1
|
Atalay Ekiner S, Gęgotek A, Skrzydlewska E. Inflammasome activity regulation by PUFA metabolites. Front Immunol 2024; 15:1452749. [PMID: 39290706 PMCID: PMC11405227 DOI: 10.3389/fimmu.2024.1452749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Oxidative stress and the accompanying chronic inflammation constitute an important metabolic problem that may lead to pathology, especially when the body is exposed to physicochemical and biological factors, including UV radiation, pathogens, drugs, as well as endogenous metabolic disorders. The cellular response is associated, among others, with changes in lipid metabolism, mainly due to the oxidation and the action of lipolytic enzymes. Products of oxidative fragmentation/cyclization of polyunsaturated fatty acids (PUFAs) [4-HNE, MDA, 8-isoprostanes, neuroprostanes] and eicosanoids generated as a result of the enzymatic metabolism of PUFAs significantly modify cellular metabolism, including inflammation and the functioning of the immune system by interfering with intracellular molecular signaling. The key regulators of inflammation, the effectiveness of which can be regulated by interacting with the products of lipid metabolism under oxidative stress, are inflammasome complexes. An example is both negative or positive regulation of NLRP3 inflammasome activity by 4-HNE depending on the severity of oxidative stress. 4-HNE modifies NLRP3 activity by both direct interaction with NLRP3 and alteration of NF-κB signaling. Furthermore, prostaglandin E2 is known to be positively correlated with both NLRP3 and NLRC4 activity, while its potential interference with AIM2 or NLRP1 activity is unproven. Therefore, the influence of PUFA metabolites on the activity of well-characterized inflammasome complexes is reviewed.
Collapse
Affiliation(s)
| | - Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
2
|
Zhao F, Hong J, Zhou G, Huang T, Lin Z, Zhang Y, Liang L, Tang H. Elucidating the role of tumor-associated ALOX5+ mast cells with transformative function in cervical cancer progression via single-cell RNA sequencing. Front Immunol 2024; 15:1434450. [PMID: 39224598 PMCID: PMC11366577 DOI: 10.3389/fimmu.2024.1434450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Cervical cancer (CC) is the fourth most common malignancy among women globally and serves as the main cause of cancer-related deaths among women in developing countries. The early symptoms of CC are often not apparent, with diagnoses typically made at advanced stages, which lead to poor clinical prognoses. In recent years, numerous studies have shown that there is a close relationship between mast cells (MCs) and tumor development. However, research on the role MCs played in CC is still very limited at that time. Thus, the study conducted a single-cell multi-omics analysis on human CC cells, aiming to explore the mechanisms by which MCs interact with the tumor microenvironment in CC. The goal was to provide a scientific basis for the prevention, diagnosis, and treatment of CC, with the hope of improving patients' prognoses and quality of life. METHOD The present study acquired single-cell RNA sequencing data from ten CC tumor samples in the ArrayExpress database. Slingshot and AUCcell were utilized to infer and assess the differentiation trajectory and cell plasticity of MCs subpopulations. Differential expression analysis of MCs subpopulations in CC was performed, employing Gene Ontology, gene set enrichment analysis, and gene set variation analysis. CellChat software package was applied to predict cell communication between MCs subpopulations and CC cells. Cellular functional experiments validated the functionality of TNFRSF12A in HeLa and Caski cell lines. Additionally, a risk scoring model was constructed to evaluate the differences in clinical features, prognosis, immune infiltration, immune checkpoint, and functional enrichment across various risk scores. Copy number variation levels were computed using inference of copy number variations. RESULT The obtained 93,524 high-quality cells were classified into ten cell types, including T_NK cells, endothelial cells, fibroblasts, smooth muscle cells, epithelial cells, B cells, plasma cells, MCs, neutrophils, and myeloid cells. Furthermore, a total of 1,392 MCs were subdivided into seven subpopulations: C0 CTSG+ MCs, C1 CALR+ MCs, C2 ALOX5+ MCs, C3 ANXA2+ MCs, C4 MGP+ MCs, C5 IL32+ MCs, and C6 ADGRL4+ MCs. Notably, the C2 subpopulation showed close associations with tumor-related MCs, with Slingshot results indicating that C2 subpopulation resided at the intermediate-to-late stage of differentiation, potentially representing a crucial transition point in the benign-to-malignant transformation of CC. CNVscore and bulk analysis results further confirmed the transforming state of the C2 subpopulation. CellChat analysis revealed TNFRSF12A as a key receptor involved in the actions of C2 ALOX5+ MCs. Moreover, in vitro experiments indicated that downregulating the TNFRSF12A gene may partially inhibit the development of CC. Additionally, a prognosis model and immune infiltration analysis based on the marker genes of the C2 subpopulation provided valuable guidance for patient prognosis and clinical intervention strategies. CONCLUSIONS We first identified the transformative tumor-associated MCs subpopulation C2 ALOX5+ MCs within CC, which was at a critical stage of tumor differentiation and impacted the progression of CC. In vitro experiments confirmed the inhibitory effect of knocking down the TNFRSF12A gene on the development of CC. The prognostic model constructed based on the C2 ALOX5+MCs subset demonstrated excellent predictive value. These findings offer a fresh perspective for clinical decision-making in CC.
