1
|
Jiang C, Hong Z, Liu S, Hong Z, Dai B. Roles of CDK12 mutations in PCa development and treatment. Biochim Biophys Acta Rev Cancer 2025; 1880:189247. [PMID: 39681197 DOI: 10.1016/j.bbcan.2024.189247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men, and cyclin-dependent kinase 12 (CDK12) is emerging as a novel star player in the PCa tumorigenesis and progression to castration-resistant prostate cancer (CRPC). In PCa, CDK12 alterations are mostly loss-of-function mutations featuring intronic polyadenylation (IPA), focal tandem duplications (FTDs), and R-loops formation and transcription-replication conflicts (TRCs). The occurrence of IPA can result in homologous recombination deficiency (HRD) and androgen receptor (AR) variation. FTDs induce neoantigens and increase the expression of the AR, MYC, and other hotspot- associated genes. R-loops lead to TRCs and influence various cellular processes, including gene expression and genome stability. Due to the poor prognosis of CDK12-mutant PCa patients and the mediocre response to classic standard therapies, HRD and increased neoantigen levels have provided clinicians with new insights into alternative systematic treatments for this novel PCa phenotype. In this review, we summarize the roles of CDK12 mutations in PCa and discuss their clinical value, suggesting that CDK12 potentially represents a target for further research and the development of clinical strategies for PCa.
Collapse
Affiliation(s)
- Chenye Jiang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| | - Shiwei Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China
| | - Zongyuan Hong
- Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu 241002, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Shanghai Genitourinary Cancer Institute, Shanghai 200032, China.
| |
Collapse
|
2
|
Roy P, Singh KP. Epigenetic mechanism of therapeutic resistance and potential of epigenetic therapeutics in chemorefractory prostate cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:173-210. [PMID: 37657858 DOI: 10.1016/bs.ircmb.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Prostate cancer is the second leading cause of cancer death among men in the United States. Depending upon the histopathological subtypes of prostate cancers, various therapeutic options, such as androgen deprivation therapy (ADT), androgen receptor signaling inhibitors (ARSI), immunotherapy, and chemotherapy, are available to treat prostate cancer. While these therapeutics are effective in the initial stages during treatments, the tumors subsequently develop resistance to these therapies. Despite all the progress made so far, therapeutic resistance remains a major challenge in the treatment of prostate cancer. Although various mechanisms have been reported for the resistance development in prostate cancer, altered expression of genes either directly or indirectly involved in drug response pathways is a common event. In addition to the genetic basis of gene regulation such as mutations and gene amplifications, epigenetic alterations involved in the aberrant expression of genes have frequently been shown to be associated not only with cancer initiation and progression but also with therapeutic resistance development. There are several review articles compiling reports on genetic mechanisms involved in therapeutic resistance in prostate cancer. However, epigenetic mechanisms for the therapeutic resistance development in prostate cancer have not yet been summarized in a review article. Therefore, the objective of this article is to compile various reports and provide a comprehensive review of the epigenetic aberrations, and aberrant expression of genes by epigenetic mechanisms involved in CRPCs and therapeutic resistance development in prostate cancer. Additionally, the potential of epigenetic-based therapeutics in the treatment of chemorefractory prostate cancer as evidenced by clinical trials has also been discussed.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
3
|
Rodems TS, Heninger E, Stahlfeld CN, Gilsdorf CS, Carlson KN, Kircher MR, Singh A, Krueger TEG, Beebe DJ, Jarrard DF, McNeel DG, Haffner MC, Lang JM. Reversible epigenetic alterations regulate class I HLA loss in prostate cancer. Commun Biol 2022; 5:897. [PMID: 36050516 PMCID: PMC9437063 DOI: 10.1038/s42003-022-03843-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
Downregulation of HLA class I (HLA-I) impairs immune recognition and surveillance in prostate cancer and may underlie the ineffectiveness of checkpoint blockade. However, the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully explored. Here, we conducted a comprehensive analysis of HLA-I genomic, epigenomic and gene expression alterations in primary and metastatic human prostate cancer. Loss of HLA-I gene expression was associated with repressive chromatin states including DNA methylation, histone H3 tri-methylation at lysine 27, and reduced chromatin accessibility. Pharmacological DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition decreased DNA methylation and increased H3 lysine 27 acetylation and resulted in re-expression of HLA-I on the surface of tumor cells. Re-expression of HLA-I on LNCaP cells by DNMT and HDAC inhibition increased activation of co-cultured prostate specific membrane antigen (PSMA)27-38-specific CD8+ T-cells. HLA-I expression is epigenetically regulated by functionally reversible DNA methylation and chromatin modifications in human prostate cancer. Methylated HLA-I was detected in HLA-Ilow circulating tumor cells (CTCs), which may serve as a minimally invasive biomarker for identifying patients who would benefit from epigenetic targeted therapies.
Collapse
Affiliation(s)
- Tamara S Rodems
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Charlotte N Stahlfeld
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Cole S Gilsdorf
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Kristin N Carlson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Madison R Kircher
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Anupama Singh
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Timothy E G Krueger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - David J Beebe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Pathology, University of Wisconsin, Madison, 3170 UW Medical Foundation Centennial Building, 1685 Highland Ave., Madison, WI, 53705, USA
| | - David F Jarrard
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Urology, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N., Seattle, WA, 98109, USA.,Department of Pathology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA.,Department of Pathology, Johns Hopkins School of Medicine, 600N Wolfe St., Baltimore, MD, 21287, USA
| | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA. .,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
4
|
Petrylak DP, Loriot Y, Shaffer DR, Braiteh F, Powderly J, Harshman LC, Conkling P, Delord JP, Gordon M, Kim JW, Sarkar I, Yuen K, Kadel EE, Mariathasan S, O'Hear C, Narayanan S, Fassò M, Carroll S, Powles T. Safety and Clinical Activity of Atezolizumab in Patients with Metastatic Castration-Resistant Prostate Cancer: A Phase I Study. Clin Cancer Res 2021; 27:3360-3369. [PMID: 33568344 DOI: 10.1158/1078-0432.ccr-20-1981] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Atezolizumab [anti-programmed death-ligand 1 (anti-PD-L1)] is well tolerated and efficacious in multiple cancers, but has not been previously evaluated in metastatic castration-resistant prostate cancer (mCRPC). This study examined the safety, efficacy, and biomarkers of atezolizumab monotherapy for mCRPC. PATIENTS AND METHODS This phase Ia, open-label, dose-escalation and dose-expansion study (PCD4989g) enrolled patients with mCRPC who had progressed on sipuleucel-T or enzalutamide. Atezolizumab was given intravenously every 3 weeks until confirmed disease progression or loss of clinical benefit. Prespecified endpoints included safety, efficacy, biomarker analyses, and radiographic assessments. RESULTS All 35 evaluable patients [median age, 68 years (range, 45-83 years)] received atezolizumab after ≥1 prior line of therapy; 62.9% of patients had received ≥3 prior lines. Treatment-related adverse events occurred in 21 patients (60.0%), with no deaths. One patient had a confirmed partial response (PR) per RECIST 1.1, and 1 patient had a PR per immune-related response criteria. The confirmed 50% PSA response rate was 8.6% (3 patients). Median overall survival (OS) was 14.7 months [95% confidence interval (CI): 5.9-not evaluable], with a 1-year OS rate of 52.3% (95% CI: 34-70); 2-year OS was 35.9% (95% CI: 13-59). Median follow-up was 13.0 months (range, 1.2-28.1 months). Biomarker analyses showed that atezolizumab activated immune responses; however, a composite biomarker failed to reveal consistent correlations with efficacy. CONCLUSIONS Atezolizumab was generally well tolerated in patients with mCRPC, with a safety profile consistent with other tumor types. In heavily pretreated patients, atezolizumab monotherapy demonstrated evidence of disease control; however, its limited efficacy suggests a combination approach may be needed.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Gustave Roussy, INSERM U981, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - David R Shaffer
- New York Oncology Hematology Albany Medical Center, Albany, New York
| | - Fadi Braiteh
- Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada
| | - John Powderly
- Carolina BioOncology Institute, Huntersville, North Carolina
| | | | - Paul Conkling
- US Oncology Research, Virginia Oncology Associates, Norfolk, Virginia
| | | | | | | | | | - Kobe Yuen
- Genentech, Inc, South San Francisco, California
| | | | | | | | | | | | | | - Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Adamaki M, Zoumpourlis V. Immunotherapy as a Precision Medicine Tool for the Treatment of Prostate Cancer. Cancers (Basel) 2021; 13:E173. [PMID: 33419051 PMCID: PMC7825410 DOI: 10.3390/cancers13020173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed type of cancer among Caucasian males over the age of 60 and is characterized by remarkable heterogeneity and clinical behavior, ranging from decades of indolence to highly lethal disease. Despite the significant progress in PCa systemic therapy, therapeutic response is usually transient, and invasive disease is associated with high mortality rates. Immunotherapy has emerged as an efficacious and non-toxic treatment alternative that perfectly fits the rationale of precision medicine, as it aims to treat patients on the basis of patient-specific, immune-targeted molecular traits, so as to achieve the maximum clinical benefit. Antibodies acting as immune checkpoint inhibitors and vaccines entailing tumor-specific antigens seem to be the most promising immunotherapeutic strategies in offering a significant survival advantage. Even though patients with localized disease and favorable prognostic characteristics seem to be the ones that markedly benefit from such interventions, there is substantial evidence to suggest that the survival benefit may also be extended to patients with more advanced disease. The identification of biomarkers that can be immunologically targeted in patients with disease progression is potentially amenable in this process and in achieving significant advances in the decision for precision treatment of PCa.
Collapse
Affiliation(s)
- Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | | |
Collapse
|
6
|
McKay RR, Hafron JM, Ferro C, Wilfehrt HM, Fitch K, Flanders SC, Fabrizio MD, Schweizer MT. A Retrospective Observational Analysis of Overall Survival with Sipuleucel-T in Medicare Beneficiaries Treated for Advanced Prostate Cancer. Adv Ther 2020; 37:4910-4929. [PMID: 33029725 PMCID: PMC7596004 DOI: 10.1007/s12325-020-01509-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Since sipuleucel-T approval in 2010, the treatment landscape for metastatic castration-resistant prostate cancer (mCRPC) now includes the androgen-receptor signaling pathway inhibitors (ASPIs) abiraterone acetate or enzalutamide. In 2013 and 2014, these oral agents were approved for use in men with metastatic prostate cancer who had minimal to no symptoms. We compared overall survival (OS) in men who received their first mCRPC treatment using the Medicare Fee-for-Service 100% administrative claims research dataset with patient-level linkage to the National Death Index. METHODS This retrospective cohort analysis (January 2013 to December 2017) included men who were chemo-naïve at treatment start in 2014 and who had continuous Medicare Parts A, B, and D eligibility during the 3-year observation period. We compared: first-line sipuleucel-T vs. first-line ASPIs and any-line sipuleucel-T vs. any-line ASPIs (without sipuleucel-T). We used a multivariable regression model to help control for potentially confounding factors while assessing survival outcomes. RESULTS The model included 6044 eligible men (average age 75-78 years) with similar disease severity; > 80% were white. Median OS, presented as sipuleucel-T vs. ASPI, was 35.2 vs. 20.7 months (n, 906 vs. 5092; any-line cohort) and 34.9 vs. 21.0 months (n, 647 vs. 4810; first-line cohort). Model outcomes indicated sipuleucel-T was associated with significantly prolonged OS compared with ASPIs: adjusted hazard ratio, 0.59 (95% CI 0.527-0.651) and 0.56 (0.494-0.627) for the any-line and first-line cohorts, respectively. CONCLUSION This analysis suggests use of sipuleucel-T at any time was associated with improved OS compared with ASPI use alone. Of note, these analyses are intended as descriptive rather than definitive as this dataset contains limited data on key clinical factors. While selection bias is a risk in secondary claims data, this research provides important insight into real-world treatment outcomes.
