1
|
Vethencourt A, Trinidad EM, Dorca E, Petit A, Soler-Monsó MT, Ciscar M, Barranco A, Pérez-Chacón G, Jimenez M, Rodríguez M, Gomez-Aleza C, Purqueras E, Hernández-Jiménez E, Urruticoechea A, Morilla I, Subirana I, García-Tejedor A, Gil-Gil M, Pernas S, Falo C, Gonzalez-Suarez E. Denosumab as an immune modulator in HER2-negative early breast cancer: results of the window-of-opportunity D-BIOMARK clinical trial. Breast Cancer Res 2025; 27:68. [PMID: 40350430 PMCID: PMC12067755 DOI: 10.1186/s13058-025-01996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/07/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND The RANK pathway has been extensively investigated for its role in bone resorption; however, its significance extends beyond bone metabolism. Preclinical models suggest that inhibition of RANK signaling can prevent mammary tumor development by reducing proliferation and tumor cell survival. Additionally, both preclinical and clinical data support the ability of RANK pathway inhibitors to enhance the anti-tumor immune response. METHODS D-BIOMARK is a prospective, randomized window-of-opportunity clinical trial assessing the biological effects of denosumab, a monoclonal antibody against RANKL, in patients with HER2-negative early breast cancer. The study aims to assess denosumab's impact on breast tumor cell proliferation, apoptosis, and its potential to influence the tumor immune microenvironment. A total of 60 patients were enrolled and randomized 2:1 to receive two doses of single agent denosumab (120 mg one week apart) before surgery or to the control arm (no treatment). Fifty-eight patients were evaluated, 27 pre-menopausal and 31 post-menopausal women, 48 with luminal tumors and 10 with triple negative breast cancer. Paired tumor samples were collected to compare baseline (core biopsy) and surgical (surgical specimen) time points, as well as serum samples at both time points. RESULTS Denosumab demonstrated its ability to reduce serum free RANKL levels (experimental p < 0.001, control p = 0.270). However, a reduction in tumor cell proliferation or cell survival was not observed. A denosumab-driven increase in tumor infiltrating lymphocytes (TILs) was observed (experimental p = 0.001, control p = 0.060), particularly in the luminal B-like population (experimental p = 0.012, control p = 0.070) and a similar trend in the TNBC group (experimental p = 0.079, control p = 0.237). Denosumab led to increased TILs in both pre-menopausal (experimental p = 0.048, control p = 0.639) and post-menopausal (experimental p = 0.041, control p = 0.062) women with luminal tumors. RANK protein expression in tumor and stroma was associated with markers of tumor aggressiveness but an increase in TILs was observed in the experimental arm, irrespectively of RANK and RANKL expression in tumor or stromal cells. CONCLUSIONS The D-BIOMARK trial suggests a potential role for denosumab as an immune-enhancing agent in early HER2-negative breast cancer. Although preoperative denosumab did not reduce tumor proliferation or increased apoptosis, it led to an increase in TILs, particularly in luminal B-like tumors. These findings underscore the importance of further investigation into the multifaceted aspects of the RANK pathway. Trial registration EudraCT number: 2016-002678-11 registered on June 15, 2018. CLINICALTRIALS gov identifier: NCT03691311, retrospectively registered on September 04, 2018.
Collapse
Affiliation(s)
- Andrea Vethencourt
- Breast Cancer Unit, Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain.
- IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain.
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.
| | - Eva M Trinidad
- IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Eduard Dorca
- Pathology Department and Breast Cancer Unit, Hospital Universitari de Bellvitge and Institut Català d'Oncologia, Barcelona, Spain
| | - Anna Petit
- Pathology Department and Breast Cancer Unit, Hospital Universitari de Bellvitge and Institut Català d'Oncologia, Barcelona, Spain
| | - M Teresa Soler-Monsó
- Pathology Department and Breast Cancer Unit, Hospital Universitari de Bellvitge and Institut Català d'Oncologia, Barcelona, Spain
| | - Marina Ciscar
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | - Gema Pérez-Chacón
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - María Jimenez
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Mario Rodríguez
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Clara Gomez-Aleza
- IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Elvira Purqueras
- Pathology Department and Breast Cancer Unit, Hospital Universitari de Bellvitge and Institut Català d'Oncologia, Barcelona, Spain
| | | | | | - Idoia Morilla
- Medical Oncology Department, Hospital Universitario de Navarra, Navarra, Spain
| | | | - Amparo García-Tejedor
- IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
- Gynecology Department and Breast Cancer Unit, Hospital Universitari de Bellvitge and Institut Català d'Oncologia, Barcelona, Spain
| | - Miguel Gil-Gil
- Breast Cancer Unit, Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain
- IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Sonia Pernas
- Breast Cancer Unit, Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain
- IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - Catalina Falo
- Breast Cancer Unit, Medical Oncology Department, Institut Català d'Oncologia, Barcelona, Spain.
- IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain.
- Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.
| | - Eva Gonzalez-Suarez
- IDIBELL, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain.
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.
| |
Collapse
|
2
|
Ordaz-Ramos A, Diaz-Blancas J, Martínez-Cruz A, Castro-Oropeza R, Zampedri C, Romero-Rodríguez DP, Rodriguez-Dorantes M, Melendez-Zajgla J, Maldonado V, Vazquez-Santillan K. RANKL regulates differentially breast cancer stem cell properties through its RANK and LGR4 receptors. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119888. [PMID: 39662745 DOI: 10.1016/j.bbamcr.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Breast cancer stem cells (BCSC) are a subpopulation responsible for cancer resistance and relapse. The receptor activator of nuclear factor kappa-Β ligand (RANKL) is a cytokine capable of activating RANK and LGR4 receptors. RANKL/RANK signaling maintains the self-renewal of BCSCs, however, the effect of RANKL via LGR4 remains unclear. Evidence from osteoclasts suggests that RANKL/LGR4 axis disrupts RANK signaling, leading to opposing cellular responses. Anti-RANKL inhibitors are potential agents for eradicating CSCs, but their effect on RANKL/LGR4 signal has not been demonstrated. OBJECTIVE This project aimed to elucidate the role of RANKL in regulating stemness depending on the expression of its receptors. METHODS We use in vitro and in vivo approaches to evaluate the effects of RANKL inhibition in stemness in low or high-LGR4 expressing cells. Furthermore, we analyze the effects of RANKL stimulation on the stemness of LGR4 or RANK overexpressing cells. Additionally, we evaluated the impact of RANKL/LGR4 signaling in the activity of Wnt/β-catenin and NF-κB signaling pathways. RESULTS Our findings indicated that elevated RANKL expression is related to a favorable prognosis in patients with high LGR4 levels. Furthermore, RANKL inhibition decreased BCSC properties in LGR4-low cell lines, while it promoted migration in LGR4-high cells. Additionally, the RANKL/RANK axis activated NF-κB signaling and enhanced BCSCs in RANK-overexpressing cells. In contrast, in LGR4-overexpressing cells, RANKL failed to activate NF-κB but instead inhibited the Wnt/β-catenin pathway, leading to a reduction in BCSCs. CONCLUSION Our findings suggest that RANKL exerts different responses according to the expression of its receptors.
Collapse
Affiliation(s)
- Alejandro Ordaz-Ramos
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Jorge Diaz-Blancas
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Aketzalli Martínez-Cruz
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Rosario Castro-Oropeza
- Molecular Oncology Laboratory, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncologia, Centro Medico Nacional Siglo XXI, IMSS, Avenida Cuahuhtemoc 330, Col Doctores, Cuauhtemoc, Mexico City C.P. 06720, Mexico
| | - Cecilia Zampedri
- Multidisciplinary Zebrafish Laboratory, Department of Bioengineer, Escuela de Ingenieria y Ciencias, Instituto Tecnologico y de Estudios Superiores Monterrey, Mexico City, Mexico
| | - Damaris P Romero-Rodríguez
- Flow Citometry Laboratory, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosió Villegas", Calzada de Tlalpan 4502, Col Belisario Dominguez Secc 16, Tlalpan, C.P. 14080, Mexico; Laboratorio Nacional Conahcyt de Investigación y Diagnóstico por Inmunocitofluorometría (LANCIDI), Mexico City, Mexico
| | - Mauricio Rodriguez-Dorantes
- Oncogenomics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14160, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Karla Vazquez-Santillan
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico.
