18:76. [PMID: 37355637 DOI: 10.1186/s13020-023-00785-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
In chronic infections and cancers, T lymphocytes (T cells) are exposed to persistent antigen or inflammatory signals. The condition is often associated with a decline in T-cell function: a state called "exhaustion". T cell exhaustion is a state of T cell dysfunction characterized by increased expression of a series of inhibitory receptors (IRs), decreased effector function, and decreased cytokine secretion, accompanied by transcriptional and epigenetic changes and metabolic defects. The rise of immunotherapy, particularly the use of immune checkpoint inhibitors (ICIs), has dramatically changed the clinical treatment paradigm for patients. However, its low response rate, single target and high immunotoxicity limit its clinical application. The multiple immunomodulatory potential of traditional Chinese medicine (TCM) provides a new direction for improving the treatment of T cell exhaustion. Here, we review recent advances that have provided a clearer molecular understanding of T cell exhaustion, revealing the characteristics and causes of T cell exhaustion in persistent infections and cancers. In addition, this paper summarizes recent advances in improving T cell exhaustion in infectious diseases and cancer with the aim of providing a comprehensive and valuable source of information on TCM as an experimental study and their role in collaboration with ICIs therapy.
Collapse
Affiliation(s)
- Shenghao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Liyuan Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Junli Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Jiali Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
17
|
Ramezani-Aliakbari K, Khaki-Bakhtiarvand V, Mahmoudian J, Asgarian-Omran H, Shokri F, Hojjat-Farsangi M, Jeddi-Tehrani M, Shabani M. Evaluation of the anti-tumor effects of an anti-Human Epidermal growth factor receptor 2 (HER2) monoclonal antibody in combination with CD11b +/Gr-1 + myeloid cells depletion using a recombinant peptibody in 4 T1-HER2 tumor model. Int Immunopharmacol 2023; 121:110463. [PMID: 37327513 DOI: 10.1016/j.intimp.2023.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Clinical efficacy of Human Epidermal growth factor Receptor 2 (HER2) targeted strategies is limited due to impaired anti-tumor responses negatively regulated by immunosuppressive cells. We thus, investigated the inhibitory effects of an anti-HER2 monoclonal antibody (1 T0 mAb) in combination with CD11b+/Gr-1+ myeloid cells depletion in 4 T1-HER2 tumor model. METHODS BALB/c mice were challenged with human HER2-expressing 4 T1 murine breast cancer cell line. A week post tumor challenge, each mouse received 50 µg of a myeloid cells specific peptibody every other day, or 10 mg/kg of 1 T0 mAb two times a week, and their combination for two weeks. The treatments effect on tumor growth was measured by calculating tumor size. Also, the frequencies of CD11b+/Gr-1+ cells and T lymphocytes were measured by flow cytometry. RESULTS Peptibody treated mice indicated tumor regression and 40 % of the mice eradicated their primary tumors. The peptibody was capable to deplete notably splenic CD11b+/Gr-1+ cells as well as intratumoral CD11b+/Gr-1+ cells (P < 0.0001) and led to an increased number of tumor infiltrating CD8+ T cells (3.3 folds) and also that of resident tumor draining lymph nodes (TDLNs) (3 folds). Combination of peptibody and 1 T0 mAb resulted in enhanced expansion of tumor infiltrating CD4 + and CD8+ T cells which was associated with tumor eradication in 60 % of the mice. CONCLUSIONS Peptibody is able to deplete CD11b+/Gr-1+ cells and increase anti-tumoral effects of the 1 T0 mAb in tumor eradication. Thus, this myeloid population have critical roles in development of tumors and their depletion is associated with induction of anti-tumoral responses.
Collapse
Affiliation(s)
| | - Vahid Khaki-Bakhtiarvand
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164 Stockholm, Sweden
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Klinman DM, Goguet E, Tross D. TLR Agonist Therapy of Metastatic Breast Cancer in Mice. J Immunother 2023; 46:170-177. [PMID: 37103328 PMCID: PMC10168108 DOI: 10.1097/cji.0000000000000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/28/2023]
Abstract
Toll-like receptor (TLR) 7/8 and 9 agonists stimulate an innate immune response that supports the development of tumor-specific immunity. Previous studies showed that either agonist individually could cure mice of small tumors and that when used in combination, they could prevent the progression of larger tumors (>300 mm 3 ). To examine whether these agents combined could control metastatic disease, syngeneic mice were challenged with the highly aggressive 66cl4 triple-negative breast tumor cell line. Treatment was not initiated until pulmonary metastases were established, as verified by bioluminescent imaging of luciferase-tagged tumor cells. Results show that combined therapy with TLR7/8 and TLR9 agonists delivered to both primary and metastatic tumor sites significantly reduced tumor burden and extended survival. The inclusion of cyclophosphamide and anti-PD-L1 resulted in optimal tumor control, characterized by a 5-fold increase in the average duration of survival.
Collapse
|
19
|
Carlson E, Savardekar H, Hu X, Lapurga G, Johnson C, Sun SH, Carson WE, Peterson BR. Fluorescent Detection of Peroxynitrite Produced by Myeloid-Derived Suppressor Cells in Cancer and Inhibition by Dasatinib. ACS Pharmacol Transl Sci 2023; 6:738-747. [PMID: 37200815 PMCID: PMC10186365 DOI: 10.1021/acsptsci.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that expand dramatically in many cancer patients. This expansion contributes to immunosuppression in cancer and reduces the efficacy of immune-based cancer therapies. One mechanism of immunosuppression mediated by MDSCs involves production of the reactive nitrogen species peroxynitrite (PNT), where this strong oxidant inactivates immune effector cells through destructive nitration of tyrosine residues in immune signal transduction pathways. As an alternative to analysis of nitrotyrosines indirectly generated by PNT, we used an endoplasmic reticulum (ER)-targeted fluorescent sensor termed PS3 that allows direct detection of PNT produced by MDSCs. When the MDSC-like cell line MSC2 and primary MDSCs from mice and humans were treated with PS3 and antibody-opsonized TentaGel microspheres, phagocytosis of these beads led to production of PNT and generation of a highly fluorescent product. Using this method, we show that splenocytes from a EMT6 mouse model of cancer, but not normal control mice, produce high levels of PNT due to elevated numbers of granulocytic (PMN) MDSCs. Similarly, peripheral blood mononuclear cells (PBMCs) isolated from blood of human melanoma patients produced substantially higher levels of PNT than healthy human volunteers, coincident with higher peripheral MDSC levels. The kinase inhibitor dasatinib was found to potently block the production of PNT both by inhibiting phagocytosis in vitro and by reducing the number of granulocytic MDSCs in mice in vivo, providing a chemical tool to modulate the production of this reactive nitrogen species (RNS) in the tumor microenvironment.