Collapse
Affiliation(s)
- Rana R McKay
- Moores Cancer Center, University of California San Diego, San Diego, CA, USA.
| | - Jason M Hafron
- William Beaumont School of Medicine, Oakland University, Auburn Hills, MI, USA
| | | | - Helen M Wilfehrt
- Department of Medical Affairs, Dendreon Pharmaceuticals, LLC, Seattle, WA, USA
| | | | - Scott C Flanders
- Department of Medical Affairs, Dendreon Pharmaceuticals, LLC, Seattle, WA, USA
| | - Michael D Fabrizio
- Department of Urology, Eastern Virginia Medical School, Virginia Beach, VA, USA
- Urology of Virginia, PLLC, Virginia Beach, VA, USA
| | - Michael T Schweizer
- Division of Medical Oncology, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
7
|
Qin L, Wang S, Dominguez D, Long A, Chen S, Fan J, Ahn J, Skakuj K, Huang Z, Lee A, Mirkin C, Zhang B. Development of Spherical Nucleic Acids for Prostate Cancer Immunotherapy. Front Immunol 2020; 11:1333. [PMID: 32733447 PMCID: PMC7362897 DOI: 10.3389/fimmu.2020.01333] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/26/2020] [Indexed: 01/02/2023] Open
Abstract
Although the strategy of therapeutic vaccination for the treatment of prostate cancer has advanced to and is available in the clinic (Sipuleucel-T), the efficacy of such therapy remains limited. Here, we develop Immunostimulatory Spherical Nucleic Acid (IS-SNA) nanostructures comprised of CpG oligonucleotides as adjuvant and prostate cancer peptide antigens, and evaluate their antitumor efficacy in syngeneic mouse models of prostate cancer. IS-SNAs with the specific structural feature of presenting both antigen and adjuvant CpG on the surface (hybridized model (HM) SNAs) induce stronger cytotoxic T lymphocyte (CTL) mediated antigen-specific killing of target cells than that for IS-SNAs with CpG on the surface and antigen encapsulated within the core (encapsulated model (EM) SNAs). Mechanistically, HM SNAs increase the co-delivery of CpG and antigen to dendritic cells over that for EM SNAs or admixtures of linear CpG and peptide, thereby improving cross-priming of antitumor CD8+ T cells. As a result, vaccination with HM SNAs leads to more effective antitumor immune responses in two prostate cancer models. These data demonstrate the importance of the structural positioning of peptide antigens together with adjuvants within IS-SNAs to the efficacy of IS-SNA-based cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Qin
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Shuya Wang
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, United States
| | - Donye Dominguez
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Alan Long
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Siqi Chen
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jie Fan
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jihae Ahn
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kacper Skakuj
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Ziyin Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, United States
| | - Andrew Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Chad Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL, United States.,The International Institute for Nanotechnology, Northwestern University, Evanston, IL, United States
| | - Bin Zhang
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Schweizer MT, Ha G, Gulati R, Brown L, McKay RR, Dorff T, Hoge AC, Reichel J, Vats P, Kilari D, Patel V, Oh WK, Chinnaiyan A, Pritchard CC, Armstrong AJ, Montgomery RB, Alva A. CDK12-Mutated Prostate Cancer: Clinical Outcomes With Standard Therapies and Immune Checkpoint Blockade. JCO Precis Oncol 2020; 4:382-392. [PMID: 32671317 PMCID: PMC7363399 DOI: 10.1200/po.19.00383] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Translational studies have shown that CDK12 mutations may delineate an immunoresponsive subgroup of prostate cancer, characterized by high neo-antigen burden. Given that these mutations may define a clinically distinct subgroup, we sought to describe outcomes to standard drugs and checkpoint inhibitors (CPI). PATIENTS AND METHODS Clinical data from consecutive patients with CDK12 mutations were retrospectively collected from 7 centers. Several clinical-grade sequencing assays were used to assess CDK12 status. Descriptive statistics included PSA50 response rate (≥ 50% decline in prostate-specific antigen from baseline) and clinical/radiographic progression-free survival (PFS). RESULTS Of 52 patients with CDK12-mutated prostate cancer, 27 (52%) had detected biallelic CDK12 alterations. At diagnosis, 44 (88%) had Gleason grade group 4-5, 52% had T3-T4, and 14 (27%) had M1 disease. Median follow-up was 8.2 years (95% CI, 5.6 to 11.1 years), and 49 (94%) developed metastatic disease. Median overall survival from metastasis was 3.9 years (95% CI, 3.2 to 8.1 years). Unconfirmed PSA50 response rates to abiraterone and enzalutamide in the first-line castration-resistant prostate cancer setting were 11 of 17 (65%) and 9 of 12 (75%), respectively. Median PFS on first-line abiraterone and enzalutamide was short, at 8.2 months (95% CI, 6.6 to 12.6 months) and 10.6 months (95% CI, 10.2 months to not reached), respectively. Nineteen patients received CPI therapy. PSA50 responses to CPI were noted in 11%, and PFS was short; however, the estimated 9-month PFS was 23%. PFS was higher in chemotherapy-näıve versus chemotherapypretreated patients (median PFS: not reached v 2.1 months, P = .004). CONCLUSION CDK12 mutations define an aggressive prostate cancer subgroup, with a high rate of metastases and short overall survival. CPI may be effective in a minority of these patients, and exploratory analysis supports using anti-programmed cell death protein 1 drugs early. Prospective studies testing CPI in this subset of patients with prostate cancer are warranted.
Collapse
Affiliation(s)
- Michael T. Schweizer
- Department of Medicine, University of Washington, Seattle, WA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Gavin Ha
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Roman Gulati
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Landon Brown
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Duke University, Durham, NC
| | | | | | - Anna C.H. Hoge
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jonathan Reichel
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | - Vaibhav Patel
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - William K. Oh
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Colin C. Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | - Andrew J. Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - R. Bruce Montgomery
- Department of Medicine, University of Washington, Seattle, WA
- Puget Sound VA, Seattle, WA
| | | |
Collapse
|
9
|
Schweizer MT, Wang H, Bivalacqua TJ, Partin AW, Lim SJ, Chapman C, Abdallah R, Levy O, Bhowmick NA, Karp JM, De Marzo A, Isaacs JT, Brennen WN, Denmeade SR. A Phase I Study to Assess the Safety and Cancer-Homing Ability of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells in Men with Localized Prostate Cancer. Stem Cells Transl Med 2019; 8:441-449. [PMID: 30735000 PMCID: PMC6477003 DOI: 10.1002/sctm.18-0230] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Animal models show that systemically administered bone marrow‐derived mesenchymal stem cells (MSCs) home to sites of primary and metastatic prostate cancer (PC)—making them candidates to selectively deliver cytotoxic agents. To further assess this potential as a cell‐based therapeutic vehicle, a phase I study testing homing of systemically infused allogeneic MSCs preprostatectomy was conducted. The primary objective was to assess safety and feasibility and to determine if MSCs accumulate within primary PC tissue. MSCs were quantified using beads, emulsion, amplification, magnetics digital polymerase chain reaction (limit of detection: ≥0.01% MSCs) to measure allogeneic MSC DNA relative to recipient DNA. MSCs were harvested from healthy donors and expanded ex vivo using standard protocols by the Johns Hopkins Cell Therapy Laboratory. PC patients planning to undergo prostatectomy were eligible for MSC infusion. Enrolled subjects received a single intravenous infusion 4–6 days prior to prostatectomy. The first three subjects received 1 x 106 cells per kilogram (maximum 1 x 108 cells), and subsequent four patients received 2 x 106 cells per kilogram (maximum 2 x 108 cells). No dose‐limiting toxicities were observed and all patients underwent prostatectomy without delay. Pathologic assessment of prostate cores revealed ≥70% tumor involvement in cores from four subjects, with benign tissue in the others. MSCs were undetectable in all subjects, and the study was stopped early for futility. MSC infusions appear safe in PC patients. Although intended for eventual use in metastatic PC patients, in this study, MSCs did not home primary tumors in sufficient levels to warrant further development as a cell‐based therapeutic delivery strategy using standard ex vivo expansion protocols. stem cells translational medicine2019;8:441–449
Collapse
Affiliation(s)
- Michael T Schweizer
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Hao Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Trinity J Bivalacqua
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alan W Partin
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Su Jin Lim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carolyn Chapman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rehab Abdallah
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oren Levy
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jeffrey M Karp
- Center for Nanomedicine and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Angelo De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - W Nathaniel Brennen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Samuel R Denmeade
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Krueger TE, Thorek DLJ, Meeker AK, Isaacs JT, Brennen WN. Tumor-infiltrating mesenchymal stem cells: Drivers of the immunosuppressive tumor microenvironment in prostate cancer? Prostate 2019; 79:320-330. [PMID: 30488530 PMCID: PMC6549513 DOI: 10.1002/pros.23738] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostate cancer is characterized by T-cell exclusion, which is consistent with their poor responses to immunotherapy. In addition, T-cells restricted to the adjacent stroma and benign areas are characterized by anergic and immunosuppressive phenotypes. In order for immunotherapies to produce robust anti-tumor responses in prostate cancer, this exclusion barrier and immunosuppressive microenvironment must first be overcome. We have previously identified mesenchymal stem cells (MSCs) in primary and metastatic human prostate cancer tissue. METHODS An Opal Multiplex immunofluorescence assay based on CD73, CD90, and CD105 staining was used to identify triple-labeled MSCs in human prostate cancer tissue. T-cell suppression assays and flow cytometry were used to demonstrate the immunosuppressive potential of primary MSCs expanded from human bone marrow and prostate cancer tissue from independent donors. RESULTS Endogenous MSCs were confirmed to be present at sites of human prostate cancer. These prostate cancer-infiltrating MSCs suppress T-cell proliferation in a dose-dependent manner similar to their bone marrow-derived counterparts. Also similar to bone marrow-derived MSCs, prostate cancer-infiltrating MSCs upregulate expression of PD-L1 and PD-L2 on their cell surface in the presence of IFNγ and TNFα. CONCLUSION Prostate cancer-infiltrating MSCs suppress T-cell proliferation similar to canonical bone marrow-derived MSCs, which have well-documented immunosuppressive properties with numerous effects on both innate and adaptive immune system function. Thus, we hypothesize that selective depletion of MSCs infiltrating sites of prostate cancer should restore immunologic recognition and elimination of malignant cells via broad re-activation of cytotoxic pro-inflammatory pathways.