| |
Collapse
|
3
|
Alraouji NN, Colak D, Al-Mohanna FH, Alaiya AA, Aboussekhra A. Endogenous osteoprotegerin (OPG) represses ERα and promotes stemness and chemoresistance in breast cancer cells. Cell Death Discov 2024; 10:377. [PMID: 39181873 PMCID: PMC11344809 DOI: 10.1038/s41420-024-02151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Breast cancer (BC) is the most prevalent cancer and the leading cause of death among women worldwide. The osteoprotegerin (OPG) cytokine, a decoy receptor for RANKL and a key player in bone homeostasis, has pro-and anti-carcinogenic effects in various types of cancer, including breast neoplasms. In the present study, we have shown that ectopic expression of OPG in breast epithelial/cancer cells promotes the pro-metastatic processes epithelial-to-mesenchymal transition (EMT), stemness, angiogenesis as well as the activation of breast stromal fibroblasts. Furthermore, proteomics analysis, which allows the identification and quantification of a plethora of known and unknown proteins, has shown a strong and significant correlation between OPG upregulation and the expression of proteins with functions in EMT and stemness. On the other hand, OPG knockdown in triple-negative breast cancer (TNBC) cells inhibited the formation of cancer stem cells. Importantly, while OPG upregulation significantly enhanced the resistance of luminal BC cells to cisplatin and docetaxel, OPG downregulation sensitized TNBC cells to these chemotherapeutic drugs. We have also shown that OPG negatively controls estrogen receptor α (ERα), and OPG upregulation correlated well with the expression of genes related to ER-negative claudin low cells. Collectively, these results show that OPG promotes stemness and the consequent chemoresistance of breast cancer cells.
Collapse
Affiliation(s)
- Noura N Alraouji
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Dilek Colak
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Ayodele A Alaiya
- Department of Cell Therapy & Immunobiology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
4
|
Wunderle M, Heindl F, Behrens AS, Häberle L, Hack CC, Heusinger K, Huebner H, Gass P, Ruebner M, Schulz-Wendtland R, Erber R, Hartmann A, Beckmann MW, Dougall WC, Press MF, Fasching PA, Emons J. Correlation of RANK and RANKL with mammographic density in primary breast cancer patients. Arch Gynecol Obstet 2024; 310:1223-1233. [PMID: 38836929 PMCID: PMC11258178 DOI: 10.1007/s00404-024-07495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE The receptor activator of nuclear factor kappa B (RANK) and its ligand (RANKL) have been shown to promote proliferation of the breast and breast carcinogenesis. The objective of this analysis was to investigate whether tumor-specific RANK and RANKL expression in patients with primary breast cancer is associated with high percentage mammographic density (PMD), which is a known breast cancer risk factor. METHODS Immunohistochemical staining of RANK and RANKL was performed in tissue microarrays (TMAs) from primary breast cancer samples of the Bavarian Breast Cancer Cases and Controls (BBCC) study. For RANK and RANKL expression, histochemical scores (H scores) with a cut-off value of > 0 vs 0 were established. PMD was measured in the contralateral, non-diseased breast. Linear regression models with PMD as outcome were calculated using common predictors of PMD (age at breast cancer diagnosis, body mass index (BMI) and parity) and RANK and RANKL H scores. Additionally, Spearman rank correlations (ρ) between PMD and RANK and RANKL H score were performed. RESULTS In the final cohort of 412 patients, breast cancer-specific RANK and RANKL expression was not associated with PMD (P = 0.68). There was no correlation between PMD and RANK H score (Spearman's ρ = 0.01, P = 0.87) or RANKL H score (Spearman's ρ = 0.04, P = 0.41). RANK expression was highest in triple-negative tumors, followed by HER2-positive, luminal B-like and luminal A-like tumors, while no subtype-specific expression of RANKL was found. CONCLUSION Results do not provide evidence for an association of RANK and RANKL expression in primary breast cancer with PMD.
Collapse
Affiliation(s)
- Marius Wunderle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Felix Heindl
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Annika S Behrens
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Biostatistics Unit, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Carolin C Hack
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Katharina Heusinger
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Paul Gass
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Rüdiger Schulz-Wendtland
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Institute of Diagnostic Radiology, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Ramona Erber
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Arndt Hartmann
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - William C Dougall
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4702, Australia
- Hematology and Oncology Research, Amgen, Inc, Seattle, WA, 98119, USA
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| | - Julius Emons
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| |
Collapse
|
5
|
Yang H, Li S, Li W, Yang Y, Zhang Y, Zhang S, Hao Y, Cao W, Xu F, Wang H, Du G, Wang J. Actinomycin D synergizes with Doxorubicin in triple-negative breast cancer by inducing P53-dependent cell apoptosis. Carcinogenesis 2024; 45:262-273. [PMID: 37997385 DOI: 10.1093/carcin/bgad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism. METHODS TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs. RESULTS There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2. CONCLUSIONS ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.
Collapse
Affiliation(s)
- Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Zarrer J, Taipaleenmäki H. The osteoblast in regulation of tumor cell dormancy and bone metastasis. J Bone Oncol 2024; 45:100597. [PMID: 38550395 PMCID: PMC10973597 DOI: 10.1016/j.jbo.2024.100597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 11/12/2024] Open
Abstract
Breast and prostate cancer are among the most common malignancies worldwide. After treatment of the primary tumor, distant metastases often occur after a long disease-free interval. Bone is a major site for breast and prostate cancer metastasis and approximately 70% of patients with advanced disese suffer from osteolytic or osteoblastic bone metastases, a stage at which the disease is incurable. In bone, the disseminated tumor cells (DTCs) can become quiescent or "dormant", a state where they are alive but not actively dividing. Alternatively, the cancer cells can proliferate, disturb the bone homeostasis, and form metastatic lesions. The fate of cancer cells is largely dependent on the bone microenvironment, particularly the bone forming osteoblasts and bone resorbing osteoclasts. Osteoblasts originate from mesenchymal precursors through a tightly regulated cascade. The main function of osteoblasts is to synthesize bone matrix, coordinate mineralization and maintain bone remodeling by regulating osteoclast activity and bone resorption. In metastatic bone environment, osteoblasts can create a niche within the bone where DTCs cells become dormant and induce quiescence in cancer cells keeping them in a non-proliferative state. Osteoblasts also contribute to metastatic outgrowth and actively promote tumor growth in bone. In this article, we review the recent literature on the role of osteoblasts in cancer cell dormancy and bone metastasis and describe the underlying mechanisms by which osteoblasts regulate cancer cell fate in bone. In addition, we discuss the possibility of targeting osteoblasts to treat osteolytic bone metastases.
Collapse
Affiliation(s)
- Jennifer Zarrer
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Germany
| |
Collapse
|
7
|
Northey JJ, Hayward MK, Yui Y, Stashko C, Kai F, Mouw JK, Thakar D, Lakins JN, Ironside AJ, Samson S, Mukhtar RA, Hwang ES, Weaver VM. Mechanosensitive hormone signaling promotes mammary progenitor expansion and breast cancer risk. Cell Stem Cell 2024; 31:106-126.e13. [PMID: 38181747 PMCID: PMC11050720 DOI: 10.1016/j.stem.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Tissue stem-progenitor cell frequency has been implicated in tumor risk and progression, but tissue-specific factors linking these associations remain ill-defined. We observed that stiff breast tissue from women with high mammographic density, who exhibit increased lifetime risk for breast cancer, associates with abundant stem-progenitor epithelial cells. Using genetically engineered mouse models of elevated integrin mechanosignaling and collagen density, syngeneic manipulations, and spheroid models, we determined that a stiff matrix and high mechanosignaling increase mammary epithelial stem-progenitor cell frequency and enhance tumor initiation in vivo. Augmented tissue mechanics expand stemness by potentiating extracellular signal-related kinase (ERK) activity to foster progesterone receptor-dependent RANK signaling. Consistently, we detected elevated phosphorylated ERK and progesterone receptors and increased levels of RANK signaling in stiff breast tissue from women with high mammographic density. The findings link fibrosis and mechanosignaling to stem-progenitor cell frequency and breast cancer risk and causally implicate epidermal growth factor receptor-ERK-dependent hormone signaling in this phenotype.
