1
|
Mora J, Chan GCF, Morgenstern DA, Amoroso L, Nysom K, Faber J, Wingerter A, Bear MK, Rubio-San-Simon A, de Las Heras BM, Tornøe K, Düring M, Kushner BH. The anti-GD2 monoclonal antibody naxitamab plus GM-CSF for relapsed or refractory high-risk neuroblastoma: a phase 2 clinical trial. Nat Commun 2025; 16:1636. [PMID: 39952926 PMCID: PMC11828896 DOI: 10.1038/s41467-025-56619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/20/2025] [Indexed: 02/17/2025] Open
Abstract
In this single-arm, non-randomized, phase 2 trial (NCT03363373), 74 patients with relapsed/refractory high-risk neuroblastoma and residual disease in bone/bone marrow (BM) received naxitamab on Days 1, 3, and 5 (3 mg/kg/day) with granulocyte-macrophage colony-stimulating factor (Days -4 to 5) every 4 weeks, until complete response (CR) or partial response (PR) followed by 5 additional cycles every 4 weeks. Primary endpoint in the prespecified interim analysis was overall response (2017 International Neuroblastoma Response Criteria). Among 26 responders (CR + PR) in the efficacy population (N = 52), 58% had refractory disease, and 42% had relapsed disease. Overall response rate (ORR) was 50% (95% CI: 36-64%), and CR and PR were observed in 38% and 12%, respectively. With the 95% CI lower limit for ORR exceeding 20%, the primary endpoint of overall response was met. Patients with evaluable bone disease had a 58% (29/50) bone compartment response (CR, 40%; PR, 18%). BM compartment response was 74% (17/23; CR, 74%). One-year overall survival and progression-free survival (secondary endpoints) were 93% (95% CI: 80-98%) and 35% (95% CI: 16-54%), respectively. Naxitamab-related Grade 3 adverse events included hypotension (58%) and pain (54%). Overall, naxitamab demonstrated clinically meaningful efficacy with manageable safety in patients with residual neuroblastoma in bone/BM.
Collapse
Affiliation(s)
- Jaume Mora
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Barcelona, Spain.
| | - Godfrey C F Chan
- Queen Mary Hospital & Hong Kong Children's Hospital, Pok Fu Lam, Hong Kong
- The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | - Loredana Amoroso
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Maternal Infantile and Urological Sciences, Pediatric Onco-Hematology Unit, Policlinico Umberto I, Sapienza, University of Rome, Rome, Italy
| | - Karsten Nysom
- Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jörg Faber
- Department of Pediatric Hematology/Oncology/Hemostaseology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arthur Wingerter
- Department of Pediatric Hematology/Oncology/Hemostaseology, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
2
|
Purkayastha S, Shalu H, Gutman D, Holodny A, Modak S, Basu E, Kushner B, Kramer K, Haque S, Stember JN. Evolutionary Strategies AI Addresses Multiple Technical Challenges in Deep Learning Deployment: Proof-of-Principle Demonstration for Neuroblastoma Brain Metastasis Detection. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2920-2930. [PMID: 38886289 PMCID: PMC11612045 DOI: 10.1007/s10278-024-01165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Two significant obstacles hinder the advancement of Radiology AI. The first is the challenge of overfitting, where small training data sets can result in unreliable outcomes. The second challenge is the need for more generalizability, the lack of which creates difficulties in implementing the technology across various institutions and practices. A recent innovation, deep neuroevolution (DNE), has been introduced to tackle the overfitting issue by training on small data sets and producing accurate predictions. However, the generalizability of DNE has yet to be proven. This paper strives to overcome this barrier by demonstrating that DNE can achieve satisfactory results in diverse external validation sets. The main innovation of the work is thus showing that DNE can generalize to varied outside data. Our example use case is predicting brain metastasis from neuroblastoma, emphasizing the importance of AI with limited data sets. Despite image collection and labeling advancements, rare diseases will always constrain data availability. We optimized a convolutional neural network (CNN) with DNE to demonstrate generalizability. We trained the CNN with 60 MRI images and tested it on a separate diverse collection of images from over 50 institutions. For comparison, we also trained with the more traditional stochastic gradient descent (SGD) method, with the two variants of (1) training from scratch and (2) transfer learning. Our results show that DNE demonstrates excellent generalizability with 97% accuracy on the heterogeneous testing set, while neither form of SGD could reach 60% accuracy. DNE's ability to generalize from small training sets to external and diverse testing sets suggests that it or similar approaches may play an integral role in improving the clinical performance of AI.
Collapse
Affiliation(s)
- Subhanik Purkayastha
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hrithwik Shalu
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India, 600036
| | - David Gutman
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ellen Basu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Brian Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sofia Haque
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joseph N Stember
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Zhao JD, Lu XY, Chen TP, Duan XL, Zuo W, Sai K, Zhu LR, Gao Q. Development and validation of a novel nomogram for predicting overall survival patients with neuroblastoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108321. [PMID: 38598875 DOI: 10.1016/j.ejso.2024.108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE The aim of this study was to develop a nomogram specially for predicting overall survival (OS) for Chinese patients with neuroblastoma (NB). METHODS Patients with pathologically confirmed NB who were newly diagnosed and received treatments at our hospital from October 2013 to October 2021 were retrospectively reviewed. The nomogram for OS were built based on Cox regression analysis. The validation of the prognostic model was evaluated by concordance index (C-index), calibration curves, and decision curve analyses (DCAs). RESULTS A total of 254 patients with NB were included in this study. They were randomly divided into a training cohort (n = 178) and a validation cohort (n = 76) at a ratio of 7:3. Multivariate analyses revealed that prognostic variables significantly related to the OS were age at diagnosis, bone metastasis, hepatic metastasis, INSS stage, MYCN status and DNA ploidy. The nomogram was constructed based on above 6 factors. The C-index values of the nomogram for predicting 3-year and 5-year OS were 0.926 and 0.964, respectively. The calibration curves of the nomogram showed good consistency between nomogram prediction and actual survival. The DCAs showed great clinical usefulness of the nomograms. Furthermore, patients with low-risk identified by our nomogram had much higher OS than those with high-risk (p < 0.001). CONCLUSION The nomogram we constructed exhibited good predictive performance and could be used to assist clinicians in their decision-making process.
Collapse
Affiliation(s)
- Jin-du Zhao
- Department of Oncology Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Xian-Ying Lu
- Department of Oncology Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Tian-Ping Chen
- Department of Hematology and Oncology, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Xian-Lun Duan
- Department of Thoracic Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Wei Zuo
- Department of Neonatal Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Kai Sai
- Department of Oncology Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Li-Ran Zhu
- Anhui Institute of Pediatric Research, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China
| | - Qun Gao
- Department of Oncology Surgery, Anhui Medical University Children's Medical Center, Anhui Provincial Children's Hospital, Hefei, 230051, Anhui, China.
| |
Collapse
|
4
|
Gorostegui M, Muñoz JP, Perez-Jaume S, Simao-Rafael M, Larrosa C, Garraus M, Salvador N, Lavarino C, Krauel L, Mañe S, Castañeda A, Mora J. Management of High-Risk Neuroblastoma with Soft-Tissue-Only Disease in the Era of Anti-GD2 Immunotherapy. Cancers (Basel) 2024; 16:1735. [PMID: 38730688 PMCID: PMC11083939 DOI: 10.3390/cancers16091735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Neuroblastoma presents with two patterns of disease: locoregional or systemic. The poor prognostic risk factors of locoregional neuroblastoma (LR-NB) include age, MYCN or MDM2-CDK4 amplification, 11q, histology, diploidy with ALK or TERT mutations, and ATRX aberrations. Anti-GD2 immunotherapy has significantly improved the outcome of high-risk (HR) NB and is mostly effective against osteomedullary minimal residual disease (MRD), but less so against soft tissue disease. The question is whether adding anti-GD2 monoclonal antibodies (mAbs) benefits patients with HR-NB compounded by only soft tissue. We reviewed 31 patients treated at SJD for HR-NB with no osteomedullary involvement at diagnosis. All tumors had molecular genetic features of HR-NB. The outcome after first-line treatment showed 25 (80.6%) patients achieving CR. Thirteen patients remain in continued CR, median follow-up 3.9 years. We analyzed whether adding anti-GD2 immunotherapy to first-line treatment had any prognostic significance. The EFS analysis using Cox models showed a HR of 0.20, p = 0.0054, and an 80% decrease in the risk of relapse in patients treated with anti-GD2 immunotherapy in the first line. Neither EFS nor OS were significantly different by CR status after first-line treatment. In conclusion, adding treatment with anti-GD2 mAbs at the stage of MRD helps prevent relapse that unequivocally portends poor survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jaume Mora
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (M.G.); (J.P.M.); (M.S.-R.); (C.L.); (M.G.); (N.S.); (C.L.); (L.K.); (S.M.); (A.C.)
| |
Collapse
|
5
|
Zhao X, Xu Z, Feng X. Clinical characteristics and prognoses in pediatric neuroblastoma with bone or liver metastasis: data from the SEER 2010-2019. BMC Pediatr 2024; 24:162. [PMID: 38454422 PMCID: PMC10921780 DOI: 10.1186/s12887-024-04570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND To investigate clinical characteristics, prognoses, and impacts of treatments on prognoses of neuroblastoma patients with bone or liver metastasis. METHODS This retrospective cohort study extracted data from the Surveillance, Epidemiology, and End Results (SEER) database 2010-2019. The outcomes were 3-year cancer-specific survival (CSS) and 5-year CSS. Multivariable COX risk proportional models were established to assess the association between metastasis types and CSS. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated. RESULTS Totally 425 patients with metastatic neuroblastoma were eligible for 3-year CSS analysis and 320 for 5-year CSS analysis. For 3-year follow-up, 62 (14.59%) patients had liver metastasis alone, 289 (0.68%) had bone metastasis alone, and 74 (17.41%) had both liver and bone metastasis. For 5-year follow-up, 44 (13.75%) patients had liver metastasis alone, 223 (69.69%) had bone metastasis alone, and 53 (16.56%) had both liver and bone metastasis. Significant differences were observed in age, tumor size, surgery for the primary site, chemotherapy, radiation, brain metastasis, lung metastasis, and vital status between patients with liver metastasis alone, bone metastasis alone, and both liver and bone metastasis (all P < 0.05). Compared with patients with liver metastasis alone, patients with bone metastasis alone (HR = 2.30, 95%CI: 1.10-4.82, P = 0.028) or both (HR = 2.35, 95%CI: 1.06-5.20, P = 0.035) had significantly poorer 3-year CSS; patients with bone metastasis alone (HR = 2.32, 95%CI: 1.14-4.70, P = 0.020) or both liver and bone metastasis (HR = 2.33, 95%CI: 1.07-5.07, P = 0.032) exhibited significantly worse 5-year CSS than those with liver metastasis alone. In patients with bone metastasis, those with chemotherapy had significantly better 3-year CSS than those without (HR = 0.24, 95%CI: 0.07-0.75, P = 0.014). Among patients with liver metastasis, receiving radiation was associated with significantly worse 3-year CSS (HR = 2.00, 95%CI: 1.05-3.81, P = 0.035). CONCLUSION Compared with patients with liver metastasis alone, those with bone metastasis alone or both had poorer 3- and 5-year CSS. For patients with bone metastasis, undergoing chemotherapy was associated with better 3-year CSS. For patients with liver metastasis, receiving radiation was associated with worse 3-year CSS.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Pediatric Surgery, Zhongshan City People's Hospital, No. 2 Sunwen East Road, Guangdong, Zhongshan, 528400, People's Republic of China
| | - Zhuofan Xu
- Department of Pediatric Surgery, Zhongshan City People's Hospital, No. 2 Sunwen East Road, Guangdong, Zhongshan, 528400, People's Republic of China
| | - Xiaochuan Feng
- Department of Pediatric Surgery, Zhongshan City People's Hospital, No. 2 Sunwen East Road, Guangdong, Zhongshan, 528400, People's Republic of China.