Collapse
Affiliation(s)
- Timothy E. Krueger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel L. J. Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, Missouri
| | - Alan K. Meeker
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
| | - John T. Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - W. Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
11
|
Gevariya N, Besançon M, Robitaille K, Picard V, Diabaté L, Alesawi A, Julien P, Fradet Y, Bergeron A, Fradet V. Omega-3 fatty acids decrease prostate cancer progression associated with an anti-tumor immune response in eugonadal and castrated mice. Prostate 2019; 79:9-20. [PMID: 30073695 DOI: 10.1002/pros.23706] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Several lines of evidence suggest effects of dietary fat on prostate cancer (PCa) development and progression. Targeting omega (ω)-3:ω6 fatty acids (FA) ratio could be beneficial against PCa by favorably modulating inflammation. Here, we studied the effects of ω3- and ω6-enriched diets on prostate tumor growth and inflammatory response in androgen-deprived and non-deprived conditions. METHODS Immune-competent eugonadal and castrated C57BL/6 mice were injected with TRAMP-C2 prostate tumor cells and daily fed with ω3- or ω6-enriched diet. FA and cytokine profiles were measured in blood and tumors using gas chromatography and multiplex immunoassay, respectively. Immune cell infiltration in tumors was profiled by multicolor flow cytometry. RESULTS ω3-enriched diet decreased prostate TRAMP-C2 tumor growth in immune-competent eugonadal and castrated mice. Cytokines associated with Th1 immune response (IL-12 [p70], IFN-γ, GM-CSF) and eosinophil recruitment (eotaxin-1, IL-5, and IL-13) were significantly elevated in tumors of ω3-fed mice. Using in vitro experiments, we confirmed ω3 FA-induced eotaxin-1 secretion by tumor cells and that eotaxin-1 secretion was regulated by androgens. Analysis of immune cell infiltrating tumors showed no major difference of immune cells' abundance between ω3- and ω6-enriched diets. CONCLUSIONS ω3-enriched diet reduces prostate tumor growth independently of androgen levels. ω3 FA can inhibit tumor cell growth and induce a local anti-tumor inflammatory response. These findings warrant further examination of dietary ω3's potential to slow down the progression of androgen-sensitive and castrate-resistant PCa by modulating immune cell function in tumors.
Collapse
Affiliation(s)
- Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Marjorie Besançon
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Valérie Picard
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Lamoussa Diabaté
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Anwar Alesawi
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Pierre Julien
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
- Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval-CHUL, Québec, Quebec, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
12
|
Wang Q, Gregg JR, Gu J, Ye Y, Chang DW, Davis JW, Thompson TC, Kim J, Logothetis CJ, Wu X. Genetic associations of T cell cancer immune response with tumor aggressiveness in localized prostate cancer patients and disease reclassification in an active surveillance cohort. Oncoimmunology 2018; 8:e1483303. [PMID: 30546938 DOI: 10.1080/2162402x.2018.1483303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 12/23/2022] Open
Abstract
Determining prostate cancer (PCa) aggressiveness and reclassification are critical events during the treatment of localized disease and for patients undergoing active surveillance (AS). Since T cells play major roles in cancer surveillance and elimination, we aimed to identify genetic biomarkers related to T cell cancer immune response which are predictive of aggressiveness and reclassification risks in localized PCa. The genotypes of 3,586 single nucleotide polymorphisms (SNPs) from T cell cancer immune response pathways were analyzed in 1762 patients with localized disease and 393 who elected AS. The aggressiveness of PCa was defined according to pathological Gleason score (GS) and D'Amico criteria. PCa reclassification was defined according to changes in GS or tumor characteristics during subsequent surveillance biopsies. Functional characterization and analysis of immune phenotypes were also performed. In the localized PCa cohort, seven SNPs were significantly associated with the risk of aggressive disease. In the AS cohort, another eight SNPs were identified as predictors for aggressiveness and reclassification. Rs1687016 of PSMB8 was the most significant predictor of reclassification. Cumulative analysis showed that a genetic score based on the identified SNPs could significantly predict risk of D'Amico high risk disease (P-trend = 2.4E-09), GS4 + 3 disease (P-trend = 1.3E-04), biochemical recurrence (P-trend = 0.01) and reclassification (P-trend = 0.01). In addition, the rs34309 variant was associated with functional somatic mutations in the PI3K/PTEN/AKT/MTOR pathway and tumor lymphocyte infiltration. Our study provides plausible evidence that genetic variations in T cell cancer immune response can influence risks of aggressiveness and reclassification in localized PCa, which may lead to additional biological insight into these outcomes. Abbreviations: PCa, prostate cancer; AS, active surveillance; GS, Gleason score; PSA, prostate specific antigen; TCGA, The Cancer Genome Atlas; SNP, single nucleotide polymorphisms; UFG, unfavorable genotype.
Collapse
Affiliation(s)
- Qinchuan Wang
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Justin R Gregg
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanqing Ye
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David W Chang
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John W Davis
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy C Thompson
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeri Kim
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J Logothetis
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xifeng Wu
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
13
|
Moreira D, Adamus T, Zhao X, Su YL, Zhang Z, White SV, Swiderski P, Lu X, DePinho RA, Pal SK, Kortylewski M. STAT3 Inhibition Combined with CpG Immunostimulation Activates Antitumor Immunity to Eradicate Genetically Distinct Castration-Resistant Prostate Cancers. Clin Cancer Res 2018; 24:5948-5962. [PMID: 30337279 DOI: 10.1158/1078-0432.ccr-18-1277] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancers show remarkable resistance to emerging immunotherapies, partly due to tolerogenic STAT3 signaling in tumor-associated myeloid cells. Here, we describe a novel strategy combining STAT3 inhibition with Toll-like Receptor 9 (TLR9) stimulation to unleash immune response against prostate cancers regardless of the genetic background. EXPERIMENTAL DESIGN We developed and validated a conjugate of the STAT3 antisense oligonucleotide (ASO) tethered to immunostimulatory TLR9 agonist (CpG oligonucleotide) to improve targeting of human and mouse prostate cancer and myeloid immune cells, such as myeloid-derived suppressor cells (MDSC). RESULTS CpG-STAT3ASO conjugates showed improved biodistribution and potency of STAT3 knockdown in target cells in vitro and in vivo. Systemic administration of CpG-STAT3ASO (5 mg/kg) eradicated bone-localized, Ras/Myc-driven, and Ptenpc -/- Smad4pc -/- Trp53c -/- prostate tumors in the majority of treated mice. These antitumor effects were primarily immune-mediated and correlated with an increased ratio of CD8+ to regulatory T cells and reduced pSTAT3+/PD-L1+ MDSCs. Both innate and adaptive immunity contributed to systemic antitumor responses as verified by the depletion of Gr1+ myeloid cells and CD8+ and CD4+ T cells, respectively. Importantly, only the bifunctional CpG-STAT3ASO, but not control CpG oligonucleotides, STAT3ASO alone, or the coinjection of both oligonucleotides, succeeded in recruiting neutrophils and CD8+ T cells into tumors. Thus, the concurrence of TLR9 activation with STAT3 inhibition in the same cellular compartment is indispensable for overcoming tumor immune tolerance and effective antitumor immunity against prostate cancer. CONCLUSIONS The bifunctional, immunostimulatory, and tolerance-breaking design of CpG-STAT3ASO offers a blueprint for the development of effective and safer oligonucleotide strategies for treatment of immunologically "cold" human cancers.
Collapse
Affiliation(s)
- Dayson Moreira
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Tomasz Adamus
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xingli Zhao
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Yu-Lin Su
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Zhuoran Zhang
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Seok Voon White
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Piotr Swiderski
- DNA/RNA Synthesis Core Laboratory, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sumanta K Pal
- Medical Oncology and Experimental Therapeutics, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California. .,Center for Gene Therapy, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, California
| |
Collapse
|
14
|
van Duijn PW, Marques RB, Ziel-van der Made ACJ, van Zoggel HJAA, Aghai A, Berrevoets C, Debets R, Jenster G, Trapman J, van Weerden WM. Tumor heterogeneity, aggressiveness, and immune cell composition in a novel syngeneic PSA-targeted Pten knockout mouse prostate cancer (MuCaP) model. Prostate 2018; 78:1013-1023. [PMID: 30133757 DOI: 10.1002/pros.23659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Prostate cancer is recognized as a heterogeneous disease demanding appropriate preclinical models that reflect tumor complexity. Previously, we established the PSA-Cre;PtenLoxP/LoxP genetic engineered mouse model (GEMM) for prostate cancer reflecting the various stages of tumor development. Prostate tumors in this Pten KO model slowly develop, requiring more than 10 months. In order to enhance its practical utility, we established a syngeneic panel of cell lines derived from PSA-Cre targeted Pten KO tumors, designated the mouse prostate cancer (MuCap) model. METHODS Four different MuCaP epithelial cell lines were established from three independent primary Pten KO mouse prostate tumors. Tumorigenic capacity of the MuCaP cell lines was determined by subcutaneous inoculation of these cell lines in immunocompetent mice. Response to PI3K-targeted therapy was validated in ex vivo tissue slices of the established MuCaP tumors. RESULTS The MuCaP cell lines were all tumorigenic in immunocompetent mice after subcutaneous inoculation. Interestingly, these syngrafted tumors represented different tumor growth rates and morphologies. Treatment with the specific PI3K inhibitor GDC0941 resulted in responses very similar between syngeneic MuCaP and primary Pten KO prostate tumors. Finally, immunoprofiling of the different syngeneic MuCaP tumors demonstrated differential numbers of tumor infiltrating lymphocytes and distinct immune gene profiles with expression of CD8, INFy, and PD1 being inversely related to tumor aggressiveness. CONCLUSIONS Collectively, we present here a well-defined MuCaP platform of in vitro and in vivo mouse prostate cancer models that may support preclinical assessment of (immune)-therapies for prostate cancer.
Collapse
Affiliation(s)
- Petra W van Duijn
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rute B Marques
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Ashraf Aghai
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cor Berrevoets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Guido Jenster
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Trapman
- Department of Pathology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, JNI, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Haffner MC, Guner G, Taheri D, Netto GJ, Palsgrove DN, Zheng Q, Guedes LB, Kim K, Tsai H, Esopi DM, Lotan TL, Sharma R, Meeker AK, Chinnaiyan AM, Nelson WG, Yegnasubramanian S, Luo J, Mehra R, Antonarakis ES, Drake CG, De Marzo AM. Comprehensive Evaluation of Programmed Death-Ligand 1 Expression in Primary and Metastatic Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1478-1485. [PMID: 29577933 DOI: 10.1016/j.ajpath.2018.02.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/22/2022]
Abstract
Antibodies targeting the programmed cell death protein 1/programmed death-ligand 1 (PD-L1) interaction have shown clinical activity in multiple cancer types. PD-L1 protein expression is a clinically validated predictive biomarker of response for such therapies. Prior studies evaluating the expression of PD-L1 in primary prostate cancers have reported highly variable rates of PD-L1 positivity. In addition, limited data exist on PD-L1 expression in metastatic castrate-resistant prostate cancer (mCRPC). Here, we determined PD-L1 protein expression by immunohistochemistry using a validated PD-L1-specific antibody (SP263) in a large and representative cohort of primary prostate cancers and prostate cancer metastases. The study included 539 primary prostate cancers comprising 508 acinar adenocarcinomas, 24 prostatic duct adenocarcinomas, 7 small-cell carcinomas, and a total of 57 cases of mCRPC. PD-L1 positivity was low in primary acinar adenocarcinoma, with only 7.7% of cases showing detectable PD-L1 staining. Increased levels of PD-L1 expression were noted in 42.9% of small-cell carcinomas. In mCRPC, 31.6% of cases showed PD-L1-specific immunoreactivity. In conclusion, in this comprehensive evaluation of PD-L1 expression in prostate cancer, PD-L1 expression is rare in primary prostate cancers, but increased rates of PD-L1 positivity were observed in mCRPC. These results will be important for the future clinical development of programmed cell death protein 1/PD-L1-targeting therapies in prostate cancer.