Collapse
Affiliation(s)
- Fu Zhao
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junjie Hong
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Guangyao Zhou
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianjiao Huang
- The First School of Clinical Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yining Zhang
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China
| | - Leilei Liang
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Huarong Tang
- Department of Gynecological Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
3
|
Tajdari M, Peyrovinasab A, Bayanati M, Ismail Mahboubi Rabbani M, Abdolghaffari AH, Zarghi A. Dual COX-2/TNF-α Inhibitors as Promising Anti-inflammatory and Cancer Chemopreventive Agents: A Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e151312. [PMID: 39830670 PMCID: PMC11742592 DOI: 10.5812/ijpr-151312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 01/22/2025]
Abstract
Cyclooxygenases (COX) play a pivotal role in inflammation and are responsible for the production of prostaglandins (PGs). Two types of COXs have been identified as key biological targets for drug design: Constitutive COX-1 and inducible COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) target COX-1, while selective COX-2 inhibitors are designed for COX-2. These COX isoforms are involved in multiple physiological and pathological pathways throughout the body. Overproduction of tumor necrosis factor-alpha (TNF-α) plays a role in COX-2's inflammatory activity. Tumor necrosis factor-alpha can contribute to cardiac fibrosis, heart failure, and various cancers by upregulating the COX-2/PGE2 axis. Therefore, suppressing COX activity has emerged as a potentially effective treatment for chronic inflammatory disorders and cancer. This review explores the mechanisms of TNF-α-induced COX-2/PGE2 expression, a significant pathophysiological feature of cancer development. Furthermore, we summarize chemical compounds with dual COX-2/TNF-α inhibitory actions, providing an overview of their structure-activity relationship. These insights may contribute to the development of new generations of dual-acting COX-2/TNF-α inhibitors with enhanced efficacy.
Collapse
Affiliation(s)
- Mobina Tajdari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Bayanati
- Department of Food Technology Research, National Nutrition, and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amir Hossein Abdolghaffari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Pantalone MR, Almazan NM, Lattanzio R, Taher C, De Fabritiis S, Valentinuzzi S, Bishehsari F, Mahdavinia M, Verginelli F, Rahbar A, Mariani-Costantini R, Söderberg-Naucler C. Human cytomegalovirus infection enhances 5‑lipoxygenase and cycloxygenase‑2 expression in colorectal cancer. Int J Oncol 2023; 63:116. [PMID: 37654195 PMCID: PMC10546380 DOI: 10.3892/ijo.2023.5564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro‑inflammatory enzymes 5‑lipoxygenase (5‑LO) and cyclooxygenase‑2 (COX‑2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin‑embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki‑67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5‑LO and COX‑2. The CRC cell lines Caco‑2 and LS‑174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti‑inflammatory drug celecoxib (CCX) and analyzed by reverse transcription‑quantitative PCR and immunofluorescence for 5‑LO, COX‑2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX‑2, 5‑LO and KI‑67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5‑LO and COX‑2 transcript and proteins in both Caco‑2 and LS‑174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX‑2, 5‑LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.