Collapse
Affiliation(s)
- Jason J Northey
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mary-Kate Hayward
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yoshihiro Yui
- Research Institute, Nozaki Tokushukai Hospital, Tanigawa 2-10-50, Daito, Osaka 574-0074, Japan
| | - Connor Stashko
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - FuiBoon Kai
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB T2N1N4, Canada; Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Janna K Mouw
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dhruv Thakar
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jonathon N Lakins
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alastair J Ironside
- Department of Pathology, Western General Hospital, NHS Lothian, Edinburgh EH42XU, UK
| | - Susan Samson
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rita A Mukhtar
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143, USA; UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Behrens A, Wurmthaler L, Heindl F, Gass P, Häberle L, Volz B, Hack CC, Emons J, Erber R, Hartmann A, Beckmann MW, Ruebner M, Dougall WC, Press MF, Fasching PA, Huebner H. RANK and RANKL Expression in Tumors of Patients with Early Breast Cancer. Geburtshilfe Frauenheilkd 2024; 84:77-85. [PMID: 38178900 PMCID: PMC10764119 DOI: 10.1055/a-2192-2998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/15/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction The receptor activator of nuclear factor-κB (RANK) pathway was associated with the pathogenesis of breast cancer. Several studies attempted to link the RANK/RANKL pathway to prognosis; however, with inconsistent outcomes. We aimed to further contribute to the knowledge about RANK/RANKL as prognostic factors in breast cancer. Within this study, protein expression of RANK and its ligand, RANKL, in the tumor tissue was analyzed in association with disease-free survival (DFS) and overall survival (OS) in a study cohort of patients with early breast cancer. Patients and Methods 607 samples of female primary and early breast cancer patients from the Bavarian Breast Cancer Cases and Controls Study were analyzed to correlate the RANK and RANKL expression with DFS and OS. Therefore, expression was quantified using immunohistochemical staining of a tissue microarray. H-scores were determined with the cut-off value of 8.5 for RANK and 0 for RANKL expression, respectively. Results RANK and RANKL immunohistochemistry were assessed by H-score. Both biomarkers did not correlate (ρ = -0.04). According to molecular subtypes, triple-negative tumors and HER2-positive tumors showed a higher number of RANK-positive tumors (H-score ≥ 8.5), however, no subtype-specific expression of RANKL could be detected. Higher RANKL expression tended to correlate with a better prognosis. However, RANK and RANKL expression could not be identified as statistically significant prognostic factors within the study cohort. Conclusions Tumor-specific RANK and RANKL expressions are not applicable as prognostic factors for DFS and OS, but might be associated with subtype-specific breast cancer progression.
Collapse
Affiliation(s)
- Annika Behrens
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Lena Wurmthaler
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Felix Heindl
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Paul Gass
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Lothar Häberle
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Biostatistics Unit, Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernhard Volz
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Ansbach University of Applied Sciences, Ansbach, Germany
| | - Carolin C. Hack
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Julius Emons
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Ramona Erber
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - William C. Dougall
- Hematology and Oncology Research, Amgen, Inc., Seattle, WA, USA
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michael F. Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| |
Collapse
|
9
|
Rahman MT, Kaung Y, Shannon L, Androjna C, Sharifi N, Labhasetwar V. Nanoparticle-mediated synergistic drug combination for treating bone metastasis. J Control Release 2023; 357:498-510. [PMID: 37059400 PMCID: PMC10243348 DOI: 10.1016/j.jconrel.2023.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/08/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Bone metastasis at an advanced disease stage is common in most solid tumors and is untreatable. Overexpression of receptor activator of nuclear factor κB ligand (RANKL) in tumor-bone marrow microenvironment drives a vicious cycle of tumor progression and bone resorption. Biodegradable nanoparticles (NPs), designed to localize in the tumor tissue in bone marrow, were evaluated in a prostate cancer model of bone metastasis. The combination treatment, encapsulating docetaxel, an anticancer drug (TXT-NPs), and Denosumab, a monoclonal antibody that binds to RANKL (DNmb-NPs), administered intravenously regressed the tumor completely, preventing bone resorption, without causing any mortality. With TXT-NPs alone treatment, after an initial regression, the tumor relapsed and acquired resistance, whereas DNmb-NPs alone treatment was ineffective. Only in the combination treatment, RANKL was not detected in the tumor tibia, thus negating its role in tumor progression and bone resorption. The combination treatment was determined to be safe as the vital organ tissue showed no increase in inflammatory cytokine or the liver ALT/AST levels, and animals gained weight. Overall, dual drug treatment acted synergistically to modulate the tumor-bone microenvironment with encapsulation enhancing their therapeutic potency to achieve tumor regression.
Collapse
Affiliation(s)
- Mohammed Tanjimur Rahman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youzhi Kaung
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Logan Shannon
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Small Animal Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
10
|
Ishikawa T. Differences between zoledronic acid and denosumab for breast cancer treatment. J Bone Miner Metab 2023; 41:301-306. [PMID: 36879056 DOI: 10.1007/s00774-023-01408-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Zoledronic acid and denosumab are bone-modifying agents that are clinically important in multiple aspects of bone management for breast cancer patients. These aspects include the prevention of osteoporosis induced by cancer-treatment bone loss, treatment and prevention of bone metastasis, and improvement of survival directly or indirectly by maintaining bone health. Interestingly, zoledronic acid and denosumab have different anticancer activities, and they may be associated with the improvement of survival of breast cancer patients under different mechanisms. Zoledronic acid is the most potent bisphosphonate. It provides significant benefits for improving breast cancer mortality in patients with suppressed estrogen level such as in postmenopausal or ovarian suppression condition. Although denosumab's anticancer activity has not been clearly proven compared with zoledronic acid's anticancer activity, denosumab is promising in preventing BRCA1 mutant breast cancer because RANKL is a targetable pathway in BRCA1-associated tumorigenesis. Further studies and more effective clinical use of these agents are anticipated to contribute to the improvement of the clinical outcome of breast cancer patients.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Department of Breast Oncology and Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
11
|
Tang ZN, Bi XF, Chen WL, Zhang CL. RANKL Promotes Chemotherapy Resistance in Breast Cancer Cells Through STAT3 Mediated Autophagy Induction. Clin Breast Cancer 2023; 23:388-396. [PMID: 36872108 DOI: 10.1016/j.clbc.2023.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND This study was to investigate the functional role and mechanism of receptor activator of nuclear factor-kappa B ligand (RANKL) associated autophagy and chemoresistance in breast cancer. MATERIALS AND METHODS Cell Counting Kit-8 (CCK-8) assay was used to detect the cell viability. Real-time polymerase chain reaction (PCR) was used for determining the relative mRNA levels of key genes and protein expression was assessed by Western blotting. Immunofluorescence was performed to evaluate the changes in the autophagy flux. Short hairpin (shRNA) was used to knockdown the expression of the target genes in breast cancer cells. Based on The Cancer Genome Atlas (TCGA) database, we explored the expression of receptor activator of nuclear factor-kappa B (RANK), autophagy and signal transducer and activator of transcription 3 (STAT3) signaling associated genes and analyzed their correlation with the prognosis of breast cancer patients. RESULTS The findings showed that receptor activator of nuclear factor-kappa B ligand (RANKL), the ligand of RANK, could effectively enhance the chemoresistance potential of breast cancer cells. Our results showed that RANKL induced autophagy and enhanced the expression of autophagy associated genes in breast cancer cells. The knockdown of RANK suppressed RANKL mediated autophagy induction in these cells. Furthermore, the inhibition of autophagy suppressed RANKL mediated chemoresistance in breast cancer cells. We found STAT3 signaling pathway was involved in RANKL-induced autophagy. Analysis of the expression of RANK, and autophagy and STAT3 signaling associated genes in breast cancer tissues showed that the expression of autophagy and STAT3 signaling associated genes was correlated with the prognosis of breast cancer patients. CONCLUSION The present study suggests that the RANKL/RANK axis may potentially mediate chemoresistance in breast cancer cells by inducing autophagy through the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zhen-Ning Tang
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Xiao-Fang Bi
- Department of Pathology, The First People's Hospital of Yinchuan, 750001 Yinchuan, Ningxia, China
| | - Wei-Liang Chen
- Department of Breast Surgery, Herbei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, 061001 Cangzhou, Hebei, China
| | - Chao-Lin Zhang
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China.
| |
Collapse
|
12
|
Wimberger P, Blohmer JU, Krabisch P, Link T, Just M, Sinn BV, Simon E, Solbach C, Fehm T, Denkert C, Kühn C, Rhiem K, Tesch H, Kümmel S, Petzold A, Stötzer O, Meisel C, Kuhlmann JD, Nekljudova V, Loibl S. The effect of denosumab on disseminated tumor cells (DTCs) of breast cancer patients with neoadjuvant treatment: a GeparX translational substudy. Breast Cancer Res 2023; 25:32. [PMID: 36978142 PMCID: PMC10045108 DOI: 10.1186/s13058-023-01619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/11/2023] [Indexed: 03/30/2023] Open
Abstract
Background Disseminated tumor cells (DTCs) in the bone marrow are observed in about 40% at primary diagnosis of breast cancer and predict poor survival. While anti-resorptive therapy with bisphosphonates was shown to eradicate minimal residue disease in the bone marrow, the effect of denosumab on DTCs, particularly in the neoadjuvant setting, is largely unknown. The recent GeparX clinical trial reported that denosumab, applied as an add-on treatment to nab-paclitaxel based neoadjuvant chemotherapy (NACT), did not improve the patient’s pathologic complete response (pCR) rate. Herein, we analyzed the predictive value of DTCs for the response to NACT and interrogated whether neoadjuvant denosumab treatment may eradicate DTCs in the bone marrow.