| |
Collapse
|
6
|
Trovillion EM, Michael M, Jordan CC, Brown L, Phillips K, Oesterheld J, Saulnier‐Sholler G. Guidelines for outpatient administration of naxitamab: Experience from Atrium Health Levine Children's Hospital. Cancer Med 2024; 13:e7045. [PMID: 38396377 PMCID: PMC10891358 DOI: 10.1002/cam4.7045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
AIM In this publication, we will share our experience of AE management, provide guidance for appropriate staffing, and the discuss the importance of patient education when treating patients with R/R HR neuroblastoma using naxitamab. BACKGROUND Approved treatments for patients with refractory and/or relapsed (R/R) high-risk (HR) neuroblastoma are limited, and there is a high unmet need for new treatment combinations. Naxitamab is a disialoganglioside 2 (GD2)-binding antibody that was approved by the United States Food and Drug Administration in 2020 for use in combination with granulocyte-macrophage colony-stimulating factor for the treatment of patients with R/R HR neuroblastoma in the bone and/or bone marrow and who have demonstrated a partial response, minor response, or stable disease with prior therapy. METHODS The pediatric oncology team at Atrium Health Levine Children's Hospital has successfully treated several patients with naxitamab both alone and in combination with chemotherapy, with no patients requiring unplanned overnight hospitalization and few severe adverse events (AEs). To accomplish this, the team at Levine Children's Hospital established standard operating procedures for naxitamab, a therapy defined as high acuity due to the potential for acute AEs with rapid onset and that benefits from continuous monitoring by a nursing team and a dedicated provider. CONCLUSIONS This will provide a practical guide for institutions offering naxitamab to their patients, and ensure successful administration of this high acuity treatment in the outpatient setting.
Collapse
Affiliation(s)
| | - Meghan Michael
- Atrium Health Levine Children's HospitalCharlotteNorth CarolinaUSA
| | | | - Lauren Brown
- Atrium Health Levine Children's HospitalCharlotteNorth CarolinaUSA
| | - Katlin Phillips
- Atrium Health Levine Children's HospitalCharlotteNorth CarolinaUSA
| | | | | |
Collapse
|
7
|
Odarenko KV, Salomatina OV, Chernikov IV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone Methyl Reduces the Stimulatory Effect of Leptin on the Aggressive Phenotype of Murine Neuro2a Neuroblastoma Cells via the MAPK/ERK1/2 Pathway. Pharmaceuticals (Basel) 2023; 16:1369. [PMID: 37895840 PMCID: PMC10610011 DOI: 10.3390/ph16101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the proven tumorigenic effect of leptin on epithelial-derived cancers, its impact on the aggressiveness of neural crest-derived cancers, notably neuroblastoma, remains largely unexplored. In our study, for the first time, transcriptome analysis of neuroblastoma tissue demonstrated that the level of leptin is elevated in neuroblastoma patients along with the severity of the disease and is inversely correlated with patient survival. The treatment of murine Neuro2a neuroblastoma cells with leptin significantly stimulated their proliferation and motility and reduced cell adhesion, thus rendering the phenotype of neuroblastoma cells more aggressive. Given the proven efficacy of cyanoenone-bearing semisynthetic triterpenoids in inhibiting the growth of neuroblastoma and preventing obesity in vivo, the effect of soloxolone methyl (SM) on leptin-stimulated Neuro2a cells was further investigated. We found that SM effectively abolished leptin-induced proliferation of Neuro2a cells by inducing G1/S cell cycle arrest and restored their adhesiveness to extracellular matrix (ECM) proteins to near control levels through the upregulation of vimentin, zonula occludens protein 1 (ZO-1), cell adhesion molecule L1 (L1cam), and neural cell adhesion molecule 1 (Ncam1). Moreover, SM significantly suppressed the leptin-associated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and ribosomal protein S6 kinase A1 (p90RSK), which are key kinases that ensure the survival and proliferation of cancer cells. Further molecular modeling studies demonstrated that the inhibitory effect of SM on the mitogen-activated protein kinase (MAPK)/ERK1/2 signaling pathway can be mediated by its direct interaction with ERK2 and its upstream regulators, son of sevenless homolog 1 (SOS) and mitogen-activated protein kinase kinase 1 (MEK1). Taken together, our findings in murine Neuro2a cells provide novel evidence of the stimulatory effect of leptin on the aggressiveness of neuroblastoma, which requires further detailed studies in human neuroblastoma cells and relevant animal models. The obtained results indicate that SM can be considered a promising drug candidate capable of reducing the impact of adipokines on tumor progression.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Ivan V. Chernikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (O.V.S.); (I.V.C.); (M.A.Z.)
| |
Collapse
|
8
|
Blavier L, Nakata R, Neviani P, Sharma K, Shimada H, Benedicto A, Matei I, Lyden D, DeClerck YA. The capture of extracellular vesicles endogenously released by xenotransplanted tumours induces an inflammatory reaction in the premetastatic niche. J Extracell Vesicles 2023; 12:e12326. [PMID: 37194998 PMCID: PMC10190125 DOI: 10.1002/jev2.12326] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/18/2023] [Indexed: 05/18/2023] Open
Abstract
The capture of tumour-derived extracellular vesicles (TEVs) by cells in the tumour microenvironment (TME) contributes to metastasis and notably to the formation of the pre-metastatic niche (PMN). However, due to the challenges associated with modelling release of small EVs in vivo, the kinetics of PMN formation in response to endogenously released TEVs have not been examined. Here, we have studied the endogenous release of TEVs in mice orthotopically implanted with metastatic human melanoma (MEL) and neuroblastoma (NB) cells releasing GFP-tagged EVs (GFTEVs) and their capture by host cells to demonstrate the active contribution of TEVs to metastasis. Human GFTEVs captured by mouse macrophages in vitro resulted in transfer of GFP vesicles and the human exosomal miR-1246. Mice orthotopically implanted with MEL or NB cells showed the presence of TEVs in the blood between 5 and 28 days after implantation. Moreover, kinetic analysis of TEV capture by resident cells relative to the arrival and outgrowth of TEV-producing tumour cells in metastatic organs demonstrated that the capture of TEVs by lung and liver cells precedes the homing of metastatic tumour cells, consistent with the critical roles of TEVs in PMN formation. Importantly, TEV capture at future sites of metastasis was associated with the transfer of miR-1246 to lung macrophages, liver macrophages, and stellate cells. This is the first demonstration that the capture of endogenously released TEVs is organotropic as demonstrated by the presence of TEV-capturing cells only in metastatic organs and their absence in non-metastatic organs. The capture of TEVs in the PMN induced dynamic changes in inflammatory gene expression which evolved to a pro-tumorigenic reaction as the niche progressed to the metastatic state. Thus, our work describes a novel approach to TEV tracking in vivo that provides additional insights into their role in the earliest stages of metastatic progression.
Collapse
Affiliation(s)
- Laurence Blavier
- The Saban Research Institute of Children's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Division of Hematology, Oncology, and Blood & Marrow TransplantationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsKeck School of Medicine University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Rie Nakata
- The Saban Research Institute of Children's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Division of Hematology, Oncology, and Blood & Marrow TransplantationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsKeck School of Medicine University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Paolo Neviani
- The Saban Research Institute of Children's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Division of Hematology, Oncology, and Blood & Marrow TransplantationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsKeck School of Medicine University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Khounish Sharma
- Dornsife College of Letters, Arts and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Hiroyuki Shimada
- Departments of Pathology and PediatricsStanford UniversityStanfordCaliforniaUSA
| | - Aitor Benedicto
- Department of Cellular Biology and Histology, School of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNew YorkUSA
| | - Yves A. DeClerck
- The Saban Research Institute of Children's Hospital Los AngelesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Division of Hematology, Oncology, and Blood & Marrow TransplantationUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of PediatricsKeck School of Medicine University of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biochemistry and Molecular MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Liu S, Yin W, Lin Y, Huang S, Xue S, Sun G, Wang C. Metastasis pattern and prognosis in children with neuroblastoma. World J Surg Oncol 2023; 21:130. [PMID: 37046344 PMCID: PMC10091559 DOI: 10.1186/s12957-023-03011-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND We aimed to investigate the different metastases and prognoses of neuroblastoma (NB) and determine the risk factors of metastasis. METHOD Data of 1224 patients with NB were obtained from the Surveillance, Epidemiology and End Results database (2010-2018). Pearson's chi-square test, Kaplan-Meier analysis, multivariable logistic regression and Cox regression analysis were used to determine the factors associated with prognosis. RESULTS The overall incidence of NB was an age-adjusted rate of 8.2 patients per 1,000,000 children. In total, 1224 patients were included in our study, with 599 patients (48.9%) exhibiting distant metastases. Compared to patients with non-metastatic NB, a greater proportion of patients with metastatic NB were under 1 year, male, had an adrenal primary site, unilateral tumour, a tumour size > 10 cm, neuroblastoma-not otherwise specified (NB-NOS), second malignant neoplasms and were more likely to choose radiotherapy and chemotherapy. Multivariate Cox regression showed that metastasis was an independent risk factor for overall survival (OS) and cancer-specific survival (CSS). The survival rate of non-metastatic patients with NB was better than those with metastasis (OS: hazard ratio (HR): 0.248, P < 0.001; CSS: HR: 0.267, P < 0.001). The bone and liver were the two most common isolated metastatic sites in NB. However, no statistical difference was observed in OS and CSS between the only bone metastasis group, only liver metastasis group and bone metastasis combined with liver metastasis group (all P > 0.05). Additionally, age at diagnosis > 1 year (odds ratio (OR): 3.295, P < 0 .001), grades III-IV (OR: 26.228, P < 0 .001) and 5-10 cm tumours (OR: 1.781, P < 0 .001) increased the risk of bone metastasis of NB. Moreover, no surgical treatment (OR: 2.441, P < 0 .001) increased the risk of liver metastasis of NB. CONCLUSION Metastatic NB has unique clinicopathological features, with the bone and liver as the most common single metastatic sites of NB. Therefore, more aggressive treatment is recommended for high-risk children with NB displaying distant metastases.
Collapse
Affiliation(s)
- Shan Liu
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Weimin Yin
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Yaobin Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Sihan Huang
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Shufang Xue
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Gaoyuan Sun
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengyi Wang
- Department of Hematology-Oncology, Fujian Children's Hospital, Fujian Medical University, Fuzhou, Fujian, China.