Collapse
Affiliation(s)
- Erick
J. Carlson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Himanshu Savardekar
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojun Hu
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabriella Lapurga
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Johnson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - William E. Carson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blake R. Peterson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
20
|
Vasiyani H, Wadhwa B, Singh R. Regulation of cGAS-STING signalling in cancer: Approach for combination therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188896. [PMID: 37088059 DOI: 10.1016/j.bbcan.2023.188896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Innate immunity plays an important role not only during infection but also homeostatic role during stress conditions. Activation of the immune system including innate immune response plays a critical role in the initiation and progression of tumorigenesis. The innate immune sensor recognizes pathogen-associated molecular patterns (PAMPs) and activates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) (cGAS-STING) and induces type-1 immune response during viral and bacterial infection. cGAS-STING is regulated differently in conditions like cellular senescence and DNA damage in normal and tumor cells and is implicated in the progression of tumors from different origins. cGAS binds to cytoplasmic dsDNA and synthesize cyclic GMP-AMP (2'3'-cGAMP), which selectively activates STING and downstream IFN and NF-κB activation. We here reviewed the cGAS-STING signalling pathway and its cross-talk with other pathways to modulate tumorigenesis. Further, the review also focused on emerging studies that targeted the cGAS-STING pathway for developing targeted therapeutics and combinatorial regimens for cancer of different origins.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Bhumika Wadhwa
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Rajesh Singh
- Department of Biochemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
21
|
Mehdizadeh R, Shariatpanahi SP, Goliaei B, Rüegg C. Targeting myeloid-derived suppressor cells in combination with tumor cell vaccination predicts anti-tumor immunity and breast cancer dormancy: an in silico experiment. Sci Rep 2023; 13:5875. [PMID: 37041172 PMCID: PMC10090155 DOI: 10.1038/s41598-023-32554-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
Among the different breast cancer subsets, triple-negative breast cancer (TNBC) has the worst prognosis and limited options for targeted therapies. Immunotherapies are emerging as novel treatment opportunities for TNBC. However, the surging immune response elicited by immunotherapies to eradicate cancer cells can select resistant cancer cells, which may result in immune escape and tumor evolution and progression. Alternatively, maintaining the equilibrium phase of the immune response may be advantageous for keeping a long-term immune response in the presence of a small-size residual tumor. Myeloid-derived suppressor cells (MDSCs) are activated, expanded, and recruited to the tumor microenvironment by tumor-derived signals and can shape a pro-tumorigenic micro-environment by suppressing the innate and adaptive anti-tumor immune responses. We recently proposed a model describing immune-mediated breast cancer dormancy instigated by a vaccine consisting of dormant, immunogenic breast cancer cells derived from the murine 4T1 TNBC-like cell line. Strikingly, these 4T1-derived dormant cells recruited fewer MDSCs compared to aggressive 4T1 cells. Recent experimental studies demonstrated that inactivating MDSCs has a profound impact on reconstituting immune surveillance against the tumor. Here, we developed a deterministic mathematical model for simulating MDSCs depletion from mice bearing aggressive 4T1 tumors resulting in immunomodulation. Our computational simulations indicate that a vaccination strategy with a small number of tumor cells in combination with MDSC depletion can elicit an effective immune response suppressing the growth of a subsequent challenge with aggressive tumor cells, resulting in sustained tumor dormancy. The results predict a novel therapeutic opportunity based on the induction of effective anti-tumor immunity and tumor dormancy.
Collapse
Affiliation(s)
- Reza Mehdizadeh
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
22
|
Li Q, Mei A, Qian H, Min X, Yang H, Zhong J, Li C, Xu H, Chen J. The role of myeloid-derived immunosuppressive cells in cardiovascular disease. Int Immunopharmacol 2023; 117:109955. [PMID: 36878043 DOI: 10.1016/j.intimp.2023.109955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population found in the bone marrow, peripheral blood, and tumor tissue. Their role is mainly to inhibit the monitoring function of innate and adaptive immune cells, which leads to the escape of tumor cells and promotes tumor development and metastasis. Moreover, recent studies have found that MDSCs are therapeutic in several autoimmune disorders due to their strong immunosuppressive ability. Additionally, studies have found that MDSCs have an important role in the formation and progression of other cardiovascular diseases, such as atherosclerosis, acute coronary syndrome, and hypertension. In this review, we will discuss the role of MDSCs in the pathogenesis and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qingmei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Aihua Mei
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlei Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
23
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
24
|
Redmond WL, Kasiewicz MJ, Akporiaye ET. Enhancement of anti-tumor efficacy of immune checkpoint blockade by alpha-TEA. Front Immunol 2023; 14:1057702. [PMID: 36911733 PMCID: PMC9992800 DOI: 10.3389/fimmu.2023.1057702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Cancer immunotherapy such as anti-PD-1/anti-PD-L1 immune checkpoint blockade (ICB) can provide significant clinical benefit in patients with advanced malignancies. However, most patients eventually develop progressive disease, thus necessitating additional therapeutic options. We have developed a novel agent, a-TEA-LS, that selectively induces tumor cell death while sparing healthy tissues, leading to increased activation of tumor-reactive T cells and tumor regression. In the current study, we explored the impact of combined a-TEA-LS + ICB in orthotopic and spontaneously arising murine models of mammary carcinoma. We found that a-TEA-LS + ICB led to increased production of pro-inflammatory cytokines that were associated with a reduction in tumor growth and prolonged survival. Together, these data demonstrate the potential utility of a-TEA-LS + ICB for the treatment of breast cancer and provide the rationale for clinical translation of this novel approach.
Collapse
Affiliation(s)
- William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | - Melissa J Kasiewicz
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, United States
| | | |
Collapse
|
25
|
Niang DGM, Gaba FM, Diouf A, Hendricks J, Diallo RN, Niang MDS, Mbengue B, Dieye A. Galectin-3 as a biomarker in breast neoplasms: Mechanisms and applications in patient care. J Leukoc Biol 2022; 112:1041-1052. [PMID: 36125083 DOI: 10.1002/jlb.5mr0822-673r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Galectin-3 is a member of the lectin family encoded by the LGALS3 gene on chromosome 14. It is secreted by a wide range of immune cells and mammary tumor cells. Through its activity on the tumor microenvironment, in particular on tumor-infiltrating leukocytes, galectin-3 improves the proliferation, survival, and colonizing ability of mammary neoplastic cells. Consequently, galectin-3 expression in the tumor microenvironment could worsen therapeutic outcomes of breast neoplasms and become a biomarker and a therapeutic target in combined immunotherapy in breast neoplasms. There is a limited amount of information that is available on galectin-3 in breast cancer in Africa. In this review, we analyze how galectin-3 influences the tumor microenvironment and its potential as a biomarker and therapeutic target in breast neoplasms. We aim to emphasize the significance of investigating galectin-3 in breast neoplasms in Africa based on the results of studies conducted elsewhere.
Collapse
Affiliation(s)
- Doudou Georges Massar Niang
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Folly Mawulolo Gaba
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Adame Diouf
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Jacobus Hendricks
- Department of Physiology and Environmental Health, University of Limpopo, Sovenga, Limpopo province, South Africa
| | - Rokhaya Ndiaye Diallo
- Division of Human Genetics, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Maguette Deme Sylla Niang
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Babacar Mbengue
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| | - Alioune Dieye
- Division of Immunology, School of Medicine, Pharmacy and Dentistry, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|
26
|
Mohd Idris RA, Mussa A, Ahmad S, Al-Hatamleh MAI, Hassan R, Tengku Din TADAA, Wan Abdul Rahman WF, Lazim NM, Boer JC, Plebanski M, Mohamud R. The Effects of Tamoxifen on Tolerogenic Cells in Cancer. BIOLOGY 2022; 11:1225. [PMID: 36009853 PMCID: PMC9405160 DOI: 10.3390/biology11081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Tamoxifen (TAM) is the most prescribed selective estrogen receptor modulator (SERM) to treat hormone-receptor-positive breast cancer patients and has been used for more than 20 years. Its role as a hormone therapy is well established; however, the potential role in modulating tolerogenic cells needs to be better clarified. Infiltrating tumor-microenvironment-regulatory T cells (TME-Tregs) are important as they serve a suppressive function through the transcription factor Forkhead box P3 (Foxp3). Abundant studies have suggested that Foxp3 regulates the expression of several genes (CTLA-4, PD-1, LAG-3, TIM-3, TIGIT, TNFR2) involved in carcinogenesis to utilize its tumor suppressor function through knockout models. TAM is indirectly concomitant via the Cre/loxP system by allowing nuclear translocation of the fusion protein, excision of the floxed STOP cassette and heritable expression of encoding fluorescent protein in a cohort of cells that express Foxp3. Moreover, TAM administration in breast cancer treatment has shown its effects directly through MDSCs by the enrichment of its leukocyte populations, such as NK and NKT cells, while it impairs the differentiation and activation of DCs. However, the fundamental mechanisms of the reduction of this pool by TAM are unknown. Here, we review the vital effects of TAM on Tregs for a precise mechanistic understanding of cancer immunotherapies.