Methods A total of 167 patients from the GeparX trial were analyzed for DTCs at baseline by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. Initially DTC-positive patients were re-analyzed for DTCs after NACT ± denosumab.
Results At baseline, DTCs were observed in 43/167 patients (25.7%) in the total cohort, however their presence did not predict response to nab-paclitaxel based NACT (pCR rates: 37.1% in DTC-negative vs. 32.6% DTC-positive; p = 0.713). Regarding breast cancer subtypes, the presence of DTCs at baseline was numerically associated with response to NACT in TNBC patients (pCR rates: 40.0% in DTC-positive vs. 66.7% in DTC-negative patients; p = 0.16). Overall, denosumab treatment did not significantly increase the given DTC-eradication rate of NACT (NACT: 69.6% DTC-eradication vs. NACT + denosumab: 77.8% DTC-eradication; p = 0.726). In TNBC patients with pCR, a numerical but statistically non-significant increase of DTC-eradication after NACT + denosumab was observed (NACT: 75% DTC-eradication vs. NACT + denosumab: 100% DTC-eradication; p = 1.00).
Conclusion This is the first study worldwide, demonstrating that neoadjuvant add-on denosumab over a short-term period of 24 months does not increase the DTC-eradication rate in breast cancer patients treated with NACT. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-023-01619-2.
Collapse
Affiliation(s)
- Pauline Wimberger
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- grid.461742.20000 0000 8855 0365National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens-Uwe Blohmer
- grid.6363.00000 0001 2218 4662Gynäkologie mit Brustzentrum, Charité-Univesitätsmedizin Berlin, Berlin, Germany
| | - Petra Krabisch
- grid.459629.50000 0004 0389 4214Klinikum Chemnitz, Chemnitz, Germany
| | - Theresa Link
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- grid.461742.20000 0000 8855 0365National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marianne Just
- Onkologische Schwerpunktpraxis Bielefeld, Bielefeld, Germany
| | - Bruno Valentin Sinn
- grid.6363.00000 0001 2218 4662Department of Pathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Eike Simon
- Kreiskrankenhaus Torgau, Torgau, Germany
| | - Christine Solbach
- grid.411088.40000 0004 0578 8220Universitätsklinik Frankfurt, Frankfurt, Germany
| | - Tanja Fehm
- grid.411327.20000 0001 2176 9917Universität Düsseldorf, Düsseldorf, Germany
| | - Carsten Denkert
- grid.10253.350000 0004 1936 9756Institut für Pathologie, Philipps Universität Marburg und Universitätsklinikum Marburg (UKGM), Marburg, Germany
| | | | - Kerstin Rhiem
- grid.411097.a0000 0000 8852 305XUniversität Köln, Zentrum Familiärer Brust- und Eierstockkrebs, Köln, Germany
| | - Hans Tesch
- Centrum für Hämatologie und Onkologie Bethanien, Frankfurt, Germany
| | - Sherko Kümmel
- grid.461714.10000 0001 0006 4176Kliniken Essen-Mitte Evang. Huyssen-Stiftung, Essen, Germany
| | - Andrea Petzold
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- grid.461742.20000 0000 8855 0365National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Stötzer
- Gemeinschaftspraxis Hämatologie/Intern. Onkologie, München, Germany
| | - Cornelia Meisel
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- grid.461742.20000 0000 8855 0365National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Dominik Kuhlmann
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- grid.461742.20000 0000 8855 0365National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Sibylle Loibl
- grid.434440.30000 0004 0457 2954German Breast Group, Neu-Isenburg, Germany
| |
Collapse
|
13
|
Alraouji NN, Hendrayani SF, Ghebeh H, Al-Mohanna FH, Aboussekhra A. Osteoprotegerin (OPG) mediates the anti-carcinogenic effects of normal breast fibroblasts and targets cancer stem cells through inhibition of the β-catenin pathway. Cancer Lett 2021; 520:374-384. [PMID: 34416336 DOI: 10.1016/j.canlet.2021.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 01/20/2023]
Abstract
Normal breast fibroblasts (NBFs) support and maintain the architecture of the organ, and can also suppress tumorigenesis. However, the mechanisms involved are not fully understood. We have shown here that NBFs suppress breast carcinogenesis through secretion of osteoprotegerin (OPG), a soluble decoy receptor for the Receptor Activator of NF-κB ligand (RANKL). Indeed, NBFs and human recombinant OPG (rOPG), suppressed breast cancer cells proliferation and motility through inhibition of the epithelial-to-mesenchymal transition (EMT) process both in vitro and in vivo. Additionally, rOPG inhibited the IL-6/STAT3 and NF-κB pathways as well as the OPG gene, which turned out to be STAT3-regulated. This was confirmed using denosumab, a RANKL-targeted antibody, which also inhibited NF-κB, down-regulated OPG and repressed EMT in breast cancer cells grown in 2D and 3D. Importantly, both rOPG and denosumab targeted cancer stem cells (CSCs). This was mediated through inhibition of the CSC-related pathway β-catenin. Moreover, rOPG reduced tumor growth and inhibited breast CSC biomarkers in orthotopic humanized breast tumors. Therefore, normal mammary fibroblasts can suppress carcinogenesis through OPG, which constitutes great potential as preventive and/or therapeutic molecule for breast carcinomas.
Collapse
Affiliation(s)
- Noura N Alraouji
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Siti-Fauziah Hendrayani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Hazem Ghebeh
- Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, MBC#03, Riyadh, 11211, Saudi Arabia
| | - Falah H Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
14
|
Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol 2021; 18:488-505. [PMID: 33875860 DOI: 10.1038/s41571-021-00499-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Bone metastases are a frequent and severe complication of advanced-stage cancers. Breast and prostate cancers, the most common malignancies in women and men, respectively, have a particularly high propensity to metastasize to bone. Conceptually, circulating tumour cells (CTCs) in the bloodstream and disseminated tumour cells (DTCs) in the bone marrow provide a snapshot of the dissemination and colonization process en route to clinically apparent bone metastases. Many cell types that constitute the bone microenvironment, including osteoblasts, osteocytes, osteoclasts, adipocytes, endothelial cells, haematopoietic stem cells and immune cells, engage in a dialogue with tumour cells. Some of these cells modify tumour biology, while others are disrupted and out-competed by tumour cells, thus leading to distinct phases of tumour cell migration, dormancy and latency, and therapy resistance and progression to overt bone metastases. Several current bone-protective therapies act by interrupting these interactions, mainly by targeting tumour cell-osteoclast interactions. In this Review, we describe the functional roles of the bone microenvironment and its components in the initiation and propagation of skeletal metastases, outline the biology and clinical relevance of CTCs and DTCs, and discuss established and future therapeutic approaches that specifically target defined components of the bone microenvironment to prevent or treat skeletal metastases.
Collapse
Affiliation(s)
- Lorenz C Hofbauer
- University Center for Healthy Aging, Dresden University of Technology, Dresden, Germany. .,Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) partner site Dresden, Dresden, Germany.