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
10
|
Jahangiri L. Metastasis in Neuroblastoma and Its Link to Autophagy. Life (Basel) 2023; 13:life13030818. [PMID: 36983973 PMCID: PMC10056181 DOI: 10.3390/life13030818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Neuroblastoma is a paediatric malignancy originating from the neural crest that commonly occurs in the abdomen and adrenal gland, leading to cancer-related deaths in children. Distant metastasis can be encountered at diagnosis in greater than half of these neuroblastoma patients. Autophagy, a self-degradative process, plays a key role in stress-related responses and the survival of cells and has been studied in neuroblastoma. Accordingly, in the early stages of metastasis, autophagy may suppress cancer cell invasion and migration, while its role may be reversed in later stages, and it may facilitate metastasis by enhancing cancer cell survival. To that end, a body of literature has revealed the mechanistic link between autophagy and metastasis in neuroblastoma in multiple steps of the metastatic cascade, including cancer cell invasion and migration, anoikis resistance, cancer cell dormancy, micrometastasis, and metastatic outbreak. This review aims to take a step forward and discuss the significance of multiple molecular players and compounds that may link autophagy to metastasis and map their function to various metastatic steps in neuroblastoma.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham NG11 8NS, UK
- Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
11
|
Ahmad MH, Ghosh B, Rizvi MA, Ali M, Kaur L, Mondal AC. Neural crest cells development and neuroblastoma progression: Role of Wnt signaling. J Cell Physiol 2023; 238:306-328. [PMID: 36502519 DOI: 10.1002/jcp.30931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Neuroblastoma (NB) is one of the most common heterogeneous extracranial cancers in infancy that arises from neural crest (NC) cells of the sympathetic nervous system. The Wnt signaling pathway, both canonical and noncanonical pathway, is a highly conserved signaling pathway that regulates the development and differentiation of the NC cells during embryogenesis. Reports suggest that aberrant activation of Wnt ligands/receptors in Wnt signaling pathways promote progression and relapse of NB. Wnt signaling pathways regulate NC induction and migration in a similar manner; it regulates proliferation and metastasis of NB. Inhibiting the Wnt signaling pathway or its ligands/receptors induces apoptosis and abrogates proliferation and tumorigenicity in all major types of NB cells. Here, we comprehensively discuss the Wnt signaling pathway and its mechanisms in regulating the development of NC and NB pathogenesis. This review highlights the implications of aberrant Wnt signaling in the context of etiology, progression, and relapse of NB. We have also described emerging strategies for Wnt-based therapies against the progression of NB that will provide new insights into the development of Wnt-based therapeutic strategies for NB.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.,Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Balaram Ghosh
- Department of Clinical Pharmacology, Midnapore Medical College & Hospital, West Bengal, Medinipur, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mansoor Ali
- School of Life Sciences, Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Loveleena Kaur
- Division of Cancer Pharmacology, Indian Institute of Integrative Medicine (IIIM), Srinagar, India
| | - Amal Chandra Mondal
- School of Life Sciences, Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023; 28:molecules28031141. [PMID: 36770809 PMCID: PMC9920120 DOI: 10.3390/molecules28031141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.
Collapse
|
13
|
Horwacik I. The Extracellular Matrix and Neuroblastoma Cell Communication-A Complex Interplay and Its Therapeutic Implications. Cells 2022; 11:cells11193172. [PMID: 36231134 PMCID: PMC9564247 DOI: 10.3390/cells11193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
Collapse
Affiliation(s)
- Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
14
|
Castañeda A, Gorostegui M, Miralles SL, Chamizo A, Patiño SC, Flores MA, Garraus M, Lazaro JJ, Santa-Maria V, Varo A, Muñoz JP, Mora J. How we approach the treatment of patients with high-risk neuroblastoma with naxitamab: experience from the Hospital Sant Joan de Déu in Barcelona, Spain. ESMO Open 2022; 7:100462. [PMID: 35397431 PMCID: PMC9006652 DOI: 10.1016/j.esmoop.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
Naxitamab [humanized 3f8 (hu3F8)] is a humanized monoclonal antibody (mAb) targeting the disialoganglioside GD2. It was approved in 2020 by the United States Food and Drug Administration (FDA) in combination with granulocyte–macrophage colony-stimulating factor (GM-CSF) for treatment of pediatric and adult patients with relapsed/refractory high-risk neuroblastoma, limited to the bone or bone marrow (BM). The team at Sant Joan de Déu Children’s Hospital in Barcelona, Spain, have been using naxitamab to treat neuroblastoma under clinical trial protocols [e.g. Trial 201, and hu3F8, irinotecan, temozolomide, and sargramostim (GM-CSF) (HITS) study] and compassionate use since 2017. The team has experience with two primary regimens: naxitamab with GM-CSF only, or naxitamab in combination with irinotecan, temozolomide, and GM-CSF (chemoimmunotherapy). This article aims to provide a practical overview of the team’s experience with naxitamab to date, including preparing the treatment room and selecting the team. Adverse event management, including the use of ketamine to manage pain during anti-GD2 mAb infusions, is also discussed. We hope this will provide practical information for other health care providers considering offering this treatment. Immunotherapy with anti-GD2 antibodies has revolutionized the treatment of patients with high-risk neuroblastoma. In 2020, FDA approved naxitamab + GM-CSF for treatment of patients with R/R neuroblastoma in the bone and/or BM. Outpatient treatment with naxitamab-based immunotherapy may improve health-related quality of life. Naxitamab infusions require specific training and teamwork to prevent and efficiently manage most frequent adverse events.
Collapse
Affiliation(s)
- A Castañeda
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - M Gorostegui
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - S L Miralles
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - A Chamizo
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - S C Patiño
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - M A Flores
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - M Garraus
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - J J Lazaro
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - V Santa-Maria
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - A Varo
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - J P Muñoz
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - J Mora
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain.
| |
Collapse
|
15
|
Jin Q, Li J, Yang F, Feng L, Du X. Circular RNA circKIF2A Contributes to the Progression of Neuroblastoma Through Regulating PRPS1 Expression by Sponging miR-377-3p. Biochem Genet 2022; 60:1380-1401. [PMID: 35039981 DOI: 10.1007/s10528-021-10174-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a malignant tumor originating from the primitive neural crest. Circular RNA (circRNA) Kinesin Superfamily Protein 2A (circKIF2A, also known as hsa_circ_0129276) has been reported to be upregulated in neuroblastoma. However, the molecular mechanism of circKIF2A participated in neuroblastoma is poorly defined. We analyzed the expression levels of circKIF2A, microRNA-377-3p (miR-377-3p), and phosphoribosyl pyrophosphate synthetase 1 (PRPS1) in neuroblastoma tissues and cell lines (SK-N-AS and LAN-6) and explored their roles. The expression levels of CircKIF2A and PRPS1 were increased and that of miR-377-3p were decreased in 21 neuroblastoma tissues and cells. Functionally, the silencing of circKIF2A inhibited cell proliferation, migration, invasion, and glycolysis, boosted apoptosis in neuroblastoma cells in vitro, and blocked the growth of subcutaneously transplanted tumors in nude mice. Mechanically, circKIF2A could work as a sponge of miR-377-3p to enhance PRPS1 expression. CircKIF2A knockdown impedes cell proliferation, metastasis, and glycolysis partly by regulating the miR-377-3p/PRPS1 axis, suggesting that targeting circKIF2A can be a feasible therapeutic strategy for neuroblastoma.
Collapse
Affiliation(s)
- Quan Jin
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China
| | - Jianmu Li
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China
| | - Fan Yang
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China
| | - Lingling Feng
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China
| | - Xin Du
- Department of Pediatrics, Xiantao first people's Hospital Affiliated to Changjiang University, Shazui Street, Xiantao, 433000, Hubei, China.
| |
Collapse
|
16
|
Laut AK, Dorneburg C, Fürstberger A, Barth TFE, Kestler HA, Debatin KM, Beltinger C. CHD5 inhibits metastasis of neuroblastoma. Oncogene 2022; 41:622-633. [PMID: 34789839 PMCID: PMC8799470 DOI: 10.1038/s41388-021-02081-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022]
Abstract
CHD5, a tumor suppressor at 1p36, is frequently lost or silenced in poor prognosis neuroblastoma (NB) and many adult cancers. The role of CHD5 in metastasis is unknown. We confirm that low expression of CHD5 is associated with stage 4 NB. Forced expression of CHD5 in NB cell lines with 1p loss inhibited key aspects of the metastatic cascade in vitro: anchorage-independent growth, migration, and invasion. In vivo, formation of bone marrow and liver metastases developing from intravenously injected NB cells was delayed and decreased by forced CHD5 expression. Genome-wide mRNA sequencing revealed reduction of genes and gene sets associated with metastasis when CHD5 was overexpressed. Known metastasis-suppressing genes preferentially upregulated in CHD5-overexpressing NB cells included PLCL1. In patient NB, low expression of PLCL1was associated with metastatic disease and poor survival. Knockdown of PLCL1 and of p53 in IMR5 NB cells overexpressing CHD5 reversed CHD5-induced inhibition of invasion and migration in vitro. In summary, CHD5 is a metastasis suppressor in NB.
Collapse
Affiliation(s)
- Astrid K Laut
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Carmen Dorneburg
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Axel Fürstberger
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | | | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Section Experimental Pediatric Oncology, Dept. of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany.
| |
Collapse
|
17
|
Rana R, Chauhan K, Gautam P, Kulkarni M, Banarjee R, Chugh P, Chhabra SS, Acharya R, Kalra SK, Gupta A, Jain S, Ganguly NK. Plasma-Derived Extracellular Vesicles Reveal Galectin-3 Binding Protein as Potential Biomarker for Early Detection of Glioma. Front Oncol 2021; 11:778754. [PMID: 34900729 PMCID: PMC8661035 DOI: 10.3389/fonc.2021.778754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common type of the malignant brain tumor, which arise from glial cells. They make up about 40% of all primary brain tumors and around 70% of all primary malignant brain tumors. They can occur anywhere in the central nervous system (CNS) and have a poor prognosis. The average survival of glioma patients is approximately 6-15 months with poor aspects of life. In this edge, identification of proteins secreted by cancer cells is of special interest because it may provide a better understanding of tumor progression and provide early diagnosis of the diseases. Extracellular vesicles (EVs) were isolated from pooled plasma of healthy controls (n=03) and patients with different grades of glioma (Grade I or II or III, n=03 each). Nanoparticle tracking analysis, western blot, and flow cytometry were performed to determine the size, morphology, the concentration of glioma-derived vesicles and EV marker, CD63. Further, iTRAQ-based LC-MS/MS analysis of EV protein was performed to determine the differential protein abundance in extracellular vesicles across different glioma grades. We further verified galectin-3 binding protein (LGALS3BP) by ELISA in individual blood plasma and plasma-derived vesicles from control and glioma patients (n=40 each). Analysis by Max Quant identified 123 proteins from the pooled patient exosomes, out of which 34, 21, and 14 proteins were found to be differentially abundant by more than 1.3-fold in the different grades of glioma grade I, pilocytic astrocytoma; grade II, diffuse astrocytoma; grade III, anaplastic astrocytoma, respectively, in comparison with the control samples. A total of seven proteins-namely, CRP, SAA2, SERPINA3, SAA1, C4A, LV211, and KV112-showed differential abundance in all the three grades. LGALS3BP was seen to be upregulated across the different grades, and ELISA analysis from individual blood plasma and plasma-derived extracellular vesicles confirmed the increased expression of LGALS3BP in glioma patients (p<0.001). The present study provides LGALS3BP as a potential biomarker for early detection of glioma and improve survival outcome of the patient. The present study further provides the information of progression and monitoring the tumor grades (grade 1, grade II, grade III).