Collapse
Affiliation(s)
- Ros Akmal Mohd Idris
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Haematology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Suhana Ahmad
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohammad A. I. Al-Hatamleh
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rosline Hassan
- Haematology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Wan Faiziah Wan Abdul Rahman
- Pathology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Norhafiza Mat Lazim
- Otorhinolaryngology Department-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Rohimah Mohamud
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
27
|
Liu T, Gonzalez De Los Santos F, Rinke AE, Fang C, Flaherty KR, Phan SH. B7H3-dependent myeloid-derived suppressor cell recruitment and activation in pulmonary fibrosis. Front Immunol 2022; 13:901349. [PMID: 36045668 PMCID: PMC9420866 DOI: 10.3389/fimmu.2022.901349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective curative therapy. Recent evidence shows increased circulating myeloid-derived suppressor cells (MDSCs) in cancer, inflammation, and fibrosis, with some of these cells expressing B7H3. We sought to investigate the role of MDSCs in IPF and its potential mediation via B7H3. Here we prospectively collected peripheral blood samples from IPF patients to analyze for circulating MDSCs and B7H3 expression to assess their clinical significance and potential impact on co-cultured lung fibroblasts and T-cell activation. In parallel, we assess MDSC recruitment and potential B7H3 dependence in a mouse model of pulmonary fibrosis. Expansion of MDSCs in IPF patients correlated with disease severity. Co-culture of soluble B7H3 (sB7H3)-treated mouse monocytic MDSCs (M-MDSCs), but not granulocytic MDSCs (G-MDSCs), activated lung fibroblasts and myofibroblast differentiation. Additionally, sB7H3 significantly enhanced MDSC suppression of T-cell proliferation. Activated M-MDSCs displayed elevated TGFβ and Arg1 expression relative to that in G-MDSCs. Treatment with anti-B7H3 antibodies inhibited bone marrow-derived MDSC recruitment into the bleomycin-injured lung, accompanied by reduced expression of inflammation and fibrosis markers. Selective telomerase reverse transcriptase (TERT) deficiency in myeloid cells also diminished MDSC recruitment associated with the reduced plasma level of sB7H3, lung recruitment of c-Kit+ hematopoietic progenitors, myofibroblast differentiation, and fibrosis. Lung single-cell RNA sequencing (scRNA-seq) revealed fibroblasts as a predominant potential source of sB7H3, and indeed the conditioned medium from activated mouse lung fibroblasts had a chemotactic effect on bone marrow (BM)-MDSC, which was abolished by B7H3 blocking antibody. Thus, in addition to their immunosuppressive activity, TERT and B7H3-dependent MDSC expansion/recruitment from BM could play a paracrine role to activate myofibroblast differentiation during pulmonary fibrosis with potential significance for disease progression mediated by sB7H3.
Collapse
Affiliation(s)
- Tianju Liu
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Sem H. Phan, ; Tianju Liu,
| | | | - Andrew E. Rinke
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Chuling Fang
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kevin R. Flaherty
- Division of Pulmonary/Critical Care Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sem H. Phan
- Departments of Pathology, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Sem H. Phan, ; Tianju Liu,
| |
Collapse
|
28
|
Gianni C, Palleschi M, Schepisi G, Casadei C, Bleve S, Merloni F, Sirico M, Sarti S, Cecconetto L, Di Menna G, Schettini F, De Giorgi U. Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Front Oncol 2022; 12:882896. [PMID: 36003772 PMCID: PMC9393759 DOI: 10.3389/fonc.2022.882896] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
Adaptive and innate immune cells play a crucial role as regulators of cancer development. Inflammatory cells in blood flow seem to be involved in pro-tumor activities and contribute to breast cancer progression. Circulating lymphocyte ratios such as the platelet-lymphocytes ratio (PLR), the monocyte-lymphocyte ratio (MLR) and the neutrophil-lymphocyte ratio (NLR) are new reproducible, routinely feasible and cheap biomarkers of immune response. These indexes have been correlated to prognosis in many solid tumors and there is growing evidence on their clinical applicability as independent prognostic markers also for breast cancer. In this review we give an overview of the possible value of lymphocytic indexes in advanced breast cancer prognosis and prediction of outcome. Furthermore, targeting the immune system appear to be a promising therapeutic strategy for breast cancer, especially macrophage-targeted therapies. Herein we present an overview of the ongoing clinical trials testing systemic inflammatory cells as therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- *Correspondence: Caterina Gianni,
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giuseppe Schepisi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Chiara Casadei
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Sara Bleve
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Francesco Schettini
- Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors Group, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
29
|
Ravera F, Borea R, Cirmena G, Dameri M, Ferrando L, Gallo M, Casini C, Fallani N, Stabile M, Barbero V, Murialdo R, Tixi L, Cappuccio M, Cuboni A, Sivieri I, Fornarini G, De Maria A, Ballestrero A, Zoppoli G. Incidence and immunomic features of apyretic COVID-19 in patients affected by solid tumors: a prospective cohort study. J Transl Med 2022; 20:230. [PMID: 35568887 PMCID: PMC9107211 DOI: 10.1186/s12967-022-03429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND RATIONALE Little is known about SARS-CoV-2 seroconversion in asymptomatic patients affected by solid cancer, and whether it is associated with specific transcriptomics changes in peripheral blood mononuclear cells (PBMC). METHODS Patients affected by solid cancer treated in a top comprehensive cancer center in Italy during the first COVID-19 pandemic wave, and negative for COVID-19-symptoms since the first detection of COVID-19 in Italy, were prospectively evaluated by SARS-CoV-2 serology in the period between April 14th and June 23rd 2020. Follow-up serologies were performed, every 21-28 days, until August 23rd 2020. All SARS-CoV-2 IgM + patients underwent confirmatory nasopharyngeal swab (NPS). PBMCs from a subset of SARS-CoV-2 IgM + patients were collected at baseline, at 2 months, and at 7 months for transcriptome sequencing. RESULTS SARS-CoV-2 serology was performed on 446 of the 466 recruited patients. A total of 14 patients (3.14%) tested positive for at least one SARS-CoV-2 immunoglobulin in the period between April 14th and August 23rd 2020. Incidence of SARS-CoV-2 IgM decreased from 1.48% in the first month of the accrual to 0% in the last month. Viral RNA could not be detected in any of the NPS. PBMC serial transcriptomic analysis showed progressive downregulation of interleukin 6 upregulated signatures, chemokine-mediated signaling and chemokine-chemokine receptor KEGG pathways. B- and T-cell receptor pathways (p-values = 0.0002 and 0.017 respectively) were progressively upregulated. CONCLUSIONS SARS-CoV-2 seroconversion rate in asymptomatic patients affected by solid cancer is consistent with that of asymptomatic COVID-19 assessed in the general population through NPS at the peak of the first wave. Transcriptomic features over time in IgM + asymptomatic cases are suggestive of previous viral exposure.
