1
|
Dolskii A, dos Santos SAA, Andrake M, Franco-Barraza J, Dunbrack RL, Cukierman E. Exploring the potential role of palladin in modulating human CAF/ECM functional units. Cytoskeleton (Hoboken) 2025; 82:175-185. [PMID: 39239855 PMCID: PMC11882928 DOI: 10.1002/cm.21926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Fibroblasts, crucial for maintaining tissue homeostasis, significantly shape the tumor microenvironment (TME). In pancreatic cancer, a highly aggressive malignancy, cancer-associated fibroblast (CAF)/extracellular matrix (ECM) units dominate the TME, influencing tumor initiation, progression, and treatment responses. Palladin, an actin-associated protein, is vital for fibroblast structural integrity and activation, playing a key role in CAF/ECM functionality. Palladin interacts with cytoskeletal proteins such as alpha-actinin (α-Act) and can therefore regulate other proteins like syndecans, modulating cytoskeletal features, cell adhesion, integrin recycling, and signaling. In this review, we propose that targeting the palladin/α-Act/syndecan interaction network could modulate CAF/ECM units, potentially shifting the TME from a tumor-promoting to a tumor-suppressive state. In silico data and reported studies to suggest that stabilizing palladin-α-Act interactions, via excess palladin, influences syndecan functions; potentially modulating integrin endocytosis via syndecan engagement with protein kinase C alpha as opposed to syndecan binding to α-Act. This mechanism can then affect the distribution of active α5β1-integrin between the plasma membrane and known intracellular vesicular compartments, thereby influencing the tumor-suppressive versus tumor-promoting functions of CAF/ECM units. Understanding these interactions offers likely future therapeutic avenues for stroma normalization in pancreatic and other cancers, aiming to inhibit tumor progression and improve future treatment outcomes.
Collapse
Affiliation(s)
| | | | - Mark Andrake
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Janusz Franco-Barraza
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Roland L. Dunbrack
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Lewis Katz School of Medicine, Temple Health, Philadelphia, PA
| |
Collapse
|
2
|
Manoukian P, Kuhnen LC, van Laarhoven HWM, Bijlsma MF. Association of epigenetic landscapes with heterogeneity and plasticity in pancreatic cancer. Crit Rev Oncol Hematol 2025; 206:104573. [PMID: 39581245 DOI: 10.1016/j.critrevonc.2024.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Due to a lack of clear symptoms, patients often present with advanced disease, with limited clinical intervention options. The high mortality rate of PDAC is, however, also a result of several other factors that include a high degree of heterogeneity and treatment resistant cellular phenotypes. Molecular subtypes of PDAC have been identified that are thought to represent cellular phenotypes at the tissue level. The epigenetic landscape is an important factor that dictates these subtypes. Permissive epigenetic landscapes serve as drivers of molecular heterogeneity and cellular plasticity in developing crypts as well as metaplastic lesions. Drawing parallels with other cancers, we hypothesize that epigenetic permissiveness is a potential driver of cellular plasticity in PDAC. In this review will explore the epigenetic alterations that underlie PDAC cell states and relate them to cellular plasticity from other contexts. In doing so, we aim to highlight epigenomic drivers of PDAC heterogeneity and plasticity and, with that, offer some insight to guide pre-clinical research.
Collapse
Affiliation(s)
- Paul Manoukian
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - Leo C Kuhnen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Lansbergen MF, Dings MPG, Manoukian P, Fariña A, Waasdorp C, Hooijer GKJ, Verheij J, Koster J, Zwijnenburg DA, Wilmink JW, Medema JP, Dijk F, van Laarhoven HWM, Bijlsma MF. Transcriptome-based classification to predict FOLFIRINOX response in a real-world metastatic pancreatic cancer cohort. Transl Res 2024; 273:137-147. [PMID: 39154856 DOI: 10.1016/j.trsl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/18/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at metastatic stage and typically treated with fluorouracil, leucovorin, irinotecan and oxaliplatin (FOLFIRINOX). Few patients benefit from this treatment. Molecular subtypes are prognostic in particularly resectable PDAC and might predict treatment response. This study aims to correlate molecular subtypes in metastatic PDAC with FOLFIRINOX responses using real-world data, providing assistance in counselling patients. We collected 131 RNA-sequenced metastatic biopsies and applied a network-based meta-analysis using published PDAC classifiers. Subsequent survival analysis was performed using the most suitable classifier. For validation, we developed an immunohistochemistry (IHC) classifier using GATA6 and keratin-17 (KRT17), and applied it to 86 formalin-fixed paraffin-embedded samples of advanced PDAC. Lastly, GATA6 knockdown models were generated in PDAC organoids and cell lines. We showed that the PurIST classifier was the most suitable classifier. With this classifier, classical tumors had longer PFS and OS than basal-like tumors (PFS: 216 vs. 78 days, p = 0.0002; OS: 251 vs. 195 days, p = 0.049). The validation cohort showed a similar trend. Importantly, IHC GATA6low patients had significantly shorter survival with FOLFIRINOX (323 vs. 746 days, p = 0.006), but no difference in non-treated patients (61 vs. 54 days, p = 0.925). This suggests that GATA6 H-score predicts therapy response. GATA6 knockdown models did not lead to increased FOLFIRINOX responsiveness. These data suggest a predictive role for subtyping (transcriptomic and GATA6 IHC), though no direct causal relationship was found between GATA6 expression and chemoresistance. GATA6 immunohistochemistry should be seamlessly added to current diagnostics and integrated into upcoming clinical trials.
Collapse
Affiliation(s)
- Marjolein F Lansbergen
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mark P G Dings
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Paul Manoukian
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arantza Fariña
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gerrit K J Hooijer
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Joanne Verheij
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Danny A Zwijnenburg
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Johanna W Wilmink
- Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Frederike Dijk
- Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam UMC, location University of Amsterdam, Pathology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC, location University of Amsterdam, Medical Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC, location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Uehara M, Domoto T, Takenaka S, Takeuchi O, Shimasaki T, Miyashita T, Minamoto T. Glycogen synthase kinase 3β: the nexus of chemoresistance, invasive capacity, and cancer stemness in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:4. [PMID: 38318525 PMCID: PMC10838383 DOI: 10.20517/cdr.2023.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The treatment of pancreatic cancer remains a significant clinical challenge due to the limited number of patients eligible for curative (R0) surgery, failures in the clinical development of targeted and immune therapies, and the pervasive acquisition of chemotherapeutic resistance. Refractory pancreatic cancer is typified by high invasiveness and resistance to therapy, with both attributes related to tumor cell stemness. These malignant characteristics mutually enhance each other, leading to rapid cancer progression. Over the past two decades, numerous studies have produced evidence of the pivotal role of glycogen synthase kinase (GSK)3β in the progression of over 25 different cancer types, including pancreatic cancer. In this review, we synthesize the current knowledge on the pathological roles of aberrant GSK3β in supporting tumor cell proliferation and invasion, as well as its contribution to gemcitabine resistance in pancreatic cancer. Importantly, we discuss the central role of GSK3β as a molecular hub that mechanistically connects chemoresistance, tumor cell invasion, and stemness in pancreatic cancer. We also discuss the involvement of GSK3β in the formation of desmoplastic tumor stroma and in promoting anti-cancer immune evasion, both of which constitute major obstacles to successful cancer treatment. Overall, GSK3β has characteristics of a promising therapeutic target to overcome chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Masahiro Uehara
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Takahiro Domoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Authors contributed equally
| | - Satoshi Takenaka
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Osamu Takeuchi
- Biomedical Laboratory, Department of Research, Kitasato University Kitasato Institute Hospital, Tokyo 108-8642, Japan
| | - Takeo Shimasaki
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Tomoharu Miyashita
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8641, Japan
- Department of Surgery, Toyama City Hospital, Toyama 939-8511, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa 920-0934, Japan
| |
Collapse
|
5
|
Usman OH, Kumar S, Walker RR, Xie G, Sumajit HC, Jalil AR, Ramakrishnan S, Dooling LJ, Wang YJ, Irianto J. Differential modulation of cellular phenotype and drug sensitivity by extracellular matrix proteins in primary and metastatic pancreatic cancer cells. Mol Biol Cell 2023; 34:ar130. [PMID: 37903222 PMCID: PMC10848942 DOI: 10.1091/mbc.e23-02-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/06/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is reported to be the third highest cause of cancer-related deaths in the United States. PDAC is known for its high proportion of stroma, which accounts for 90% of the tumor mass. The stroma is made up of extracellular matrix (ECM) and nonmalignant cells such as inflammatory cells, cancer-associated fibroblasts, and lymphatic and blood vessels. Here, we decoupled the effects of the ECM on PDAC cell lines by culturing cells on surfaces coated with different ECM proteins. Our data show that the primary tumor-derived cell lines have different morphology depending on the ECM proteins on which they are cultured, while metastatic lesion-derived PDAC lines' morphology does not change with respect to the different ECM proteins. Similarly, ECM proteins modulate the proliferation rate and the gemcitabine sensitivity of the primary tumor PDAC cell lines, but not the metastatic PDAC lines. Lastly, transcriptomics analysis of the primary tumor PDAC cells cultured on different ECM proteins reveals the regulation of various pathways, such as cell cycle, cell-adhesion molecules, and focal adhesion, including the regulation of several integrin genes that are essential for ECM recognition.
Collapse
Affiliation(s)
- Olalekan H. Usman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Sampath Kumar
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Reddick R. Walker
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Hyeje C. Sumajit
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - AbdelAziz R. Jalil
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA 19104
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, FL 32310
| | - Lawrence J. Dooling
- Physical Sciences Oncology Center at Penn, University of Pennsylvania, Philadelphia, PA 19104
| | - Yue Julia Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306
| |
Collapse
|
6
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr 2023; 10:1136458. [PMID: 37006921 PMCID: PMC10060562 DOI: 10.3389/fnut.2023.1136458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Selenium is an essential microelement involved in various biological processes. Selenium deficiency increases the risk of human immunodeficiency virus infection, cancer, cardiovascular disease, and inflammatory bowel disease. Selenium possesses anti-oxidant, anti-cancer, immunomodulatory, hypoglycemic, and intestinal microbiota-regulating properties. The non-linear dose-response relationship between selenium status and health effects is U-shaped; individuals with low baseline selenium levels may benefit from supplementation, whereas those with acceptable or high selenium levels may face possible health hazards. Selenium supplementation is beneficial in various populations and conditions; however, given its small safety window, the safety of selenium supplementation is still a subject of debate. This review summarizes the current understanding of the health-promoting effects of selenium on the human body, the dietary reference intake, and evidence of the association between selenium deficiency and disease.
Collapse
Affiliation(s)
- Ying Sun
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Pin Gong,
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi’an, China
- Wenbo Yao,
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qian Ba,
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hui Wang,
| |
Collapse
|
8
|
Abstract
Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis. The complex kinetics and stepwise development of pancreatic cancer suggests that it is governed by a discrete set of organizing rules and principles, and repeated attempts to target specific components within the microenvironment reveal self-regulating mechanisms of resistance. The histopathological and genetic progression models of the transforming ductal epithelium must therefore be considered together with a programme of stromal progression to create a comprehensive picture of pancreatic cancer evolution. Understanding the underlying organizational logic of the tumour to anticipate and pre-empt the almost inevitable compensatory mechanisms will be essential to eradicate the disease.