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Kirti Chauhan
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, National Institute of Pathology, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Mahesh Kulkarni
- Biochemical Sciences Division, National Chemical Laboratory, Council of Scientific and Industrial Research (CSIR), Pune, India
| | - Reema Banarjee
- Biochemical Sciences Division, National Chemical Laboratory, Council of Scientific and Industrial Research (CSIR), Pune, India
| | - Parul Chugh
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Rajesh Acharya
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Samir Kumar Kalra
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Anshul Gupta
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunila Jain
- Department of Histopathology, Sir Ganga Ram Hospital, New Delhi, India
| | | |
Collapse
|
18
|
Sanchez-Martos M, Martinez-Navarrete G, Bernabeu-Zornoza A, Humphreys L, Fernandez E. Evaluation and Optimization of Poly-d-Lysine as a Non-Natural Cationic Polypeptide for Gene Transfer in Neuroblastoma Cells. NANOMATERIALS 2021; 11:nano11071756. [PMID: 34361142 PMCID: PMC8308159 DOI: 10.3390/nano11071756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022]
Abstract
Cationic polypeptides and cationic polymers have cell-penetrating capacities and have been used in gene transfer studies. In this study, we investigate the capability of a polymer of d-lysine (PDL), a chiral form of α–Poly-lysine, as a possible nonviral vector for releasing genetic materials to neuroblastoma cells and evaluate its stability against proteases. We tested and compared its transfection effectiveness in vitro as a vehicle for the EGFP plasmid DNA (pDNA) reporter in the SH-SY5Y human neuroblastoma, HeLa, and 3T3 cell lines. Using fluorescent microscopy and flow cytometry, we demonstrated high transfection efficiencies based on EGFP fluorescence in SH-SY5Y cells, compared with HeLa and 3T3. Our results reveal PDL as an efficient vector for gene delivery specifically in the SH-SY5Y cell line and suggest that PDL can be used as a synthetic cell-penetrating polypeptide for gene therapy in neuroblastoma cells.
Collapse
Affiliation(s)
- Miguel Sanchez-Martos
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
| | - Gema Martinez-Navarrete
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
| | - Lawrence Humphreys
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Eduardo Fernandez
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, 03201 Elche, Spain; (M.S.-M.); (G.M.-N.); (A.B.-Z.); (L.H.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965222001
| |
Collapse
|
19
|
Hochheuser C, Windt LJ, Kunze NY, de Vos DL, Tytgat GA, Voermans C, Timmerman I. Mesenchymal Stromal Cells in Neuroblastoma: Exploring Crosstalk and Therapeutic Implications. Stem Cells Dev 2021; 30:59-78. [PMID: 33287630 PMCID: PMC7826431 DOI: 10.1089/scd.2020.0142] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is the second most common solid cancer in childhood, accounting for 15% of cancer-related deaths in children. In high-risk NB patients, the majority suffers from metastasis. Despite intensive multimodal treatment, long-term survival remains <40%. The bone marrow (BM) is among the most common sites of distant metastasis in patients with high-risk NB. In this environment, small populations of tumor cells can persist after treatment (minimal residual disease) and induce relapse. Therapy resistance of these residual tumor cells in BM remains a major obstacle for the cure of NB. A detailed understanding of the microenvironment and its role in tumor progression is of utmost importance for improving the treatment efficiency of NB. In BM, mesenchymal stromal cells (MSCs) constitute an important part of the microenvironment, where they support hematopoiesis and modulate immune responses. Their role in tumor progression is not completely understood, especially for NB. Although MSCs have been found to promote epithelial-mesenchymal transition, tumor growth, and metastasis and to induce chemoresistance, some reports point toward a tumor-suppressive effect of MSCs. In this review, we aim to compile current knowledge about the role of MSCs in NB development and progression. We evaluate arguments that depict tumor-supportive versus -suppressive properties of MSCs in the context of NB and give an overview of factors involved in MSC-NB crosstalk. A focus lies on the BM as a metastatic niche, since that is the predominant site for NB metastasis and relapse. Finally, we will present opportunities and challenges for therapeutic targeting of MSCs in the BM microenvironment.
Collapse
Affiliation(s)
- Caroline Hochheuser
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Laurens J. Windt
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nina Y. Kunze
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dieuwke L. de Vos
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Carlijn Voermans
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilse Timmerman
- Sanquin Research and Landsteiner Laboratory, Department of Hematopoiesis, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
20
|
Abid K, Popovic MB, Bourloud KB, Schoumans J, Grand-Guillaume J, Grouzmann E, Mühlethaler-Mottet A. The noradrenergic profile of plasma metanephrine in neuroblastoma patients is reproduced in xenograft mice models and arise from PNMT downregulation. Oncotarget 2021; 12:49-60. [PMID: 33456713 PMCID: PMC7800772 DOI: 10.18632/oncotarget.27858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 11/25/2022] Open
Abstract
Metanephrines (MNs; normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MT)) detected in urine or plasma represent the best biomarker for neuroblastoma (NB) diagnosis, however the metabolism of both catecholamine (CAT) and MNs remains enigmatic in NB. Using patient-derived xenograft (PDX) models derived from primary NB cells, we observed that the plasma levels of MNs in NB-PDX-bearing mice were comparable as in patients. Interestingly, murine plasma displayed an elevated fraction of glucuronidated forms of MNs relative to human plasma where sulfonated forms prevail. In tumors, the concentration ranges of MNs and CAT and the expression levels of the main genes involved in catecholamine metabolism were similar between NB-PDX and human NB tissues. Likewise, plasma and intratumoral profiles of individual MNs, with increased levels of MT and NMN relative to MN, were also conserved in mouse models as in patients. We further demonstrated the downregulation of the Phenylethanolamine N-Methyltransferase gene in NB biopsies and in NB-PDX explaining this biochemical phenotype, and giving a rational to the low levels of epinephrine and MN measured in NB affected patients. Thus, our subcutaneous murine NB-PDX models not only reproduce the phenotype of primary NB tumors, but also the metabolism of catecholamine as observed in patients. This may potentially open new avenues in preclinical studies for the follow up of novel therapeutic options for NB through the quantification of plasma MNs.
Collapse
Affiliation(s)
- Karim Abid
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology and Toxicology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Maja Beck Popovic
- Pediatric Hematology-Oncology Unit, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Katia Balmas Bourloud
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jacqueline Schoumans
- Oncogenomics Laboratory, Hematology Service, Laboratory Medicine and Pathology Department, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Joana Grand-Guillaume
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology and Toxicology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Eric Grouzmann
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology and Toxicology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Annick Mühlethaler-Mottet
- Pediatric Hematology-Oncology Research Laboratory, Woman-Mother-Child Department, Lausanne University Hospital and University of Lausanne, Switzerland
| |
Collapse
|
21
|
Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020; 12:pharmaceutics12111084. [PMID: 33187385 PMCID: PMC7697177 DOI: 10.3390/pharmaceutics12111084] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (DOX) is a well-known chemotherapeutic agent extensively applied in the field of cancer therapy. However, similar to other chemotherapeutic agents such as cisplatin, paclitaxel, docetaxel, etoposide and oxaliplatin, cancer cells are able to obtain chemoresistance that limits DOX efficacy. In respect to dose-dependent side effect of DOX, enhancing its dosage is not recommended for effective cancer chemotherapy. Therefore, different strategies have been considered for reversing DOX resistance and diminishing its side effects. Phytochemical are potential candidates in this case due to their great pharmacological activities. Curcumin is a potential antitumor phytochemical isolated from Curcuma longa with capacity of suppressing cancer metastasis and proliferation and affecting molecular pathways. Experiments have demonstrated the potential of curcumin for inhibiting chemoresistance by downregulating oncogene pathways such as MMP-2, TGF-β, EMT, PI3K/Akt, NF-κB and AP-1. Furthermore, coadministration of curcumin and DOX potentiates apoptosis induction in cancer cells. In light of this, nanoplatforms have been employed for codelivery of curcumin and DOX. This results in promoting the bioavailability and internalization of the aforementioned active compounds in cancer cells and, consequently, enhancing their antitumor activity. Noteworthy, curcumin has been applied for reducing adverse effects of DOX on normal cells and tissues via reducing inflammation, oxidative stress and apoptosis. The current review highlights the anticancer mechanism, side effects and codelivery of curcumin and DOX via nanovehicles.
Collapse
|
22
|
Kim KW, Qiao J, Kim JY, Park K, Chung DH. Overexpression of microRNA-145 inhibits tumorigenesis through autophagy in chemotherapy and radiation resistant neuroblastoma cells. Oncoscience 2020; 7:1-9. [PMID: 32258242 PMCID: PMC7105155 DOI: 10.18632/oncoscience.496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNA-145 (miR-145) plays a suppressive role in the process of tumorigenesis and an important role in induction of autophagy. However, the exact role of miR-145 in therapeutically resistant neuroblastoma cells remain elusive. Herein, we sought to evaluate the effects of miR-145 overexpression in chemo‑ and radiation-resistant neuroblastoma cells. We hypothesized that miR-145 affects the aggressiveness of resistant cells by enhancing autophagy. We established Cisplatin-resistant (CDDP-R), Vincristine-resistant (Vin-R), and radiation-resistant (Rad-R) neuroblastoma cells and found that miR-145 expression was significantly decreased in the resistant cells compared to the parental cells. Exogenously expression of miR-145 inhibited oncogenic properties such as proliferation, clonogenicity, anchorage-independent growth, cell migration, and tubule formation in the resistant cells. In addition, we also found that an autophagy protein marker, LC3, was only minimally expressed in the resistant cells. In particular, when miR-145 was overexpressed in the resistant cells, LC3 I and II were expressed and an increased punctate fluorescence of LC3 protein was found indicating the induction of autophagy. Taken together, our data suggests that miR-145 inhibits tumorigenesis and aggressiveness via modulation of autophagy in neuroblastoma.
Collapse
Affiliation(s)
- Kwang Woon Kim
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| | - Jingbo Qiao
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| | - Julia Y Kim
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| | - Kyungho Park
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| | - Dai H Chung
- UT Southwestern Medical Center, Department of Surgery, Dallas, TX, USA
| |
Collapse
|
23
|
Memarzadeh K, Savage DJ, Bean AJ. Low UBE4B expression increases sensitivity of chemoresistant neuroblastoma cells to EGFR and STAT5 inhibition. Cancer Biol Ther 2019; 20:1416-1429. [PMID: 31475882 PMCID: PMC6804809 DOI: 10.1080/15384047.2019.1647049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/24/2019] [Accepted: 06/23/2019] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma is the most common malignancy in infants. Overexpression of the epidermal growth factor receptor (EGFR) in neuroblastoma tumors underlies resistance to chemotherapeutics. UBE4B, an E3/E4 ubiquitin ligase involved in EGFR degradation, is located on chromosome 1p36, a region in which loss of heterozygosity is observed in approximately one-third of neuroblastoma tumors and is correlated with poor prognosis. In chemoresistant neuroblastoma cells, depletion of UBE4B yielded significantly reduced cell proliferation and migration, and enhanced apoptosis in response to EGFR inhibitor, Cetuximab. We have previously shown that UBE4B levels are inversely correlated with EGFR levels in neuroblastoma tumors. We searched for additional targets of UBE4B that mediate cellular alterations associated with tumorogenesis in chemoresistant neuroblastoma cells depleted of UBE4B using reverse phase protein arrays. The expression of STAT5a, an effector protein downstream of EGFR, doubled in the absence of UBE4B, and verified by quantitative immunoblotting. Chemoresistant neuroblastoma cells were treated with SH-4-54, a STAT5 inhibitor, and observed insignificant effects on cell proliferation, migration, and apoptosis. However, SH-4-54 significantly enhanced the anti-proliferative and anti-migratory effects of Cetuximab in naïve SK-N-AS neuroblastoma cells. Interestingly, in UBE4B depleted SK-N-AS cells, SH-4-54 significantly potentiated the effect of Cetuximab rendering cells increasingly sensitive an otherwise minimally effective Cetuximab concentration. Thus, neuroblastoma cells with low UBE4B levels were significantly more sensitive to combined EGFR and STAT5 inhibition than parental cells. These findings may have potential therapeutic implications for patients with 1p36 chromosome LOH and low tumor UBE4B expression.