Collapse
Affiliation(s)
- Francesco Ravera
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy
| | - Roberto Borea
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Martina Dameri
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy
| | | | - Maurizio Gallo
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy
| | - Cecilia Casini
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy
| | - Neri Fallani
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy
| | - Mario Stabile
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy
| | | | | | - Lucia Tixi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Andrea Cuboni
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Sivieri
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy
| | | | - Andrea De Maria
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), Università Degli Studi Di Genova, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine (DiMI), Università Degli Studi Di Genova, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
30
|
Calvillo-Rodríguez KM, Mendoza-Reveles R, Gómez-Morales L, Uscanga-Palomeque AC, Karoyan P, Martínez-Torres AC, Rodríguez-Padilla C. PKHB1, a thrombospondin-1 peptide mimic, induces anti-tumor effect through immunogenic cell death induction in breast cancer cells. Oncoimmunology 2022; 11:2054305. [PMID: 35402082 PMCID: PMC8986196 DOI: 10.1080/2162402x.2022.2054305] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death in women worldwide. Recent advances in the field of immuno-oncology demonstrate the beneficial immunostimulatory effects of the induction of immunogenic cell death (ICD). ICD increases tumor infiltration by T cells and is associated with improved prognosis in patients affected by triple negative breast cancer (TNBC) with residual disease. The aim of this study was to evaluate the antitumoral effect of PKHB1, a thrombospondin-1 peptide mimic, against breast cancer cells, and the immunogenicity of the cell death induced by PKHB1 in vitro, ex vivo, and in vivo. Our results showed that PKHB1 induces mitochondrial alterations, ROS production, intracellular Ca2+ accumulation, as well calcium-dependent cell death in breast cancer cells, including triple negative subtypes. PKHB1 has antitumor effect in vivo leading to a reduction of tumor volume and weight and promotes intratumoral CD8 + T cell infiltration. Furthermore, in vitro, PKHB1 induces calreticulin (CALR), HSP70, and HSP90 exposure and release of ATP and HMGB1. Additionally, the killed cells obtained after treatment with PKHB1 (PKHB1-KC) induced dendritic cell maturation, and T cell antitumor responses, ex vivo. Moreover, PKHB1-KC in vivo were able to induce an antitumor response against breast cancer cells in a prophylactic application, whereas in a therapeutic setting, PKHB1-KC induced tumor regression; both applications induced a long-term antitumor response. Altogether our data shows that PKHB1, a thrombospondin-1 peptide mimic, has in vivo antitumor effect and induce immune system activation through immunogenic cell death induction in breast cancer cells.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, DRUG Lab, Site OncoDesign, 25-27 Avenue du Québec, 91140 Les Ulis, France
| | - Rodolfo Mendoza-Reveles
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Luis Gómez-Morales
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, DRUG Lab, Site OncoDesign, 25-27 Avenue du Québec, 91140 Les Ulis, France
- Kaybiotix, GmbH, Zugerstrasse 32, 6340 Baar, Switzerland
| | | | - Philippe Karoyan
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, DRUG Lab, Site OncoDesign, 25-27 Avenue du Québec, 91140 Les Ulis, France
- Kaybiotix, GmbH, Zugerstrasse 32, 6340 Baar, Switzerland
- Kayvisa, AG, Industriestrasse, 44, 6300 Zug, Switzerland
- χ-Pharma, 25 Avenue du Québec, 91140 Les Ulis, France
| | - Ana Carolina Martínez-Torres
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Cristina Rodríguez-Padilla
- Facultad de Ciencias Biologicas, Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
- LONGEVEDEN SA de CV, Monterrey, Mexico
| |
Collapse
|
31
|
Deng H, Muthupalani S, Erdman S, Liu H, Niu Z, Wang TC, Fox JG. Translocation of Helicobacter hepaticus synergizes with myeloid-derived suppressor cells and contributes to breast carcinogenesis. Oncoimmunology 2022; 11:2057399. [PMID: 35371619 PMCID: PMC8966989 DOI: 10.1080/2162402x.2022.2057399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microbial dysbiosis plays an important role in the development of intestinal diseases. Recent studies suggest a link between intestinal bacteria and mammary cancer. Here, we report that female ApcMin/+ mice infected with Helicobacter hepaticus exhibited an increased mammary and small/large intestine tumor burden compared with uninfected littermates. H. hepaticus DNA was detected in small/large intestine, mammary tumors, and adjacent lymph nodes, suggesting a migration pathway. CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) infiltrated and expressed high levels of Wnts, likely enhancing tumorigenesis through activation of Wnt/β-catenin pathway. Our previous studies indicated that histidine decarboxylase (Hdc) marks a population of myeloid-biased hematopoietic stem cells and granulocytic MDSCs. Cytokines/chemokines secreted by IL-17-expressing mast cells and tumor tissues promoted Hdc+ MDSCs expansion and trafficking toward mammary tumors. Adoptive transfer of MDSCs isolated from H. hepaticus-infected mice increased MDSCs frequencies in peripheral blood, mesenteric lymph nodes, mammary gland, and lymph nodes in recipient ApcMin/+ mice. The adoptive transfer of H. hepaticus primed MDSCs also increased the size and number of mammary tumors. Our results demonstrate that H. hepaticus can translocate from the intestine to mammary tissues to promote mammary tumorigenesis with MDSCs. Targeting bacteria and MDSCs may be useful for the prevention and therapy of extraintestinal cancers. Abbreviations: Helicobacter hepaticus, Hh; myeloid-derived suppressor cell, MDSC; histidine decarboxylase, Hdc; Breast cancer, BC; T regulatory, TR; inflammatory bowel disease, IBD; fluorescence in situ hybridization, FISH; myeloid-biased hematopoietic stem cells, MB-HSCs; granulocytic MDSCs, PMN-MDSCs; Lipopolysaccharide, LPS; Toll-like receptors, TLRs; Mast cells, MCs; Granulocyte-macrophage colony-stimulating factor, GM-CSF; epithelial–mesenchymal transition, EMT; Intestinal epithelial cells, IECs.
Collapse
Affiliation(s)
- Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | | | - Susan Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Haibo Liu
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhengchuan Niu
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
- Department of General Surgery, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
32
|
Duarte-Sanmiguel S, Panic A, Dodd DJ, Salazar-Puerta A, Moore JT, Lawrence WR, Nairon K, Francis C, Zachariah N, McCoy W, Turaga R, Skardal A, Carson WE, Higuita-Castro N, Gallego-Perez D. In Situ Deployment of Engineered Extracellular Vesicles into the Tumor Niche via Myeloid-Derived Suppressor Cells. Adv Healthc Mater 2022; 11:e2101619. [PMID: 34662497 PMCID: PMC8891033 DOI: 10.1002/adhm.202101619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/26/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) have emerged as a promising carrier system for the delivery of therapeutic payloads in multiple disease models, including cancer. However, effective targeting of EVs to cancerous tissue remains a challenge. Here, it is shown that nonviral transfection of myeloid-derived suppressor cells (MDSCs) can be leveraged to drive targeted release of engineered EVs that can modulate transfer and overexpression of therapeutic anticancer genes in tumor cells and tissue. MDSCs are immature immune cells that exhibit enhanced tropism toward tumor tissue and play a role in modulating tumor progression. Current MDSC research has been mostly focused on mitigating immunosuppression in the tumor niche; however, the tumor homing abilities of these cells present untapped potential to deliver EV therapeutics directly to cancerous tissue. In vivo and ex vivo studies with murine models of breast cancer show that nonviral transfection of MDSCs does not hinder their ability to home to cancerous tissue. Moreover, transfected MDSCs can release engineered EVs and mediate antitumoral responses via paracrine signaling, including decreased invasion/metastatic activity and increased apoptosis/necrosis. Altogether, these findings indicate that MDSCs can be a powerful tool for the deployment of EV-based therapeutics to tumor tissue.