Collapse
Affiliation(s)
- Sunil R Hingorani
- Division of Hematology and Oncology, Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
- Pancreatic Cancer Center of Excellence, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Velasco RM, García AG, Sánchez PJ, Sellart IM, Sánchez-Arévalo Lobo VJ. Tumour microenvironment and heterotypic interactions in pancreatic cancer. J Physiol Biochem 2023; 79:179-192. [PMID: 35102531 DOI: 10.1007/s13105-022-00875-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a disease with a survival rate of 9%; this is due to its chemoresistance and the large tumour stroma that occupies most of the tumour mass. It is composed of a large number of cells of the immune system, such as Treg cells, tumour-associated macrophages (TAMs), myeloid suppressor cells (MDCs) and tumour-associated neutrophiles (TANs) that generate an immunosuppressive environment by the release of inflammatory cytokines. Moreover, cancer-associated fibroblast (CAFs) provide a protective coverage that would difficult the access of chemotherapy to the tumour. According to this, new therapies that could remodel this heterogeneous tumour microenvironment, such as adoptive T cell therapies (ACT), immune checkpoint inhibitors (ICI), and CD40 agonists, should be developed for targeting PDA. This review organizes the different cell populations found in the tumour stroma involved in tumour progression in addition to the different therapies that are being studied to counteract the tumour.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Ana García García
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Inmaculada Montanuy Sellart
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain.
| |
Collapse
|
10
|
Badve SS, Gökmen-Polar Y. Targeting the Tumor-Tumor Microenvironment Crosstalk. Expert Opin Ther Targets 2023; 27:447-457. [PMID: 37395003 DOI: 10.1080/14728222.2023.2230362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Cancer development and progression is a complex process influenced by co-evolution of the cancer cells and their microenvironment. However, traditional anti-cancer therapy is mostly targeted toward cancer cells. To improve the efficacy of cancer drugs, the complex interactions between the tumor (T) and the tumor microenvironment (TME) should be considered while developing therapeutics. AREAS COVERED The present review article will discuss the components of T-TME as well as the potential to co-target these two distinct elements. We document that these approaches have resulted in success in preventing tumor progression and metastasis, albeit in animal models in some cases. Lastly, it is important to consider the tissue context and tumor type as these could significantly modify the role of these molecules/pathways and hence the overall likelihood of response. Furthermore, we discuss the potential strategies to target the components of tumor microenvironment in anti-cancer therapy. PubMed and ClinicalTrials.gov was searched through May 2023. EXPERT OPINION The tumor-tumor microenvironment cross talk and heterogeneity are major mechanisms conferring resistance to standard of care. Better understanding of the tissue specific T-TME interactions and dual targeting has the promise of improving cancer control and clinical outcomes.
Collapse
Affiliation(s)
- Sunil S Badve
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Yesim Gökmen-Polar
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Jones CE, Sharick JT, Sizemore ST, Cukierman E, Strohecker AM, Leight JL. A miniaturized screening platform to identify novel regulators of extracellular matrix alignment. CANCER RESEARCH COMMUNICATIONS 2022; 2:1471-1486. [PMID: 36530465 PMCID: PMC9757767 DOI: 10.1158/2767-9764.crc-22-0157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Extracellular matrix alignment contributes to metastasis in a number of cancers and is a known prognostic stromal factor; however, the mechanisms controlling matrix organization remain unclear. Cancer-associated fibroblasts (CAF) play a critical role in this process, particularly via matrix production and modulation of key signaling pathways controlling cell adhesion and contractility. Stroma normalization, as opposed to elimination, is a highly sought strategy, and screening for drugs that effectively alter extracellular matrix (ECM) alignment is a practical way to identify novel CAF-normalizing targets that modulate ECM organization. To meet this need, we developed a novel high-throughput screening platform in which fibroblast-derived matrices were produced in 384-well plates, imaged with automated confocal microscopy, and analyzed using a customized MATLAB script. This platform is a technical advance because it miniaturizes the assay, eliminates costly and time-consuming experimental steps, and streamlines data acquisition and analysis to enable high-throughput screening applications. As a proof of concept, this platform was used to screen a kinase inhibitor library to identify modulators of matrix alignment. A number of novel potential regulators were identified, including several receptor tyrosine kinases (c-MET, tropomyosin receptor kinase 1 (NTRK1), HER2/ERBB2) and the serine/threonine kinases protein kinase A, C, and G (PKA, PKC, and PKG). The expression of these regulators was analyzed in publicly available patient datasets to examine the association between stromal gene expression and patient outcomes.
Collapse
Affiliation(s)
- Caitlin E. Jones
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Joe T. Sharick
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
| | - Steven T. Sizemore
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| | - Edna Cukierman
- Cancer Signaling and Epigenetics, The Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, Pennsylvania
| | - Anne Marie Strohecker
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Jennifer L. Leight
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, Program in Cancer Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
12
|
Role of drug catabolism, modulation of oncogenic signaling and tumor microenvironment in microbe-mediated pancreatic cancer chemoresistance. Drug Resist Updat 2022; 64:100864. [PMID: 36115181 DOI: 10.1016/j.drup.2022.100864] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the highest incidence/death ratios among all neoplasms due to its late diagnosis and dominant chemoresistance. Most PDAC patients present with an advanced disease characterized by a multifactorial, inherent and acquired resistance to current anticancer treatments. This remarkable chemoresistance has been ascribed to several PDAC features including the genetic landscape, metabolic alterations, and a heterogeneous tumor microenvironment that is characterized by dense fibrosis, and a cellular contexture including functionally distinct subclasses of cancer-associated fibroblasts, immune suppressive cells, but also a number of bacteria, shaping a specific tumor microbiome microenvironment. Thus, recent studies prompted the emergence of a new research avenue, by describing the role of the microbiome in gemcitabine resistance, while next-generation-sequencing analyses identified a specific microbiome in different tumors, including PDAC. Functionally, the contribution of these microbes to PDAC chemoresistance is only beginning to be explored. Here we provide an overview of the studies demonstrating that bacteria have the capacity to metabolically transform and hence inactivate anticancer drugs, as exemplified by the inhibition of the efficacy of 10 out of 30 chemotherapeutics by Escherichia coli. Moreover, a number of bacteria modulate specific oncogenic pathways, such as Fusobacterium nucleatum, affecting autophagy and apoptosis induction by 5-fluorouracil and oxaliplatin. We hypothesize that improved understanding of how chemoresistance is driven by bacteria could enhance the efficacy of current treatments, and discuss the potential of microbiome modulation and targeted therapeutic approaches as well as the need for more reliable models and biomarkers to translate the findings of preclinical/translational research to the clinical setting, and ultimately overcome PDAC chemoresistance, hence improving clinical outcome.
Collapse
|
13
|
Geng F, Dong L, Bao X, Guo Q, Guo J, Zhou Y, Yu B, Wu H, Wu J, Zhang H, Yu X, Kong W. CAFs/tumor cells co-targeting DNA vaccine in combination with low-dose gemcitabine for the treatment of Panc02 murine pancreatic cancer. Mol Ther Oncolytics 2022; 26:304-313. [PMID: 36090474 PMCID: PMC9420428 DOI: 10.1016/j.omto.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigate the synergistic effect of gemcitabine (Gem) and a novel DNA vaccine in the treatment of pancreatic cancer in mice and explore the anti-tumor mechanism of this combination therapy. Fibroblast activation protein α-expressing cancer-associated fibroblasts (FAPα+ CAFs), a dominant component of the tumor microenvironment (TME), have been shown to modulate the extracellular matrix (ECM) to promote the growth, invasion, and metastasis of pancreatic cancer (PC). Therefore, FAPα+ CAFs may be an ideal target for the treatment of PC. However, treatments that solely target FAPα+ CAFs do not directly affect tumor cells. We recently constructed a novel chimeric DNA vaccine (OsFS) against human FAPα and survivin, which simultaneously targets FAPα+ CAFs and tumor cells. In Panc02 tumor-bearing mice, OsFS vaccination not only reduced the proportion of immunosuppressive cells but also promoted the recruitment of tumor-infiltrating lymphocytes, which remodeled the TME to support anti-tumor immune responses. Furthermore, after depletion of regulatory T cells (Tregs) by metronomic low-dose Gem therapy, the anti-tumor effects of OsFS were enhanced. Taken together, our results indicate that the combination of the FAPα/survivin co-targeting DNA vaccine and low-dose Gem may be an effective therapy for PC.
Collapse
Affiliation(s)
- Fei Geng
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Ling Dong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Xin Bao
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Qianqian Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Jie Guo
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Yi Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
- Corresponding author Hai-Hong Zhang, PhD, National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
- Corresponding author Xianghui Yu, PhD, National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China.
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699, Street Qianjin, Changchun 130012, P.R. China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
14
|
Han S, Fu D, Tushoski GW, Meng L, Herremans KM, Riner AN, Geoge TJ, Huo Z, Hughes SJ. Single-cell profiling of microenvironment components by spatial localization in pancreatic ductal adenocarcinoma. Theranostics 2022; 12:4980-4992. [PMID: 35836806 PMCID: PMC9274743 DOI: 10.7150/thno.73222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Rationale: The biology of the pancreatic ductal adenocarcinoma (PDAC) is heterogenous, but how heterogenity of the tumor microenvironment contributes to disparate patient outcomes remains essentially unstudied. Methods: A strategy employing multiplex digital spatial profiling (mplxDSP) technology was employed to evaluate the nature and dynamics of microenvironment components including cancer associated fibroblasts (CAFs) and infiltrating immune cells at the single-cell level based upon their spatial relationship within the tumor. Results: We report that myofibroblasts directly adjacent to PDAC tumors comparatively overexpress genes (BATF3, IL12B, ITGB8, CD4 and IFNAR1), constructing pathways prone to stimulating an adaptive immune response. Markers of innate immune cells (Natural Killer cells, Dendritic Cells and macrophages) are predominant in CD45+ cells immediately adjacent to PDAC tumor, however, the checkpoint protein CTLA4 is also overwhelmingly expressed, fostering tolerance. Finaly, mRNA profiling of adjacent CAFs identified clusters of genes that correlate with survival. Conclusion: CAFs and leukocytes in close proximity to PDAC significantly differ from those remote from the tumor, providing insight into microenvironment influence on immune tolerance mediated through relative populations of leukocytes and subsets of CAFs and monocytes. mRNA expression profiling of CAFs adjacent to PDAC cells may hold promise for prognostication.
Collapse
Affiliation(s)
- Song Han
- Department of Surgery, College of Medicine; University of Florida, Gainesville, FL 32610
| | - Dongtao Fu
- Department of Pathology, College of Medicine; University of Florida, Gainesville, FL 32610
| | - Gerik W Tushoski
- Department of Surgery, College of Medicine; University of Florida, Gainesville, FL 32610
| | - Lingsong Meng
- Department of Biostatistics, College of Medicine; University of Florida, Gainesville, FL 32610
| | - Kelly M. Herremans
- Department of Surgery, College of Medicine; University of Florida, Gainesville, FL 32610
| | - Andrea N. Riner
- Department of Surgery, College of Medicine; University of Florida, Gainesville, FL 32610
| | - Thomas J. Geoge
- Department of Medicine, College of Medicine; University of Florida, Gainesville, FL 32610
| | - Zhiguang Huo
- Department of Biostatistics, College of Medicine; University of Florida, Gainesville, FL 32610
| | - Steven J. Hughes
- Department of Surgery, College of Medicine; University of Florida, Gainesville, FL 32610
| |
Collapse
|
15
|
Ten Hoorn S, Waasdorp C, van Oijen MGH, Damhofer H, Trinh A, Zhao L, Smits LJH, Bootsma S, van Pelt GW, Mesker WE, Mol L, Goey KKH, Koopman M, Medema JP, Tuynman JB, Zlobec I, Punt CJA, Vermeulen L, Bijlsma MF. Serum-based measurements of stromal activation through ADAM12 associate with poor prognosis in colorectal cancer. BMC Cancer 2022; 22:394. [PMID: 35413826 PMCID: PMC9004139 DOI: 10.1186/s12885-022-09436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Recently it has been recognized that stromal markers could be used as a clinically relevant biomarker for therapy response and prognosis. Here, we report on a serum marker for stromal activation, A Disintegrin and Metalloprotease 12 (ADAM12) in colorectal cancer (CRC). Methods Using gene expression databases we investigated ADAM12 expression in CRC and delineated the source of ADAM12 expression. The clinical value of ADAM12 was retrospectively assessed in the CAIRO2 trial in metastatic CRC with 235 patients (31% of total cohort), and an independent rectal cancer cohort (n = 20). Results ADAM12 is expressed by activated CRC associated fibroblasts. In the CAIRO2 trial cohort, ADAM12 serum levels were prognostic (ADAM12 low versus ADAM12 high; median OS 25.3 vs. 17.1 months, HR 1.48 [95% CI 1.11–1.96], P = 0.007). The prognostic potential was specifically high for metastatic rectal cancer (HR 1.78 [95% CI 1.06–3.00], P = 0.030) and mesenchymal subtype tumors (HR 2.12 [95% CI 1.25–3.60], P = 0.004). ADAM12 also showed potential for predicting recurrence in an exploratory analysis of non-metastatic rectal cancers. Conclusions Here we describe a non-invasive marker for activated stroma in CRC which associates with poor outcome, especially for primary cancers located in the rectum. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09436-0.