Collapse
Affiliation(s)
- Kimiya Memarzadeh
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - David J. Savage
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew J. Bean
- Program in Neuroscience, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, TX, USA
- Program in Neuroscience, Cell Biology and Biochemistry, University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Grimes T, Potter SS, Datta S. Integrating gene regulatory pathways into differential network analysis of gene expression data. Sci Rep 2019; 9:5479. [PMID: 30940863 PMCID: PMC6445151 DOI: 10.1038/s41598-019-41918-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
The advent of next-generation sequencing has introduced new opportunities in analyzing gene expression data. Research in systems biology has taken advantage of these opportunities by gleaning insights into gene regulatory networks through the analysis of gene association networks. Contrasting networks from different populations can reveal the many different roles genes fill, which can lead to new discoveries in gene function. Pathologies can also arise from aberrations in these gene-gene interactions. Exposing these network irregularities provides a new avenue for understanding and treating diseases. A general framework for integrating known gene regulatory pathways into a differential network analysis between two populations is proposed. The framework importantly allows for any gene-gene association measure to be used, and inference is carried out through permutation testing. A simulation study investigates the performance in identifying differentially connected genes when incorporating known pathways, even if the pathway knowledge is partially inaccurate. Another simulation study compares the general framework with four state-of-the-art methods. Two RNA-seq datasets are analyzed to illustrate the use of this framework in practice. In both examples, the analysis reveals genes and pathways that are known to be biologically significant along with potentially novel findings that may be used to motivate future research.
Collapse
Affiliation(s)
- Tyler Grimes
- University of Florida, Department of Biostatistics, Gainesville, 32611, USA
| | - S Steven Potter
- University of Cincinnati, Department of Pediatrics, Cincinnati, 45229, USA
| | - Somnath Datta
- University of Florida, Department of Biostatistics, Gainesville, 32611, USA.
| |
Collapse
|
25
|
Combined effects of curcumin and doxorubicin on cell death and cell migration of SH-SY5Y human neuroblastoma cells. In Vitro Cell Dev Biol Anim 2018; 54:629-639. [PMID: 30136034 DOI: 10.1007/s11626-018-0288-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
Neuroblastoma is the most common cancer of the sympathetic nervous system in children. Here, the influences of curcumin on survival, apoptosis, migration, and its combined effects with doxorubicin were investigated in SH-SY5Y cells by cell survival assay, flow cytometry, migration assays, and RT-PCR. Curcumin inhibited SH-SY5Y cell growth and induced apoptosis in dose- and time-dependent manners. This apoptotic induction relied on the upregulation of p53 and p21. Moreover, the treatment of curcumin for 24 h significantly suppressed cell migration, together with the downregulation of matrix metalloproteinase-2 (MMP-2) and upregulation of tissue inhibitor of metalloproteinases-1 (TIMP-1). The combination of curcumin augmented the anticancer activity of doxorubicin and significantly induced apoptosis. Pretreatment with curcumin increased the fraction of doxorubicin-induced apoptotic cells from 21.76 ± 0.50 to 57.74 ± 2.68%. Co-treatment with doxorubicin plus curcumin further inhibited 3D tumor migration. Altogether, the results suggest that curcumin suppresses growth and migration of SH-SY5Y cells and enhances the anticancer activity of doxorubicin. The addition of curcumin to therapeutic regimens may be promising for the treatment of neuroblastomas if a number of problems related to its in vivo bioavailability can be resolved. Graphical abstract ᅟ.
Collapse
|
26
|
Xiong S, Wang Y, Li H, Zhang X. Low Dose of Bisphenol A Activates NF-κB/IL-6 Signals to Increase Malignancy of Neuroblastoma Cells. Cell Mol Neurobiol 2017; 37:1095-1103. [PMID: 27866306 PMCID: PMC11482237 DOI: 10.1007/s10571-016-0443-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) can accumulate in the human body and promote the progression of various cancers. However, its role in the development of neuroblastoma (NB) is largely unknown. Our present study revealed that nanomolar concentrations of BPA can significantly increase the proliferation, migration and invasion of NB SH-SY5Y and SiMa cells, further evidenced by the upregulation of human proliferating cell nuclear antigen, Bcl-2, vimentin and fibronectin. Real-time PCR and ELISA results suggested that nanomolar BPA can increase the expression of interleukin-6 (IL-6), but had no effect on the expression of IL-2, IL-8, IL-10 or IL-12. The neutralization antibody of IL-6 can abolish BPA-induced proliferation and invasion of NB cells. The inhibitor of NF-κB (BAY 11-7082), but not PD98059 (PD, ERK1/2 inhibitor) or LY294002 (LY, PI3 K/Akt inhibitor), attenuated BPA-induced IL-6 expression and cell proliferation and invasion. In addition, BPA treatment also rapidly increased the phosphorylation of p65 since treatment for 5 min. Collectively, our data revealed that nanomolar BPA can trigger the malignancy of NB cells via activation of NF-κB/IL-6 signals, suggesting that more attention should be paid to the potential health risks of daily BPA intake.
Collapse
Affiliation(s)
- Shunjun Xiong
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China.
| | - Yanjun Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| | - Huijuan Li
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| | - Xiaofang Zhang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, No. 169 East Lake Road, Wuchang district, Wuhan, 430071, Hubei, China
| |
Collapse
|
27
|
Chong CM, Kou MT, Pan P, Zhou H, Ai N, Li C, Zhong HJ, Leung CH, Hou T, Lee SMY. Discovery of a novel ROCK2 inhibitor with anti-migration effects via docking and high-content drug screening. MOLECULAR BIOSYSTEMS 2017; 12:2713-21. [PMID: 27354305 DOI: 10.1039/c6mb00343e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rho-associated protein kinase (ROCK) mediated the reorganization of the actin cytoskeleton and has been implicated in the spread and metastatic process of cancer. In this study, structure-based high-throughput virtual screening was used to identify candidate compounds targeting ROCK2 from a chemical library. Moreover, high-content screening based on neurite outgrowth of SH-SY5Y cells (a human neuroblastoma cell line) was used for accelerating the identification of compounds with characteristics of ROCK2 inhibitors. The effects of bioactive ROCK2 inhibitor candidates were further validated using other bioassays including cell migration and wound healing in SH-SY5Y cells. Through the combined virtual and high-content drug screening, the compound 1,3-benzodioxol-5-yl[1-(5-isoquinolinylmethyl)-3-piperidinyl]-methanone (BIPM) was identified as a novel and potent ROCK2 inhibitor. Exposure of SH-SY5Y cells to BIPM led to significant changes in neurite length, cell migration and actin stress fibers. Further experiments demonstrated that BIPM was able to significantly inhibit phosphorylation of cofilin, a regulatory protein of actin cytoskeleton. These results suggest that BIPM could be considered as a promising scaffold for the further development of ROCK2 inhibitors for anti-cancer metastasis.
Collapse
Affiliation(s)
- Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Man-Teng Kou
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Peichen Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Hefeng Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Nana Ai
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chuwen Li
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China. and Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
28
|
Zeng FM, Wang XN, Shi HS, Xie JJ, Du ZP, Liao LD, Nie PJ, Xu LY, Li EM. Fascin phosphorylation sites combine to regulate esophageal squamous cancer cell behavior. Amino Acids 2017; 49:943-955. [PMID: 28251354 DOI: 10.1007/s00726-017-2398-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
Filopodia are dynamic membrane extensions generated by F-actin bundling and are involved in cancer cell migration, invasion and metastasis. Fascin is the crucial actin-bundling protein in filopodia, with phosphorylation at fascin serine 39 being well characterized to regulate fascin-mediated actin bundling in filopodia. However, increasing evidence indicates that fascin is phosphorylated at a number of sites. Whether phosphorylation at other sites also regulates fascin function is unknown. In this study, we show that four potential phosphorylation sites in fascin, specifically tyrosine 23, serine 38, serine 39 and serine 274, regulate cell behavior and filopodia formation in esophageal squamous cancer cells. Expression of non-phosphorylatable mutations at each of the four sites promoted anchorage-independent growth, cell motility and filopodia formation, whereas phosphomimetic mutations at each of these sites inhibited these cell behaviors, implying that fascin function in esophageal squamous cancer is regulated by fascin phosphorylation at multiple sites. Furthermore, phosphorylation at S38 and S39 cooperatively regulated cell behavior and filopodia formation, with dual dephosphorylation at both S38 and S39 residues maximally enhancing cell proliferation, migration and filopodia formation, and phosphorylation at any of the two phosphorylatable sites resulting in reduced enhancement. Taken together, our results reveal that phosphorylation at fascin amino acids Y23, S38, S39 and S274, in combination, downregulates the extent of anchorage-independent growth, cell migration and filopodia formation in esophageal squamous cancer cells.
Collapse
Affiliation(s)
- Fa-Min Zeng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, People's Republic of China
| | - Xiao-Ning Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, People's Republic of China
| | - Hong-Shun Shi
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, People's Republic of China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, People's Republic of China
| | - Ze-Peng Du
- Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
- Department of Pathology, Shantou Central Hospital, Shantou, 515041, Guangdong, People's Republic of China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China
| | - Ping-Juan Nie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, People's Republic of China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Institute of Oncologic Pathology, Shantou University Medical College, No. 22, Xinling Road, Shantou, 515041, Guangdong, People's Republic of China.
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, People's Republic of China.
| |
Collapse
|
29
|
Fife CM, Sagnella SM, Teo WS, Po'uha ST, Byrne FL, Yeap YYC, Ng DCH, Davis TP, McCarroll JA, Kavallaris M. Stathmin mediates neuroblastoma metastasis in a tubulin-independent manner via RhoA/ROCK signaling and enhanced transendothelial migration. Oncogene 2016; 36:501-511. [DOI: 10.1038/onc.2016.220] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 05/15/2016] [Indexed: 12/26/2022]
|
30
|
Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1. Exp Mol Med 2016; 48:e210. [PMID: 26891914 PMCID: PMC4892869 DOI: 10.1038/emm.2015.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer cells typically display increased rates of aerobic glycolysis that are correlated with tumor aggressiveness and a poor prognosis. Targeting the glycolytic pathway has emerged as an attractive therapeutic route mainly because it should spare normal cells. Here, we evaluate the effects of combining the inhibition of glycolysis with application of the polyphenolic compound resveratrol (RSV) in neuroblastoma (NB) cancer cell lines. Inhibiting glycolysis with 2-deoxy-D-glucose (2-DG) significantly reduced NB cell viability and was associated with increased endoplasmic reticulum (ER) stress and Akt activity. Administration of 2-DG increased the expression of the ER molecular chaperones GRP78 and GRP94, the prodeath protein C/EBP homology protein (CHOP) and the phosphorylation of Akt at S473, T450 and T308. Combined treatment with both RSV and 2-DG reduced GRP78, GRP94 and Akt phosphorylation but increased CHOP and NB cell death when compared with the administration of 2-DG alone. The selective inhibition of Akt activity also decreased 2-DG-induced GRP78 and GRP94 expression and increased CHOP expression, suggesting that Akt can modulate ER stress. Protein phosphatase 1α (PP1α) was activated by RSV, as indicated by a reduction in PP1α phosphorylation at T320. Pretreatment of cells with tautomycin, a selective PP1α inhibitor, prevented the RSV-mediated decrease in Akt phosphorylation, suggesting that RSV enhances 2-DG-induced cell death by activating PP1 and downregulating Akt. The RSV-mediated inhibition of Akt in the presence of 2-DG was not prevented by the selective inhibition of SIRT1, a known target of RSV, indicating that the effects of RSV on this pathway are independent of SIRT1. We propose that RSV inhibits Akt activity by increasing PP1α activity, thereby potentiating 2-DG-induced ER stress and NB cell death.