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Martina Rauner
- University Center for Healthy Aging, Dresden University of Technology, Dresden, Germany.,Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Franz Jakob
- Department of Orthopedic Surgery, Julius Maximilians University of Würzburg, Würzburg, Germany.,Department of Functional Materials in Medicine and Dentistry, Julius Maximilians University of Würzburg, Würzburg, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
van Barele M, Heemskerk-Gerritsen BAM, Louwers YV, Vastbinder MB, Martens JWM, Hooning MJ, Jager A. Estrogens and Progestogens in Triple Negative Breast Cancer: Do They Harm? Cancers (Basel) 2021; 13:2506. [PMID: 34063736 PMCID: PMC8196589 DOI: 10.3390/cancers13112506] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancers (TNBC) occur more frequently in younger women and do not express estrogen receptor (ER) nor progesterone receptor (PR), and are therefore often considered hormone-insensitive. Treatment of premenopausal TNBC patients almost always includes chemotherapy, which may lead to premature ovarian insufficiency (POI) and can severely impact quality of life. Hormone replacement therapy (HRT) is contraindicated for patients with a history of hormone-sensitive breast cancer, but the data on safety for TNBC patients is inconclusive, with a few randomized trials showing increased risk-ratios with wide confidence intervals for recurrence after HRT. Here, we review the literature on alternative pathways from the classical ER/PR. We find that for both estrogens and progestogens, potential alternatives exist for exerting their effects on TNBC, ranging from receptor conversion, to alternative receptors capable of binding estrogens, as well as paracrine pathways, such as RANK/RANKL, which can cause progestogens to indirectly stimulate growth and metastasis of TNBC. Finally, HRT may also influence other hormones, such as androgens, and their effects on TNBCs expressing androgen receptors (AR). Concluding, the assumption that TNBC is completely hormone-insensitive is incorrect. However, the direction of the effects of the alternative pathways is not always clear, and will need to be investigated further.
Collapse
Affiliation(s)
- Mark van Barele
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Bernadette A. M. Heemskerk-Gerritsen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Yvonne V. Louwers
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Mijntje B. Vastbinder
- Department of Internal Medicine, Ijsselland Hospital, Prins Constantijnweg 2, 2906 ZC Capelle aan den IJssel, The Netherlands;
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Maartje J. Hooning
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.v.B.); (B.A.M.H.-G.); (J.W.M.M.); (M.J.H.)
| |
Collapse
|
16
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Wang H, Ashton R, Hensel JA, Lee JH, Khattar V, Wang Y, Deshane JS, Ponnazhagan S. RANKL-Targeted Combination Therapy with Osteoprotegerin Variant Devoid of TRAIL Binding Exerts Biphasic Effects on Skeletal Remodeling and Antitumor Immunity. Mol Cancer Ther 2020; 19:2585-2597. [PMID: 33199500 DOI: 10.1158/1535-7163.mct-20-0378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023]
Abstract
Complexities in treating breast cancer with bone metastasis are enhanced by a vicious protumorigenic pathology, involving a shift in skeletal homeostasis toward aggressive osteoclast activity and polarization of immune cells supporting tumor growth and immunosuppression. Recent studies signify the role of receptor activator of NF-κB ligand (RANKL) beyond skeletal pathology in breast cancer, including tumor growth and immunosuppression. By using an osteoprotegerin (OPG) variant, which we developed recently through protein engineering to uncouple TNF-related apoptosis-inducing ligand (TRAIL) binding, this study established the potential of a cell-based OPGY49R therapy for both bone damage and immunosuppression in an immunocompetent mouse model of orthotopic and metastatic breast cancers. In combination with agonistic death receptor (DR5) activation, the OPGY49R therapy significantly increased both bone remolding and long-term antitumor immunity, protecting mice from breast cancer relapse and osteolytic pathology. With limitations, cost, and toxicity issues associated with the use of denosumab, bisphosphonates, and chemotherapy for bone metastatic disease, use of OPGY49R combination could offer a viable alternate therapeutic approach.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Reading Ashton
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan A Hensel
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Vinayak Khattar
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Wang
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessy S Deshane
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | | |
Collapse
|
18
|
Prognostication of a 13-immune-related-gene signature in patients with early triple-negative breast cancer. Breast Cancer Res Treat 2020; 184:325-334. [PMID: 32812178 DOI: 10.1007/s10549-020-05874-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE We investigated the expression profiles of immune genes in patients with triple-negative breast cancer (TNBC) to identify the prognostic value of immune genes and their clinical implications. METHODS NanoString nCounter Analysis of 770 immune-related genes was used to measure immune gene expression in patients with TNBC who underwent curative surgery followed by adjuvant chemotherapy at Samsung Medical Center between 2000 and 2004. Statistical analyses were conducted to identify the associations between gene expression and distant recurrence-free survival (DRFS). RESULTS Of 1189 patients who underwent curative BC surgery, 200 TNBC patients were included and stage was the only clinical factor predictive of DRFS. In terms of immune genes, 155 of 770 genes were associated with DRFS (p < 0.01). Further multivariate analysis revealed that 13 genes, CD1B, CD53, CT45A1, GTF3C1, IL11RA, IL1RN, LRRN3, MAPK1, NEFL, PRKCE, PTPRC, SPACA3 and TNFSF11, were associated with patient prognosis (p < 0.05). The prognostic value of stage and expression levels of 13 immune genes was analyzed and the area under the receiver operating characteristic curve (AUC) was 0.923. Based on the AUC, we divided patients into three genetic risk groups and DRFS rate was significantly different according to genetic risk groups, even in the same stage (p < 0.001). CONCLUSIONS In this study, a 13-gene expression profile in combination with stage precisely predicted distant recurrence of early TNBC. Therefore, this 13-immune-gene signature could help predict TNBC prognosis and provide guidance for treatment as well as the opportunity to develop new targets for immunotherapy in TNBC patients.
Collapse
|
19
|
Sereno M, Videira M, Wilhelm I, Krizbai IA, Brito MA. miRNAs in Health and Disease: A Focus on the Breast Cancer Metastatic Cascade towards the Brain. Cells 2020; 9:E1790. [PMID: 32731349 PMCID: PMC7463742 DOI: 10.3390/cells9081790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that mainly act by binding to target genes to regulate their expression. Due to the multitude of genes regulated by miRNAs they have been subject of extensive research in the past few years. This state-of-the-art review summarizes the current knowledge about miRNAs and illustrates their role as powerful regulators of physiological processes. Moreover, it highlights their aberrant expression in disease, including specific cancer types and the differential hosting-metastases preferences that influence several steps of tumorigenesis. Considering the incidence of breast cancer and that the metastatic disease is presently the major cause of death in women, emphasis is put in the role of miRNAs in breast cancer and in the regulation of the different steps of the metastatic cascade. Furthermore, we depict their involvement in the cascade of events underlying breast cancer brain metastasis formation and development. Collectively, this review shall contribute to a better understanding of the uniqueness of the biologic roles of miRNAs in these processes, to the awareness of miRNAs as new and reliable biomarkers and/or of therapeutic targets, which can change the landscape of a poor prognosis and low survival rates condition of advanced breast cancer patients.
Collapse
Affiliation(s)
- Marta Sereno
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
| | - Mafalda Videira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Galenic Pharmacy and Pharmaceutical Technology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - István A. Krizbai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary, Temesvári krt. 62, 6726 Szeged, Hungary; (I.W.); (I.A.K.)
- Institute of Life Sciences, Vasile Goldiş Western University of Arad, Arad, Romania, Str. Liviu Rebreanu 86, 310414 Arad, Romania
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (M.S.); (M.V.)
- Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
20
|
Choi JY, Lee YS, Shim DM, Seo SW. Effect of GNAQ alteration on RANKL-induced osteoclastogenesis in human non-small-cell lung cancer. Bone Joint Res 2020; 9:29-35. [PMID: 32435453 PMCID: PMC7229297 DOI: 10.1302/2046-3758.91.bjr-2019-0085.r2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims Receptor activator of nuclear factor-κB ligand (RANKL) is a key molecule that is expressed in bone stromal cells and is associated with metastasis and poor prognosis in many cancers. However, cancer cells that directly express RANKL have yet to be unveiled. The current study sought to evaluate how a single subunit of G protein, guanine nucleotide-binding protein G(q) subunit alpha (GNAQ), transforms cancer cells into RANKL-expressing cancer cells. Methods We investigated the specific role of GNAQ using GNAQ wild-type cell lines (non-small-cell lung cancer cell lines; A549 cell lines), GNAQ knockdown cell lines, and patient-derived cancer cells. We evaluated GNAQ, RANKL, macrophage colony-stimulating factor (M-CSF), nuclear transcription factor-κB (NF-κB), inhibitor of NF-κB (IκB), and protein kinase B (Akt) signalling in the GNAQ wild-type and the GNAQ-knockdown cells. Osteoclastogenesis was also evaluated in both cell lines. Results In the GNAQ-knockdown cells, RANKL expression was significantly upregulated (p < 0.001). The expression levels of M-CSF were also significantly increased in the GNAQ-knockdown cells compared with control cells (p < 0.001). GNAQ knockdown cells were highly sensitive to tumour necrosis factor alpha (TNF-α) and showed significant activation of the NF-κB pathway. The expression levels of RANKL were markedly increased in GNAQ mutant compared with GNAQ wild-type in patient-derived tumour tissues. Conclusion The present study reveals that the alterations of GNAQ activate NF-κB pathway in cancers, which increase RANKL and M-CSF expression and induce osteoclastogenesis in cancers. Cite this article:Bone Joint Res. 2020;9(1):29–35.