Collapse
Affiliation(s)
- Mattia Russel Pantalone
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Nerea Martin Almazan
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Laboratory Medicine, Unit of Microbial Pathogenesis, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Rossano Lattanzio
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Chato Taher
- Department of Basic Sciences, Hawler Medical University, Erbil 44001, Iraq
| | - Simone De Fabritiis
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, G. d'Annunzio University, I-66100 Chieti, Italy
| | - Silvia Valentinuzzi
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Faraz Bishehsari
- Division of Digestive Diseases, Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL 60612, USA
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
| | - Mahboobeh Mahdavinia
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14114, Iran
- Department of Internal Medicine, Division of Allergy and Immunology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Fabio Verginelli
- Center for Advanced Studies and Technology, G. d'Annunzio University, I-66100 Chieti, Italy
- Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
| | | | - Cecilia Söderberg-Naucler
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, 17164 Stockholm, Sweden
- MediCity Research Laboratory, University of Turku, FI-20014 Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
5
|
Bošković J, Dobričić V, Mihajlović M, Kotur-Stevuljević J, Čudina O. Synthesis, Evaluation of Enzyme Inhibition and Redox Properties of Potential Dual COX-2 and 5-LOX Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16040549. [PMID: 37111306 PMCID: PMC10142505 DOI: 10.3390/ph16040549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Various dual inhibitors of COX-2 and 5-LOX enzymes have been developed so far in order to obtain more effective and safer anti-inflammatory drugs. The aim of this study was to design and synthesize new dual COX-2 and 5-LOX inhibitors, and to evaluate their enzyme inhibition potential and redox properties. Thirteen compounds (1-13) were designed taking into account structural requirements for dual COX-2 and 5-LOX inhibition and antioxidant activity, synthesized, and structurally characterized. These compounds can be classified as N-hydroxyurea derivatives (1, 2 and 3), 3,5-di-tert-butylphenol derivatives (4, 5, 6, 7 and 13), urea derivatives (8, 9 and 10) and "type B hydroxamic acids" (11 and 12). COX-1, COX-2 and 5-LOX inhibitory activities were evaluated using fluorometric inhibitor screening kits. The evaluation of the redox activity of newly synthesized compounds was performed in vitro in the human serum pool using redox status tests. The prooxidative score, the antioxidative score and the oxy-score were calculated. Seven out of thirteen synthesized compounds (1, 2, 3, 5, 6, 11 and 12) proved to be dual COX-2 and 5-LOX inhibitors. These compounds expressed good COX-2/COX-1 selectivity. Moreover, dual inhibitors 1, 3, 5, 11 and 12 showed good antioxidant properties.
Collapse
Affiliation(s)
- Jelena Bošković
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Marija Mihajlović
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Olivera Čudina
- Department of Pharmaceutical Chemistry, University of Belgrade-Faculty of Pharmacy, 11221 Belgrade, Serbia
| |
Collapse
|
6
|
Rao Y, Zhu J, Zheng H, Dong W, Lin Q. A novel melanoma prognostic model based on the ferroptosis-related long non-coding RNA. Front Oncol 2022; 12:929960. [PMID: 36313708 PMCID: PMC9598429 DOI: 10.3389/fonc.2022.929960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/23/2022] [Indexed: 08/27/2023] Open
Abstract
Ferroptosis is an iron-dependent programmed cell death related to the biological process of many kinds of tumors. Long noncoding RNAs (LncRNA) have been found to play essential roles in the tumor, and their functions in the ferroptosis of tumor cells have been partially discovered. However, there is no summary of ferroptosis-related LncRNA and its functions in melanoma. In the present study, we aim to explore the expression profile of ferroptosis-related LncRNA genes and their value in melanoma prognosis by bioinformatics analysis. The expression of ferroptosis-related gene (FRG) from melanoma clinical data was extracted based on the Cancer Genome Atlas (TCGA) database. By screening the RNA expression data of 472 cases of melanoma and 810 cases of normal skin, eighteen ferroptosis-related differential genes were found to be related to the overall survival rate. Furthermore, 384 ferroptosis-related LncRNAs were discovered through constructing the mRNA-LncRNA co-expression network, and ten of them were found with prognostic significance in melanoma by multivariate Cox analysis. Risk assessment showed that the high expression of LncRNA00520 is associated with poor prognosis, while the increased expression of the other LncRNA is beneficial to the prognosis of patients with melanoma. From univariate and multivariate Cox regression analysis, there were ten ferroptosis-related LncRNA risk models towards to be significant independent prognostic factors for patients with melanoma and valuable predictive factors for overall survival (OS)(P<0.05). The ROC curve further suggested that the risk score has relatively reliable predictive ability (AUC=0.718). The protein level of ferroptosis-related genes was verified by the HPA database and IHC test, leading to the discovery that the expressions of ALOX5, PEBP1, ACSL4, and ZEB1 proteins up-regulated in tumor tissues, and existed differences between tumor tissues and normal tissues. In conclusion, we identified ten ferroptosis-related LncRNA and constructed a prognosis model base.