Collapse
Affiliation(s)
- Michael C Haffner
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Gunes Guner
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Diana Taheri
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - George J Netto
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland; Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Doreen N Palsgrove
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Kunhwa Kim
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Harrison Tsai
- Department of Pathology, Brigham and Women Hospital, Boston, Massachusetts
| | - David M Esopi
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rajni Sharma
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Alan K Meeker
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland; Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Health System, Ann Arbor, Michigan; Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland; Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jun Luo
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland; Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rohit Mehra
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan
| | - Emmanuel S Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland.
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland; Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
16
|
Maher CM, Thomas JD, Haas DA, Longen CG, Oyer HM, Tong JY, Kim FJ. Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1. Mol Cancer Res 2018; 16:243-255. [PMID: 29117944 DOI: 10.1158/1541-7786.mcr-17-0166] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 12/09/2022]
Abstract
Emerging evidence suggests that Sigma1 (SIGMAR1, also known as sigma-1 receptor) is a unique ligand-regulated integral membrane scaffolding protein that contributes to cellular protein and lipid homeostasis. Previously, we demonstrated that some small-molecule modulators of Sigma1 alter endoplasmic reticulum (ER)-associated protein homeostasis pathways in cancer cells, including the unfolded protein response and autophagy. Programmed death-ligand 1 (PD-L1) is a type I integral membrane glycoprotein that is cotranslationally inserted into the ER and is processed and transported through the secretory pathway. Once at the surface of cancer cells, PD-L1 acts as a T-cell inhibitory checkpoint molecule and suppresses antitumor immunity. Here, we demonstrate that in Sigma1-expressing triple-negative breast and androgen-independent prostate cancer cells, PD-L1 protein levels were suppressed by RNAi knockdown of Sigma1 and by small-molecule inhibition of Sigma1. Sigma1-mediated action was confirmed by pharmacologic competition between Sigma1-selective inhibitor and activator ligands. When administered alone, the Sigma1 inhibitor decreased cell surface PD-L1 expression and suppressed functional interaction of PD-1 and PD-L1 in a coculture of T cells and cancer cells. Conversely, the Sigma1 activator increased PD-L1 cell surface expression, demonstrating the ability to positively and negatively modulate Sigma1 associated PD-L1 processing. We discovered that the Sigma1 inhibitor induced degradation of PD-L1 via autophagy, by a mechanism distinct from bulk macroautophagy or general ER stress-associated autophagy. Finally, the Sigma1 inhibitor suppressed IFNγ-induced PD-L1. Our data demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy.Implications: Sigma1 modulators sequester and eliminate PD-L1 by autophagy, thus preventing functional PD-L1 expression at the cell surface. This posits Sigma1 modulators as novel therapeutic agents in PD-L1/PD-1 blockade strategies that regulate the tumor immune microenvironment.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/2/243/F1.large.jpg Mol Cancer Res; 16(2); 243-55. ©2017 AACR.
Collapse
Affiliation(s)
- Christina M Maher
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jeffrey D Thomas
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Derick A Haas
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Charles G Longen
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Halley M Oyer
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jane Y Tong
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Felix J Kim
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
- Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Fucikova J, Podrazil M, Jarolim L, Bilkova P, Hensler M, Becht E, Gasova Z, Klouckova J, Kayserova J, Horvath R, Fialova A, Vavrova K, Sochorova K, Rozkova D, Spisek R, Bartunkova J. Phase I/II trial of dendritic cell-based active cellular immunotherapy with DCVAC/PCa in patients with rising PSA after primary prostatectomy or salvage radiotherapy for the treatment of prostate cancer. Cancer Immunol Immunother 2018; 67:89-100. [PMID: 28948333 PMCID: PMC11028146 DOI: 10.1007/s00262-017-2068-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Immunotherapy of cancer has the potential to be effective mostly in patients with a low tumour burden. Rising PSA (prostate-specific antigen) levels in patients with prostate cancer represents such a situation. We performed the present clinical study with dendritic cell (DC)-based immunotherapy in this patient population. MATERIALS AND METHODS The single-arm phase I/II trial registered as EudraCT 2009-017259-91 involved 27 patients with rising PSA levels. The study medication consisted of autologous DCs pulsed with the killed LNCaP cell line (DCVAC/PCa). Twelve patients with a favourable PSA response continued with the second cycle of immunotherapy. The primary and secondary objectives of the study were to assess the safety and determine the PSA doubling time (PSADT), respectively. RESULTS No significant side effects were recorded. The median PSADT in all treated patients increased from 5.67 months prior to immunotherapy to 18.85 months after 12 doses (p < 0.0018). Twelve patients who continued immunotherapy with the second cycle had a median PSADT of 58 months that remained stable after the second cycle. In the peripheral blood, specific PSA-reacting T lymphocytes were increased significantly already after the fourth dose, and a stable frequency was detected throughout the remainder of DCVAC/PCa treatment. Long-term immunotherapy of prostate cancer patients experiencing early signs of PSA recurrence using DCVAC/PCa was safe, induced an immune response and led to the significant prolongation of PSADT. Long-term follow-up may show whether the changes in PSADT might improve the clinical outcome in patients with biochemical recurrence of the prostate cancer.
Collapse
Affiliation(s)
- Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, Prague 5, 15005, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - Michal Podrazil
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, Prague 5, 15005, Prague, Czech Republic
| | - Ladislav Jarolim
- Department of Urology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | | | | | - Etienne Becht
- Laboratory 'Cancer, Immune Control and Escape', INSERM U1138, Cordeliers Research Centre, Paris, France
- UMRS 1138, University Pierre and Marie Curie, Paris, France
- UMRS 1138, University Paris Descartes, Paris, France
| | - Zdenka Gasova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Klouckova
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jana Kayserova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, Prague 5, 15005, Prague, Czech Republic
| | - Rudolf Horvath
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, Prague 5, 15005, Prague, Czech Republic
- Department of Pediatric and Adult Rheumatology, University Hospital Motol, Prague, Czech Republic
| | | | - Katerina Vavrova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, Prague 5, 15005, Prague, Czech Republic
| | | | | | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, Prague 5, 15005, Prague, Czech Republic
- Sotio, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, Prague 5, 15005, Prague, Czech Republic.
- Sotio, Prague, Czech Republic.
| |
Collapse
|
18
|
Sadozai H, Gruber T, Hunger RE, Schenk M. Recent Successes and Future Directions in Immunotherapy of Cutaneous Melanoma. Front Immunol 2017; 8:1617. [PMID: 29276510 PMCID: PMC5727014 DOI: 10.3389/fimmu.2017.01617] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022] Open
Abstract
The global health burden associated with melanoma continues to increase while treatment options for metastatic melanoma are limited. Nevertheless, in the past decade, the field of cancer immunotherapy has witnessed remarkable advances for the treatment of a number of malignancies including metastatic melanoma. Although the earliest observations of an immunological antitumor response were made nearly a century ago, it was only in the past 30 years, that immunotherapy emerged as a viable therapeutic option, in particular for cutaneous melanoma. As such, melanoma remains the focus of various preclinical and clinical studies to understand the immunobiology of cancer and to test various tumor immunotherapies. Here, we review key recent developments in the field of immune-mediated therapy of melanoma. Our primary focus is on therapies that have received regulatory approval. Thus, a brief overview of the pathophysiology of melanoma is provided. The purported functions of various tumor-infiltrating immune cell subsets are described, in particular the recently described roles of intratumoral dendritic cells. The section on immunotherapies focuses on strategies that have proved to be the most clinically successful such as immune checkpoint blockade. Prospects for novel therapeutics and the potential for combinatorial approaches are delineated. Finally, we briefly discuss nanotechnology-based platforms which can in theory, activate multiple arms of immune system to fight cancer. The promising advances in the field of immunotherapy signal the dawn of a new era in cancer treatment and warrant further investigation to understand the opportunities and barriers for future progress.
Collapse
Affiliation(s)
- Hassan Sadozai
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| | | | - Mirjam Schenk
- Institute of Pathology, Experimental Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Priceman SJ, Gerdts EA, Tilakawardane D, Kennewick KT, Murad JP, Park AK, Jeang B, Yamaguchi Y, Yang X, Urak R, Weng L, Chang WC, Wright S, Pal S, Reiter RE, Wu AM, Brown CE, Forman SJ. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncoimmunology 2017; 7:e1380764. [PMID: 29308300 PMCID: PMC5749625 DOI: 10.1080/2162402x.2017.1380764] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/04/2017] [Accepted: 09/13/2017] [Indexed: 11/22/2022] Open
Abstract
Advancing chimeric antigen receptor (CAR)-engineered adoptive T cells for the treatment of solid cancers is a major focus in the field of immunotherapy, given impressive recent clinical responses in hematological malignancies. Prostate cancer may be amenable to T cell-based immunotherapy since several tumor antigens, including prostate stem-cell antigen (PSCA), are widely over-expressed in metastatic disease. While antigen selectivity of CARs for solid cancers is crucial, it is problematic due to the absence of truly restricted tumor antigen expression and potential safety concerns with “on-target off-tumor” activity. Here, we show that the intracellular co-stimulatory signaling domain can determine a CAR's sensitivity for tumor antigen expression. A 4-1BB intracellular co-stimulatory signaling domain in PSCA-CARs confers improved selectivity for higher tumor antigen density, reduced T cell exhaustion phenotype, and equivalent tumor killing ability compared to PSCA-CARs containing the CD28 co-stimulatory signaling domain. PSCA-CARs exhibit robust in vivo anti-tumor activity in patient-derived bone-metastatic prostate cancer xenograft models, and 4-1BB-containing CARs show superior T cell persistence and control of disease compared with CD28-containing CARs. Our study demonstrates the importance of co-stimulation in defining an optimal CAR T cell, and also highlights the significance of clinically relevant models in developing solid cancer CAR T cell therapies.
Collapse
Affiliation(s)
- Saul J Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.,T Cell Therapeutics Research Laboratory, City of Hope, Duarte, CA, USA
| | - Ethan A Gerdts
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Dileshni Tilakawardane
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Kelly T Kennewick
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - John P Murad
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Anthony K Park
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Brook Jeang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Yukiko Yamaguchi
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Xin Yang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Lihong Weng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Sarah Wright
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Sumanta Pal
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, USA
| | - Robert E Reiter
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna M Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.,T Cell Therapeutics Research Laboratory, City of Hope, Duarte, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA.,T Cell Therapeutics Research Laboratory, City of Hope, Duarte, CA, USA
| |
Collapse
|
20
|
Patnaik A, Swanson KD, Csizmadia E, Solanki A, Landon-Brace N, Gehring MP, Helenius K, Olson BM, Pyzer AR, Wang LC, Elemento O, Novak J, Thornley TB, Asara JM, Montaser L, Timmons JJ, Morgan TM, Wang Y, Levantini E, Clohessy JG, Kelly K, Pandolfi PP, Rosenblatt JM, Avigan DE, Ye H, Karp JM, Signoretti S, Balk SP, Cantley LC. Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity. Cancer Discov 2017; 7:750-765. [PMID: 28274958 PMCID: PMC5501767 DOI: 10.1158/2159-8290.cd-16-0778] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/07/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Several kinase inhibitors that target aberrant signaling pathways in tumor cells have been deployed in cancer therapy. However, their impact on the tumor immune microenvironment remains poorly understood. The tyrosine kinase inhibitor cabozantinib showed striking responses in cancer clinical trial patients across several malignancies. Here, we show that cabozantinib rapidly eradicates invasive, poorly differentiated PTEN/p53-deficient murine prostate cancer. This was associated with enhanced release of neutrophil chemotactic factors from tumor cells, including CXCL12 and HMGB1, resulting in robust infiltration of neutrophils into the tumor. Critically, cabozantinib-induced tumor clearance in mice was abolished by antibody-mediated granulocyte depletion or HMGB1 neutralization or blockade of neutrophil chemotaxis with the CXCR4 inhibitor plerixafor. Collectively, these data demonstrate that cabozantinib triggers a neutrophil-mediated anticancer innate immune response, resulting in tumor clearance.Significance: This study is the first to demonstrate that a tyrosine kinase inhibitor can activate neutrophil-mediated antitumor innate immunity, resulting in invasive cancer clearance. Cancer Discov; 7(7); 750-65. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 653.