Collapse
|
31
|
Zhang L, Liu N, Xie S, He X, Zhou J, Liu M, Li D. HDAC6 regulates neuroblastoma cell migration and may play a role in the invasion process. Cancer Biol Ther 2015; 15:1561-70. [PMID: 25482939 DOI: 10.4161/15384047.2014.956632] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is one of the most prevalent pediatric extracranial solid tumors and is often diagnosed after dissemination has occurred. Despite recent advances in multimodal therapies of this malignancy, its therapeutic efficacy remains poor. Novel treatment strategies are thus in great need. Herein, we demonstrate that histone deacetylase 6 (HDAC6), a member of the deacetylase family that is localized predominantly in the cytoplasm, is involved in neuroblastoma dissemination. HDAC6 expression in neuroblastoma tissue samples varied with the site of the tumor. HDAC6 showed little impact on the proliferation of neuroblastoma cells. Instead, downregulation of HDAC6 expression by RNA interference or inhibition of its catalytic activity by the pharmacological inhibitor tubacin significantly decreased the migration of 3 human malignant neuroblastoma cell lines and reduced the invasion ability of one of the 3 cell lines, but only slightly affected the migration and invasion of human normal brain glial cells. Our data further revealed that the regulation of neuroblastoma cell migration by HDAC6 was mediated by its effects on cell polarization and adhesion. These findings suggest a role for HDAC6 in neuroblastoma dissemination and a potential of using HDAC6 inhibitors for the treatment of this malignancy.
Collapse
Affiliation(s)
- Linlin Zhang
- a State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences ; Nankai University ; Tianjin China
| | | | | | | | | | | | | |
Collapse
|
32
|
Young SA, McCabe KE, Bartakova A, Delaney J, Pizzo DP, Newbury RO, Varner JA, Schlaepfer DD, Stupack DG. Integrin α4 Enhances Metastasis and May Be Associated with Poor Prognosis in MYCN-low Neuroblastoma. PLoS One 2015; 10:e0120815. [PMID: 25973900 PMCID: PMC4431816 DOI: 10.1371/journal.pone.0120815] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/08/2015] [Indexed: 12/11/2022] Open
Abstract
High-risk neuroblastoma is associated with an overall survival rate of 30–50%. Neuroblastoma-expressed cell adhesion receptors of the integrin family impact cell adhesion, migration, proliferation and survival. Integrin α4 is essential for neural crest cell motility during development, is highly expressed on leukocytes, and is critical for transendothelial migration. Thus, cancer cells that express this receptor may exhibit increased metastatic potential. We show that α4 expression in human and murine neuroblastoma cell lines selectively enhances in vitro interaction with the alternatively spliced connecting segment 1 of fibronectin, as well as vascular cell adhesion molecule-1 and increases migration. Integrin α4 expression enhanced experimental metastasis in a syngeneic tumor model, reconstituting a pattern of organ involvement similar to that seen in patients. Accordingly, antagonism of integrin α4 blocked metastasis, suggesting adhesive function of the integrin is required. However, adhesive function was not sufficient, as mutants of integrin α4 that conserved the matrix-adhesive and promigratory function in vitro were compromised in their metastatic capacity in vivo. Clinically, integrin α4 is more frequently expressed in non-MYNC amplified tumors, and is selectively associated with poor prognosis in this subset of disease. These results reveal an unexpected role for integrin α4 in neuroblastoma dissemination and identify α4 as a potential prognostic indicator and therapeutic target.
Collapse
Affiliation(s)
- Shanique A. Young
- Division of Gynecologic Oncology, Department of Reproductive Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California, 92093, United States of America
| | - Katelyn E. McCabe
- Division of Gynecologic Oncology, Department of Reproductive Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California, 92093, United States of America
| | - Alena Bartakova
- Division of Gynecologic Oncology, Department of Reproductive Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
| | - Joe Delaney
- Division of Gynecologic Oncology, Department of Reproductive Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California, 92093, United States of America
| | - Donald P. Pizzo
- University of California San Diego Center for Advanced Laboratory Medicine, 10300 Campus Point Drive, MC7210, Room 1253, San Diego, CA, 92121, United States of America
- Department of Pathology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
| | - Robert O. Newbury
- Department of Pathology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
| | - Judith A. Varner
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California, 92093, United States of America
- Department of Pathology, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
| | - David D. Schlaepfer
- Division of Gynecologic Oncology, Department of Reproductive Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California, 92093, United States of America
| | - Dwayne G. Stupack
- Division of Gynecologic Oncology, Department of Reproductive Medicine, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California, 92093, United States of America
- University of California San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, California, 92093, United States of America
- * E-mail:
| |
Collapse
|
33
|
Ćavar S, Jelašić D, Seiwerth S, Milošević M, Hutinec Z, Mišić M. Endoglin (CD 105) as a potential prognostic factor in neuroblastoma. Pediatr Blood Cancer 2015; 62:770-5. [PMID: 25683142 DOI: 10.1002/pbc.25427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/16/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Endoglin (CD105) is a cytokine that modulates angiogenesis by regulating different cellular functions, including endothelial proliferation, differentiation, migration and formation of microvessels. CD105 is expressed strongly in the tumor vasculature, and intratumoral microvessel density (IMVD), as determined by the use of antibodies to CD105, it has been found to be an important prognostic indicator for outcome in various malignances. This study aims to determine if the clinical outcome of children with neuroblastoma is correlated with IMVD, as determined by CD105 staining and other prognostic factors. PROCEDURE Tumor tissue specimens from 38 patients with peripheral neuroblastic tumors who underwent surgical resection or biopsy of their primary tumor without any preoperative therapy were retrospectively reviewed. IMVD was identified immunohistochemically using monoclonal antibodies against CD105. Prognostic factors, such as the MYCN oncogene, disease stage, histopathology and age, were correlated with outcome. RESULTS Among 38 examined specimens, the median IMVD value was 23.2 (15.1-28.4). The IMVD identified by CD105 was significantly higher in patients with unfavorable histology, metastatic disease, MYCN amplification and COG high risk group. ROC analysis was used to find significant IMVD level regarding EFS. The cut-off >18 was selected according to the greatest sensitivity (100%) and specificity (68.42%). The multivariate Cox proportional hazards analysis demonstrated that MYCN amplification and IMVD were significant prognostic factors in predicting EFS (hazard ratio for MYCN amplification: 3.61; 95% CI: 1.20-10.90; P = 0.023 and for IMVD: 1.05; 95% CI: 1.00-1.09; P = 0.037). CONCLUSION IMVD determined by CD105 appeared to be an independent prognostic factor for neuroblastoma.
Collapse
Affiliation(s)
- Stanko Ćavar
- Department of Pediatric Surgery, University Hospital Centre Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
34
|
Huang YY, Tzen KY, Liu YL, Chiu CH, Tsai CL, Wen HP, Tang KH, Liu CC, Shiue CY. Impact of residual 18F-fluoride in 18F-FDOPA for the diagnosis of neuroblastoma. Ann Nucl Med 2015; 29:489-98. [DOI: 10.1007/s12149-015-0970-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/30/2015] [Indexed: 01/11/2023]
|
35
|
ZHI YUNLAI, LU HONGTING, DUAN YUHE, SUN WEISHENG, GUAN GE, DONG QIAN, YANG CHUANMIN. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α. Int J Mol Med 2015; 35:349-357. [PMID: 25503960 PMCID: PMC4292717 DOI: 10.3892/ijmm.2014.2032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/20/2014] [Indexed: 02/06/2023] Open
Abstract
Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.
Collapse
Affiliation(s)
- YUNLAI ZHI
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - HONGTING LU
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - YUHE DUAN
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - WEISHENG SUN
- Department of Pediatric Surgery, The Children’s Hospital of Zhengzhou, Henan 450053, P.R. China
| | - GE GUAN
- Department of Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - QIAN DONG
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - CHUANMIN YANG
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
36
|
Intermittent hypoxia effect on osteoclastogenesis stimulated by neuroblastoma cells. PLoS One 2014; 9:e105555. [PMID: 25148040 PMCID: PMC4141796 DOI: 10.1371/journal.pone.0105555] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/22/2014] [Indexed: 12/13/2022] Open
Abstract
Background Neuroblastoma is the most common extracranial pediatric solid tumor. Intermittent hypoxia, which is characterized by cyclic periods of hypoxia and reoxygenation, has been shown to positively modulate tumor development and thereby induce tumor growth, angiogenic processes, and metastasis. Bone is one of the target organs of metastasis in advanced neuroblastoma Neuroblastoma cells produce osteoclast-activating factors that increase bone resorption by the osteoclasts. The present study focuses on how intermittent hypoxia preconditioned SH-SY5Y neuroblastoma cells modulate osteoclastogenesis in RAW 264.7 cells compared with neuroblastoma cells grown at normoxic conditions. Methods We inhibited HIF-1α and HIF-2α in neuroblastoma SH-SY5Y cells by siRNA/shRNA approaches. Protein expression of HIF-1α, HIF-2α and MAPKs were investigated by western blotting. Expression of osteoclastogenic factors were determined by real-time RT-PCR. The influence of intermittent hypoxia and HIF-1α siRNA on migration of neuroblastoma cells and in vitro differentiation of RAW 264.7 cells were assessed. Intratibial injection was performed with SH-SY5Y stable luciferase-expressing cells and in vivo bioluminescence imaging was used in the analysis of tumor growth in bone. Results Upregulation of mRNAs of osteoclastogenic factors VEGF and RANKL was observed in intermittent hypoxia-exposed neuroblastoma cells. Conditioned medium from the intermittent hypoxia-exposed neuroblastoma cells was found to enhance osteoclastogenesis, up-regulate the mRNAs of osteoclast marker genes including TRAP, CaSR and cathepsin K and induce the activation of ERK, JNK, and p38 in RAW 264.7 cells. Intermittent hypoxia-exposed neuroblastoma cells showed an increased migratory pattern compared with the parental cells. A significant increase of tumor volume was found in animals that received the intermittent hypoxia-exposed cells intratibially compared with parental cells. Conclusions Intermittent hypoxic exposure enhanced capabilities of neuroblastoma cells in induction of osteoclast differentiation in RAW 264.7 cells. Increased migration and intratibial tumor growth was observed in intermittent hypoxia-exposed neuroblastoma cells compared with parental cells.
Collapse
|
37
|
Molecular regulation of bone marrow metastasis in prostate and breast cancer. BONE MARROW RESEARCH 2014; 2014:405920. [PMID: 25147739 PMCID: PMC4134798 DOI: 10.1155/2014/405920] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 12/13/2022]
Abstract
Metastasis is a multistep process, which refers to the ability to leave a primary tumor through circulation toward the distant tissue and form a secondary tumor. Bone is a common site of metastasis, in which osteolytic and osteoblastic metastasis are observed. Signaling pathways, chemokines, growth factors, adhesion molecules, and cellular interactions as well as miRNAs have been known to play an important role in the development of bone metastasis. These factors provide an appropriate environment (soil) for growth and survival of metastatic tumor cells (seed) in bone marrow microenvironment. Recognition of these factors and determination of their individual roles in the development of metastasis and disruption of cellular interactions can provide important therapeutic targets for treatment of these patients, which can also be used as prognostic and diagnostic biomarkers. Thus, in this paper, we have attempted to highlight the molecular regulation of bone marrow metastasis in prostate and breast cancers.