Collapse
Affiliation(s)
| | - Ana Panic
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Daniel J. Dodd
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210
| | - Ana Salazar-Puerta
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Jordan T. Moore
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - William R. Lawrence
- The Ohio State University, Biomedical Sciences Graduate Program, Columbus, OH 43210
| | - Kylie Nairon
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Carlie Francis
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Natalie Zachariah
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - William McCoy
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Rithvik Turaga
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - Aleksander Skardal
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
| | - William E. Carson
- The Ohio State University, Department of Surgery, Columbus, OH 43210
| | - Natalia Higuita-Castro
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
- The Ohio State University, Department of Surgery, Columbus, OH 43210
- The Ohio State University, Biophysics Program, OH 43210
| | - Daniel Gallego-Perez
- The Ohio State University, Department of Biomedical Engineering, Columbus, OH 43210
- The Ohio State University, Department of Surgery, Columbus, OH 43210
| |
Collapse
|
33
|
Satcher RL, Zhang XHF. Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 2022; 22:85-101. [PMID: 34611349 DOI: 10.1038/s41568-021-00406-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Many cancer types metastasize to bone. This propensity may be a product of genetic traits of the primary tumour in some cancers. Upon arrival, cancer cells establish interactions with various bone-resident cells during the process of colonization. These interactions, to a large degree, dictate cancer cell fates at multiple steps of the metastatic cascade, from single cells to overt metastases. The bone microenvironment may even influence cancer cells to subsequently spread to multiple other organs. Therefore, it is imperative to spatiotemporally delineate the evolving cancer-bone crosstalk during bone colonization. In this Review, we provide a summary of the bone microenvironment and its impact on bone metastasis. On the basis of the microscopic anatomy, we tentatively define a roadmap of the journey of cancer cells through bone relative to various microenvironment components, including the potential of bone to function as a launch pad for secondary metastasis. Finally, we examine common and distinct features of bone metastasis from various cancer types. Our goal is to stimulate future studies leading to the development of a broader scope of potent therapies.
Collapse
Affiliation(s)
- Robert L Satcher
- Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Extracellular Vesicles as Mediators of Therapy Resistance in the Breast Cancer Microenvironment. Biomolecules 2022; 12:biom12010132. [PMID: 35053279 PMCID: PMC8773878 DOI: 10.3390/biom12010132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Resistance to various therapies, including novel immunotherapies, poses a major challenge in the management of breast cancer and is the leading cause of treatment failure. Bidirectional communication between breast cancer cells and the tumour microenvironment is now known to be an important contributor to therapy resistance. Several studies have demonstrated that crosstalk with the tumour microenvironment through extracellular vesicles is an important mechanism employed by cancer cells that leads to drug resistance via changes in protein, lipid and nucleic acid cargoes. Moreover, the cargo content enables extracellular vesicles to be used as effective biomarkers for predicting response to treatments and as potential therapeutic targets. This review summarises the literature to date regarding the role of extracellular vesicles in promoting therapy resistance in breast cancer through communication with the tumour microenvironment.
Collapse
|
35
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
36
|
Perrone M, Talarico G, Chiodoni C, Sangaletti S. Impact of Immune Cell Heterogeneity on HER2+ Breast Cancer Prognosis and Response to Therapy. Cancers (Basel) 2021; 13:6352. [PMID: 34944971 PMCID: PMC8699132 DOI: 10.3390/cancers13246352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease with a high degree of diversity among and within tumors, and in relation to its different tumor microenvironment. Compared to other oncotypes, such as melanoma or lung cancer, breast cancer is considered a "cold" tumor, characterized by low T lymphocyte infiltration and low tumor mutational burden. However, more recent evidence argues against this idea and indicates that, at least for specific molecular breast cancer subtypes, the immune infiltrate may be clinically relevant and heterogeneous, with significant variations in its stromal cell/protein composition across patients and tumor stages. High numbers of tumor-infiltrating T cells are most frequent in HER2-positive and basal-like molecular subtypes and are generally associated with a good prognosis and response to therapies. However, effector immune infiltrates show protective immunity in some cancers but not in others. This could depend on one or more immunosuppressive mechanisms acting alone or in concert. Some of them might include, in addition to immune cells, other tumor microenvironment determinants such as the extracellular matrix composition and stiffness as well as stromal cells, like fibroblasts and adipocytes, that may prevent cytotoxic T cells from infiltrating the tumor microenvironment or may inactivate their antitumor functions. This review will summarize the state of the different immune tumor microenvironment determinants affecting HER2+ breast tumor progression, their response to treatment, and how they are modified by different therapeutic approaches. Potential targets within the immune tumor microenvironment will also be discussed.
Collapse
|
37
|
Pullikuth AK, Routh ED, Zimmerman KD, Chifman J, Chou JW, Soike MH, Jin G, Su J, Song Q, Black MA, Print C, Bedognetti D, Howard-McNatt M, O’Neill SS, Thomas A, Langefeld CD, Sigalov AB, Lu Y, Miller LD. Bulk and Single-Cell Profiling of Breast Tumors Identifies TREM-1 as a Dominant Immune Suppressive Marker Associated With Poor Outcomes. Front Oncol 2021; 11:734959. [PMID: 34956864 PMCID: PMC8692779 DOI: 10.3389/fonc.2021.734959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundTriggering receptor expressed on myeloid cells (TREM)-1 is a key mediator of innate immunity previously associated with the severity of inflammatory disorders, and more recently, the inferior survival of lung and liver cancer patients. Here, we investigated the prognostic impact and immunological correlates of TREM1 expression in breast tumors.MethodsBreast tumor microarray and RNAseq expression profiles (n=4,364 tumors) were analyzed for associations between gene expression, tumor immune subtypes, distant metastasis-free survival (DMFS) and clinical response to neoadjuvant chemotherapy (NAC). Single-cell (sc)RNAseq was performed using the 10X Genomics platform. Statistical associations were assessed by logistic regression, Cox regression, Kaplan-Meier analysis, Spearman correlation, Student’s t-test and Chi-square test.ResultsIn pre-treatment biopsies, TREM1 and known TREM-1 inducible cytokines (IL1B, IL8) were discovered by a statistical ranking procedure as top genes for which high expression was associated with reduced response to NAC, but only in the context of immunologically “hot” tumors otherwise associated with a high NAC response rate. In surgical specimens, TREM1 expression varied among tumor molecular subtypes, with highest expression in the more aggressive subtypes (Basal-like, HER2-E). High TREM1 significantly and reproducibly associated with inferior distant metastasis-free survival (DMFS), independent of conventional prognostic markers. Notably, the association between high TREM1 and inferior DMFS was most prominent in the subset of immunogenic tumors that exhibited the immunologically hot phenotype and otherwise associated with superior DMFS. Further observations from bulk and single-cell RNAseq analyses indicated that TREM1 expression was significantly enriched in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and M2-like macrophages, and correlated with downstream transcriptional targets of TREM-1 (IL8, IL-1B, IL6, MCP-1, SPP1, IL1RN, INHBA) which have been previously associated with pro-tumorigenic and immunosuppressive functions.ConclusionsTogether, these findings indicate that increased TREM1 expression is prognostic of inferior breast cancer outcomes and may contribute to myeloid-mediated breast cancer progression and immune suppression.