Collapse
Affiliation(s)
- Akash Patnaik
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts.
- Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
- The University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Kenneth D Swanson
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Eva Csizmadia
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Aniruddh Solanki
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| | - Natalie Landon-Brace
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| | - Marina P Gehring
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Laboratório de Farmacologia Aplicada, PUCRS, Porto Alegre, Brazil
| | - Katja Helenius
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Brian M Olson
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois
- The University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Athalia R Pyzer
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Lily C Wang
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Olivier Elemento
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| | - Jesse Novak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas B Thornley
- Transplant Institute and Immunology Program, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Laleh Montaser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Joshua J Timmons
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Yugang Wang
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | - Elena Levantini
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - John G Clohessy
- Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Preclinical Murine Pharmacogenetics Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, Maryland
| | - Pier Paolo Pandolfi
- Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jacalyn M Rosenblatt
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David E Avigan
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey M Karp
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steven P Balk
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medical College, New York, New York
| |
Collapse
|
21
|
Kates M, Drake CG. Immunotherapy for Prostate Cancer-Why Now? UROLOGY PRACTICE 2017; 4:329-334. [PMID: 37592679 DOI: 10.1016/j.urpr.2016.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Immunotherapy is transforming cancer care with the potential for an important role in prostate cancer. METHODS In this review we discuss the rationale for immunotherapy for prostate cancer and the treatment strategies currently under way. RESULTS Cell and viral based vaccines have shown some promise, as has immune checkpoint inhibition using CTLA-4 blocking agents. CONCLUSIONS The future will likely involve combination immunotherapy to maximize treatment effects and improve survival for patients with prostate cancer.
Collapse
Affiliation(s)
- Max Kates
- James Buchanan Brady Urological Institute, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, NewYork-Presbyterian/Columbia University Medical Center, New York, New York
| |
Collapse
|
22
|
Zhang F, Wu Z. Significantly altered expression of miR-511-3p and its target AKT3 has negative prognostic value in human prostate cancer. Biochimie 2017. [PMID: 28624527 DOI: 10.1016/j.biochi.2017.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE In this study, we assessed the expression and functions of microRNA-511-3p (miR-511-3p) in human prostate cancer (CaP). METHODS Gene expressions of miR-511-3p in CaP cells and human CaP tumors were assessed by qPCR. In VCaP and PC3 cells, miR-511-3p was overexpressed by lentivirus. The functions of miR-511-3p upregulation in regulating in vitro cancer proliferation, migration and in vivo cancer growth were assessed by MTT, transwell and transplantation assays, respectively. Downstream target gene of miR-511-3p, AKT3, was verified by dual-luciferase activity and qPCR assays. AKT3 was then overexpressed in miR-511-3p-upregulated CaP cells to assess its functions in miR-511-3p-mediated cancer regulation. RESULTS MiR-511-3p is significantly downregulated in CaP cell lines, and human CaP tumors. MiR-511-3p was further downregulated in T3/T4-staged CaP tumors and closely correlated with shorter overall survival among CaP patients. In VCaP and PC3 cells, lentiviral-induced miR-511-3p upregulation was acting as a tumor suppressor by inhibiting in vitro cancer proliferation, migration and in vivo transplantation. Human AKT3 gene was confirmed to be the downstream target of miR-511-3p in CaP. In miR-511-3p-upregulated VCaP and PC3 cells, forced-overexpression of AKT3 reversed the tumor suppressive effects of miR-511-3p in CaP. CONCLUSION MiR-511-3p may serve as a prognostic factor and tumor suppressor in CaP, very likely through inverse regulation of its downstream target gene of AKT3.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Fujita K, Nakai Y, Kawashima A, Ujike T, Nagahara A, Nakajima T, Inoue T, Lee CM, Uemura M, Miyagawa Y, Kaneda Y, Nonomura N. Phase I/II clinical trial to assess safety and efficacy of intratumoral and subcutaneous injection of HVJ-E in castration-resistant prostate cancer patients. Cancer Gene Ther 2017; 24:277-281. [PMID: 28497777 PMCID: PMC5562845 DOI: 10.1038/cgt.2017.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/01/2017] [Accepted: 03/04/2017] [Indexed: 12/27/2022]
Abstract
Inactivated Sendai virus particles (hemagglutinating virus of Japan envelope (HVJ-E)) have a novel antitumor effect: HVJ-E fused to prostate cancer cells via cell surface receptor causes apoptosis of prostate cancer cells in vitro and in vivo. HVJ-E also induces antitumor immunity by activating natural killer (NK) cells and cytotoxic T cells and suppressing regulatory T cells in vivo. We conducted an open-label, single-arm, phase I/II clinical trial in patients with castration-resistant prostate cancer (CRPC) to determine the safety and efficacy of intratumoral and subcutaneous injection of HVJ-E. Patients with CRPC who were docetaxel-resistant or could not receive docetaxel treatment were eligible. HVJ-E was injected directly into the prostate on day 1 and subcutaneously on days 5, 8 and 12 in two 28-day treatment cycles using a 3+3 dose-escalation design. The primary end points were to evaluate safety and tolerability of HVJ-E. The secondary end points were to analyze tumor immunity and antitumor effect. The study is registered at UMIN Clinical Trials Registry, number UMIN000006142. Seven patients were enrolled, and six patients received HVJ-E. Grade 2 or 3 adverse events (Common Terminology Criteria for Adverse Events Ver. 4.0) were urinary retention and lymphopenia from which the patients recovered spontaneously. No Grade 4 adverse events were observed. Radiographically, three patients had stable disease in the low-dose group, and one patient had stable disease and two had progressive disease in the high-dose group. The prostate-specific antigen (PSA) declined from 14 to 1.9 ng ml-1 in one patient in the low-dose group after two cycles of HVJ-E treatment, and the PSA response rate was 16.6%. NK cell activity was elevated from day 12 to day 28 after HVJ-E administration, whereas serum interleukin-6, interferon (IFN)-α, IFN-β and IFN-γ levels were not affected by HVJ-E treatment. Intratumoral and subcutaneous injections of HVJ-E are feasible and PSA response was observed in a subgroup of CRPC patients.
Collapse
Affiliation(s)
- K Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Nakai
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - A Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - T Ujike
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - A Nagahara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - T Inoue
- Department of Medical Innovation, Osaka University Graduate School of Medicine, Suita, Japan
| | - C M Lee
- Department of Medical Innovation, Osaka University Graduate School of Medicine, Suita, Japan
| | - M Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Miyagawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Y Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan
| | - N Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
24
|
Denis-Bacelar AM, Chittenden SJ, Dearnaley DP, Divoli A, O'Sullivan JM, McCready VR, Johnson B, Du Y, Flux GD. Phase I/II trials of 186Re-HEDP in metastatic castration-resistant prostate cancer: post-hoc analysis of the impact of administered activity and dosimetry on survival. Eur J Nucl Med Mol Imaging 2017; 44:620-629. [PMID: 27770145 PMCID: PMC5323472 DOI: 10.1007/s00259-016-3543-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the role of patient-specific dosimetry as a predictive marker of survival and as a potential tool for individualised molecular radiotherapy treatment planning of bone metastases from castration-resistant prostate cancer, and to assess whether higher administered levels of activity are associated with a survival benefit. METHODS Clinical data from 57 patients who received 2.5-5.1 GBq of 186Re-HEDP as part of NIH-funded phase I/II clinical trials were analysed. Whole-body and SPECT-based absorbed doses to the whole body and bone lesions were calculated for 22 patients receiving 5 GBq. The patient mean absorbed dose was defined as the mean of all bone lesion-absorbed doses in any given patient. Kaplan-Meier curves, log-rank tests, Cox's proportional hazards model and Pearson's correlation coefficients were used for overall survival (OS) and correlation analyses. RESULTS A statistically significantly longer OS was associated with administered activities above 3.5 GBq in the 57 patients (20.1 vs 7.1 months, hazard ratio: 0.39, 95 % CI: 0.10-0.58, P = 0.002). A total of 379 bone lesions were identified in 22 patients. The mean of the patient mean absorbed dose was 19 (±6) Gy and the mean of the whole-body absorbed dose was 0.33 (±0.11) Gy for the 22 patients. The patient mean absorbed dose (r = 0.65, P = 0.001) and the whole-body absorbed dose (r = 0.63, P = 0.002) showed a positive correlation with disease volume. Significant differences in OS were observed for the univariate group analyses according to disease volume as measured from SPECT imaging of 186Re-HEDP (P = 0.03) and patient mean absorbed dose (P = 0.01), whilst only the disease volume remained significant in a multivariable analysis (P = 0.004). CONCLUSION This study demonstrated that higher administered activities led to prolonged survival and that for a fixed administered activity, the whole-body and patient mean absorbed doses correlated with the extent of disease, which, in turn, correlated with survival. This study shows the importance of patient stratification to establish absorbed dose-response correlations and indicates the potential to individualise treatment of bone metastases with radiopharmaceuticals according to patient-specific imaging and dosimetry.