Collapse
Affiliation(s)
- Sanne Ten Hoorn
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Imaging and Biomarkers, Meibergdreef 9, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Imaging and Biomarkers, Meibergdreef 9, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Martijn G H van Oijen
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Helene Damhofer
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Imaging and Biomarkers, Meibergdreef 9, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.,Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Anne Trinh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Lan Zhao
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Lisanne J H Smits
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, Boelelaan 1117, Amsterdam, the Netherlands
| | - Sanne Bootsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Imaging and Biomarkers, Meibergdreef 9, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda Mol
- Department of Data Management, Netherlands Comprehensive Cancer Center (IKNL), Nijmegen, The Netherlands
| | - Kaitlyn K H Goey
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Paul Medema
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Imaging and Biomarkers, Meibergdreef 9, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, The Netherlands
| | - Jurriaan B Tuynman
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, Boelelaan 1117, Amsterdam, the Netherlands
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Cornelis J A Punt
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Louis Vermeulen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Imaging and Biomarkers, Meibergdreef 9, Amsterdam, the Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands.,Oncode Institute, Amsterdam, The Netherlands.,Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Imaging and Biomarkers, Meibergdreef 9, Amsterdam, the Netherlands. .,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands. .,Oncode Institute, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Meng Y, Zhang H, Li Q, Liu F, Fang X, Li J, Yu J, Feng X, Lu J, Bian Y, Shao C. Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma. Acad Radiol 2022; 29:523-535. [PMID: 34563443 DOI: 10.1016/j.acra.2021.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To develop and validate a magnetic resonance imaging (MRI)-based machine learning classifier for evaluating the tumor-stroma ratio (TSR) in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS In this retrospective study, 148 patients with PDAC underwent an MR scan and surgical resection. We used hematoxylin and eosin to quantify the TSR. For each patient, we extracted 1,409 radiomics features and reduced them using the least absolute shrinkage and selection operator logistic regression algorithm. The extreme gradient boosting (XGBoost) classifier was developed using a training set comprising 110 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 38 consecutive patients, admitted between January 2018 and April 2018. We determined the performance of the XGBoost classifier based on its discriminative ability, calibration, and clinical utility. RESULTS A log-rank test revealed significantly longer survival in the TSR-low group. The prediction model displayed good discrimination in the training (area under the curve [AUC], 0.82) and validation set (AUC, 0.78). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 77.14%, 75.00%, 0.76%, 0.84%, and 0.65%, respectively, those for the validation set were 58.33%, 92.86%, 0.71%, 0.93%, and 0.57%, respectively. CONCLUSION We developed an XGBoost classifier based on MRI radiomics features, a non-invasive prediction tool that can evaluate the TSR of patients with PDAC. Moreover, it will provide a basis for interstitial targeted therapy selection and monitoring.
Collapse
|
17
|
Strijker M, van der Sijde F, Suker M, Boermeester MA, Bonsing BA, Bruno MJ, Busch OR, Doukas M, van Eijck CH, Gerritsen A, Groot Koerkamp B, Haj Mohammad N, van Hilst J, de Hingh IH, van Hooft JE, Luyer MD, Quintus Molenaar I, Verheij J, Waasdorp C, Wilmink JW, Besselink MG, van Laarhoven HW, Bijlsma MF. Preoperative serum ADAM12 levels as a stromal marker for overall survival and benefit of adjuvant therapy in patients with resected pancreatic and periampullary cancer. HPB (Oxford) 2021; 23:1886-1896. [PMID: 34103247 DOI: 10.1016/j.hpb.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND We evaluated the stroma marker A Disintegrin And Metalloprotease 12 (ADAM12) as a preoperative prognostic and treatment-predictive marker for overall survival (OS) in pancreatic ductal adenocarcinoma (PDAC) and periampullary cancers. METHODS Materials were derived from the prospective nationwide Dutch Pancreas Biobank (2015-2017). We included patients who underwent resection because of PDAC/periampullary cancer or non-invasive IPMN (control group) and had a preoperative serum sample available. ADAM12 levels were dichotomized using a pre-defined cut-off (316 pg/mL). Univariable and multivariable Cox regression analyses (backward selection) were performed. RESULTS Median ADAM12 levels were 161 (IQR 79-352) pg/mL in 215 PDAC and periampullary adenocarcinomas. High ADAM12 levels (>316 pg/mL) predicted poor OS in the total group of pancreatic and periampullary adenocarcinomas (P = 0.04), but not after adjustment. In distal cholangiocarcinoma (n = 33), high ADAM12 levels predicted poor OS in univariable analysis (P = 0.02), but not in PDAC (P = 0.63). PDAC patients (n = 135) with high ADAM12 levels benefited from adjuvant treatment (median OS 27 vs 14 months, P = 0.02), whereas those with low levels did not (21 vs 21 months, P = 0.87). CONCLUSION High circulating ADAM12 levels, as a proxy for activated stroma, predict survival benefit from adjuvant chemotherapy in PDAC, requiring validation in future studies.
Collapse
Affiliation(s)
- Marin Strijker
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands.
| | - Fleur van der Sijde
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Mustafa Suker
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Marja A Boermeester
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Olivier R Busch
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Casper H van Eijck
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Arja Gerritsen
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Surgery, OLVG, Amsterdam, the Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Jony van Hilst
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Surgery, OLVG, Amsterdam, the Netherlands
| | - Ignace H de Hingh
- Department of Surgery, Catharina Hospital, Eindhoven, the Netherlands
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Misha D Luyer
- Department of Gastroenterology and Hepatology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - I Quintus Molenaar
- Department of Surgery, University Medical Center, Utrecht, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, the Netherlands
| | - Johanna W Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Marc G Besselink
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, University of Amsterdam, the Netherlands.
| | | |
Collapse
|
18
|
Pijnappel EN, Wassenaar NPM, Gurney-Champion OJ, Klaassen R, van der Lee K, Pleunis-van Empel MCH, Richel DJ, Legdeur MC, Nederveen AJ, van Laarhoven HWM, Wilmink JW. Phase I/II Study of LDE225 in Combination with Gemcitabine and Nab-Paclitaxel in Patients with Metastatic Pancreatic Cancer. Cancers (Basel) 2021; 13:4869. [PMID: 34638351 PMCID: PMC8507646 DOI: 10.3390/cancers13194869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Desmoplasia is a central feature of the tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC). LDE225 is a pharmacological Hedgehog signaling pathway inhibitor and is thought to specifically target tumor stroma. We investigated the combined use of LDE225 and chemotherapy to treat PDAC patients. METHODS This was a multi-center, phase I/II study for patients with metastatic PDAC establishing the maximum tolerated dose of LDE225 co-administered with gemcitabine and nab-paclitaxel (phase I) and evaluating the efficacy and safety of the treatment combination after prior FOLFIRINOX treatment (phase II). Tumor microenvironment assessment was performed with quantitative MRI using intra-voxel incoherent motion diffusion weighted MRI (IVIM-DWI) and dynamic contrast-enhanced (DCE) MRI. RESULTS The MTD of LDE225 was 200 mg once daily co-administered with gemcitabine 1000 mg/m2 and nab-paclitaxel 125 mg/m2. In phase II, six therapy-related grade 4 adverse events (AE) and three grade 5 were observed. In 24 patients, the target lesion response was evaluable. Three patients had partial response (13%), 14 patients showed stable disease (58%), and 7 patients had progressive disease (29%). Median overall survival (OS) was 6 months (IQR 3.9-8.1). Blood plasma fraction (DCE) and diffusion coefficient (IVIM-DWI) significantly increased during treatment. Baseline perfusion fraction could predict OS (>222 days) with 80% sensitivity and 85% specificity. CONCLUSION LDE225 in combination with gemcitabine and nab-paclitaxel was well-tolerated in patients with metastatic PDAC and has promising efficacy after prior treatment with FOLFIRINOX. Quantitative MRI suggested that LDE225 causes increased tumor diffusion and works particularly well in patients with poor baseline tumor perfusion.
Collapse
Affiliation(s)
- Esther N. Pijnappel
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Nienke P. M. Wassenaar
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Oliver J. Gurney-Champion
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Remy Klaassen
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Koen van der Lee
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | | | - Dick J. Richel
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Marie C. Legdeur
- Department of Medical Oncology, Medisch Spectrum Twente, Twente, 7512 Enschede, The Netherlands; (M.C.H.P.-v.E.); (M.C.L.)
| | - Aart J. Nederveen
- Cancer Center Amsterdam, Department of Radiology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (N.P.M.W.); (O.J.G.-C.); (A.J.N.)
| | - Hanneke W. M. van Laarhoven
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| | - Johanna W. Wilmink
- Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, 1012 Amsterdam, The Netherlands; (E.N.P.); (R.K.); (K.v.d.L.); (D.J.R.); (H.W.M.v.L.)