Collapse
Affiliation(s)
- Ji-Yoon Choi
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Yun Sun Lee
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Da Mi Shim
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Sung Wook Seo
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
21
|
Franco Machado J, Machuqueiro M, Marques F, Robalo MP, Piedade MFM, Garcia MH, Correia JDG, Morais TS. Novel "ruthenium cyclopentadienyl"-peptide conjugate complexes against human FGFR(+) breast cancer. Dalton Trans 2020; 49:5974-5987. [PMID: 32314752 DOI: 10.1039/d0dt00955e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this work we explored the possibility of improving the selectivity of a cytotoxic Ru complex [RuCp(PPh3)(2,2'-bipy)][CF3SO3] (where Cp = η5-cyclopentadienyl) TM34 towards FGFR(+) breast cancer cells. Molecular dynamics (MD) simulations of TM34 in a phosphatidylcholine membrane model pinpointed the cyclopentadienyl group as a favorable derivatization position for the peptide conjugation approach. Three new Ru(ii) complexes presenting a functionalized η5-cyclopentadienyl were synthesized, namely [Ru(η5-C5H4COOH)(2,2'-bipy)(PPh3)][CF3SO3] (TM281) and its precursors, [Ru(η5-C5H4COOCH2CH3)(η2-2,2'-bipy)(PPh3)][CF3SO3] (3) and [Ru(η5-C5H4COOCH2CH3)(PPh3)2Cl] (2). Complex TM281 was prepared by the hydrolysis of the ethyl ester group appended to the η5-cyclopentadienyl ligand of complex 3 with K2CO3 in water/acetonitrile, followed by mild protonation using an ion exchange resin. The newly synthesized complexes were fully characterized by NMR, FTIR and UV-vis spectroscopic techniques. Also, electrochemical studies were carried out by means of cyclic voltammetry in order to evaluate the stability of the compounds. Single crystal X-ray diffraction studies were carried out for compounds 3 and TM281 which crystallized in the monoclinic system, space group P21/n. The unprecedented synthesis and characterization of three half-sandwich ruthenium(ii)-cyclopentadienyl peptide conjugates and their preliminary biological evaluation against human FGFR(+) and FGFR(-) breast cancer cells are also reported.
Collapse
Affiliation(s)
- João Franco Machado
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
YILDIZ ŞÜKRAN, AL SAADONI HANI, ALIUSTAOGLU MEHMET, ERGEN ARZU, PENCE SADRETTIN. DETERMINATION OF RANK, RANKL AND OPG GENE POLYMORPHISMS IN TRIPLE-NEGATIVE BREAST CANCER PATIENTS AND INVESTIGATION OF ITS EFFECT ON BONE METASTASIS. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2019. [DOI: 10.33808/clinexphealthsci.533548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Zoi I, Karamouzis MV, Xingi E, Sarantis P, Thomaidou D, Lembessis P, Theocharis S, Papavassiliou AG. Combining RANK/RANKL and ERBB-2 targeting as a novel strategy in ERBB-2-positive breast carcinomas. Breast Cancer Res 2019; 21:132. [PMID: 31796128 PMCID: PMC6892243 DOI: 10.1186/s13058-019-1226-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND ERBB-2 is overexpressed in about 20% of breast cancers (BCs), indicating poor prognosis. The receptor activator of nuclear factor-κB (RANK) pathway is implicated in ERBB-2 (+) BC. The purpose of this study was to elucidate the underlying molecular mechanism of this interaction and the beneficial impact of dual targeting of RANK and ERBB-2 pathways. METHODS We used SKBR3, MCF7, MDA-MB-453, and BT-474 human BC cell lines. We examined RANK and RANKL expression using RT-PCR, Western blot, and immunofluorescence. The evaluation of RANK expression in a cohort of BC patients was performed using immunohistochemistry. The interaction between RANK and ERBB family members was detected using proximity ligation assay (PLA), which enables the visualization of interacting proteins. We used inhibitors of both pathways [trastuzumab (T), pertuzumab (P), denosumab (D)]. NF-κB pathway activation was studied using Western blot. Cell growth and viability was evaluated using XTT, flow cytometry, and clonogenic assay. For cell migration evaluation, scratch assay was performed. Data were analyzed by one-way ANOVA. RESULTS Cell lines express RANK and RANKL. RANK immunostaining was also detected in human BC tissue samples. RANK receptor dimerizes with ERBB family members. RANK/ERBB-2 dimer number seems to be associated with ERBB-2 expression (SKBR3, 5.4; BT-474, 8.2; MCF7, 0.7; MDA-MB-453, 0.3). RANK/ERBB-2 dimers were decreased in the presence of the inhibitors D, T, and P, while they were increased after RANKL (R) treatment in SKBR3 (m, 5.4; D, 1.2; T, 1.9; DT, 0.6; TP, 1; DTP, 0.4; R, 11.8) and BT-474 (m, 8.2; D, 3.1; T, 4.3; DT, 0.7; TP, 3.4; DTP, 3.2; R, 11.6). Combination targeting of SKBR3 further decreased NF-κB pathway activation compared to single targeting. In SKBR3, RANKL and ERBB-2 blockage resulted in reduced cell proliferation, increased apoptosis, and lower metastatic potential compared to mock cells (m) and reversed values in RANKL presence. The combination treatment of SKBR3 with D, T, and P had an advantage in functional traits compared to single targeting. Denosumab suppressed NF-κB signaling and diminished proliferation rate in MDA-MB-453 cells. MCF7 did not correspond to inhibitors. CONCLUSIONS The results indicate a novel physical and molecular association between ERBB-2 and RANK pathways that affects ERBB-2 (+) BC growth. We also present data suggesting that the combination of anti-ERBB-2 agents and RANKL inhibitors have a potential direct anti-tumor effect and should be further tested in certain BC patients.
Collapse
Affiliation(s)
- Ilianna Zoi
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | - Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
- First Department of Internal Medicine, 'Laiko' Hospital, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Evangelia Xingi
- Light Microscopy Unit, Hellenic Pasteur Institute, Athens, Greece
| | - Panagiotis Sarantis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | | | - Panayiotis Lembessis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Stamatios Theocharis
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527, Athens, Greece.
| |
Collapse
|
24
|
Gu Y, Wang W, Wang X, Xie H, Ye X, Shu P. Integrated network analysis identifies hsa-miR-4756-3p as a regulator of FOXM1 in Triple Negative Breast Cancer. Sci Rep 2019; 9:13830. [PMID: 31554904 PMCID: PMC6761188 DOI: 10.1038/s41598-019-50248-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/09/2019] [Indexed: 01/27/2023] Open
Abstract
Both aberrantly expressed mRNAs and micro(mi)RNAs play important roles in cancer cell function, which makes integration analysis difficult. In this study, we first applied master regulator analysisalgorithm and confirmed hsa-miR-4756-3p as a candidate miRNA in triple negative breast cancer (TNBC) patients; hsa-miR-4756-3p could regulate TNBC cell line apoptosis, proliferation, migration, and cell cycle as well as suppress TGF-β1 signalling andtumour growth. In TNBC, forkhead box protein M1 (FOXM1)was found to be an hsa-miR-4756-3p target gene, and FOXM1 knockout completely inhibited hsa-miR-4756-3p-induced cell migration and metastasis, TGF-β1 signalling, and epithelial mesenchymal signal activation, which indicated that hsa-miR-4756-3p functions via the FOXM1-TGFβ1-EMT axis.