Collapse
Affiliation(s)
- Ana M Denis-Bacelar
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| | - Sarah J Chittenden
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - David P Dearnaley
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Antigoni Divoli
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Joe M O'Sullivan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - V Ralph McCready
- Department of Nuclear Medicine, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Bernadette Johnson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Yong Du
- Department of Nuclear Medicine and PET/CT, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Glenn D Flux
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Scheid E, Major P, Bergeron A, Finn OJ, Salter RD, Eady R, Yassine-Diab B, Favre D, Peretz Y, Landry C, Hotte S, Mukherjee SD, Dekaban GA, Fink C, Foster PJ, Gaudet J, Gariepy J, Sekaly RP, Lacombe L, Fradet Y, Foley R. Tn-MUC1 DC Vaccination of Rhesus Macaques and a Phase I/II Trial in Patients with Nonmetastatic Castrate-Resistant Prostate Cancer. Cancer Immunol Res 2016; 4:881-892. [PMID: 27604597 DOI: 10.1158/2326-6066.cir-15-0189] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/08/2016] [Indexed: 11/16/2022]
Abstract
MUC1 is a glycoprotein expressed on the apical surface of ductal epithelial cells. Malignant transformation results in loss of polarization and overexpression of hypoglycosylated MUC1 carrying truncated carbohydrates known as T or Tn tumor antigens. Tumor MUC1 bearing Tn carbohydrates (Tn-MUC1) represent a potential target for immunotherapy. We evaluated the Tn-MUC1 glycopeptide in a human phase I/II clinical trial for safety that followed a preclinical study of different glycosylation forms of MUC1 in rhesus macaques, whose MUC1 is highly homologous to human MUC1. Either unglycosylated rhesus macaque MUC1 peptide (rmMUC1) or Tn-rmMUC1 glycopeptide was mixed with an adjuvant or loaded on autologous dendritic cells (DC), and responses were compared. Unglycosylated rmMUC1 peptide induced negligible humoral or cellular responses compared with the Tn-rmMUC1 glycopeptide. Tn-rmMUC1 loaded on DCs induced the highest anti-rmMUC1 T-cell responses and no clinical toxicity. In the phase I/II clinical study, 17 patients with nonmetastatic castrate-resistant prostate cancer (nmCRPC) were tested with a Tn-MUC1 glycopeptide-DC vaccine. Patients were treated with multiple intradermal and intranodal doses of autologous DCs, which were loaded with the Tn-MUC1 glycopeptide (and KLH as a positive control for immune reactivity). PSA doubling time (PSADT) improved significantly in 11 of 16 evaluable patients (P = 0.037). Immune response analyses detected significant Tn-MUC1-specific CD4+ and/or CD8+ T-cell intracellular cytokine responses in 5 out of 7 patients evaluated. In conclusion, vaccination with Tn-MUC1-loaded DCs in nmCRPC patients appears to be safe, able to induce significant T-cell responses, and have biological activity as measured by the increase in PSADT following vaccination. Cancer Immunol Res; 4(10); 881-92. ©2016 AACR.
Collapse
Affiliation(s)
| | - Pierre Major
- McMaster University, Hamilton, Ontario, Canada. Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Alain Bergeron
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada. Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| | - Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Russell D Salter
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robin Eady
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | - Corby Fink
- Robarts Research Institute, London, Ontario, Canada
| | | | | | - Jean Gariepy
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Louis Lacombe
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada. Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| | - Yves Fradet
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada. Centre de Recherche sur le Cancer de l'Université Laval, Québec, Canada
| | - Ronan Foley
- McMaster University, Hamilton, Ontario, Canada. Hamilton Health Sciences, Hamilton, Ontario, Canada.
| |
Collapse
|
26
|
Abstract
This review provides updated information published in 2014 regarding advances and major achievements in genitourinary cancer. Sections include the best in prostate cancer, renal cancer, bladder cancer, and germ cell tumors. In the field of prostate cancer, data related to treatment approach of hormone-sensitive disease, castrate-resistant prostate cancer, mechanisms of resistance, new drugs, and molecular research are presented. In relation to renal cancer, relevant aspects in the treatment of advanced renal cell carcinoma, immunotherapy, and molecular research, including angiogenesis and von Hippel-Lindau gene, molecular biology of non-clear cell histologies, and epigenetics of clear renal cell cancer are described. New strategies in the management of muscle-invasive localized bladder cancer and metastatic disease are reported as well as salient findings of biomolecular research in urothelial cancer. Some approaches intended to improve outcomes in poor prognosis patients with metastatic germ cell cancer are also reported. Results of clinical trials in these areas are discussed.
Collapse
|
27
|
Iwamoto N, Shimada T, Terakado H, Hamada A. Validated LC–MS/MS analysis of immune checkpoint inhibitor Nivolumab in human plasma using a Fab peptide-selective quantitation method: nano-surface and molecular-orientation limited (nSMOL) proteolysis. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1023-1024:9-16. [DOI: 10.1016/j.jchromb.2016.04.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/01/2016] [Accepted: 04/22/2016] [Indexed: 01/09/2023]
|
28
|
Podrazil M, Horvath R, Becht E, Rozkova D, Bilkova P, Sochorova K, Hromadkova H, Kayserova J, Vavrova K, Lastovicka J, Vrabcova P, Kubackova K, Gasova Z, Jarolim L, Babjuk M, Spisek R, Bartunkova J, Fucikova J. Phase I/II clinical trial of dendritic-cell based immunotherapy (DCVAC/PCa) combined with chemotherapy in patients with metastatic, castration-resistant prostate cancer. Oncotarget 2016; 6:18192-205. [PMID: 26078335 PMCID: PMC4627245 DOI: 10.18632/oncotarget.4145] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE We conducted an open-label, single-arm Phase I/II clinical trial in metastatic CRPC (mCRPC) patients eligible for docetaxel combined with treatment with autologous mature dendritic cells (DCs) pulsed with killed LNCaP prostate cancer cells (DCVAC/PCa). The primary and secondary endpoints were safety and immune responses, respectively. Overall survival (OS), followed as a part of the safety evaluation, was compared to the predicted OS according to the Halabi and MSKCC nomograms. EXPERIMENTAL DESIGN Twenty-five patients with progressive mCRPC were enrolled. Treatment comprised of initial 7 days administration of metronomic cyclophosphamide 50 mg p.o. DCVAC/PCa treatment consisted of a median twelve doses of 1 × 107 dendritic cells per dose injected s.c. (Aldara creme was applied at the site of injection) during a one-year period. The initial 2 doses of DCVAC/PCa were administered at a 2-week interval, followed by the administration of docetaxel (75 mg/m2) and prednisone (5 mg twice daily) given every 3 weeks until toxicity or intolerance was observed. The DCVAC/PCa was then injected every 6 weeks up to the maximum number of doses manufactured from one leukapheresis. RESULTS No serious DCVAC/PCa-related adverse events have been reported. The median OS was 19 months, whereas the predicted median OS was 11.8 months with the Halabi nomogram and 13 months with the MSKCC nomogram. Kaplan-Meier analyses showed that patients had a lower risk of death compared with both MSKCC (Hazard Ratio 0.26, 95% CI: 0.13-0.51) and Halabi (Hazard Ratio 0.33, 95% CI: 0.17-0.63) predictions. We observed a significant decrease in Tregs in the peripheral blood. The long-term administration of DCVAC/PCa led to the induction and maintenance of PSA specific T cells. We did not identify any immunological parameter that significantly correlated with better OS. CONCLUSIONS In patients with mCRPC, the combined chemoimmunotherapy with DCVAC/PCa and docetaxel was safe and resulted in longer than expected survival. Concomitant chemotherapy did not preclude the induction of specific anti-tumor cytotoxic T cells.
Collapse
Affiliation(s)
- Michal Podrazil
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Rudolf Horvath
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.,Department of Pediatric and Adult Rheumatology, University Hospital Motol, Prague, Czech Republic
| | - Etienne Becht
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche des Cordeliers, Paris, France.,Université Pierre et Marie Curie-Paris, Paris, France.,Université Paris Descartes, Paris, France
| | | | | | - Klara Sochorova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.,Sotio, Prague, Czech Republic
| | - Hana Hromadkova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jana Kayserova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Katerina Vavrova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jan Lastovicka
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Petra Vrabcova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Katerina Kubackova
- Department of Oncology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zdenka Gasova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Ladislav Jarolim
- Department of Urology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Marek Babjuk
- Department of Urology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radek Spisek
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.,Sotio, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.,Sotio, Prague, Czech Republic
| | - Jitka Fucikova
- Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.,Sotio, Prague, Czech Republic
| |
Collapse
|
29
|
Brennen WN, Kisteman LN, Isaacs JT. Rapid selection of mesenchymal stem and progenitor cells in primary prostate stromal cultures. Prostate 2016; 76:552-64. [PMID: 26732992 PMCID: PMC4856028 DOI: 10.1002/pros.23145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Carcinoma-associated fibroblasts (CAFs) are a dominant component of the tumor microenvironment with pro-tumorigenic properties. Despite this knowledge, their physiologic origins remain poorly understood. Mesenchymal stem cells (MSCs) can be recruited from the bone marrow to areas of tissue damage and inflammation, including prostate cancer. MSCs can generate and have many overlapping properties with CAFs in preclinical models. METHODS Multiparameter flow cytometry and multipotent differentiation assays used to define MSCs in primary prostate stromal cultures derived from young (<25 yrs) organ donors and prostate cancer patients compared with bone marrow-derived stromal cultures. Population doubling times, population doublings, cell size, and differentiation potential determined under multiple culture conditions, including normoxia, hypoxia, and a variety of media. TGF-β measured by ELISA. RESULTS MSCs and stromal progenitors are not only present in normal and malignant prostate tissue, but are quickly selected for in primary stromal cultures derived from these tissues; becoming the dominant population within just a few passages. Growth potential inversely associated with TGF-β concentrations. All conditions generated populations with an average cell diameter >15 µm. All cultures tested had the ability to undergo osteogenic and chondrogenic differentiation, but unlike bone marrow-derived MSCs, primary stromal cultures derived from normal prostate tissue lack adipogenic differentiation potential. In contrast, a subset of stromal cultures derived from prostate cancer patients retain the ability to differentiate into adipocytes; a property that is significantly suppressed under hypoxic conditions in both bone marrow- and prostate-derived MSCs. CONCLUSIONS Primary prostate stromal cultures are highly enriched in cells with an MSC or stromal progenitor phenotype. The use of primary cultures such as these to study CAFs raises interesting implications when considering their overlapping properties. The lack of adipogenesis in stromal cultures derived from normal prostates suggests they have a lineage-restricted progenitor phenotype. The retention of adipogenic differentiation in cultures from a subset of prostate cancer patients suggests the active recruitment of less committed progenitors or MSCs from the bone marrow as a function of disease progression. This recruitment can potentially be exploited for prognostic purposes or a cell-based platform for the systemic delivery of cytotoxic agents to sites of prostate cancer.
Collapse
Affiliation(s)
- W. Nathaniel Brennen
- Correspondence to: W. Nathaniel Brennen, Department of Oncology, Prostate Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1650 Orleans St., CRB-I, Rm 1M87, Baltimore, MD 21287.
| | | | | |
Collapse
|
30
|
Graham L, Schweizer MT. Targeting persistent androgen receptor signaling in castration-resistant prostate cancer. Med Oncol 2016; 33:44. [DOI: 10.1007/s12032-016-0759-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
|
31
|
Slovin SF. Immunotherapeutic approaches in prostate cancer: combinations and clinical integration. Am Soc Clin Oncol Educ Book 2016:e275-83. [PMID: 25993186 DOI: 10.14694/edbook_am.2015.35.e275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite multiple immunologic approaches with peptide, protein, and DNA vaccines, no single therapy has induced complete remission or maintained durability of response in patients with castration-resistant prostate cancer (CRPC). Historically, immunotherapy has had limited effect on solid tumors with the exception of melanoma and renal cell carcinomas, which have been deemed as immunologic cancers given their potential for remissions either spontaneously or after removal of the primary lesion. There is considerable excitement about using an immunotherapy in combination with biologic agents such as checkpoint inhibitors, cytokines, other vaccines, or chemotherapy. Sipuleucel-T represents one of several novel immunologic therapeutic approaches to treat prostate cancer in addition to other solid tumors. It is the first in its class of autologous cellular therapies to demonstrate safety and an overall survival benefit in patients with asymptomatic or minimally symptomatic CRPC and represents a unique treatment method that may be further enhanced with other agents. Although sipuleucel-T can be used as a foundation on which to build and enhance future immunologic clinical trials, other exciting strategies are in development that may be easily integrated into the algorithm of current care.