| |
Collapse
|
19
|
Cho IK, Kim H, Lee JC, Lee J, Kim J, Ahn S, Park H, Hwang JH. Higher Tumor Cellularity in Resected Pancreatic Ductal Adenocarcinoma Is a Negative Prognostic Indicator. Gut Liver 2021; 14:521-528. [PMID: 31615191 PMCID: PMC7366152 DOI: 10.5009/gnl19180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims Desmoplasia is a prominent feature of pancreatic ductal adenocarcinoma (PDA). Stromal desmoplasia reflects the low cellularity that is characteristic of PDA, and it may play a role in PDA chemoresistance. In this retrospective study, we evaluated the relationship between tumor cellularity in resected PDA specimens and long-term patient outcomes. Methods We retrospectively reviewed the data from 175 patients who underwent PDA resection between January 2010 and December 2015 at Seoul National University Bundang Hospital, and analyzed their clinicopathological features and the relationship between tumor cellularity (high vs low based on a cutoff of 30% cellularity) and patient outcomes. Results The high-cellularity group had significantly shorter overall survival (OS) (18.7 months vs 26.6 months, p=0.006) and disease-free survival (11.0 months vs 16.9 months, p=0.031) than the low-cellularity group. Multivariate analysis revealed that high tumor cellularity was an independent risk factor for poor OS (hazard ratio, 2.008; 95% confidence interval, 1.361 to 2.962; p<0.001). Adjuvant therapy improved OS in the low-cellularity group (16.3 months vs 41.3 months, p=0.001) but not in the high-cellularity group (15.9 months vs 24.4 months, p=0.107). Conclusions Tumor cellularity in PDA specimens may be a prognostic and predictive biomarker that could aid in identifying patients who would benefit from adjuvant therapy for PDA. (Gut Liver 2020;14:521-528)
Collapse
Affiliation(s)
- In Kuk Cho
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Chan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jongchan Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jaihwan Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soomin Ahn
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyunjin Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.,Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
20
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
21
|
Gampala S, Shah F, Lu X, Moon HR, Babb O, Umesh Ganesh N, Sandusky G, Hulsey E, Armstrong L, Mosely AL, Han B, Ivan M, Yeh JRJ, Kelley MR, Zhang C, Fishel ML. Ref-1 redox activity alters cancer cell metabolism in pancreatic cancer: exploiting this novel finding as a potential target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:251. [PMID: 34376225 PMCID: PMC8353735 DOI: 10.1186/s13046-021-02046-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Pancreatic cancer is a complex disease with a desmoplastic stroma, extreme hypoxia, and inherent resistance to therapy. Understanding the signaling and adaptive response of such an aggressive cancer is key to making advances in therapeutic efficacy. Redox factor-1 (Ref-1), a redox signaling protein, regulates the conversion of several transcription factors (TFs), including HIF-1α, STAT3 and NFκB from an oxidized to reduced state leading to enhancement of their DNA binding. In our previously published work, knockdown of Ref-1 under normoxia resulted in altered gene expression patterns on pathways including EIF2, protein kinase A, and mTOR. In this study, single cell RNA sequencing (scRNA-seq) and proteomics were used to explore the effects of Ref-1 on metabolic pathways under hypoxia. METHODS scRNA-seq comparing pancreatic cancer cells expressing less than 20% of the Ref-1 protein was analyzed using left truncated mixture Gaussian model and validated using proteomics and qRT-PCR. The identified Ref-1's role in mitochondrial function was confirmed using mitochondrial function assays, qRT-PCR, western blotting and NADP assay. Further, the effect of Ref-1 redox function inhibition against pancreatic cancer metabolism was assayed using 3D co-culture in vitro and xenograft studies in vivo. RESULTS Distinct transcriptional variation in central metabolism, cell cycle, apoptosis, immune response, and genes downstream of a series of signaling pathways and transcriptional regulatory factors were identified in Ref-1 knockdown vs Scrambled control from the scRNA-seq data. Mitochondrial DEG subsets downregulated with Ref-1 knockdown were significantly reduced following Ref-1 redox inhibition and more dramatically in combination with Devimistat in vitro. Mitochondrial function assays demonstrated that Ref-1 knockdown and Ref-1 redox signaling inhibition decreased utilization of TCA cycle substrates and slowed the growth of pancreatic cancer co-culture spheroids. In Ref-1 knockdown cells, a higher flux rate of NADP + consuming reactions was observed suggesting the less availability of NADP + and a higher level of oxidative stress in these cells. In vivo xenograft studies demonstrated that tumor reduction was potent with Ref-1 redox inhibitor similar to Devimistat. CONCLUSION Ref-1 redox signaling inhibition conclusively alters cancer cell metabolism by causing TCA cycle dysfunction while also reducing the pancreatic tumor growth in vitro as well as in vivo.
Collapse
Affiliation(s)
- Silpa Gampala
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fenil Shah
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoyu Lu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Biohealth Informatics, IUPUI, Indianapolis, IN, 46202, USA
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Olivia Babb
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nikkitha Umesh Ganesh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - George Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine , Indianapolis, IN, 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA
| | - Emily Hulsey
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine , Indianapolis, IN, 46202, USA
| | - Lee Armstrong
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Amber L Mosely
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47906, USA.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47906, USA
| | - Mircea Ivan
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jing-Ruey Joanna Yeh
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02115, USA.,Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Mark R Kelley
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Biohealth Informatics, IUPUI, Indianapolis, IN, 46202, USA. .,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA.
| | - Melissa L Fishel
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W Walnut St. R4-321, Indianapolis, IN, 46202, USA. .,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
22
|
Waldeland JO, Gaustad JV, Rofstad EK, Evje S. In silico investigations of intratumoral heterogeneous interstitial fluid pressure. J Theor Biol 2021; 526:110787. [PMID: 34087266 DOI: 10.1016/j.jtbi.2021.110787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 01/04/2023]
Abstract
Recent preclinical studies have shown that interstitial fluid pressure (IFP) within tumors can be heterogeneous Andersen et al. (2019). In that study tumors of two xenograft models, respectively, HL-16 cervical carcinoma and Panc-1 pancreatic carcinoma, were investigated. Significant heterogeneity in IFP was reported and it was proposed that this was associated with division of tissue into compartments separated by thick connective tissue bands for the HL-16 tumors and with dense collagen-rich extracellular matrix for the Panc-1 tumors. The purpose of the current work is to explore these experimental observations by using in silico generated tumor models. We consider a mathematical multiphase model which accounts for tumor cells, fibroblasts and interstitial fluid. The model has been trained to comply with experimental in vitro results reported in Shieh et al. (2011) which has identified autologous chemotaxis, ECM remodeling, and cell-fibroblast interaction as drivers for invasive tumor cell behavior. The in silico model is informed with parameters that characterize the leaky intratumoral vascular network, the peritumoral lymphatics which collect the fluid, and the density of ECM as represented through the hydraulic conductivity of the interstitial space. Heterogeneous distribution of solid stress may result in heterogeneous compression of blood vessels and, thus, heterogeneous vascular density inside the tumor. To mimic this we expose the in silico tumor to an intratumoral vasculature whose net effect of density of blood vesssels and vessel wall conductivity is varied through a 2D Gaussian variogram constrained such that the resulting IFPs lie within the range as reported from the preclinical study. The in silico cervical carcinoma model illustrates that sparse ECM was associated with uniform intratumoral IFP in spite of heterogeneous microvascular network, whereas compartment structures resulted in more heterogeneous IFP. Similarly, the in silico pancreatic model shows that heterogeneity in the microvascular network combined with dense ECM structure prevents IFP to even out and gives rise to heterogeneous IFP. The computer model illustrates how a heterogeneous invasive front might form where groups of tumor cells detach from the primary tumor and form isolated islands, a behavior which is natural to associate with metastatic propensity. However, unlike experimental studies, the current version of the in silico model does not show an association between metastatic propensity and elevated IFP.
Collapse
Affiliation(s)
- Jahn Otto Waldeland
- University of Stavanger, Faculty of Science and Technology, NO-4068 Stavanger, Norway
| | - Jon-Vidar Gaustad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Steinar Evje
- University of Stavanger, Faculty of Science and Technology, NO-4068 Stavanger, Norway.
| |
Collapse
|
23
|
Novák Š, Kolář M, Szabó A, Vernerová Z, Lacina L, Strnad H, Šáchová J, Hradilová M, Havránek J, Španko M, Čoma M, Urban L, Kaňuchová M, Melegová N, Gürlich R, Dvořák J, Smetana K, Gál P, Szabo P. Desmoplastic Crosstalk in Pancreatic Ductal Adenocarcinoma Is Reflected by Different Responses of Panc-1, MIAPaCa-2, PaTu-8902, and CAPAN-2 Cell Lines to Cancer-associated/Normal Fibroblasts. Cancer Genomics Proteomics 2021; 18:221-243. [PMID: 33893076 DOI: 10.21873/cgp.20254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/AIM Pancreatic ductal adenocarcinoma (PDAC) still represents one of the most aggressive cancers. Understanding of the epithelial-mesenchymal crosstalk as a crucial part of the tumor microenvironment should pave the way for therapies to improve patient survival rates. Well-established cell lines present a useful and reproducible model to study PDAC biology. However, the tumor-stromal interactions between cancer cells and cancer-associated fibroblasts (CAFs) are still poorly understood. MATERIALS AND METHODS We studied interactions between four PDAC cell lines (Panc-1, CAPAN-2, MIAPaCa-2, and PaTu-8902) and conditioned media derived from primary cultures of normal fibroblasts/PDAC-derived CAFs (PANFs). RESULTS When the tested PDAC cell lines were stimulated by PANF-derived conditioned media, the most aggressive behavior was acquired by the Panc-1 cell line (increased number and size of colonies, remaining expression of vimentin and keratin 8 as well as increase of epithelial-to-mesenchymal polarization markers), whereas PaTu-8902 cells were rather inhibited. Of note, administration of the conditioned media to MIAPaCa-2 cells resulted in an inverse effect on the size and number of colonies, whereas CAPAN-2 cells were rather stimulated. To explain the heterogeneous pattern of the observed PDAC crosstalk at the in vitro level, we further compared the phenotype of primary cultures of cells derived from ascitic fluid with that of the tested PDAC cell lines, analyzed tumor samples of PDAC patients, and performed gene expression profiling of PANFs. Immuno-cyto/histo-chemical analysis found specific phenotype differences within the group of examined patients and tested PDAC cell lines, whereas the genomic approach in PANFs found the key molecules (IL6, IL8, MFGE8 and periostin) that may contribute to the cancer aggressive behavior. CONCLUSION The desmoplastic patient-specific regulation of cancer cells by CAFs (also demonstrated by the heterogeneous response of PDAC cell lines to fibroblasts) precludes simple targeting and development of an effective treatment strategy and rather requires establishment of an individualized tumor-specific treatment protocol.
Collapse
Affiliation(s)
- Štepán Novák
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Otorhinolaryngology, Head and Neck Surgery, First Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Arpád Szabó
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Zdena Vernerová
- Department of Pathology, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Dermatology and Venereology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Šáchová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Havránek
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michal Španko
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Stomatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Matúš Čoma
- Department of Pharmacology, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| | - Lukáš Urban
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic.,Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Miriam Kaňuchová
- Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Nikola Melegová
- Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Robert Gürlich
- Department of Surgery, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Josef Dvořák
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic; .,Laboratory of Cell Interactions, Center of Clinical and Preclinical Research MediPark, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Centre, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic
| | - Pavol Szabo
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic; .,BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases, Košice, Slovak Republic
| |
Collapse
|
24
|
MiR-4269 suppresses the tumorigenesis and development of pancreatic cancer by targeting ZEB1/OTX1 pathway. Biosci Rep 2021; 40:225115. [PMID: 32484209 PMCID: PMC7286876 DOI: 10.1042/bsr20200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
As one of the most prevalent malignant tumors, pancreatic cancer (PC) is a leading fatal cancer worldwide. Surging evidence has unraveled that miRNAs are involved in the occurrence and progression of multiple cancers, including PC. The tumor suppressor effects of miR-4269 have been certified in gastric carcinoma. However, the potential function of miR-4269 remains largely unclear, which drives us to identify the role of miR-4269 in PC development. In the present study, we determined the expression pattern of miR-4269 in PC cells and normal cells. Results of RT-qPCR analysis illuminated that miR-4269 expression level in PC cells was lower than that in normal cells. Functional assays demonstrated that up-regulation of miR-4269 obviously inhibited the proliferation, migration and invasion of PC cells. In order to elucidate the mechanism governing miR-4269 in PC, we carried out bioinformatics analysis and further experimental investigations. Our results validated that ZEB1 was a direct target of miR-4269. Additionally, ZEB1 activated the transcription of OXT1. More importantly, miR-4269 attenuated the expression level of OXT1 via targeting ZEB1. Ultimately, our findings confirmed that miR-4269 served as a cancer suppressor in PC through regulation of ZEB1/OTX1 pathway, which suggested that miR-4269 might represent a promising target for the clinical treatment of PC.
Collapse
|
25
|
Tassone E, Muscolini M, van Montfoort N, Hiscott J. Oncolytic virotherapy for pancreatic ductal adenocarcinoma: A glimmer of hope after years of disappointment? Cytokine Growth Factor Rev 2020; 56:141-148. [PMID: 32859494 DOI: 10.1016/j.cytogfr.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and highly lethal malignancies. Existing therapeutic interventions have so far been unsuccessful in improving prognosis, and survival remains very poor. Oncolytic virotherapy represents a promising, yet not fully explored, alternative strategy for the treatment of PDAC. Oncolytic viruses (OVs) infect, replicate within and lyse tumor cells specifically and stimulate antitumor immune responses. Multiple challenges have hampered the efficacy of oncolytic virotherapy for PDAC, the most significant being the desmoplastic and immunosuppressive pancreatic tumor microenvironment (TME). The TME limits the access of therapeutic drugs and the infiltration of effector T cells and natural killer (NK) cells into the tumor mass. Additionally, cancer cells promote the secretion of immunosuppressive factors and develop mechanisms to evade the host immune system. Because of their oncolytic and immune-stimulating properties, OVs are the ideal candidates for counteracting the pancreatic immunosuppressive TME and for designing combination therapies that can be clinically exploited in clinical trials that seek to improve the prognosis of PDAC.