Collapse
Affiliation(s)
- Yuanliang Gu
- Department of prevention and health care, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Wenjuan Wang
- Department of Hematology& Oncology, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of, Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Xuyao Wang
- Molecluar Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Hongyi Xie
- Molecluar Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Xiaojuan Ye
- Department of Hematology& Oncology, the People's Hospital of Beilun District, Beilun Branch Hospital of the First Affiliated Hospital of Medical School of, Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China
| | - Peng Shu
- Molecluar Laboratory, the People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Medical School Zhejiang University, 1288 Lushan East Road, Beilun District, Ningbo, 315800, China.
| |
Collapse
|
25
|
Infante M, Fabi A, Cognetti F, Gorini S, Caprio M, Fabbri A. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res 2019; 38:12. [PMID: 30621730 PMCID: PMC6325760 DOI: 10.1186/s13046-018-1001-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
RANKL/RANK/OPG system consists of three essential signaling molecules: i) the receptor activator of nuclear factor (NF)-kB-ligand (RANKL), ii) the receptor activator of NF-kB (RANK), and iii) the soluble decoy receptor osteoprotegerin (OPG). Although this system is critical for the regulation of osteoclast differentiation/activation and calcium release from the skeleton, different studies have elucidated its specific role in mammary gland physiology and hormone-driven epithelial proliferation during pregnancy. Of note, several data suggest that progesterone induces mammary RANKL expression in mice and humans. In turn, RANKL controls cell proliferation in breast epithelium under physiological conditions typically associated with higher serum progesterone levels, such as luteal phase of the menstrual cycle and pregnancy. Hence, RANKL/RANK system can be regarded as a major downstream mediator of progesterone-driven mammary epithelial cells proliferation, potentially contributing to breast cancer initiation and progression. Expression of RANKL, RANK, and OPG has been detected in breast cancer cell lines and in human primary breast cancers. To date, dysregulation of RANKL/RANK/OPG system at the skeletal level has been widely documented in the context of metastatic bone disease. In fact, RANKL inhibition through the RANKL-blocking human monoclonal antibody denosumab represents a well-established therapeutic option to prevent skeletal-related events in metastatic bone disease and adjuvant therapy-induced bone loss in breast cancer. On the other hand, the exact role of OPG in breast tumorigenesis is still unclear. This review focuses on molecular mechanisms linking RANKL/RANK/OPG system to mammary tumorigenesis, highlighting pre-clinical and clinical evidence for the potential efficacy of RANKL inhibition as a prevention strategy and adjuvant therapy in breast cancer settings.
Collapse
Affiliation(s)
- Marco Infante
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University Tor Vergata, Via San Nemesio, 21, 00145 Rome, Italy
| | - Alessandra Fabi
- Division of Medical Oncology 1, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Francesco Cognetti
- Division of Medical Oncology 1, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy
| | - Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166 Rome, Italy
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta, 247, 00166 Rome, Italy
| | - Andrea Fabbri
- Unit of Endocrinology and Metabolic Diseases, Department of Systems Medicine, CTO A. Alesini Hospital, ASL Roma 2, University Tor Vergata, Via San Nemesio, 21, 00145 Rome, Italy
| |
Collapse
|
26
|
Rachner TD, Kasimir-Bauer S, Göbel A, Erdmann K, Hoffmann O, Browne A, Wimberger P, Rauner M, Hofbauer LC, Kimmig R, Bittner AK. Prognostic Value of RANKL/OPG Serum Levels and Disseminated Tumor Cells in Nonmetastatic Breast Cancer. Clin Cancer Res 2018; 25:1369-1378. [PMID: 30425091 DOI: 10.1158/1078-0432.ccr-18-2482] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/28/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE We assessed serum concentrations of the receptor activator of NFκB ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), two proteins implicated in the development and progression of breast cancer, in 509 patients with primary, nonmetastatic breast cancer. Then the results were evaluated with regards to the occurrence of bone metastases, the presence of disseminated tumor cells (DTC) in the bone marrow, survival, and risk of developing metastatic disease. EXPERIMENTAL DESIGN Before surgery, two bone marrow aspirates were analyzed for DTC using density centrifugation followed by immunocytochemistry (pan-cytokeratin antibody A45-B/B3). RANKL and OPG levels in the serum were measured by ELISA. RESULTS RANKL levels were significantly lower in women >60 years (P < 0.0001) and RANKL/OPG ratios higher in lymph node-positive patients (P < 0.05). High OPG serum levels were associated with a higher risk of death from breast cancer [HR 1.94; 95% confidence interval (CI) 1.23-3.07; P = 0.005] and OPG was an independent prognostic marker for breast cancer-specific survival (BCSS; multivariate analyses, P = 0.035). RANKL levels were 33% higher (P < 0.0001) in DTCpos patients (41%), whereas high levels were associated with a significantly better BCSS in DTCneg patients as compared with low levels (HR 0.524; 95% CI 0.30-0.95; P = 0.04). RANKL serum levels were significantly increased in patients who developed bone metastases (P = 0.01) and patients within the highest quartile of RANKL had a significantly increased risk of developing bone metastases compared with those in the lowest (HR 4.62; 95% CI 1.49-14.34; P = 0.03). CONCLUSIONS These findings warrant further investigation as they provide a rationale for novel diagnostic or therapeutic approaches.
Collapse
Affiliation(s)
- Tilman D Rachner
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany. .,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andy Göbel
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany.,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kati Erdmann
- Department of Urology, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany and Helmholtz Association/Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrew Browne
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany.,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pauline Wimberger
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Gynecology and Obstetrics, TU Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany.,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Division of Endocrinology and Metabolic Bone Diseases, TU Dresden, Dresden, Germany.,Center for Healthy Ageing, Department of Medicine III, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Sarink D, Schock H, Johnson T, Chang-Claude J, Overvad K, Olsen A, Tjønneland A, Arveux P, Fournier A, Kvaskoff M, Boeing H, Karakatsani A, Trichopoulou A, La Vecchia C, Masala G, Agnoli C, Panico S, Tumino R, Sacerdote C, van Gils CH, Peeters PHM, Weiderpass E, Agudo A, Rodríguez-Barranco M, Huerta JM, Ardanaz E, Gil L, Kaw KT, Schmidt JA, Dossus L, His M, Aune D, Riboli E, Kaaks R, Fortner RT. Receptor activator of nuclear factor kB ligand, osteoprotegerin, and risk of death following a breast cancer diagnosis: results from the EPIC cohort. BMC Cancer 2018; 18:1010. [PMID: 30348163 PMCID: PMC6196438 DOI: 10.1186/s12885-018-4887-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Receptor activator of nuclear factor kappa-B (RANK)-signaling is involved in tumor growth and spread in experimental models. Binding of RANK ligand (RANKL) to RANK activates signaling, which is inhibited by osteoprotegerin (OPG). We have previously shown that circulating soluble RANKL (sRANKL) and OPG are associated with breast cancer risk. Here we extend these findings to provide the first data on pre-diagnosis concentrations of sRANKL and OPG and risk of breast cancer-specific and overall mortality after a breast cancer diagnosis. METHODS Two thousand six pre- and postmenopausal women with incident invasive breast cancer (1620 (81%) with ER+ disease) participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort were followed-up for mortality. Pre-diagnosis concentrations of sRANKL and OPG were quantified in baseline serum samples using an enzyme-linked immunosorbent assay and electrochemiluminescent assay, respectively. Hazard ratios (HRs) and 95% confidence intervals (CIs) for breast cancer-specific and overall mortality were calculated using Cox proportional hazards regression models. RESULTS Especially in women with ER+ disease, higher circulating OPG concentrations were associated with higher risk of breast cancer-specific (quintile 5 vs 1 HR 1.77 [CI 1.03, 3.04]; ptrend 0.10) and overall mortality (q5 vs 1 HR 1.39 [CI 0.94, 2.05]; ptrend 0.02). sRANKL and the sRANKL/OPG ratio were not associated with mortality following a breast cancer diagnosis. CONCLUSIONS High pre-diagnosis endogenous concentrations of OPG, the decoy receptor for RANKL, were associated with increased risk of death after a breast cancer diagnosis, especially in those with ER+ disease. These results need to be confirmed in well-characterized patient cohorts.