Collapse
Affiliation(s)
- Susan F Slovin
- From the Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
32
|
Gevensleben H, Dietrich D, Golletz C, Steiner S, Jung M, Thiesler T, Majores M, Stein J, Uhl B, Müller S, Ellinger J, Stephan C, Jung K, Brossart P, Kristiansen G. The Immune Checkpoint Regulator PD-L1 Is Highly Expressed in Aggressive Primary Prostate Cancer. Clin Cancer Res 2015; 22:1969-77. [PMID: 26573597 DOI: 10.1158/1078-0432.ccr-15-2042] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/04/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Therapies targeting the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway promote anti-tumor immunity and have shown promising results in various tumors. Preliminary data further indicate that immunohistochemically detected PD-L1 may be predictive for anti-PD-1 therapy. So far, no data are available on PD-L1 expression in primary prostate cancer. EXPERIMENTAL DESIGN Following validation of a monoclonal antibody, immunohistochemical analysis of PD-L1 expression was performed in two independent, well-characterized cohorts of primary prostate cancer patients following radical prostatectomy (RP), and resulting data were correlated to clinicopathological parameters and outcome. RESULTS In the training cohort (n= 209), 52.2% of cases expressed moderate to high PD-L1 levels, which positively correlated with proliferation (Ki-67,P< 0.001), Gleason score (P= 0.004), and androgen receptor (AR) expression (P< 0.001). Furthermore, PD-L1 positivity was prognostic for biochemical recurrence [BCR;P= 0.004; HR, 2.37; 95% confidence interval (CI), 1.32-4.25]. In the test cohort (n= 611), moderate to high PD-L1 expression was detected in 61.7% and remained prognostic for BCR in univariate Cox analysis (P= 0.011; HR, 1.49; 95% CI, 1.10-2.02). The correlation of Ki-67 and AR with PD-L1 expression was confirmed in the test cohort (P< 0.001). In multivariate Cox analysis of all patients, PD-L1 was corroborated as independently prognostic for BCR (P= 0.007; HR, 1.46; 95% CI, 1.11-1.92). CONCLUSIONS We provide first evidence that expression of the therapy target PD-L1 is not only highly prevalent in primary prostate cancer cells but is also an independent indicator of BCR, suggesting a biologic relevance in primary tumors. Further studies need to ascertain if PD-1/PD-L1-targeted therapy might be a treatment option for hormone-naïve prostate cancers.
Collapse
Affiliation(s)
| | - Dimo Dietrich
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Carsten Golletz
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Susanne Steiner
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Maria Jung
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Thore Thiesler
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Johannes Stein
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Barbara Uhl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Stefan Müller
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Carsten Stephan
- Department of Urology, Charité University Hospital Berlin, Berlin, Germany. Berlin Institute for Urologic Research, Berlin, Germany
| | - Klaus Jung
- Department of Urology, Charité University Hospital Berlin, Berlin, Germany. Berlin Institute for Urologic Research, Berlin, Germany
| | - Peter Brossart
- Department of Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
33
|
Anastasopoulou EA, Voutsas IF, Keramitsoglou T, Gouttefangeas C, Kalbacher H, Thanos A, Papamichail M, Perez SA, Baxevanis CN. A pilot study in prostate cancer patients treated with the AE37 Ii-key-HER-2/neu polypeptide vaccine suggests that HLA-A*24 and HLA-DRB1*11 alleles may be prognostic and predictive biomarkers for clinical benefit. Cancer Immunol Immunother 2015; 64:1123-36. [PMID: 26026288 PMCID: PMC11028543 DOI: 10.1007/s00262-015-1717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/19/2015] [Indexed: 01/22/2023]
Abstract
Recently, several types of immunotherapies have been shown to induce encouraging clinical results, though in a restricted number of patients. Consequently, there is a need to identify immune biomarkers to select patients who will benefit from such therapies. Such predictive biomarkers may be also used as surrogates for overall survival (OS). We have recently found correlations between immunologic parameters and clinical outcome in prostate cancer patients who had been vaccinated with a HER-2/neu hybrid polypeptide vaccine (AE37) and received one booster 6 months post-primary vaccinations. Herein, we aimed to expand these retrospective analyses by studying the predictive impact of HLA-A*24 and HLA-DRB1*11 alleles, which are expressed at high frequencies among responders in our vaccinated patients, for clinical and immunological responses to AE37 vaccination. Our data show an increased OS of patients expressing the HLA-DRB1*11 or HLA-A*24 alleles, or both. Vaccine-induced immunological responses, measured as interferon γ (IFN-γ) responses in vitro or delayed-type hypersensitivity reactions in vivo, were also higher in these patients and inversely correlated with suppressor elements. Preexisting (i.e., before vaccinations with AE37) levels of vaccine-specific IFN-γ immunity and plasma TGF-β, among the HLA-A*24 and/or HLA-DRB1*11 positive patients, were strong indicators for immunological responses to AE37 treatment. These data suggest that HLA-DRB1*11 and HLA-A*24 are likely to be predictive factors for immunological and clinical responses to vaccination with AE37, though prospective validation in larger cohorts is needed.
Collapse
Affiliation(s)
- Eleftheria A. Anastasopoulou
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Ioannis F. Voutsas
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | | | - Cécile Gouttefangeas
- Department of Immunology, Institute for Cell Biology, Eberhard-Karls University, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, Eberhard-Karls University, Tübingen, Germany
| | | | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Sonia A. Perez
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, “Saint Savas” Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| |
Collapse
|
34
|
Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN, Zoubeidi A. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncotarget 2015; 6:234-42. [PMID: 25428917 PMCID: PMC4381591 DOI: 10.18632/oncotarget.2703] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 01/18/2023] Open
Abstract
Efficacy of Enzalutamide (ENZ) in castration resistant prostate cancer (CRPC) patients is short-lived. Immunotherapy like T cell checkpoint blockade may improve patient survival. However, when and where checkpoint molecules are expressed in CRPC and whether immune evasion is a mechanism of ENZ resistance remains unclear. Thus, we investigated whether clinically relevant immunotherapy targets, specifically PD-L1/2, PD-1 and CTLA-4, are upregulated in ENZ resistant (ENZR) patients and in a pre-clinical model of ENZ resistance. We show for the first time that patients progressing on ENZ had significantly increased PD-L1/2+ dendritic cells (DC) in blood compared to those naïve or responding to treatment, and a high frequency of PD-1+T cells. These data supported our pre-clinical results, in which we found significantly increased circulating PD-L1/2+ DCs in mice bearing ENZR tumors compared to CRPC, and ENZR tumors expressed significantly increased levels of tumor-intrinsic PD-L1. Importantly, the expression of PD-L1 on ENZR cells, or the ability to modulate PD-L1/2+ DC frequency, was unique to ENZR cell lines and xenografts that did not show classical activation of the androgen receptor. Overall, our results suggest that ENZ resistance is associated with the strong expression of anti-PD-1 therapy targets in circulating immune cells both in patients and in a pre-clinical model that is non-AR driven. Further evaluation of the contribution of tumor vs. immune cell PD-L1 expression in progression of CRPC to anti-androgen resistance and the utility of monitoring circulating cell PD-L1 pathway activity in CRPC patients to predict responsiveness to checkpoint immunotherapy, is warranted.
Collapse
Affiliation(s)
| | | | | | - Morgan E Roberts
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Arun A Azad
- Department of Medicine, Division of Medical Oncology, BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Kim N Chi
- Department of Medicine, Division of Medical Oncology, BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Vancouver, BC, Canada. Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Maccalli C, Giannarelli D, Capocefalo F, Pilla L, Fonsatti E, Di Giacomo AM, Parmiani G, Maio M. Immunological markers and clinical outcome of advanced melanoma patients receiving ipilimumab plus fotemustine in the NIBIT-M1 study. Oncoimmunology 2015; 5:e1071007. [PMID: 27057436 DOI: 10.1080/2162402x.2015.1071007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/04/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022] Open
Abstract
Clinical activity was observed in metastatic melanoma (MM) patients treated with ipilimumab (IPI) combined with fotemustine (FTM) in the phase II NIBIT-M1 study. Peripheral blood mononuclear cells (PBMCs) and serum were collected from MM patients at pre- and at weeks 12 and 24 post-treatment. A comprehensive phenotypic and functional immunomonitoring of circulating T cells, and the detection of soluble immunoregulatory molecules was carried out and correlated with clinical outcome. The frequency at baseline and along the treatment of circulating T central memory cells expressing activation/differentiation markers, such as CD3+CD4+CD45RO+BTLA+, CD3+CD4+4-1BB or Th17 lymphocytes correlated with the clinical outcome of MM patients. Moreover, either the absence or the presence of soluble NKG2D ligands (ULBP-1 or -2) at baseline in the serum of MM patients enabled to discriminate subjects with long-term survival (median overall survival, (OS) = 33.6 mo for ULBP-1 and -2) from poor survivors (OS = 9.8 or 6.6 mo, respectively). Conversely, no significant association between the levels of soluble MICA, MICB and ULBP-3 and the clinical outcome of patients was observed. An inverse correlation between circulating levels of these molecules at baseline and frequency of either CD3+CD4+CD45RO+BTLA+ or Th17 or CD3+CD4+4-1BB+ T cells occurred in patients with a favorable clinical outcome. The simultaneous monitoring of different immune parameters, though validation in a large cohort of patients is needed, allowed to identify an association between phenotypic and soluble markers representing a possible predictive immunological signature for the clinical activity of IPI plus FTM.
Collapse
Affiliation(s)
- Cristina Maccalli
- Italian Network for Biotherapy of Tumors-(NIBIT)-Laboratory, Siena, Italy; Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy; Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Center, Milan, Italy
| | - Diana Giannarelli
- Unit of Statistics, Regina Elena National Cancer Institute , Rome, Italy
| | - Filippo Capocefalo
- Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Center , Milan, Italy
| | - Lorenzo Pilla
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy; Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Center, Milan, Italy
| | - Ester Fonsatti
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori , Siena, Italy
| | - Anna Maria Di Giacomo
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori , Siena, Italy
| | - Giorgio Parmiani
- Italian Network for Biotherapy of Tumors-(NIBIT)-Laboratory, Siena, Italy; Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy; Unit of Immuno-biotherapy of Melanoma and Solid Tumors, San Raffaele Foundation Center, Milan, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, University Hospital of Siena, Istituto Toscano Tumori , Siena, Italy
| |
Collapse
|
36
|
Leclerc BG, Charlebois R, Chouinard G, Allard B, Pommey S, Saad F, Stagg J. CD73 Expression Is an Independent Prognostic Factor in Prostate Cancer. Clin Cancer Res 2015; 22:158-66. [PMID: 26253870 DOI: 10.1158/1078-0432.ccr-15-1181] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/26/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE CD73 is an adenosine-generating ecto-enzyme that suppresses antitumor immunity in mouse models of cancer, including prostate cancer. Although high levels of CD73 are associated with poor prognosis in various types of cancer, the clinical impact of CD73 in prostate cancer remains unclear. EXPERIMENTAL DESIGN We evaluated the prognostic value of CD73 protein expression and CD8(+) cell density in 285 cases of prostate cancer on tissue microarray (TMA). Normal adjacent and tumor tissues were evaluated in duplicates. RESULTS Univariate and multivariate analyses revealed that high levels of CD73 in normal adjacent prostate epithelium were significantly associated with shorter biochemical recurrence (BCR)-free survival. Notably, CD73 expression in normal epithelium conferred a negative prognostic value to prostate-infiltrating CD8(+) cells. Surprisingly, high levels of CD73 in the tumor stroma were associated with longer BCR-free survival in univariate analysis. In vitro studies revealed that adenosine signaling inhibited NF-κB activity in human prostate cancer cells via A2B adenosine receptors. Consistent with these results, CD73 expression in the prostate tumor stroma negatively correlated with p65 expression in the nuclei of prostate tumor cells. CONCLUSIONS Our study revealed that CD73 is an independent prognostic factor in prostate cancer. Our data support a model in which CD73 expression in the prostate epithelium suppresses immunosurveillance by CD8(+) T cells, whereas CD73 expression in the tumor stroma reduces NF-κB signaling in tumor cells via A2B adenosine receptor signaling. CD73 expression, including in normal adjacent prostate epithelium, can thus effectively discriminate between aggressive and indolent forms of prostate cancer.