Collapse
Affiliation(s)
- Evelyne Tassone
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| | | | - Nadine van Montfoort
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - John Hiscott
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
26
|
Steins A, van Mackelenbergh MG, van der Zalm AP, Klaassen R, Serrels B, Goris SG, Kocher HM, Waasdorp C, de Jong JH, Tekin C, Besselink MG, Busch OR, van de Vijver MJ, Verheij J, Dijk F, van Tienhoven G, Wilmink JW, Medema JP, van Laarhoven HWM, Bijlsma MF. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep 2020; 21:e48780. [PMID: 32173982 PMCID: PMC7202203 DOI: 10.15252/embr.201948780] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 01/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundance of stroma. Multiple molecular classification efforts have identified a mesenchymal tumor subtype that is consistently characterized by high-grade growth and poor clinical outcome. The relation between PDAC stroma and tumor subtypes is still unclear. Here, we aimed to identify how PDAC cells instruct the main cellular component of stroma, the pancreatic stellate cells (PSCs). We found in primary tissue that high-grade PDAC had reduced collagen deposition compared to low-grade PDAC. Xenografts and organotypic co-cultures established from mesenchymal-like PDAC cells featured reduced collagen and activated PSC content. Medium transfer experiments using a large set of PDAC cell lines revealed that mesenchymal-like PDAC cells consistently downregulated ACTA2 and COL1A1 expression in PSCs and reduced proliferation. We identified colony-stimulating factor 1 as the mesenchymal PDAC-derived ligand that deactivates PSCs, and inhibition of its receptor CSF1R was able to counteract this effect. In conclusion, high-grade PDAC features stroma that is low in collagen and activated PSC content, and targeting CSF1R offers direct options to maintain a tumor-restricting microenvironment.
Collapse
Affiliation(s)
- Anne Steins
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Madelaine G van Mackelenbergh
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Amber P van der Zalm
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Remy Klaassen
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Bryan Serrels
- Wolfson Wohl Cancer Research CentreGlasgow Precision Oncology LaboratoryUniversity of GlasgowGlasgowUK
| | - Sandrine G Goris
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hemant M Kocher
- Centre for Tumor BiologyBarts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Cynthia Waasdorp
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Joan H de Jong
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Cansu Tekin
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marc G Besselink
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Olivier R Busch
- Department of SurgeryCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marc J van de Vijver
- Department of PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Joanne Verheij
- Department of PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Frederike Dijk
- Department of PathologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Geertjan van Tienhoven
- Department of Radiation OncologyAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Johanna W Wilmink
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Hanneke WM van Laarhoven
- Department of Medical OncologyCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and RadiobiologyCenter for Experimental and Molecular MedicineCancer Center AmsterdamAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Oncode InstituteAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
27
|
Pancreatic adenocarcinoma: quantitative CT features are correlated with fibrous stromal fraction and help predict outcome after resection. Eur Radiol 2020; 30:5158-5169. [PMID: 32346792 DOI: 10.1007/s00330-020-06853-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/09/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To identify quantitative imaging features of contrast-enhanced computed tomography (CE-CT) that may be prognostically favorable after resection of smaller (≤ 30 mm) pancreatic ductal adenocarcinomas (PDACs) located at head. METHODS This retrospective study included two independent cohorts (discovery cohort, n = 212; test cohort, n = 100) of patients who underwent resection of head PDACs ≤ 30 mm and preoperative CE-CT. We examined tumor and surrounding parenchymal attenuation differences (deltas), and tumor attenuation changes across phases (ratios). Semantic features of PDACs were evaluated by two radiologists. Clinicopathologic and imaging features for predicting disease-free survival (DFS) and overall survival (OS) were analyzed via multivariate Lasso-penalized Cox proportional-hazards models. Survival rates were derived by Kaplan-Meier method. RESULTS Imaging features achieved C-indices of 0.766 (discovery cohort) and 0.739 (test cohort) for DFS, and 0.790 (discovery cohort) and 0.772 (test cohort) for OS estimates through incorporation of clinicopathologic features. The most decisive imaging feature was delta 3, denoting attenuation differences between tumor and surrounding pancreas at pancreatic phase (DFS: HR = 2.122; OS: HR = 2.375; both p < 0.001). Compared with inconspicuous (low-delta-3, < 28 HU) tumors, conspicuous (high-delta-3) tumors correlated significantly with more aggressive histologic grades (p = 0.014) and less extensive tumor fibrous stromal fractions (p < 0.001). Patients with low-delta-3 tumors ≤ 20 mm experienced the most favorable outcomes (DFS, 36 months; OS, 42 months), whereas those with high-delta-3 tumors fared poorly, regardless of tumor size (DFS, 12 months; OS, 19 months). CONCLUSIONS Quantifiable CT imaging features reflect heterogeneous fibrous stromal fractions and histologic grades of PDAC at head locations that help stratify patients with disparate clinical outcomes. KEY POINTS • Quantitative and semantic imaging features achieved promising results for the prognosis of resected PDAC (≤ 30 mm) at head location, through incorporation of clinicopathologic features. • Attenuation difference at tumor-parenchyma interface (delta 3) emerged as the most decisive imaging feature, enabling further stratification of patients into distinct prognostic subtypes by tumor size. • High delta 3 signifies sharper contrast between tumor and surrounding pancreas, correlating with more aggressive histologic grades and less extensive tumor fibrous stromal fractions.
Collapse
|
28
|
Slapak EJ, Duitman J, Tekin C, Bijlsma MF, Spek CA. Matrix Metalloproteases in Pancreatic Ductal Adenocarcinoma: Key Drivers of Disease Progression? BIOLOGY 2020; 9:biology9040080. [PMID: 32325664 PMCID: PMC7235986 DOI: 10.3390/biology9040080] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer is a dismal disorder that is histologically characterized by a dense fibrotic stroma around the tumor cells. As the extracellular matrix comprises the bulk of the stroma, matrix degrading proteases may play an important role in pancreatic cancer. It has been suggested that matrix metalloproteases are key drivers of both tumor growth and metastasis during pancreatic cancer progression. Based upon this notion, changes in matrix metalloprotease expression levels are often considered surrogate markers for pancreatic cancer progression and/or treatment response. Indeed, reduced matrix metalloprotease levels upon treatment (either pharmacological or due to genetic ablation) are considered as proof of the anti-tumorigenic potential of the mediator under study. In the current review, we aim to establish whether matrix metalloproteases indeed drive pancreatic cancer progression and whether decreased matrix metalloprotease levels in experimental settings are therefore indicative of treatment response. After a systematic review of the studies focusing on matrix metalloproteases in pancreatic cancer, we conclude that the available literature is not as convincing as expected and that, although individual matrix metalloproteases may contribute to pancreatic cancer growth and metastasis, this does not support the generalized notion that matrix metalloproteases drive pancreatic ductal adenocarcinoma progression.
Collapse
Affiliation(s)
- Etienne J. Slapak
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - JanWillem Duitman
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Cansu Tekin
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - Maarten F. Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Oncode Institute, 1105 AZ Amsterdam, The Netherlands
| | - C. Arnold Spek
- Center of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (E.J.S.); (J.D.); (C.T.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
29
|
Dijk F, Veenstra VL, Soer EC, Dings MPG, Zhao L, Halfwerk JB, Hooijer GK, Damhofer H, Marzano M, Steins A, Waasdorp C, Busch OR, Besselink MG, Tol JA, Welling L, van Rijssen LB, Klompmaker S, Wilmink HW, van Laarhoven HW, Medema JP, Vermeulen L, van Hooff SR, Koster J, Verheij J, van de Vijver MJ, Wang X, Bijlsma MF. Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. Sci Rep 2020; 10:337. [PMID: 31941932 PMCID: PMC6962149 DOI: 10.1038/s41598-019-56826-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/17/2019] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common cancers. However, divergent outcomes exist between patients, suggesting distinct underlying tumor biology. Here, we delineated this heterogeneity, compared interconnectivity between classification systems, and experimentally addressed the tumor biology that drives poor outcome. RNA-sequencing of 90 resected specimens and unsupervised classification revealed four subgroups associated with distinct outcomes. The worst-prognosis subtype was characterized by mesenchymal gene signatures. Comparative (network) analysis showed high interconnectivity with previously identified classification schemes and high robustness of the mesenchymal subtype. From species-specific transcript analysis of matching patient-derived xenografts we constructed dedicated classifiers for experimental models. Detailed assessments of tumor growth in subtyped experimental models revealed that a highly invasive growth pattern of mesenchymal subtype tumor cells is responsible for its poor outcome. Concluding, by developing a classification system tailored to experimental models, we have uncovered subtype-specific biology that should be further explored to improve treatment of a group of PDAC patients that currently has little therapeutic benefit from surgical treatment.
Collapse
Affiliation(s)
- Frederike Dijk
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands.
| | - Veronique L Veenstra
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Eline C Soer
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Mark P G Dings
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Lan Zhao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Johannes B Halfwerk
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gerrit K Hooijer
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States of America
| | - Marco Marzano
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anne Steins
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Cynthia Waasdorp
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Olivier R Busch
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Johanna A Tol
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Lieke Welling
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lennart B van Rijssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sjors Klompmaker
- Department of Surgery, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R van Hooff
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jan Koster
- Department of Oncogenomics, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marc J van de Vijver
- Department of Pathology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Tu Y, Tao J, Wang F, Liu P, Han Z, Li Z, Ma Y, Gu Y. A novel peptide targeting gastrin releasing peptide receptor for pancreatic neoplasm detection. Biomater Sci 2020; 8:2682-2693. [DOI: 10.1039/d0bm00162g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The designed novel peptide GB-6 with targeted GRPR-binding possesses more favorable pharmacokinetic properties and metabolic stability, as well as superior tumor-targeting ability in pancreatic cancer models, relative to BBN7–14.
Collapse
Affiliation(s)
- Yuanbiao Tu
- State Key Laboratory of Natural Medicine
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
| | - Ji Tao
- State Key Laboratory of Natural Medicine
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
| | - Fang Wang
- State Key Laboratory of Natural Medicine
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
| | - Peifei Liu
- State Key Laboratory of Natural Medicine
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
| | - Zhihao Han
- State Key Laboratory of Natural Medicine
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
| | - Zhaolun Li
- State Key Laboratory of Natural Medicine
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
| | - Yi Ma
- State Key Laboratory of Natural Medicine
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine
- Department of Biomedical Engineering
- School of Engineering
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
31
|
Bochner F, Mohan V, Zinger A, Golani O, Schroeder A, Sagi I, Neeman M. Intravital imaging of vascular anomalies and extracellular matrix remodeling in orthotopic pancreatic tumors. Int J Cancer 2019; 146:2209-2217. [PMID: 31661557 DOI: 10.1002/ijc.32759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/28/2019] [Accepted: 10/15/2019] [Indexed: 11/09/2022]
Abstract
Pancreatic cancers, both adenocarcinomas and endocrine tumors are characterized by varying levels of aberrant angiogenesis and fibrotic microenvironment. The difficulty to deliver drugs and treat the disease has been attributed in part to the vascular architecture and tissue/ECM density. Here we present longitudinal three-dimensional intravital imaging of vascular and tumor microenvironment remodeling in spontaneous transgenic tumors (RIP1-Tag2 insulinomas) and orthotopically injected tumors (KPC adenocarcinomas). Analysis of the data acquired in insulinomas revealed major differences in tumor blood vessel branching, fraction volume, number of branch points segments, vessel straightness and length compared to the normal tissue. The aggressive adenocarcinoma presented widespread peritumoral vascular remodeling and heterogeneous vascular distribution. Longitudinal imaging was used to acquire sequential vascular remodeling data during tumor progression. This work demonstrates the potential for using a pancreatic intravital imaging window for direct visualization of the tumor heterogenic microenvironments during tumor progression.