Collapse
Affiliation(s)
- Ashok K. Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Eric D. Routh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Julia Chifman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Mathematics and Statistics, American University, Washington, DC, United States
| | - Jeff W. Chou
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Michael H. Soike
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Michael A. Black
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Cristin Print
- Department of Molecular Medicine and Pathology and Maurice Wilkins Institute, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Davide Bedognetti
- Cancer Program, Sidra Medicine, Doha, Qatar & Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Marissa Howard-McNatt
- Surgical Oncology Service, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Stacey S. O’Neill
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Alexandra Thomas
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Section of Hematology and Oncology, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | | | - Yong Lu
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- *Correspondence: Lance D. Miller,
| |
Collapse
|
38
|
Nalawade SA, Shafer P, Bajgain P, McKenna MK, Ali A, Kelly L, Joubert J, Gottschalk S, Watanabe N, Leen A, Parihar R, Vera Valdes JF, Hoyos V. Selectively targeting myeloid-derived suppressor cells through TRAIL receptor 2 to enhance the efficacy of CAR T cell therapy for treatment of breast cancer. J Immunother Cancer 2021; 9:jitc-2021-003237. [PMID: 34815355 PMCID: PMC8611441 DOI: 10.1136/jitc-2021-003237] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Successful targeting of solid tumors such as breast cancer (BC) using chimeric antigen receptor (CAR) T cells has proven challenging, largely attributed to the immunosuppressive tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs) inhibit CAR T cell function and persistence within the breast TME. To overcome this challenge, we have developed CAR T cells targeting tumor-associated mucin 1 (MUC1) with a novel chimeric costimulatory receptor that targets tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TR2) expressed on MDSCs. METHODS The function of the TR2.41BB costimulatory receptor was assessed by exposing non-transduced (NT) and TR2.41BB transduced T cells to recombinant TR2, after which nuclear translocation of NFκB was measured by ELISA and western blot. The cytolytic activity of CAR.MUC1/TR2.41BB T cells was measured in a 5-hour cytotoxicity assay using MUC1+ tumor cells as targets in the presence or absence of MDSCs. In vivo antitumor activity was assessed using MDSC-enriched tumor-bearing mice treated with CAR T cells with or without TR2.41BB. RESULTS Nuclear translocation of NFκB in response to recombinant TR2 was detected only in TR2.41BB T cells. The presence of MDSCs diminished the cytotoxic potential of CAR.MUC1 T cells against MUC1+ BC cell lines by 25%. However, TR2.41BB expression on CAR.MUC1 T cells induced MDSC apoptosis, thereby restoring the cytotoxic activity of CAR.MUC1 T cells against MUC1+ BC lines. The presence of MDSCs resulted in an approximately twofold increase in tumor growth due to enhanced angiogenesis and fibroblast accumulation compared with mice with tumor alone. Treatment of these MDSC-enriched tumors with CAR.MUC1.TR2.41BB T cells led to superior tumor cell killing and significant reduction in tumor growth (24.54±8.55 mm3) compared with CAR.MUC1 (469.79±81.46 mm3) or TR2.41BB (434.86±64.25 mm3) T cells alone. CAR.MUC1.TR2.41BB T cells also demonstrated improved T cell proliferation and persistence at the tumor site, thereby preventing metastases. We observed similar results using CAR.HER2.TR2.41BB T cells in a HER2+ BC model. CONCLUSIONS Our findings demonstrate that CAR T cells that coexpress the TR2.4-1BB receptor exhibit superior antitumor potential against breast tumors containing immunosuppressive and tumor promoting MDSCs, resulting in TME remodeling and improved T cell proliferation at the tumor site.
Collapse
Affiliation(s)
- Saisha A Nalawade
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Paul Shafer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Pradip Bajgain
- Mouse Cancer Genetics Program, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Mary K McKenna
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Arushana Ali
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Lauren Kelly
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Jarrett Joubert
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Stephen Gottschalk
- Bone Marrow Transplant Department, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Ann Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Robin Parihar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | | | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
39
|
Sayyadioskoie SR, Schwacha MG. Myeloid-Derived Suppressor Cells (MDSCs) and the Immunoinflammatory Response to Injury (Mini Review). Shock 2021; 56:658-666. [PMID: 33882515 DOI: 10.1097/shk.0000000000001795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of immature myeloid cells hallmarked by their potent immunosuppressive function in a vast array of pathologic conditions. MDSCs have recently been shown to exhibit marked expansion in acute inflammatory states including traumatic injury, burn, and sepsis. Although MDSCs have been well characterized in cancer, there are significant gaps in our knowledge of their functionality in trauma and sepsis, and their clinical significance remains unclear. It is suggested that MDSCs serve an important role in quelling profound inflammatory responses in the acute setting; however, MDSC accumulation may also predispose patients to developing persistent immune dysregulation with increased risk for nosocomial infections, sepsis, and multiorgan failure. Whether MDSCs may serve as the target for novel therapeutics or an important biomarker in trauma and sepsis is yet to be determined. In this review, we will discuss the current understanding of MDSCs within the context of specific traumatic injury types and sepsis. To improve delineation of their functional role, we propose a systemic approach to MDSC analysis including phenotypic standardization, longitudinal analysis, and expansion of clinical research.
Collapse
Affiliation(s)
| | - Martin G Schwacha
- Department of Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
40
|
Hanna A, Balko JM. Breast cancer resistance mechanisms: challenges to immunotherapy. Breast Cancer Res Treat 2021; 190:5-17. [PMID: 34322780 PMCID: PMC8560575 DOI: 10.1007/s10549-021-06337-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/18/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE The clinical implementation of immunotherapy has profoundly transformed cancer treatment. Targeting the immune system to mount anti-tumor responses can elicit a systemically durable response. Employing immune checkpoint blockade (ICB) has suppressed tumor growth and vastly improved patient overall and progression-free survival in several cancer types, most notably melanoma and non-small cell lung carcinoma. Despite widescale clinical success, ICB response is heterogeneously efficacious across tumor types. Many cancers, including breast cancer, are frequently refractory to ICB. In this review, we will discuss the challenges facing immunotherapy success and address the underlying mechanisms responsible for primary and acquired breast cancer resistance to immunotherapy. FINDINGS Even in initially ICB-responsive tumors, many acquire resistance due to tumor-specific alterations, loss of tumor-specific antigens, and extrinsic mechanisms that reshape the immune landscape within the tumor microenvironment (TME). The tumor immune interaction circumvents the benefits of immunotherapy; tumors rewire the tumor-suppressive functions of activated immune cells within their stroma to propagate tumor growth and progression. CONCLUSIONS The breast cancer immune TME is complex and the mechanisms driving resistance to ICB are multifaceted. Continued study in both preclinical models and clinical trials should help elucidate these mechanisms so they can be targeted to benefit more breast cancer patients.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin M Balko
- Department of Medicine, Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
41
|
The effect of leg ischemia/reperfusion injury on the liver in an experimental breast cancer model. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.1003837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Torres ETR, Emens LA. Emerging combination immunotherapy strategies for breast cancer: dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies. Breast Cancer Res Treat 2021; 191:291-302. [PMID: 34716871 DOI: 10.1007/s10549-021-06423-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer has historically been considered a non-immunogenic tumor. Multiple studies over the last 10-15 years have demonstrated that a small subset of breast cancers is immune-activated, with PD-L1 expression and/or TILs in the tumor microenvironment. The PD-1 inhibitor pembrolizumab in combination with chemotherapy is now approved by the US FDA for the first-line treatment of metastatic PD-L1 + triple negative breast cancer, and the PD-L1 inhibitor atezolizumab has also demonstrated clinical activity. The median progression-free survival for pembrolizumab or atezolizumab combined with chemotherapy increased with the addition of immunotherapy by 4.1 months and 2.5 months, respectively. Despite this success, there is major room for improvement. Clinical benefit is modest. Only about 40% of triple negative breast cancers are PD-L1 + , not all PD-L1 + patients with advanced triple negative breast cancer respond, and immunotherapy is not yet approved for advanced PD-L1-negative triple negative breast cancer, HER2 + breast cancer, or ER + breast cancer. It is likely that redundant pathways of immune suppression are active in breast cancer, or that important pathways of immune activation are silent. In this review, we discuss emerging strategies for targeting multiple pathways of immunoregulation in advanced breast cancer with dual immune checkpoint inhibition, bispecific antibodies, and novel antibody drug conjugates. We also discuss the potential of nanotechnology to improve the delivery of immunotherapeutics to the breast tumor microenvironment to enhance their antitumor activity.