Collapse
Affiliation(s)
- Bruno G Leclerc
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, Quebec, Canada. Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, Montréal, Quebec, Canada
| | - Roxanne Charlebois
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, Quebec, Canada. Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, Montréal, Quebec, Canada
| | - Guillaume Chouinard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, Quebec, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, Quebec, Canada. Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, Montréal, Quebec, Canada
| | - Sandra Pommey
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, Quebec, Canada
| | - Fred Saad
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, Quebec, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montréal, Quebec, Canada. Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, Montréal, Quebec, Canada.
| |
Collapse
|
37
|
Jing H, Wang Z, Chang Q. De-Endothelialized Aortic Homografts: A Promising Scaffold Material for Tissue-Engineered Heart Valves. Cells Tissues Organs 2015; 200:195-203. [PMID: 26138278 DOI: 10.1159/000381947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2015] [Indexed: 11/19/2022] Open
Abstract
This study was designed to investigate the feasibility of de-endothelialized aortic homografts as a scaffold for tissue-engineered heart valves. Aortic homografts obtained from donor rabbits were treated either with collagenase to eliminate endotheliocytes or with the enzyme-detergent-nuclease method to remove all cell components. Then biomechanical properties of fresh, de-endothelialized and acellular homografts were investigated comparatively. The inflammation potential and immunogenicity were also assessed after allogenic transplantation. Expression of immune indices and inflammatory infiltration in de-endothelialized and acellular homografts were much weaker than in the controls, and no significant difference was observed between treated groups. However, heat shrinkage temperature, tensile strength and broken extension rate of acellular homografts decreased significantly compared to de-endothelialized ones. It is concluded that both de-endothelialization and thorough decellularization could reduce the immunogenicity and inflammation potential significantly, but the de-endothelialized scaffold retained better structural strength. The de-endothelialized aortic homograft might be a promising scaffold for tissue-engineered heart valves.
Collapse
|
38
|
B7-H1/PD-1 blockade therapy in urological malignancies: current status and future prospects. TUMORI JOURNAL 2015; 101:549-54. [PMID: 26045125 DOI: 10.5301/tj.5000326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 01/06/2023]
Abstract
The stimulatory and inhibitory coreceptors expressed by T lymphocytes are known to play critical roles in regulating cancer immunity. An array of inhibitory coreceptors involved in the inhibition of T-cell functions and the blockade of immune activation have been discovered in recent years, the most important of which are cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmmed death-1 (PD-1), and B7 homolog 1 (B7-H1). Immunotherapies targeting T-cell coinhibitory molecules have proved to be effective in cancer treatment. Several kinds of monoclonal antibodies have been tested in preclinical studies, with better outcomes than conventional therapies in many malignancies. Common urological malignancies including renal cell carcinoma, bladder cancer and prostate cancer are supposed to be immunogenic cancer types and not so sensitive to conventional therapies as other malignancies. This review will focus on B7-H1/PD-1 blockade therapy in urological malignancies, summarizing the results of clinical trials as well as the challenges and prospects of this emerging immunotherapy.
Collapse
|
39
|
Bloy N, Buqué A, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Naked and vectored DNA-based anticancer vaccines. Oncoimmunology 2015; 4:e1026531. [PMID: 26155408 PMCID: PMC4485755 DOI: 10.1080/2162402x.2015.1026531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 02/27/2015] [Indexed: 12/28/2022] Open
Abstract
One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.
Collapse
Key Words
- AFP, α-fetoprotein
- APC, antigen-presenting cell
- CDR, complementarity-determining region
- CEA, carcinoembryonic antigen
- CIN, cervical intraepithelial neoplasia
- CTLA4, cytotoxic T lymphocyte protein 4
- DAMP, damage-associated molecular pattern
- DC, dendritic cell
- FDA, Food and Drug Administration
- GM-CSF, granulocyte macrophage colony-stimulating factor
- GX-188E
- HCC, hepatocellular carcinoma
- HNSCC, head and neck squamous cell carcinoma
- HPV, human papillomavirus
- IL, interleukin
- OS, overall survival
- OVA, ovalbumin
- PAP, prostate acid phosphatase
- SCGB2A2, secretoglobin, family 2A, member 2
- SOX2, SRY (sex determining region Y)-box 2
- T, brachyury homolog
- TAA, tumor-associated antigen
- TLR, Toll-like receptor
- TRA, tumor rejection antigen
- Treg, regulatory T cell
- VGX-3100
- WT1, Wilms tumor 1
- adjuvants
- dendritic cell
- electroporation
- mucosal immunity
Collapse
Affiliation(s)
- Norma Bloy
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Aitziber Buqué
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System; Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS); Barcelona, Spain
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Faculté de Medicine; Université Paris Sud/Paris XI; Le Kremlin-Bicêtre, France
- Sotio a.c; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Jitka Fucikova
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| | - Radek Spisek
- Sotio a.c; Prague, Czech Republic
- Dept. of Immunology; 2 Faculty of Medicine and University Hospital Motol; Charles University; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- INSERM, U970; Paris, France
- Paris-Cardiovascular Research Center (PARCC); Paris, France
- Service d'Immunologie Biologique; Hôpital Européen Georges Pompidou (HEGP); AP-HP; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1015, CICBT507; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1138; Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
40
|
Hekim N, Cetin Z, Nikitaki Z, Cort A, Saygili EI. Radiation triggering immune response and inflammation. Cancer Lett 2015; 368:156-63. [PMID: 25911239 DOI: 10.1016/j.canlet.2015.04.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/23/2022]
Abstract
Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.
Collapse
Affiliation(s)
- Nezih Hekim
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey
| | - Zafer Cetin
- Department of Medical Biology & Genetics, School of Medicine, SANKO University, Gaziantep, Turkey
| | - Zacharenia Nikitaki
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Aysegul Cort
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences, SANKO University, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey.
| |
Collapse
|
41
|
Prassas I, Eissa A, Poda G, Diamandis EP. Unleashing the therapeutic potential of human kallikrein-related serine proteases. Nat Rev Drug Discov 2015; 14:183-202. [DOI: 10.1038/nrd4534] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Frieling JS, Basanta D, Lynch CC. Current and emerging therapies for bone metastatic castration-resistant prostate cancer. Cancer Control 2015; 22:109-20. [PMID: 25504285 PMCID: PMC4673894 DOI: 10.1177/107327481502200114] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A paucity of therapeutic options is available to treat men with metastatic castration-resistant prostate cancer (mCRPC). However, recent developments in our understanding of the disease have resulted in several new therapies that show promise in improving overall survival rates in this patient population. METHODS Agents approved for use in the United States and those undergoing clinical trials for the treatment of mCRPC are reviewed. Recent contributions to the understanding of prostate biology and bone metastasis are discussed as well as how the underlying mechanisms may represent opportunities for therapeutic intervention. New challenges to delivering effective mCRPC treatment will also be examined. RESULTS New and emerging treatments that target androgen synthesis and utilization or the microenvironment may improve overall survival rates for men diagnosed with mCRPC. Determining how factors derived from the primary tumor can promote the development of premetastatic niches and how prostate cancer cells parasitize niches in the bone microenvironment, thus remaining dormant and protected from systemic therapy, could yield new therapies to treat mCRPC. Challenges such as intratumoral heterogeneity and patient selection can potentially be circumvented via computational biology approaches. CONCLUSIONS The emergence of novel treatments for mCRPC, combined with improved patient stratification and optimized therapy sequencing, suggests that significant gains may be made in terms of overall survival rates for men diagnosed with this form of cancer.
Collapse
Affiliation(s)
- Jeremy S Frieling
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
43
|
Norström MM, Rådestad E, Stikvoort A, Egevad L, Bergqvist M, Henningsohn L, Mattsson J, Levitsky V, Uhlin M. Novel method to characterize immune cells from human prostate tissue. Prostate 2014; 74:1391-9. [PMID: 25111297 DOI: 10.1002/pros.22854] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is the most common benign adenoma and prostate cancer is the most frequent malignancy in men over 50 years of age in the Western world, where it remains a significant health problem. Prostate lesions are known to contain immune cells, which may contribute to the immune control of tumor progression. However, due to their low numbers and restricted access to necessary material it is difficult to isolate immune cells from prostate tissue to characterize their immunological features. METHODS An efficient and robust method was developed to process prostate tissue and isolate immune cells for phenotypic analysis by multicolor flow cytometry as downstream application. Fresh prostate tissue from 11 patients undergoing surgery for bladder outlet obstruction due to BPH was processed to evaluate the number, viability, yield, and frequency of various immune cell types. RESULTS The presented method does not include enzymatic digestion nor incubation steps at 37 °C, increasing cellular viability and avoiding possible phenotypic modification. Various immune cell populations were detected in all patient samples and the median cellular viability was 90%. The number of detected events of individual cell populations varied between patients. The median frequency of different immune cell populations also varied, being 87% for the CD3- and 15% for the CD3+ cell population. CONCLUSIONS This novel method will allow the phenotypic characterization of immune cell populations present in tumor tissue of prostate cancer patients and promote development of novel approaches to immunotherapy of the disease.
Collapse
Affiliation(s)
- Melissa M Norström
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
From bench to bedside: immunotherapy for prostate cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:981434. [PMID: 25276838 PMCID: PMC4168152 DOI: 10.1155/2014/981434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/18/2014] [Indexed: 01/20/2023]
Abstract
The mainstay therapeutic strategy for metastatic castrate-resistant prostate cancer (CRPC) continues to be androgen deprivation therapy usually in combination with chemotherapy or androgen receptor targeting therapy in either sequence, or recently approved novel agents such as Radium 223. However, immunotherapy has also emerged as an option for the treatment of this disease following the approval of sipuleucel-T by the FDA in 2010. Immunotherapy is a rational approach for prostate cancer based on a body of evidence suggesting these cancers are inherently immunogenic and, most importantly, that immunological interventions can induce protective antitumour responses. Various forms of immunotherapy are currently being explored clinically, with the most common being cancer vaccines (dendritic-cell, viral, and whole tumour cell-based) and immune checkpoint inhibition. This review will discuss recent clinical developments of immune-based therapies for prostate cancer that have reached the phase III clinical trial stage. A perspective of how immunotherapy could be best employed within current treatment regimes to achieve most clinical benefits is also provided.
Collapse
|