Collapse
Affiliation(s)
- Filip Bochner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Vishnu Mohan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Zinger
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX.,Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Bijou I, Wang J. Evolving trends in pancreatic cancer therapeutic development. ANNALS OF PANCREATIC CANCER 2019; 2:17. [PMID: 33089149 PMCID: PMC7575122 DOI: 10.21037/apc.2019.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite advances in translational research, the overall 5-year survival for pancreatic cancer remains dismal and with rising incidence pancreatic cancer is predicted to be the second leading cause of cancer death for many developed countries. Surgical intervention followed by cytotoxic chemotherapy are currently the best options for treatment, but disease recurrence is very common. Efforts to develop new therapeutic agents and delivery systems are necessary to achieve better clinical efficacy with less toxicity. Promising prospects are arising with new preclinical and clinical therapeutic strategies using small molecule targeted therapies, RNAi, stromal therapies, and immunotherapies. With a better understanding of the biology to aid target selection and discovery of biomarkers to aid precision medicine, better opportunities will evolve to shape the therapeutic landscape, enhance patient quality of life and increase overall survival.
Collapse
Affiliation(s)
- Imani Bijou
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| |
Collapse
|
33
|
Kuninty PR, Bansal R, De Geus SWL, Mardhian DF, Schnittert J, van Baarlen J, Storm G, Bijlsma MF, van Laarhoven HW, Metselaar JM, Kuppen PJK, Vahrmeijer AL, Östman A, Sier CFM, Prakash J. ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer. SCIENCE ADVANCES 2019; 5:eaax2770. [PMID: 31517053 PMCID: PMC6726450 DOI: 10.1126/sciadv.aax2770] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/05/2019] [Indexed: 05/08/2023]
Abstract
Abundant desmoplastic stroma is the hallmark for pancreatic ductal adenocarcinoma (PDAC), which not only aggravates the tumor growth but also prevents tumor penetration of chemotherapy, leading to treatment failure. There is an unmet clinical need to develop therapeutic solutions to the tumor penetration problem. In this study, we investigated the therapeutic potential of integrin α5 (ITGA5) receptor in the PDAC stroma. ITGA5 was overexpressed in the tumor stroma from PDAC patient samples, and overexpression was inversely correlated with overall survival. In vitro, knockdown of ITGA5 inhibited differentiation of human pancreatic stellate cells (hPSCs) and reduced desmoplasia in vivo. Our novel peptidomimetic AV3 against ITGA5 inhibited hPSC activation and enhanced the antitumor effect of gemcitabine in a 3D heterospheroid model. In vivo, AV3 showed a strong reduction of desmoplasia, leading to decompression of blood vasculature, enhanced tumor perfusion, and thereby the efficacy of gemcitabine in co-injection and patient-derived xenograft tumor models.
Collapse
Affiliation(s)
- Praneeth R. Kuninty
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Ruchi Bansal
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | | - Deby F. Mardhian
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Jonas Schnittert
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | - Joop van Baarlen
- Laboratory Pathology Oost Netherlands (LabPON), Hengelo, Netherlands
| | - Gert Storm
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Maarten F. Bijlsma
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Josbert M. Metselaar
- ScarTec Therapeutics BV, Enschede, Netherlands
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH University Clinic, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arne Östman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, Faculty of Science and Technology, University of Twente, Enschede, Netherlands
- ScarTec Therapeutics BV, Enschede, Netherlands
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
- Corresponding author.
| |
Collapse
|
34
|
Schokker S, van der Woude SO, van Kleef JJ, van Zoen DJ, van Oijen MGH, Mearadji B, Beenen LFM, Stroes CI, Waasdorp C, Jibodh RA, Creemers A, Meijer SL, Hooijer GKJ, Punt CJA, Bijlsma MF, van Laarhoven HWM. Phase I Dose Escalation Study with Expansion Cohort of the Addition of Nab-Paclitaxel to Capecitabine and Oxaliplatin (CapOx) as First-Line Treatment of Metastatic Esophagogastric Adenocarcinoma (ACTION Study). Cancers (Basel) 2019; 11:cancers11060827. [PMID: 31207904 PMCID: PMC6627561 DOI: 10.3390/cancers11060827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
First-line triplet chemotherapy including a taxane may prolong survival in patients with metastatic esophagogastric cancer. The added toxicity of the taxane might be minimized by using nab-paclitaxel. The aim of this phase I study was to determine the feasibility of combining nab-paclitaxel with the standard of care in the Netherlands, capecitabine and oxaliplatin (CapOx). Patients with metastatic esophagogastric adenocarcinoma received oxaliplatin 65 mg/m2 on days 1 and 8, and capecitabine 1000 mg/m2 bid on days 1-14 in a 21-day cycle, with nab-paclitaxel on days 1 and 8 at four dose levels (60, 80, 100, and 120 mg/m2, respectively), using a standard 3 + 3 dose escalation phase, followed by a safety expansion cohort. Baseline tissue and serum markers for activated tumor stroma were assessed as biomarkers for response and survival. Twenty-six patients were included. The first two dose-limiting toxicities (i.e., diarrhea and dehydration) occurred at dose level 3. The resulting maximum tolerable dose (MTD) of 80 mg/m2 was used in the expansion cohort, but was reduced to 60 mg/m2 after three out of eight patients experienced diarrhea grade 3. The objective response rate was 54%. The median progression-free (PFS) and overall survival were 8.0 and 12.8 months, respectively. High baseline serum ADAM12 was associated with a significantly shorter PFS (p = 0.011). In conclusion, albeit that the addition of nab-paclitaxel 60 mg/m2 to CapOx may be better tolerated than other taxane triplets, relevant toxicity was observed. There is a rationale for preserving taxanes for later-line treatment. ADAM12 is a potential biomarker to predict survival, and warrants further investigation.
Collapse
Affiliation(s)
- Sandor Schokker
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Stephanie O van der Woude
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Jessy Joy van Kleef
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Daan J van Zoen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Martijn G H van Oijen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Banafsche Mearadji
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Ludo F M Beenen
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Charlotte I Stroes
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Cynthia Waasdorp
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - R Aarti Jibodh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Aafke Creemers
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Sybren L Meijer
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Gerrit K J Hooijer
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Cornelis J A Punt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Hanneke W M van Laarhoven
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Chen L, Pan X, Zhang YH, Huang T, Cai YD. Analysis of Gene Expression Differences between Different Pancreatic Cells. ACS OMEGA 2019; 4:6421-6435. [DOI: 10.1021/acsomega.8b02171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
- Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China
| | - Xiaoyong Pan
- Department of Medical Informatics, Erasmus MC, Rotterdam 3014ZK, Netherlands
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
36
|
van Mackelenbergh MG, Stroes CI, Spijker R, van Eijck CHJ, Wilmink JW, Bijlsma MF, van Laarhoven HWM. Clinical Trials Targeting the Stroma in Pancreatic Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:E588. [PMID: 31035512 PMCID: PMC6562438 DOI: 10.3390/cancers11050588] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays an important role in the initiation and progression of pancreatic adenocarcinoma (PDAC). In this systematic review, we provide an overview of clinical trials with stroma-targeting agents. We systematically searched MEDLINE/PubMed and the EMBASE database, using the PRISMA guidelines, for eligible clinical trials. In total, 2330 records were screened, from which we have included 106 articles. A meta-analysis could be performed on 51 articles which describe the targeting of the vascular endothelial growth factor (VEGF) pathway, and three articles which describe the targeting of hyaluronic acid. Anti-VEGF therapies did not show an increase in median overall survival (OS) with combined hazard ratios (HRs) of 1.01 (95% confidence interval (CI) 0.90-1.13). Treatment with hyaluronidase PEGPH20 showed promising results, but, thus far, only in combination with gemcitabine and nab-paclitaxel in selected patients with hyaluronic acid (HA)high tumors: An increase in median progression free survival (PFS) of 2.9 months, as well as a HR of 0.51 (95% CI 0.26-1.00). In conclusion, we found that anti-angiogenic therapies did not show an increased benefit in median OS or PFS in contrast to promising results with anti-hyaluronic acid treatment in combination with gemcitabine and nab-paclitaxel. The PEGPH20 clinical trials used patient selection to determine eligibility based on tumor biology, which underlines the importance to personalize treatment for pancreatic cancer patients.
Collapse
Affiliation(s)
- Madelaine G van Mackelenbergh
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Charlotte I Stroes
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - René Spijker
- Medical Library, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
- Cochrane Netherlands, Julius Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | - Casper H J van Eijck
- Department of Surgery, Erasmus MC, Dr. Molewaterplein 40, 3015GD Rotterdam, The Netherlands.
| | - Johanna W Wilmink
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory of Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Lenggenhager D, Amrutkar M, Sántha P, Aasrum M, Löhr JM, Gladhaug IP, Verbeke CS. Commonly Used Pancreatic Stellate Cell Cultures Differ Phenotypically and in Their Interactions with Pancreatic Cancer Cells. Cells 2019; 8:cells8010023. [PMID: 30621293 PMCID: PMC6356867 DOI: 10.3390/cells8010023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
Activated pancreatic stellate cells (PSCs) play a central role in the tumor stroma of pancreatic ductal adenocarcinoma (PDAC). Given the limited availability of patient-derived PSCs from PDAC, immortalized PSC cell lines of murine and human origin have been established; however, it is not elucidated whether differences in species, organ disease status, donor age, and immortalization alter the PSC phenotype and behavior compared to that of patient-derived primary PSC cultures. Therefore, a panel of commonly used PSC cultures was examined for important phenotypical and functional features: three primary cultures from human PDAC, one primary from normal human pancreas, and three immortalized (one from human, two from murine pancreas). Growth rate was considerably lower in primary PSCs from human PDAC. Basal collagen synthesis varied between the PSC cultures, and TGF-β stimulation increased collagen synthesis only in non-immortalized cultures. Differences in secretome composition were observed along with a divergence in the DNA synthesis, migration, and response to gemcitabine of PDAC cell lines that were grown in conditioned medium from the various PSC cultures. The findings reveal considerable differences in features and functions that are key to PSCs and in the interactions with PDAC. These observations may be relevant to researchers when selecting the most appropriate PSC culture for their experiments.
Collapse
Affiliation(s)
- Daniela Lenggenhager
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
- Department of Pathology and Molecular Pathology, University Hospital Zürich, University of Zürich, Schmelzbergstrasse 12, 8091 Zürich, Switzerland.
| | - Manoj Amrutkar
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
| | - Petra Sántha
- Department of Pathology, Oslo University Hospital Rikshospitalet, Nydalen, 0424 Oslo, Norway.
| | - Monica Aasrum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
| | - Johannes-Matthias Löhr
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, K 53, 141 86 Stockholm, Sweden.
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, 0318 Oslo, Norway.
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital Rikshospitalet, Nydalen, 0424 Oslo, Norway.
| | - Caroline S Verbeke
- Department of Pathology, Institute of Clinical Medicine, University of Oslo, Blindern, 0316 Oslo, Norway.