Collapse
Affiliation(s)
- Danja Sarink
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Helena Schock
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kim Overvad
- Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Patrick Arveux
- Breast and Gynaecologic Cancer Registry of Côte d’Or, Georges-François Leclerc Comprehensive Cancer Care Centre, Dijon, France
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Agnès Fournier
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Marina Kvaskoff
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- 2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, “ATTIKON” University Hospital, Haidari, Athens, Greece
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute – ISP, Florence, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento di Medicine Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, “Civic M.P.Arezzo” Hospital, Azienda Sanitaria Provinciale, Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Carla H. van Gils
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Petra H. M. Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology-IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Miguel Rodríguez-Barranco
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - José María Huerta
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Eva Ardanaz
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Leire Gil
- Public Health Division of Gipuzkoa, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Kay Tee Kaw
- Cancer Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Julie A. Schmidt
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Laure Dossus
- International Agency for Research on Cancer, Lyon, France
| | - Mathilde His
- International Agency for Research on Cancer, Lyon, France
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Renée T. Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Mohar-Betancourt A, Alvarado-Miranda A, Torres-Domínguez JA, Cabrera P, Lara Medina F, Villarreal-Gómez YS, Reynoso-Noverón N. Factores pronósticos en pacientes con cáncer de mama y metástasis cerebral como primer sitio de recurrencia. ACTA ACUST UNITED AC 2018; 60:141-150. [DOI: 10.21149/9082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/11/2018] [Indexed: 01/08/2023]
Abstract
Objetivo. Evaluar los factores pronósticos (características clínico-patológicas y tratamientos) en las pacientes con cáncer de mama y metástasis al sistema nervioso central (SNC) como primer sitio de afección. Material y métodos. Cohorte retrospectiva, formada por 125 pacientes con cáncer de mama atendidas en el Instituto Nacional de Cancerología durante 2007-2015, quienes presentaron afección en el SNC como primer sitio de metástasis. A través del método Kaplan-Meier y tablas de vida se estimó la supervivencia global. El modelo de riesgos proporcionales de Cox fue utilizado para determinar los factores pronósticos. Resultados. La mediana de supervivencia global fue de 14.2 meses (IC95% 11.8-26.9). Pacientes clasificadas por inmunohistoquímica como triple negativo (TN) presentaron tiempos de supervivencia más cortos (p<0.004) y con dos veces más riesgo de fallecer, en comparación con los otros inmunofenotipos (HR= 2.77; IC95% 1.10-6.99); asimismo, se identificó que un grado intermedio en la escala Scarff-Bloom-Richardson incrementa el riesgo de morir en pacientes con metástasis (HR=2.76; IC95% 1.17- 6.51). Conclusiones. La metástasis al SNC continúa siendo un factor de mal pronóstico que reduce la supervivencia y afecta la calidad de vida. Se recomienda vigilar puntualmente la presencia de manifestaciones clínicas neurológicas durante el seguimiento, para una rápida intervención. Las pacientes TN tienen peor pronóstico, y las HER2+ (es decir, con resultado positivo para el receptor 2 del factor de crecimiento humano epidérmico), mejor control a mediano plazo.
Collapse
|
29
|
Effect of the normal mammary differentiation regulator ELF5 upon clinical outcomes of triple negative breast cancers patients. Breast Cancer 2018; 25:489-496. [PMID: 29396764 DOI: 10.1007/s12282-018-0842-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/28/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Elf5 is a transcription factor previously shown to be involved in regulating cell differentiation in both normal and pathological breast tissues. Pertinently, Elf5 was reported to interact with the FOXA1 transcription factor, a pivotal regulatory factor in a subset of AR overexpressing triple negative cancer (TNBC) cases. METHODS We examined the correlation among AR, FOXA1, and Elf5 expression in a series of TNBC cases. The cases were retrieved from surgical pathological files of Tohoku University Hospital Japan and consisted of 60 cases operated between the year 1999 and 2007. An additional cohort cases of 51 TNBC ductal carcinoma in situ was used to compare invasive and non-invasive TNBC. RESULTS In our cohort, 47% of all carcinomas were positive for Elf5, with a significantly higher proportion of Elf5 positive cases occurring in the younger age groups (p = 0.0061). Elf5 immunoreactivity was not associated with any other clinicopathological factors examined in this study. However, Elf5 expression was associated with decreased overall and disease-free survival of the patients (Peto-Peto modification of Gehan-Wilcoxon test, OS p = 0.132, DFS p = 0.1 (LI cutoff 10%); OS p = 0.038, DFS p = 0.021 (LI cutoff 50%)). Of particular interest, its effects on survival were more pronounced in the EGFR-/CK5/6- (non-basal surrogate) than the EGFR+ and/or CK5/6+ (basal-surrogate) subtype of TNBC. CONCLUSIONS Elf5 is present in TNBC and its status was significantly correlated with overall survival of the patients. Further studies examining possible interactions between Elf5 and other factors in TNBC could contribute to disentangling TNBC biology.
Collapse
|
30
|
Rao S, Cronin SJF, Sigl V, Penninger JM. RANKL and RANK: From Mammalian Physiology to Cancer Treatment. Trends Cell Biol 2017; 28:213-223. [PMID: 29241686 DOI: 10.1016/j.tcb.2017.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
The tumor necrosis factor (TNF) receptor RANK (TNFRSF11A) and its ligand RANKL (TNFSF11) regulate osteoclast development and bone metabolism. They also control stem cell expansion and proliferation of mammary epithelial cells via the sex hormone progesterone. As such, RANKL and RANK have been implicated in the onset of hormone-induced breast cancer. Recently, RANK/RANKL were identified as crucial regulators for BRCA1 mutation-driven breast cancer. Current prevention strategies for BRCA1 mutation carriers are associated with wide-ranging risks; therefore, the search for alternative, non-invasive strategies is of paramount importance. We summarize here the functions of the RANKL/RANK pathway in mammalian physiology and focus on its recently uncovered role in breast cancer. We propose that anti-RANKL therapy should be pursued as a preventative strategy for breast cancer.
Collapse
Affiliation(s)
- Shuan Rao
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Dr. Bohr Gasse 3, Vienna, Austria; These authors contributed equally to this work
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Dr. Bohr Gasse 3, Vienna, Austria; These authors contributed equally to this work
| | - Verena Sigl
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Dr. Bohr Gasse 3, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Dr. Bohr Gasse 3, Vienna, Austria.
| |
Collapse
|
31
|
Effect of exosome biomarkers for diagnosis and prognosis of breast cancer patients. Clin Transl Oncol 2017; 20:906-911. [PMID: 29143228 DOI: 10.1007/s12094-017-1805-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Exosomes are gradually detected as an indicator for diagnosis and prognosis of breast cancer in clinic and a systematic review was conducted. METHODS A search for clinical studies published before July 1, 2017 was performed. Methods of exosome purification and identification from all studies were extracted. For diagnosis evaluation, the comparison of exosome biomarkers expression between breast cancer patients and healthy women was obtained; for prognosis prediction, the correlation between exosome biomarkers expression and chemotherapy resistance, overall survival (OS), disease-free survival (DFS), recurrence and metastasis of breast cancer was also extracted. RESULTS A total of 11 studies with 921 breast cancer patients were included. Ultracentrifugation is the most frequent method to purify exosomes and transmission electron microscopy is commonly used to identify exosomes. Exosome biomarkers (such as HER2, CD47, Del-1, miR-1246 and miR-21) in breast cancer patients are significantly higher than those in healthy controls, exosomal GSTP1 and TRPC5 are related to chemotherapy resistance, exosome-carrying TRPC5, NANOG, NEUROD1, HTR7, KISS1R and HOXC are correlated to PFS, DFS or OS, and some exosomal proteins (HER2, KDR, CD49d, CXCR4 and CD44) as well as miRNAs (miR-340-5p, miR-17-5p, miR-130a-3p, miR-93-5p) are associated with tumor recurrence or distant organ metastasis. CONCLUSIONS Exosome biomarkers can be used for early diagnosis and prognosis of breast cancer patients in clinic.
Collapse
|
32
|
Sisay M, Mengistu G, Edessa D. The RANK/RANKL/OPG system in tumorigenesis and metastasis of cancer stem cell: potential targets for anticancer therapy. Onco Targets Ther 2017; 10:3801-3810. [PMID: 28794644 PMCID: PMC5538694 DOI: 10.2147/ott.s135867] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The molecular triad involving receptor activator of nuclear factor kβ (RANK)/RANK ligand (RANKL)/osteoprotegerin cytokine system has been well implicated in several physiological and pathological processes including bone metabolism, mammary gland development, regulation of the immune function, tumorigenesis and metastasis of cancer stem cell, thermoregulation, and vascular calcification. However, this review aimed to summarize several original and up-to-date articles focusing on the role of this signaling system in cancer cell development and metastasis as well as potential therapeutic agents targeting any of the three tumor necrotic factor super family proteins and/or their downstream signaling pathways. The RANK/RANKL axis has direct effects on tumor cell development. The system is well involved in the development of several primary and secondary tumors including breast cancer, prostate cancer, bone tumors, and leukemia. The signaling of this triad system has also been linked to tumor invasiveness in the advanced stage. Bone is by far the most common site of cancer metastasis. Several therapeutic agents targeting this system have been developed. Among them, a monoclonal antibody, denosumab, was clinically approved for the treatment of osteoporosis and cancer-related diseases.
Collapse
Affiliation(s)
| | | | - Dumessa Edessa
- Department of Clinical Pharmacy, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Eastern Ethiopia
| |
Collapse
|