Collapse
Affiliation(s)
- Evanthia T Roussos Torres
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Medicine-Oncology, Norris Comprehensive Cancer Center, 1441 Eastlake Ave, Suite 6412, Los Angeles, CA, 90033, USA.
| | - Leisha A Emens
- UPMC Hillman Cancer Center, 5117 Centre Avenue, Room 1.46e, Pittsburgh, PA, 15213, USA. .,Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
43
|
Ta HDK, Wang WJ, Phan NN, An Ton NT, Anuraga G, Ku SC, Wu YF, Wang CY, Lee KH. Potential Therapeutic and Prognostic Values of LSM Family Genes in Breast Cancer. Cancers (Basel) 2021; 13:4902. [PMID: 34638387 PMCID: PMC8508234 DOI: 10.3390/cancers13194902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/26/2022] Open
Abstract
In recent decades, breast cancer (BRCA) has become one of the most common diseases worldwide. Understanding crucial genes and their signaling pathways remain an enormous challenge in evaluating the prognosis and possible therapeutics. The "Like-Smith" (LSM) family is known as protein-coding genes, and its member play pivotal roles in the progression of several malignancies, although their roles in BRCA are less clear. To discover biological processes associated with LSM family genes in BRCA development, high-throughput techniques were applied to clarify expression levels of LSMs in The Cancer Genome Atlas (TCGA)-BRCA dataset, which was integrated with the cBioPortal database. Furthermore, we investigated prognostic values of LSM family genes in BCRA patients using the Kaplan-Meier database. Among genes of this family, LSM4 expression levels were highly associated with poor prognostic outcomes with a hazard ratio of 1.35 (95% confidence interval 1.21-1.51, p for trend = 3.4 × 10-7). MetaCore and GlueGo analyses were also conducted to examine transcript expression signatures of LSM family members and their coexpressed genes, together with their associated signaling pathways, such as "Cell cycle role of APC in cell cycle regulation" and "Immune response IL-15 signaling via MAPK and PI3K cascade" in BRCA. Results showed that LSM family members, specifically LSM4, were significantly correlated with oncogenesis in BRCA patients. In summary, our results suggested that LSM4 could be a prospective prognosticator of BRCA.
Collapse
Affiliation(s)
- Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan;
| | - Nam Nhut Phan
- Institute for Environmental Science, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Nu Thuy An Ton
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam;
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, Indonesia
| | - Su-Chi Ku
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yung-Fu Wu
- National Defense Medical Center, Department of Medical Research, School of Medicine, Tri-Service General Hospital, Taipei 11490, Taiwan;
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kuen-Haur Lee
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (H.D.K.T.); (G.A.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
44
|
Neagu AN, Whitham D, Buonanno E, Jenkins A, Alexa-Stratulat T, Tamba BI, Darie CC. Proteomics and its applications in breast cancer. Am J Cancer Res 2021; 11:4006-4049. [PMID: 34659875 PMCID: PMC8493401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023] Open
Abstract
Breast cancer is an individually unique, multi-faceted and chameleonic disease, an eternal challenge for the new era of high-integrated precision diagnostic and personalized oncomedicine. Besides traditional single-omics fields (such as genomics, epigenomics, transcriptomics and metabolomics) and multi-omics contributions (proteogenomics, proteotranscriptomics or reproductomics), several new "-omics" approaches and exciting proteomics subfields are contributing to basic and advanced understanding of these "multiple diseases termed breast cancer": phenomics/cellomics, connectomics and interactomics, secretomics, matrisomics, exosomics, angiomics, chaperomics and epichaperomics, phosphoproteomics, ubiquitinomics, metalloproteomics, terminomics, degradomics and metadegradomics, adhesomics, stressomics, microbiomics, immunomics, salivaomics, materiomics and other biomics. Throughout the extremely complex neoplastic process, a Breast Cancer Cell Continuum Concept (BCCCC) has been modeled in this review as a spatio-temporal and holistic approach, as long as the breast cancer represents a complex cascade comprising successively integrated populations of heterogeneous tumor and cancer-associated cells, that reflect the carcinoma's progression from a "driving mutation" and formation of the breast primary tumor, toward the distant secondary tumors in different tissues and organs, via circulating tumor cell populations. This BCCCC is widely sustained by a Breast Cancer Proteomic Continuum Concept (BCPCC), where each phenotype of neoplastic and tumor-associated cells is characterized by a changing and adaptive proteomic profile detected in solid and liquid minimal invasive biopsies by complex proteomics approaches. Such a profile is created, beginning with the proteomic landscape of different neoplastic cell populations and cancer-associated cells, followed by subsequent analysis of protein biomarkers involved in epithelial-mesenchymal transition and intravasation, circulating tumor cell proteomics, and, finally, by protein biomarkers that highlight the extravasation and distant metastatic invasion. Proteomics technologies are producing important data in breast cancer diagnostic, prognostic, and predictive biomarkers discovery and validation, are detecting genetic aberrations at the proteome level, describing functional and regulatory pathways and emphasizing specific protein and peptide profiles in human tissues, biological fluids, cell lines and animal models. Also, proteomics can identify different breast cancer subtypes and specific protein and proteoform expression, can assess the efficacy of cancer therapies at cellular and tissular level and can even identify new therapeutic target proteins in clinical studies.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IașiCarol I bvd. No. 22, Iași 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Emma Buonanno
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Avalon Jenkins
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Teodora Alexa-Stratulat
- Department of Medical Oncology-Radiotherapy, “Grigore T. Popa” University of Medicine and PharmacyIndependenței bvd. No. 16-18, Iași 700021, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and PharmacyMihail Kogălniceanu Street No. 9-13, Iași 700454, Romania
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
45
|
Martínez-Cortés F, Servín-Blanco R, Domínguez-Romero AN, Munguía ME, Guzman Valle J, Odales J, Gevorkian G, Manoutcharian K. Generation of cancer vaccine immunogens derived from Oncofetal antigen (OFA/iLRP) using variable epitope libraries tested in an aggressive breast cancer model. Mol Immunol 2021; 139:65-75. [PMID: 34454186 DOI: 10.1016/j.molimm.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
After decades of cancer vaccine efforts, there is an imperious necessity for novel ideas that may result in better tumor control in patients. We have proposed the use of a novel Variable Epitope Library (VEL) vaccine strategy, which incorporates an unprecedented number of mutated epitopes to target antigenic variability and break tolerance against tumor-associated antigens. Here, we used an oncofetal antigen/immature laminin receptor protein-derived sequence to generate 9-mer and 43-mer VEL immunogens. 4T1 tumor-bearing mice developed epitope-specific CD8+IFN-γ+ and CD4+IFN-γ+ T cell responses after treatment. Tumor and lung analysis demonstrated that VELs could increase the number of tumor-infiltrating lymphocytes with diverse effector functions while reducing the number of immunosuppressive myeloid-derived suppressor and regulatory T cells. Most importantly, VEL immunogens inhibited tumor growth and metastasis after a single dose. The results presented here are consistent with our previous studies and provide evidence for VEL immunogens' feasibility as promising cancer immunotherapy.