- Department of Pathology, Oslo University Hospital Rikshospitalet, Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
38
|
ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy. Oncogenesis 2018; 7:87. [PMID: 30442938 PMCID: PMC6237826 DOI: 10.1038/s41389-018-0096-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma that harbors tumor-promoting properties. No good biomarkers exist to monitor the effect of stromal targeting therapies or to predict response. We set out to identify such non-invasive markers for PDAC stroma and predict response to therapy. Gene expression datasets, co-culture experiments, xenografts, and patient samples were analyzed. Serum samples were measured from a cohort of 58 resected patients, and 87 metastatic or locally advanced PDAC patients. Baseline and follow-up levels were assessed in 372 additional metastatic PDAC patients who received nab-paclitaxel with gemcitabine (n = 184) or gemcitabine monotherapy (n = 188) in the phase III MPACT trial. Increased levels of ADAM12 were found in PDAC patients compared to healthy controls (p < 0.0001, n = 157 and n = 38). High levels of ADAM12 significantly associated with poor outcome in resected PDAC (HR 2.07, p = 0.04). In the MPACT trial survival was significantly longer for patients who received nab-paclitaxel and had undetectable ADAM12 levels before treatment (OS 12.3 m vs 7.9 m p = 0.0046). Consistently undetectable or decreased ADAM12 levels during treatment significantly associated with longer survival as well (OS 14.4 m and 11.2 m, respectively vs 8.3, p = 0.0054). We conclude that ADAM12 is a blood-borne proxy for stromal activation, the levels of which have prognostic significance and correlate with treatment benefit.
Collapse
|
39
|
Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 2018; 127:80-97. [PMID: 29746900 DOI: 10.1016/j.freeradbiomed.2018.05.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/12/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
Selenium(Se)-containing compounds have attracted a growing interest as anticancer agents over recent decades, with mounting reports demonstrating their high efficacy and selectivity against cancer cells. Typically, Se compounds exert their cytotoxic effects by acting as pro-oxidants that alter cellular redox homeostasis. However, the precise intracellular targets, signalling pathways affected and mechanisms of cell death engaged following treatment vary with the chemical properties of the selenocompound and its metabolites, as well as the cancer model that is used. Naturally occurring organic Se compounds, besides encompassing a significant antitumor activity with an apparent ability to prevent metastasis, also seem to have fewer side effects and less systemic effects as reported for many inorganic Se compounds. On this basis, many novel organoselenium compounds have also been synthesized and examined as potential chemotherapeutic agents. This review aims to summarize the most well studied natural and synthetic organoselenium compounds and provide the most recent developments in our understanding of the molecular mechanisms that underlie their potential anticancer effects.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Prajakta Khalkar
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jeremy Braude
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Aristi P Fernandes
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
40
|
Zhou L, Husted H, Moore T, Lu M, Deng D, Liu Y, Ramachandran V, Arumugam T, Niehrs C, Wang H, Chiao P, Ling J, Curran MA, Maitra A, Hung MC, Lee JE, Logsdon CD, Hwang RF. Suppression of stromal-derived Dickkopf-3 (DKK3) inhibits tumor progression and prolongs survival in pancreatic ductal adenocarcinoma. Sci Transl Med 2018; 10:eaat3487. [PMID: 30355799 PMCID: PMC6752716 DOI: 10.1126/scitranslmed.aat3487] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and it is unclear whether its stromal infiltrate contributes to its aggressiveness. Here, we demonstrate that Dickkopf-3 (DKK3) is produced by pancreatic stellate cells and is present in most human PDAC. DKK3 stimulates PDAC growth, metastasis, and resistance to chemotherapy with both paracrine and autocrine mechanisms through NF-κB activation. Genetic ablation of DKK3 in an autochthonous model of PDAC inhibited tumor growth, induced a peritumoral infiltration of CD8+ T cells, and more than doubled survival. Treatment with a DKK3-blocking monoclonal antibody inhibited PDAC progression and chemoresistance and prolonged survival. The combination of DKK3 inhibition with immune checkpoint inhibition was more effective in reducing tumor growth than either treatment alone and resulted in a durable improvement in survival, suggesting that DKK3 neutralization may be effective as a single targeted agent or in combination with chemotherapy or immunotherapy for PDAC.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antibodies, Neutralizing/pharmacology
- Antibodies, Neutralizing/therapeutic use
- Autocrine Communication/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Chemokines
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Deoxycytidine/therapeutic use
- Disease Models, Animal
- Disease Progression
- Drug Resistance, Neoplasm/drug effects
- Gene Silencing
- Humans
- Immunotherapy
- Intercellular Signaling Peptides and Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Nude
- NF-kappa B/metabolism
- Neutralization Tests
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/metabolism
- Pancreatic Stellate Cells/pathology
- Paracrine Communication/drug effects
- Survival Analysis
- Gemcitabine
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Liran Zhou
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hongmei Husted
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Todd Moore
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mason Lu
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Defeng Deng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Liu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vijaya Ramachandran
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thiruvengadam Arumugam
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Huamin Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Chiao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Ling
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anirban Maitra
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Craig D Logsdon
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rosa F Hwang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
41
|
Novel Methylselenoesters Induce Programed Cell Death via Entosis in Pancreatic Cancer Cells. Int J Mol Sci 2018; 19:ijms19102849. [PMID: 30241340 PMCID: PMC6213452 DOI: 10.3390/ijms19102849] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Redox active selenium (Se) compounds have gained substantial attention in the last decade as potential cancer therapeutic agents. Several Se compounds have shown high selectivity and sensitivity against malignant cells. The cytotoxic effects are exerted by their biologically active metabolites, with methylselenol (CH3SeH) being one of the key executors. In search of novel CH3SeH precursors, we previously synthesized a series of methylselenoesters that were active (GI50 < 10 µM at 72 h) against a panel of cancer cell lines. Herein, we refined the mechanism of action of the two lead compounds with the additional synthesis of new analogs (ethyl, pentyl, and benzyl derivatives). A novel mechanism for the programmed cell death mechanism for Se-compounds was identified. Both methylseleninic acid and the novel CH3SeH precursors induced entosis by cell detachment through downregulation of cell division control protein 42 homolog (CDC42) and its downstream effector β1-integrin (CD29). To our knowledge, this is the first time that Se compounds have been reported to induce this type of cell death and is of importance in the characterization of the anticancerogenic properties of these compounds.
Collapse
|
42
|
Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L, Qiu Z. Hypoxic Tumor-Derived Exosomal miR-301a Mediates M2 Macrophage Polarization via PTEN/PI3Kγ to Promote Pancreatic Cancer Metastasis. Cancer Res 2018; 78:4586-4598. [PMID: 29880482 DOI: 10.1158/0008-5472.can-17-3841] [Citation(s) in RCA: 512] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/18/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
Exosomes are emerging as important mediators of the cross-talk between tumor cells and the microenvironment. However, the mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic cancer remain largely unknown. Here, we found that hypoxic exosomes derived from pancreatic cancer cells activate macrophages to the M2 phenotype in a HIF1a or HIF2a-dependent manner, which then facilitates the migration, invasion, and epithelial-mesenchymal transition of pancreatic cancer cells. Given that exosomes have been shown to transport miRNAs to alter cellular functions, we discovered that miR-301a-3p was highly expressed in hypoxic pancreatic cancer cells and enriched in hypoxic pancreatic cancer cell-derived exosomes. Circulating exosomal miR-301a-3p levels positively associated with depth of invasion, lymph node metastasis, late TNM stage, and poor prognosis of pancreatic cancer. Hypoxic exosomal miR-301a-3p induced the M2 polarization of macrophages via activation of the PTEN/PI3Kγ signaling pathway. Coculturing of pancreatic cancer cells with macrophages in which miR-301a-3p was upregulated or treated with hypoxic exosomes enhanced their metastatic capacity. Collectively, these data indicate that pancreatic cancer cells generate miR-301a-3p-rich exosomes in a hypoxic microenvironment, which then polarize macrophages to promote malignant behaviors of pancreatic cancer cells. Targeting exosomal miR-301a-3p may provide a potential diagnosis and treatment strategy for pancreatic cancer.Significance: These findings identify an exosomal miRNA critical for microenvironmental cross-talk that may prove to be a potential target for diagnosis and treatment of pancreatic cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/16/4586/F1.large.jpg Cancer Res; 78(16); 4586-98. ©2018 AACR.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Guangtao Luo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Jun Cao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Tao Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China
| | - Bingya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Liping Su
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named "Shanghai First People's Hospital"), Shanghai, P.R. China.
| |
Collapse
|
43
|
Wegner CS, Hauge A, Simonsen TG, Gaustad JV, Andersen LMK, Rofstad EK. DCE-MRI of Sunitinib-Induced Changes in Tumor Microvasculature and Hypoxia: A Study of Pancreatic Ductal Adenocarcinoma Xenografts. Neoplasia 2018; 20:734-744. [PMID: 29886124 PMCID: PMC6041378 DOI: 10.1016/j.neo.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022]
Abstract
The purpose of this study was dual: to investigate (a) whether sunitinib may induce changes in tumor microvasculature and hypoxia in pancreatic ductal adenocarcinoma (PDAC) and (b) whether any changes can be detected by DCE-MRI. Sunitinib-treated and untreated control tumors of two PDAC xenograft models (BxPC-3 and Panc-1) were subjected to DCE-MRI before the imaged tumors were prepared for quantitative analysis of immunohistochemical preparations. Pimonidazole was used as a hypoxia marker, and fraction of hypoxic tissue (HFPim), density of CD31-positive microvessels (MVDCD31), and density of αSMA-positive microvessels (MVDαSMA) were measured. Parametric images of Ktrans and ve were derived from the DCE-MRI data by using the Tofts pharmacokinetic model. BxPC-3 tumors showed increased HFPim, decreased MVDCD31, unchanged MVDαSMA, and increased vessel maturation index (VMI = MVDαSMA/MVDCD31) after sunitinib treatment. The increase in VMI was seen because sunitinib induced selective pruning rather than maturation of αSMA-negative microvessels. Even though the microvessels in sunitinib-treated tumors were less abnormal than those in untreated tumors, this microvessel normalization did not improve the function of the microvascular network or normalize the tumor microenvironment. In Panc-1 tumors, HFPim, MVDCD31, MVDαSMA, and VMI were unchanged after sunitinib treatment. Median Ktrans increased with increasing MVDCD31 and decreased with increasing HFPim, and the correlations were similar for treated and untreated BXPC-3 and Panc-1 tumors. These observations suggest that sunitinib may induce significant changes in the microenvironment of PDACs, and furthermore, that Ktrans may be an adequate measure of tumor vascular density and hypoxia in untreated as well as sunitinib-treated PDACs.
Collapse
Key Words
- αsma, α smooth muscle actin
- angpt/tie, angiopoietin/tyrosine kinase with immunoglobulin-like and epidermal growth factor-like domains
- dce-mri, dynamic contrast-enhanced magnetic resonance imaging
- fov, field of view
- he, hematoxylin and eosin
- hf, hypoxic fraction
- il-8/nf-κb, interleukin-8/nuclear factor-κb
- ktrans, volume transfer constant
- mvd, microvessel density
- pdac, pancreatic ductal adenocarcinoma
- roi, region of interest
- te, echo time
- tr, repetition time
- ve, fractional distribution volume
- vegf/vegf-r, vascular endothelial growth factor/vegf-receptor
Collapse
Affiliation(s)
- Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
44
|
Ogier C, Colombo PE, Bousquet C, Canterel-Thouennon L, Sicard P, Garambois V, Thomas G, Gaborit N, Jarlier M, Pirot N, Pugnière M, Vie N, Gongora C, Martineau P, Robert B, Pèlegrin A, Chardès T, Larbouret C. Targeting the NRG1/HER3 pathway in tumor cells and cancer-associated fibroblasts with an anti-neuregulin 1 antibody inhibits tumor growth in pre-clinical models of pancreatic cancer. Cancer Lett 2018; 432:227-236. [PMID: 29935372 DOI: 10.1016/j.canlet.2018.06.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/20/2022]
Abstract
Neuregulin 1 (NRG1), a ligand for HER3 and HER4 receptors, is secreted by both pancreatic tumor cells (PC) and cancer-associated fibroblasts (CAFs), the latter representing the most abundant compound of pancreatic stroma. This desmoplastic stroma contributes to Pancreatic Ductal Adenocarcinoma (PDAC) aggressiveness and therapeutic failure by promoting tumor progression, invasion and resistance to chemotherapies. In the present work, we aimed at disrupting the complex crosstalk between PC and CAF in order to prevent tumor cell proliferation. To do so, we demonstrated the promising tumor growth inhibitory effect of the 7E3, an original antibody directed to NRG1. This antibody promotes antibody dependent cellular cytotoxicity in NRG1-positive PC and CAFs and inhibits NRG1-associated signaling pathway induction, by blocking NRG1-mediated HER3 activation. Moreover, 7E3 inhibits migration and growth of pancreatic cancer cells co-cultured with CAFs, both in vitro and in vivo using orthotopic pancreatic tumor xenografts. Our preclinical results demonstrate that the anti-NRG1 antibody 7E3 could represent a promising approach to target pancreatic stroma and cancer cells, thereby providing novel therapeutic options for PDAC.