Collapse
|
38
|
Muthu M, Cheriyan VT, Munie S, Levi E, Frank J, Ashour AE, Singh M, Rishi AK. Mechanisms of neuroblastoma cell growth inhibition by CARP-1 functional mimetics. PLoS One 2014; 9:e102567. [PMID: 25033461 PMCID: PMC4102511 DOI: 10.1371/journal.pone.0102567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/20/2014] [Indexed: 11/29/2022] Open
Abstract
Neuroblastomas (NBs) are a clinically heterogeneous group of extra cranial pediatric tumors. Patients with high-risk, metastatic NBs have a long-term survival rate of below 40%, and are often resistant to current therapeutic modalities. Due to toxic side effects associated with radiation and chemotherapies, development of new agents is warranted to overcome resistance and effectively treat this disease in clinic. CARP-1 functional mimetics (CFMs) are an emerging class of small molecule compounds that inhibit growth of diverse cancer cell types. Here we investigated NB inhibitory potential of CFMs and the molecular mechanisms involved. CFM-1, -4, and -5 inhibited NB cell growth, in vitro, independent of their p53 and MYCN status. CFM-4 and -5 induced apoptosis in NB cells in part by activating pro-apoptotic stress-activated kinases (SAPKs) p38 and JNK, stimulating CARP-1 expression and cleavage of PARP1, while promoting loss of the oncogenes C and N-myc as well as mitotic cyclin B1. Treatments of NB cells with CFM-4 or -5 also resulted in loss of Inhibitory κB (IκB) α and β proteins. Micro-RNA profiling revealed upregulation of XIAP-targeting miR513a-3p in CFM-4-treated NB, mesothelioma, and breast cancer cells. Moreover, exposure of NB and breast cancer cells to CFM-4 or -5 resulted in diminished expression of anti-apoptotic XIAP1, cIAP1, and Survivin proteins. Expression of anti-miR513a-5p or miR513a-5p mimic, however, interfered with or enhanced, respectively, the breast cancer cell growth inhibition by CFM-4. CFMs also impacted biological properties of the NB cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated membranes. Our studies indicate anti-NB properties of CFM-4 and 5, and suggest that these CFMs and/or their future analogs have potential as anti-NB agents.
Collapse
Affiliation(s)
- Magesh Muthu
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Oncology Department, Wayne State University, Detroit, Michigan, United States of America
| | - Vino T. Cheriyan
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Oncology Department, Wayne State University, Detroit, Michigan, United States of America
| | - Sara Munie
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Oncology Department, Wayne State University, Detroit, Michigan, United States of America
| | - Edi Levi
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Pathology Department, Wayne State University, Detroit, Michigan, United States of America
| | - John Frank
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
| | - Abdelkader E. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Arun K. Rishi
- John D. Dingell VA Medical Center, Wayne State University, Detroit, Michigan, United States of America
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
- Oncology Department, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol 2014; 171:5507-23. [PMID: 24665826 DOI: 10.1111/bph.12704] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Metastasis is responsible for the greatest number of cancer deaths. Metastatic disease, or the movement of cancer cells from one site to another, is a complex process requiring dramatic remodelling of the cell cytoskeleton. The various components of the cytoskeleton, actin (microfilaments), microtubules (MTs) and intermediate filaments, are highly integrated and their functions are well orchestrated in normal cells. In contrast, mutations and abnormal expression of cytoskeletal and cytoskeletal-associated proteins play an important role in the ability of cancer cells to resist chemotherapy and metastasize. Studies on the role of actin and its interacting partners have highlighted key signalling pathways, such as the Rho GTPases, and downstream effector proteins that, through the cytoskeleton, mediate tumour cell migration, invasion and metastasis. An emerging role for MTs in tumour cell metastasis is being unravelled and there is increasing interest in the crosstalk between key MT interacting proteins and the actin cytoskeleton, which may provide novel treatment avenues for metastatic disease. Improved understanding of how the cytoskeleton and its interacting partners influence tumour cell migration and metastasis has led to the development of novel therapeutics against aggressive and metastatic disease. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- C M Fife
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia Lowy Cancer Research Centre, UNSW Australia, Randwick, NSW, Australia; Australian Centre for NanoMedicine, UNSW Australia, Sydney, NSW, Australia
| | | | | |
Collapse
|
40
|
Chen X, Zhu Y, Han L, Lu H, Hao X, Dong Q. Chemokine receptor 4 gene silencing blocks neuroblastoma metastasis in vitro. Neural Regen Res 2014; 9:1063-1067. [PMID: 25206760 PMCID: PMC4146301 DOI: 10.4103/1673-5374.133172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 11/09/2022] Open
Abstract
This study investigated the effects of small interfering RNA (siRNA)-mediated silencing of chemokine receptor 4 (CXCR4) on the invasion capacity of human neuroblastoma cell line SH-SY5Y in vitro. Three siRNAs targeting CXCR4 were chemically synthesized and individually transfected into SH-SY5Y cells. Expression of CXCR4 mRNA and protein was significantly suppressed in transfected cells by all three sequence-specific siRNAs compared with control groups. Furthermore, the invasion capacity of SH-SY5Y cells was significantly decreased following transfection with CXCR4-specific siRNA compared with the control groups. These data demonstrate that down-regulation of CXCR4 can inhibit in vitro invasion of neuroblastoma.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yongjie Zhu
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lulu Han
- Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hongting Lu
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiwei Hao
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Dong
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
41
|
Schwankhaus N, Gathmann C, Wicklein D, Riecken K, Schumacher U, Valentiner U. Cell adhesion molecules in metastatic neuroblastoma models. Clin Exp Metastasis 2014; 31:483-96. [PMID: 24549749 DOI: 10.1007/s10585-014-9643-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
Several cell adhesion molecules (CAMs) including selectins, integrins, cadherins and immunoglobulin-like CAMs are involved in leukocyte adhesion especially at sites of inflammation. In cancer cells, these CAMs have been associated with the growth and metastatic behavior in several malignant entities. In this study adhesion of LAN 1 and SK-N-SH neuroblastoma cells to selectins, hyaluronan and endothelial cells were determined under flow conditions. Furthermore cells were injected subcutaneously into wildtype and selectin deficient scid mice and their growth and metastatic behavior were analyzed. Under shear stress SK-N-SH cells firmly adhered to E-selectin-Fc-fusion protein, hyaluronan and endothelial cells, while LAN 1 cells showed less or hardly any adhesive events by comparison. In the SK-N-SH xenograft model metastasis formation was slightly dependent on the expression of selectins, while LAN 1 cells developed metastases completely independent of selectin expression. The different adhesive and metastatic properties of LAN 1 and SK-N-SH cells are reflected by a different expression profile of several CAMs. The results indicate that endothelial selectins are not essential for metastasis formation of human LAN 1 and SK-N-SH cells. However, other CAMs namely CD44, N-cadherin, NCAM and integrins were upregulated or downregulated, respectively, in SK-N-SH and LAN 1 cells and are potential adhesion molecules involved in the metastatic cascade of these cells.
Collapse
Affiliation(s)
- Nina Schwankhaus
- Center for Experimental Medicine, Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christina Gathmann
- Center for Experimental Medicine, Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Daniel Wicklein
- Center for Experimental Medicine, Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, Center for Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Udo Schumacher
- Center for Experimental Medicine, Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ursula Valentiner
- Center for Experimental Medicine, Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
42
|
Sagnella SM, Duong H, MacMillan A, Boyer C, Whan R, McCarroll JA, Davis TP, Kavallaris M. Dextran-Based Doxorubicin Nanocarriers with Improved Tumor Penetration. Biomacromolecules 2013; 15:262-75. [DOI: 10.1021/bm401526d] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sharon M. Sagnella
- Children’s
Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, P.O. Box 81, Randwick, Australia
| | | | | | | | | | - Joshua A. McCarroll
- Children’s
Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, P.O. Box 81, Randwick, Australia
| | - Thomas P. Davis
- Monash
Institute of Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria, Australia
- Department
of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Maria Kavallaris
- Children’s
Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, P.O. Box 81, Randwick, Australia
| |
Collapse
|
43
|
Lee HJ, Park MK, Bae HC, Yoon HJ, Kim SY, Lee CH. Transglutaminase-2 Is Involved in All-Trans Retinoic Acid-Induced Invasion and Matrix Metalloproteinases Expression of SH-SY5Y Neuroblastoma Cells via NF-κB Pathway. Biomol Ther (Seoul) 2013; 20:286-92. [PMID: 24130925 PMCID: PMC3794525 DOI: 10.4062/biomolther.2012.20.3.286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022] Open
Abstract
All-trans retinoic acid (ATRA) is currently used in adjuvant differentiation-based treatment of residual or relapsed neuroblastoma (NB). It has been reported that short-term ATRA treatment induces migration and invasion of SH-SY5Y via transglutaminase-2 (Tgase-2). However, the detailed mechanism of Tgase-2's involvement in NB cell invasion remains unclear. Therefore we investigated the role of Tgase-2 in invasion of NB cells using SH-SY5Y cells. ATRA dose-dependently induced the invasion of SH-SY5Y cells. Cystamine (CTM), a well known tgase inhibitor suppressed the ATRA-induced invasion of SH-SY5Y cells in a dose-dependent manner. Matrix metalloproteinase-9 (MMP-9) and MMP-2, well known genes involved in invasion of cancer cells were induced in the ATRA-induced invasion of the SH-SH5Y cells. Treatment of CTM suppressed the MMP-9 and MMP-2 enzyme activities in the ATRA-induced invasion of the SH-SY5Y cells. To confirm the involvement of Tgase-2, gene silencing of Tgase-2 was performed in the ATRA-induced invasion of the SH-SH5Y cells. The siRNA of Tgase-2 suppressed the MMP-9 and MMP-2 activity of the SH-SY5Y cells. MMP-2 and MMP-9 are well known target genes of NF-κB. Therefore the relationship of Tgase-2 and NF-κB in the ATRA-induced invasion of the SH-SY5Y cells was examined using siRNA and CTM. ATRA induced the activation of NF-κB in the SH-SY5Y cells and CTM suppressed the activation of NF-κB. Gene silencing of Tgase-2 suppressed the MMP expression by ATRA. These results suggested that Tgase-2 might be a new target for controlling the ATRA-induced invasion of NBs.
Collapse
Affiliation(s)
- Hye Ja Lee
- College of Pharmacy, Dongguk University, Seoul 100-715
| | | | | | | | | | | |
Collapse
|
44
|
Marimpietri D, Petretto A, Raffaghello L, Pezzolo A, Gagliani C, Tacchetti C, Mauri P, Melioli G, Pistoia V. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One 2013; 8:e75054. [PMID: 24069378 PMCID: PMC3777909 DOI: 10.1371/journal.pone.0075054] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood, with grim prognosis in a half of patients. Exosomes are nanometer-sized membrane vesicles derived from the multivesicular bodies (MVBs) of the endocytic pathway and released by normal and neoplastic cells. Tumor-derived exosomes have been shown in different model systems to carry molecules that promote cancer growth and dissemination. In this respect, we have here performed the first characterization and proteomic analysis of exosomes isolated from human NB cell lines by filtration and ultracentrifugation. Electron microscopy demonstrated that NB-derived exosomes exhibited the characteristic cup-shaped morphology. Dynamic light scattering studies showed a bell-shaped curve and a polydispersity factor consistent with those of exosomes. Zeta potential values suggested a good nanoparticle stability. We performed proteomic analysis of NB-derived exosomes by two dimension liquid chromatography separation and mass spectrometry analyses using the multidimensional protein identification technology strategy. We found that the large majority of the proteins identified in NB derived exosomes are present in Exocarta database including tetraspanins, fibronectin, heat shock proteins, MVB proteins, cytoskeleton-related proteins, prominin-1 (CD133), basigin (CD147) and B7-H3 (CD276). Expression of the CD9, CD63 and CD81 tetraspanins, fibronectin, CD133, CD147 and CD276 was validated by flow cytometry. Noteworthy, flow cytometric analysis showed that NB-derived exosomes expressed the GD2 disialoganglioside, the most specific marker of NB. In conclusion, this study shows that NB-derived exosomes express a discrete set of molecules involved in defense response, cell differentiation, cell proliferation and regulation of other important biological process. Thus, NB-derived exosomes may play an important role in the modulation of tumor microenvironment and represent potential tumor biomarkers.