Collapse
Affiliation(s)
- Yamin Rao
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Zhu
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zheng
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Dong
- Department of Pathology, Eastern Hepatobilliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
PLA2G2A Phospholipase Promotes Fatty Acid Synthesis and Energy Metabolism in Pancreatic Cancer Cells with K-ras Mutation. Int J Mol Sci 2022; 23:ijms231911721. [PMID: 36233022 PMCID: PMC9570406 DOI: 10.3390/ijms231911721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/17/2023] Open
Abstract
Oncogenic K-ras is often activated in pancreatic ductal adenocarcinoma (PDAC) due to frequent mutation (>90%), which drives multiple cellular processes, including alterations in lipid metabolism associated with a malignant phenotype. However, the role and mechanism of the altered lipid metabolism in K-ras-driven cancer remains poorly understood. In this study, using human pancreatic epithelial cells harboring inducible K-rasG12D (HPNE/K-rasG12D) and pancreatic cancer cell lines, we found that the expression of phospholipase A2 group IIA (PLA2G2A) was upregulated by oncogenic K-ras. The elevated expression of PLA2G2A was also observed in pancreatic cancer tissues and was correlated with poor survival of PDAC patients. Abrogation of PLA2G2A by siRNA or by pharmacological inhibition using tanshinone I significantly increased lipid peroxidation, reduced fatty acid synthase (FASN) expression, and impaired mitochondrial function manifested by a decrease in mitochondrial transmembrane potential and a reduction in ATP production, leading to the inhibition of cancer cell proliferation. Our study suggests that high expression of PLA2G2A induced by oncogenic K-ras promotes cancer cell survival, likely by reducing lipid peroxidation through its ability to facilitate the removal of polyunsaturated fatty acids from lipid membranes by enhancing the de novo fatty acid synthesis and energy metabolism to support cancer cell proliferation. As such, PLA2G2A might function as a downstream mediator of K-ras and could be a potential therapeutic target.
Collapse
|
8
|
Tu M, Sun Q, Zhang J, Zhang G. Comparative Effects of Traditional Versus Genetically Modified Soybean Oils on Colon Tumorigenesis in Mice. Foods 2022; 11:foods11131937. [PMID: 35804751 PMCID: PMC9265295 DOI: 10.3390/foods11131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022] Open
Abstract
Soybean oil, which has high abundance of linoleic acid (LA, 18:2ω-6), is the most commonly consumed edible oil. Recent studies support that a high dietary intake of LA is linked with increased risks of developing colonic inflammation and colon cancer. Here we studied the effects of the genetically modified Plenish® soybean oil, which has low abundance of LA as well as α-linolenic acid (ALA, 18:3ω-3), on development of azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon tumorigenesis in mice. Compared with a diet rich in traditional soybean oil, administration of a diet enriched with the Plenish oil has little impact on AOM/DSS-induced colon tumorigenesis, colonic infiltration of immune cells, expressions of inflammatory genes, and tumor markers. These results suggest that the traditional and the Plenish soybean oils have similar effects on development of AOM/DSS-induced colon cancer in mice.
Collapse
Affiliation(s)
- Maolin Tu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (M.T.); (J.Z.)