Collapse
Affiliation(s)
- Charline Ogier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Pierre-Emmanuel Colombo
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France; Institut régional du Cancer de Montpellier (ICM), Val d'Aurelle, Montpellier, F-34298, France
| | - Corinne Bousquet
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France
| | - Lucile Canterel-Thouennon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Pierre Sicard
- PhyMedExp, IPAM, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier cedex 5, France
| | - Véronique Garambois
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Gaëlle Thomas
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Nadège Gaborit
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Marta Jarlier
- Institut régional du Cancer de Montpellier (ICM), Val d'Aurelle, Montpellier, F-34298, France
| | - Nelly Pirot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Martine Pugnière
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Nadia Vie
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Céline Gongora
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Bruno Robert
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Thierry Chardès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Christel Larbouret
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
45
|
Targeting galectin-1 inhibits pancreatic cancer progression by modulating tumor-stroma crosstalk. Proc Natl Acad Sci U S A 2018; 115:E3769-E3778. [PMID: 29615514 DOI: 10.1073/pnas.1722434115] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains one of the most lethal tumor types, with extremely low survival rates due to late diagnosis and resistance to standard therapies. A more comprehensive understanding of the complexity of PDA pathobiology, and especially of the role of the tumor microenvironment in disease progression, should pave the way for therapies to improve patient response rates. In this study, we identify galectin-1 (Gal1), a glycan-binding protein that is highly overexpressed in PDA stroma, as a major driver of pancreatic cancer progression. Genetic deletion of Gal1 in a Kras-driven mouse model of PDA (Ela-KrasG12Vp53-/- ) results in a significant increase in survival through mechanisms involving decreased stroma activation, attenuated vascularization, and enhanced T cell infiltration leading to diminished metastasis rates. In a human setting, human pancreatic stellate cells (HPSCs) promote cancer proliferation, migration, and invasion via Gal1-driven pathways. Moreover, in vivo orthotopic coinjection of pancreatic tumor cells with Gal1-depleted HPSCs leads to impaired tumor formation and metastasis in mice. Gene-expression analyses of pancreatic tumor cells exposed to Gal1 reveal modulation of multiple regulatory pathways involved in tumor progression. Thus, Gal1 hierarchically regulates different events implicated in PDA biology including tumor cell proliferation, invasion, angiogenesis, inflammation, and metastasis, highlighting the broad therapeutic potential of Gal1-specific inhibitors, either alone or in combination with other therapeutic modalities.
Collapse
|
46
|
Veenstra VL, Garcia-Garijo A, van Laarhoven HW, Bijlsma MF. Extracellular Influences: Molecular Subclasses and the Microenvironment in Pancreatic Cancer. Cancers (Basel) 2018; 10:cancers10020034. [PMID: 29382042 PMCID: PMC5836066 DOI: 10.3390/cancers10020034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/21/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent form of pancreatic cancer and carries the worst prognosis of all common cancers. Five-year survival rates have not surpassed 6% for some decades and this lack of improvement in outcome urges a better understanding of the PDAC-specific features which contribute to this poor result. One of the most defining features of PDAC known to contribute to its progression is the abundance of non-tumor cells and material collectively known as the stroma. It is now well recognized that the different non-cancer cell types, signalling molecules, and mechanical properties within a tumor can have both tumor-promoting as well as –inhibitory effects. However, the net effect of this intratumour heterogeneity is not well understood. Heterogeneity in the stromal makeup between patients is even less well established. Such intertumour heterogeneity is likely to be affected by the relative contributions of individual stromal constituents, but how these contributions exactly relate to existing classifications that demarcate intertumour heterogeneity in PDAC is not fully known. In this review, we give an overview of the available evidence by delineating the elements of the PDAC stroma and their contribution to tumour growth. We do so by interpreting the heterogeneity at the gene expression level in PDAC, and how stromal elements contribute to, or interconnect, with this.
Collapse
Affiliation(s)
- Veronique L Veenstra
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Andrea Garcia-Garijo
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Hanneke W van Laarhoven
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Maarten F Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Academic Medical Center and Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Kuninty PR, Bojmar L, Tjomsland V, Larsson M, Storm G, Östman A, Sandström P, Prakash J. MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget 2017; 7:16396-408. [PMID: 26918939 PMCID: PMC4941323 DOI: 10.18632/oncotarget.7651] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pancreatic stellate cells (PSCs) are the key precursor cells for cancer-associated fibroblasts (CAFs) in pancreatic tumor stroma. In this study, we explored miRNA as therapeutic targets in tumor stroma and found miR-199a-3p and miR-214-3p induced in patient-derived pancreatic CAFs and TGF-β-activated human PSCs (hPSCs). Inhibition of miR-199a/-214 using hairpin inhibitors significantly inhibited TGFβ-induced differentiation markers (e.g. α-SMA, collagen, PDGFβR), migration and proliferation. Furthermore, heterospheroids of Panc-1 and hPSCs attained smaller size with hPSCs transfected with anti-miR-199a/-214 compared to control anti-miR. The conditioned medium obtained from TGFβ-activated hPSCs induced tumor cell growth and endothelial cell tube formation. Interestingly, these inductions were abrogated in hPSCs transfected with anti-miR-199a or miR-214. Moreover, IPA analyses revealed signaling pathways related to miR-199a (TP53, mTOR, Smad1) and miR-214 (PTEN, Bax, ING4). Taken together, this study reveals miR-199a-3p and miR-214-3p as major regulators of PSC activation and PSC-induced pro-tumoral effects, representing them as key therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands
| | - Linda Bojmar
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Pediatric Hematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Vegard Tjomsland
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Hepato-pancreato-biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marie Larsson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gert Storm
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Arne Östman
- Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| | - Per Sandström
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, Section: Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Twente, Netherlands.,Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska, Sweden
| |
Collapse
|
48
|
Fibrosis imaging: Current concepts and future directions. Adv Drug Deliv Rev 2017; 121:9-26. [PMID: 29108860 DOI: 10.1016/j.addr.2017.10.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023]
Abstract
Fibrosis plays an important role in many different pathologies. It results from tissue injury, chronic inflammation, autoimmune reactions and genetic alterations, and it is characterized by the excessive deposition of extracellular matrix components. Biopsies are routinely employed for fibrosis diagnosis, but they suffer from several drawbacks, including their invasive nature, sampling variability and limited spatial information. To overcome these limitations, multiple different imaging tools and technologies have been evaluated over the years, including X-ray imaging, computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), positron emission tomography (PET) and single-photon emission computed tomography (SPECT). These modalities can provide anatomical, functional and molecular imaging information which is useful for fibrosis diagnosis and staging, and they may also hold potential for the longitudinal assessment of therapy responses. Here, we summarize the use of non-invasive imaging techniques for monitoring fibrosis in systemic autoimmune diseases, in parenchymal organs (such as liver, kidney, lung and heart), and in desmoplastic cancers. We also discuss how imaging biomarkers can be integrated in (pre-) clinical research to individualize and improve anti-fibrotic therapies.
Collapse
|
49
|
Nielsen N, Kondratska K, Ruck T, Hild B, Kovalenko I, Schimmelpfennig S, Welzig J, Sargin S, Lindemann O, Christian S, Meuth SG, Prevarskaya N, Schwab A. TRPC6 channels modulate the response of pancreatic stellate cells to hypoxia. Pflugers Arch 2017; 469:1567-1577. [PMID: 28849300 DOI: 10.1007/s00424-017-2057-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/30/2022]
Abstract
Pancreatic cancer is characterized by a massive fibrosis (desmoplasia), which is primarily caused by activated pancreatic stellate cells (PSCs). This leads to a hypoxic tumor microenvironment further reinforcing the activation of PSCs by stimulating their secretion of growth factors and chemokines. Since many of them elicit their effects via G-protein-coupled receptors (GPCRs), we tested whether TRPC6 channels, effector proteins of many G-protein-coupled receptor pathways, are required for the hypoxic activation of PSCs. Thus far, the function of ion channels in PSCs is virtually unexplored. qPCR revealed TRPC6 channels to be one of the most abundant TRPC channels in primary cultures of murine PSCs. TRPC6 channel function was assessed by comparing PSCs from TRPC6-/- mice and wildtype (wt) littermates. Cell migration, Ca2+ signaling, and cytokine secretion were analyzed as readout for PSC activation. Hypoxia was induced by incubating PSCs for 24 h in 1% O2 or chemically with dimethyloxalylglycine (DMOG). PSCs migrate faster in response to hypoxia. Due to reduced autocrine stimulation, TRPC6-/- PSCs fail to increase their rate of migration to the same level as wt PSCs under hypoxic conditions. This defect could not be overcome by the stimulation with platelet-derived growth factor. In line with these results, calcium influx is increased in wt but not TRPC6-/- PSCs under hypoxia. We conclude that TRPC6 channels of PSCs are major effector proteins in an autocrine stimulation pathway triggered by hypoxia.
Collapse
Affiliation(s)
- Nikolaj Nielsen
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve-d'Ascq, France
| | - Tobias Ruck
- Department of Neurology, Albert-Schweitzer-Campus 1, Building A10, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Benedikt Hild
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Ilya Kovalenko
- Bayer-Pharma AG, Müllerstr. 178, 13353, Berlin, Germany.,Cancer Center, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI, 48104, USA
| | - Sandra Schimmelpfennig
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Jana Welzig
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Sarah Sargin
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Otto Lindemann
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | | | - Sven G Meuth
- Department of Neurology, Albert-Schweitzer-Campus 1, Building A10, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve-d'Ascq, France
| | - Albrecht Schwab
- Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
| |
Collapse
|
50
|
Andersen LMK, Wegner CS, Simonsen TG, Huang R, Gaustad JV, Hauge A, Galappathi K, Rofstad EK. Lymph node metastasis and the physicochemical micro-environment of pancreatic ductal adenocarcinoma xenografts. Oncotarget 2017; 8:48060-48074. [PMID: 28624797 PMCID: PMC5564626 DOI: 10.18632/oncotarget.18231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/01/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients develop lymph node metastases early and have a particularly poor prognosis. The poor prognosis has been shown to be associated with the physicochemical microenvironment of the tumor tissue, which is characterized by desmoplasia, abnormal microvasculature, extensive hypoxia, and highly elevated interstitial fluid pressure (IFP). In this study, we searched for associations between lymph node metastasis and features of the physicochemical microenvironment in an attempt to identify mechanisms leading to metastatic dissemination and growth. BxPC-3 and Capan-2 PDAC xenografts were used as preclinical models of human PDAC. In both models, lymph node metastasis was associated with high IFP rather than high fraction of hypoxic tissue or high microvascular density. Seven angiogenesis-related genes associated with high IFP-associated lymph node metastasis were detected by quantitative PCR in each of the models, and these genes were all up-regulated in high IFP/highly metastatic tumors. Three genes were mutual for the BxPC-3 and Capan-2 models: transforming growth factor beta, angiogenin, and insulin-like growth factor 1. Further comprehensive studies are needed to determine whether there is a causal relationship between the up-regulation of these genes and high IFP and/or high propensity for lymph node metastasis in PDAC.
Collapse
Affiliation(s)
- Lise Mari K. Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S. Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G. Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kanthi Galappathi
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K. Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|