Collapse
Affiliation(s)
- Danilo Marimpietri
- Laboratory of Oncology, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
- * E-mail:
| | - Andrea Petretto
- Core Facilities, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| | - Lizzia Raffaghello
- Laboratory of Oncology, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| | - Annalisa Pezzolo
- Laboratory of Oncology, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| | - Cristina Gagliani
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, Scientific Institute San Raffaele, Milan, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies, CNR, Segrate, Milan, Italy
| | - Giovanni Melioli
- Clinical Pathology Laboratories, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| | - Vito Pistoia
- Laboratory of Oncology, Department of Translational Research and Laboratory Medicine, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
45
|
Zhao H, Cai W, Li S, Da Z, Sun H, Ma L, Lin Y, Zhi D. Characterization of neuroblastoma bone invasion/metastasis in established bone metastatic model of SY5Y and KCNR cell lines. Childs Nerv Syst 2013; 29:1097-105. [PMID: 23559392 DOI: 10.1007/s00381-013-2086-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/18/2013] [Indexed: 02/02/2023]
Abstract
OBJECTS To determine the mechanism of neuroblastoma (NB) bone invasion/metastasis, it is necessary to investigate the bone invasion/metastasis-related factors in the bone invasion/metastasis process. Some evidence has suggested that various proteins were involved in bone osteolytic response. The invasion/metastasis property and gene expression of NB, however, are still unknown. METHODS Single-cell suspensions of SY5Y and KCNR cells were injected directly into the femur of nude mice. Radiological and histological analyses, immunohistochemistry analyses, and western blot assay were performed to characterize bone metastasis mechanism in these bone metastasis models. RESULTS SY5Y and KCNR NB cells result in osteolytic responses in bone metastasis model. Osteoprotegerin (OPG), receptor activator of NF-kappaB ligand (RANKL), parathyroid hormone-related peptide (PTHrP), endothelin 1 (ET-1), and CXCR4 were examined and compared among in vitro, in vivo, and normal bone, respectively. PTHrP, OPG, RANKL, and ET-1 except CXCR4 in SY5Y and KCNR NB cells xenografts were strikingly upregulated compared with normal bone and NB cells. However, significantly stronger expression of PTHrP and RANKL was presented than ET-1 and OPG; furthermore, the ratios of expression of PTHrP, RANKL to OPG, and ET-1 were also markedly increased in vivo versus in vitro. CONCLUSIONS Our study provided evidence that NB cell may enhance bone invasion through PTHrP, OPG, RANKL, and ET-1, especially PTHrP and RANKL which may display stronger effects. CXCR4 appeared not participating in bone invasion, but in tumor growth, and homing to bone. Targeting PTHrP, OPG, ET-1, and RANKL may provide a new insight and method for patient therapy by inhibiting NB bone metastasis and invasiveness.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Weisong Cai
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shuai Li
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zuke Da
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hanxue Sun
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Liang Ma
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yaoxin Lin
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Debao Zhi
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
46
|
RNAi-mediated stathmin suppression reduces lung metastasis in an orthotopic neuroblastoma mouse model. Oncogene 2013; 33:882-90. [PMID: 23396365 DOI: 10.1038/onc.2013.11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/25/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
Metastatic neuroblastoma is an aggressive childhood cancer of neural crest origin. Stathmin, a microtubule destabilizing protein, is highly expressed in neuroblastoma although its functional role in this malignancy has not been addressed. Herein, we investigate stathmin's contribution to neuroblastoma tumor growth and metastasis. Small interfering RNA (siRNA)-mediated stathmin suppression in two independent neuroblastoma cell lines, BE(2)-C and SH-SY5Y, did not markedly influence cell proliferation, viability or anchorage-independent growth. In contrast, stathmin suppression significantly reduced cell migration and invasion in both the neuroblastoma cell lines. Stathmin suppression altered neuroblastoma cell morphology and this was associated with changes in the cytoskeleton, including increased tubulin polymer levels. Stathmin suppression also modulated phosphorylation of the actin-regulatory proteins, cofilin and myosin light chain (MLC). Treatment of stathmin-suppressed neuroblastoma cells with the ROCKI and ROCKII inhibitor, Y-27632, ablated MLC phosphorylation and returned the level of cofilin phosphorylation and cell invasion back to that of untreated control cells. ROCKII inhibition (H-1152) and siRNA suppression also reduced cofilin phosphorylation in stathmin-suppressed cells, indicating that ROCKII mediates stathmin's regulation of cofilin phosphorylation. This data demonstrates a link between stathmin and the regulation of cofilin and MLC phosphorylation via ROCK. To examine stathmin's role in neuroblastoma metastasis, stathmin short hairpin RNA (shRNA)\luciferase-expressing neuroblastoma cells were injected orthotopically into severe combined immunodeficiency-Beige mice, and tumor growth monitored by bioluminescent imaging. Stathmin suppression did not influence neuroblastoma cell engraftment or tumor growth. In contrast, stathmin suppression significantly reduced neuroblastoma lung metastases by 71% (P<0.008) compared with control. This is the first study to confirm a role for stathmin in hematogenous spread using a clinically relevant orthotopic cancer model, and has identified stathmin as an important contributor of cell invasion and metastasis in neuroblastoma.
Collapse
|
47
|
Zhang H, Pu J, Qi T, Qi M, Yang C, Li S, Huang K, Zheng L, Tong Q. MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene 2012; 33:387-97. [PMID: 23222716 DOI: 10.1038/onc.2012.574] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/01/2012] [Accepted: 10/23/2012] [Indexed: 11/10/2022]
Abstract
Recent evidence shows that hypoxia-inducible factor 2 alpha (HIF-2α) may have critical roles in the growth and progression of neuroblastoma (NB) under non-hypoxic conditions. However, the underlying mechanisms and clinical potentials of normoxic HIF-2α expression in NB still remain largely unknown. In this study, HIF-2α immunostaining was identified in 26/42 NB tissues, which was correlated with clinicopathological features. In subtotal 20 NB cases, microRNA-145 (miR-145) was downregulated and inversely correlated with HIF-2α expression. Bioinformatics analysis revealed a putative miR-145 binding site in the 3'-untranslated region (3'-UTR) of HIF-2α messenger RNA (mRNA). Overexpression or knockdown of miR-145 responsively altered both the mRNA and protein levels of HIF-2α and its downstream genes, cyclin D1, matrix metalloproteinase 14 and vascular endothelial growth factor, in normoxically cultured NB cell lines SH-SY5Y and SK-N-SH. In a luciferase reporter system, miR-145 downregulated the luciferase activity of HIF-2α 3'-UTR, and these effects were abolished by a mutation in the putative miR-145-binding site. Overexpression of miR-145 suppressed the growth, invasion, metastasis and angiogenesis of SH-SY5Y and SK-N-SH cells in vitro and in vivo, while restoration of HIF-2α expression rescued the tumor cells from miR-145-mediated defects in these biological features. Furthermore, anti-miR-145 inhibitor rescued the HIF-2α knockdown-mediated repression on the growth, migration, invasion and angiogenesis of NB cells. These data indicate that miR-145 suppresses HIF-2α expression via the binding site in the 3'-UTR under normoxic conditions, thus inhibiting the aggressiveness and angiogenesis of NB.
Collapse
Affiliation(s)
- H Zhang
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - J Pu
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - T Qi
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - M Qi
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - C Yang
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - S Li
- Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - K Huang
- 1] Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China [2] Department of Cardiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - L Zheng
- 1] Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China [2] Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Q Tong
- 1] Department of Pediatric Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China [2] Clinical Center of Human Genomic Research, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
48
|
Zhao H, Cai W, Li S, Da Z, Sun H, Ma L, Lin Y, Zhi D. Establishment and characterization of xenograft models of human neuroblastoma bone metastasis. Childs Nerv Syst 2012; 28:2047-54. [PMID: 22983667 DOI: 10.1007/s00381-012-1909-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
OBJECTS To improve the therapy of advanced neuroblastoma (NB), it is critical to develop animal models that mimic NB bone metastases. Unlike the human disease, NB xenograft models rarely metastasize spontaneously to bone from the orthotopic site of primary tumor growth. METHODS Single-cell suspensions of SY5Y, KCNR NB cells were injected directly into the femur of nude mice. Radiological and histological analyses and immunohistochemistry analyses were performed to characterize these osseous NB models. SY5Y and KCNR result in osteolytic responses. RESULTS We have detected osteoprotegerin, receptor activator of nuclear factor kappa B ligand, parathyroid hormone-related protein, and endothelin-1, proteins associated with bone growth and osteolysis, and C-X-C chemokine receptor type 4 (CXCR4) involved in tumor growth and tumor cell migration in the NB cells grown in the bone. CONCLUSIONS These animal models can be used to study biological interactions, pathways, and potential therapeutic targets and also to evaluate new agents for treatment and prevention of NB bone metastasis.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Berois N, Gattolliat CH, Barrios E, Capandeguy L, Douc-Rasy S, Valteau-Couanet D, Bénard J, Osinaga E. GALNT9 gene expression is a prognostic marker in neuroblastoma patients. Clin Chem 2012; 59:225-33. [PMID: 23136245 DOI: 10.1373/clinchem.2012.192328] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The enzymes encoded by the GALNT [UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase (GALNAC-T)] gene family catalyze the first step of O-glycosylation. Little is known about the link between expression of the genes encoding GALNAC-T enzymes and tumor progression in neuroblastoma, a pediatric cancer that can be classified as either low or high risk. We assessed the expression of genes in the GALNT family in a large cohort of neuroblastoma patients and characterized members of this family that might be used as new prognostic markers. METHODS Reverse-transcription PCR analysis of 14 GALNT genes with a panel of neuroblastoma cell lines identified the GALNT9 gene as playing a potential role in disease progression. We used the log-rank test and the multivariable Cox proportional hazards model with a cohort of 122 neuroblastoma patients to analyze the relationship between GALNT9 expression and overall survival or disease-free survival. RESULTS In the high-risk neuroblastoma experimental model IGR-N-91, GALNT9 expression was present in neuroblasts derived from primary tumors but not in neuroblasts from metastatic bone marrow. Moreover, GALNT9 in neuroblastoma cell lines was expressed in substrate adherent (S)-type cell lines but not in neuronal (N)-type lines. In the tumor cohort, GALNT9 expression was associated with high overall survival, independent of the standard risk-stratification covariates. GALNT9 expression was significantly associated with disease-free survival for patients currently classified as at low risk (P < 0.0007). CONCLUSIONS GALNT9 expression correlates with both improved overall survival in low- and high-risk groups and an improved clinical outcome (overall and disease-free survival) in low-risk patients. Thus, the GALNT9 expression may be a prognostic marker for personalized therapy.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Fuhs T, Reuter L, Vonderhaid I, Claudepierre T, Käs JA. Inherently slow and weak forward forces of neuronal growth cones measured by a drift-stabilized atomic force microscope. Cytoskeleton (Hoboken) 2012; 70:44-53. [DOI: 10.1002/cm.21080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/16/2012] [Indexed: 12/11/2022]
|