Collapse
Affiliation(s)
- Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Rodolfo Servín-Blanco
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Allan Noé Domínguez-Romero
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - María Elena Munguía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México DF, 04510, Mexico.
| |
Collapse
|
46
|
Amens JN, Bahçecioglu G, Zorlutuna P. Immune System Effects on Breast Cancer. Cell Mol Bioeng 2021; 14:279-292. [PMID: 34295441 PMCID: PMC8280260 DOI: 10.1007/s12195-021-00679-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is one of the most common cancers in women, with the ability to metastasize to secondary organs, which is the main cause of cancer-related deaths. Understanding how breast tumors progress is essential for developing better treatment strategies against breast cancer. Until recently, it has been considered that breast cancer elicits a small immune response. However, it is now clear that breast tumor progression is either prevented by the action of antitumor immunity or exacerbated by proinflammatory cytokines released mainly by the immune cells. In this comprehensive review we first explain antitumor immunity, then continue with how the tumor suppresses and evades the immune response, and next, outline the role of inflammation in breast tumor initiation and progression. We finally review the current immunotherapeutic and immunoengineering strategies against breast cancer as a promising emerging approach for the discovery and design of immune system-based strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Jensen N. Amens
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Gökhan Bahçecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556 USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
47
|
Palazón-Carrión N, Jiménez-Cortegana C, Sánchez-León ML, Henao-Carrasco F, Nogales-Fernández E, Chiesa M, Caballero R, Rojo F, Nieto-García MA, Sánchez-Margalet V, de la Cruz-Merino L. Circulating immune biomarkers in peripheral blood correlate with clinical outcomes in advanced breast cancer. Sci Rep 2021; 11:14426. [PMID: 34257359 PMCID: PMC8277895 DOI: 10.1038/s41598-021-93838-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Identification of the different elements intervening at the tumor microenvironment seems key to explain clinical evolution in several tumor types. In this study, a set of immune biomarkers (myeloid derived suppressor cells, regulatory T cells, and OX40 + and PD-1 + T lymphocytes counts) in peripheral blood of patients diagnosed with advanced breast cancer were analyzed along of first line antineoplastic therapy. Subsequently, a comparison between groups with clinical benefit versus progression of disease and with a healthy women cohort was executed. Results reflected that patients showed higher basal levels of myeloid derived suppressor cells (35.43, IR = 180.73 vs 17.53, IR = 16.96 cells/μl; p = 0.001) and regulatory T cells (32.05, IR = 29.84 vs 22.61, IR = 13.57 cells/μl; p = 0.001) in comparison with healthy women. Furthermore, an increase in the number of activated T lymphocytes (expressing OX40), a decrease of immune inhibitory cells (MDSCs and Tregs) and inhibited T lymphocytes (expressing PD-1) were observed along the treatment in patients with clinical benefit (p ≤ 0.001). The opposite trend was observed in the case of disease progression. These findings suggest that some critical immune elements can be easily detected and measured in peripheral blood, which open a new opportunity for translational research, as they seem to be correlated with clinical evolution, at least in ABC.
Collapse
Affiliation(s)
| | - Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - M Luisa Sánchez-León
- Clinical Oncology Department, Virgen Macarena University Hospital, Seville, Spain
| | | | | | - Massimo Chiesa
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain
| | | | - Federico Rojo
- Pathology Department, IIS-Fundación Jimenez Diaz-CIBERONC, Madrid, Spain
| | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain.
| | - Luis de la Cruz-Merino
- Clinical Oncology Department, Virgen Macarena University Hospital, Seville, Spain.
- GEICAM (Spanish Breast Cancer Research Group), Madrid, Spain.
- Medicine Department, University of Seville, Seville, Spain.
| |
Collapse
|
48
|
Crosstalk between Tumor-Infiltrating Immune Cells and Cancer-Associated Fibroblasts in Tumor Growth and Immunosuppression of Breast Cancer. J Immunol Res 2021; 2021:8840066. [PMID: 34337083 PMCID: PMC8294979 DOI: 10.1155/2021/8840066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the tumor microenvironment (TME) have a profound influence on the maintenance and progression of cancers. Chronic inflammation and the infiltration of immune cells in breast cancer (BC) have been strongly associated with early carcinogenic events and a switch to a more immunosuppressive response. Cancer-associated fibroblasts (CAFs) are the most abundant stromal component and can modulate tumor progression according to their secretomes. The immune cells including tumor-infiltrating lymphocytes (TILs) (cytotoxic T cells (CTLs), regulatory T cells (Tregs), and helper T cell (Th)), monocyte-infiltrating cells (MICs), myeloid-derived suppressor cells (MDSCs), mast cells (MCs), and natural killer cells (NKs) play an important part in the immunological balance, fluctuating TME between protumoral and antitumoral responses. In this review article, we have summarized the impact of these immunological players together with CAF secreted substances in driving BC progression. We explain the crosstalk of CAFs and tumor-infiltrating immune cells suppressing antitumor response in BC, proposing these cellular entities as predictive markers of poor prognosis. CAF-tumor-infiltrating immune cell interaction is suggested as an alternative therapeutic strategy to regulate the immunosuppressive microenvironment in BC.
Collapse
|
49
|
Vito A, Salem O, El-Sayes N, MacFawn IP, Portillo AL, Milne K, Harrington D, Ashkar AA, Wan Y, Workenhe ST, Nelson BH, Bruno TC, Mossman KL. Immune checkpoint blockade in triple negative breast cancer influenced by B cells through myeloid-derived suppressor cells. Commun Biol 2021; 4:859. [PMID: 34253827 PMCID: PMC8275624 DOI: 10.1038/s42003-021-02375-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Triple negative breast cancer holds a dismal clinical outcome and as such, patients routinely undergo aggressive, highly toxic treatment regimens. Clinical trials for TNBC employing immune checkpoint blockade in combination with chemotherapy show modest prognostic benefit, but the percentage of patients that respond to treatment is low, and patients often succumb to relapsed disease. Here, we show that a combination immunotherapy platform utilizing low dose chemotherapy (FEC) combined with oncolytic virotherapy (oHSV-1) increases tumor-infiltrating lymphocytes, in otherwise immune-bare tumors, allowing 60% of mice to achieve durable tumor regression when treated with immune checkpoint blockade. Whole-tumor RNA sequencing of mice treated with FEC + oHSV-1 shows an upregulation of B cell receptor signaling pathways and depletion of B cells prior to the start of treatment in mice results in complete loss of therapeutic efficacy and expansion of myeloid-derived suppressor cells. Additionally, RNA sequencing data shows that FEC + oHSV-1 suppresses genes associated with myeloid-derived suppressor cells, a key population of cells that drive immune escape and mediate therapeutic resistance. These findings highlight the importance of tumor-infiltrating B cells as drivers of antitumor immunity and their potential role in the regulation of myeloid-derived suppressor cells.
Collapse
Affiliation(s)
- Alyssa Vito
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Omar Salem
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nader El-Sayes
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ian P MacFawn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ana L Portillo
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Katy Milne
- Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | | | - Ali A Ashkar
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Karen L Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
50
|
Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021; 166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer, as a malignant disease that seriously threatens women's health, urgently needs to be researched to develop effective and safe therapeutic drugs. Nanoparticle drug delivery systems (NDDS), provide a powerful means for drug targeting to the breast cancer, enhancing the bioavailability and reducing the adverse effects of anticancer drug. However, the breast cancer microenvironment together with heterogeneity of cancer, impedes the tumor targeting effect of NDDS. Breast cancer microenvironment, exerts endogenous stimuli, such as hypoxia, acidosis, and aberrant protease expression, shape a natural shelter for tumor growth, invasion and migration. On the basis of the ubiquitous of endogenous stimuli in the breast cancer microenvironment, researchers exploited them to design the stimuli-responsive NDDS, which response to endogenous stimulus, targeted release drug in breast cancer microenvironment. In this review, we highlighted the effect of the breast cancer microenvironment, summarized innovative NDDS responsive to the internal stimuli in the tumor microenvironment, including the material, the targeting groups, the loading drugs, targeting position and the function of stimuli-responsive nanoparticle drug delivery system. The limitations and potential applications of the stimuli-responsive nanoparticle drug delivery systems for breast cancer treatment were discussed to further the application.
Collapse
Affiliation(s)
- Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yaroslav Mezhuev
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China.
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou 510632, PR China; Cancer Research Institute, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|