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Quancai Sun
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (M.T.); (J.Z.)
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; (M.T.); (J.Z.)
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Correspondence:
| |
Collapse
|
9
|
Chen Y, Li H. Prognostic and Predictive Models for Left- and Right- Colorectal Cancer Patients: A Bioinformatics Analysis Based on Ferroptosis-Related Genes. Front Oncol 2022; 12:833834. [PMID: 35265525 PMCID: PMC8899601 DOI: 10.3389/fonc.2022.833834] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background Left- and right-sided colorectal cancer (LCRC, RCRC) are significantly different in epidemiology and clinical manifestations and have altered outcomes. However, as a hot tumor prognostic marker, the role of ferroptosis-related genes (FRGs) in LCRC and RCRC is unknown. Methods From The Cancer Genome Atlas (TCGA) database, we downloaded the expression profiles of CRC patients. A "DESeq2" package was performed to compare the differentially expressed genes (DEGs) of LCRC and RCRC. FRGs were identified using the FerrDb. The prognostic value of differentially expressed FRG (DE-FRG) in left- and right-CRC was assessed separately by Cox regression analysis. Subsequently, functional enrichment analysis, ESTIMATE, and single sample Gene Set Enrichment Analysis (ssGSEA) were performed based on LCRC and RCRC samples to reveal the potential function of FRGs-related risk signatures. The differential expression of FRGs in tumor tissues and adjacent normal tissues were verified by Western blot. The differential expression and prognosis in LCC and RCC were verified by immunohistochemistry. Results Based on the identified 14 DE-FRGs, the LCRC prognostic model consisted of NOS2 and IFNG; NOS2 and ALOXE established the prognostic signature that could distinguish RCRC outcomes. In the functional analysis, the DEGs (high risk vs. low risk) of the LCRC and RCRC were significantly enriched in the immune- and lipid-related terms and pathways. ESTIMATE and ssGSEA suggested that these FRGs-related risk signatures were affiliated with the infiltration of immune cell subtypes. Western blotting results showed that NOS2 and ALOXE3 were significantly highly expressed in cancer, and the difference was statistically significant (P < 0.05). Immunohistochemical results showed that ALOXE3 was highly expressed in RCC, and those with high expression had a worse prognosis, while NOS2 gene had an effect on the prognosis of both LCC and RCC. Conclusion This study constructed a potential prognostic model of LCRC and RCRC, respectively. We also identified the crucial pathways that contribute to elucidating the pathogenesis of CRC.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Gastrointestinal Oncology (Ward I), The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hua Li
- Department of Gastrointestinal Oncology (Ward I), The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
El-Miligy MMM, Al-Kubeisi AK, El-Zemity SR, Nassra RA, Abu-Serie MM, Hazzaa AA. Discovery of small molecule acting as multitarget inhibitor of colorectal cancer by simultaneous blocking of the key COX-2, 5-LOX and PIM-1 kinase enzymes. Bioorg Chem 2021; 115:105171. [PMID: 34303896 DOI: 10.1016/j.bioorg.2021.105171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/03/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Colorectal cancer (CRC) is the second cause of cancer death worldwide. Inhibitors of COX-2, 5-LOX and PIM-1 kinase were very effective in the treatment and prevention of CRC in mouse models in vivo. Furthermore, thymol was confirmed to inhibit CRC cell proliferation in cancer cell lines and inhibitory activity against COX-2 and 5-LOX. On the other hand, 4-thiazolidinone pharmacophore was incorporated in the structures of various reported COX-2, 5-LOX and PIM kinase inhibitors. Consequently, the aim of the present investigation was to combat CRC by synthesis and biological evaluation of new thymol - 4-thiazolidinone hybrids as multitarget anticancer agents that could inhibit the key COX-2, 5-LOX and PIM-1 kinase enzymes simultaneously. Compounds 5a-d and 5g displayed inhibitory activity against COX-2 nearly equal to Celecoxib with high selectivity index (SI). Moreover, compounds 5b-e showed 5-LOX inhibitory activity nearly equal to the reference Quercetin while compounds 5a, 5f and 5g elicited inhibitory activity slightly lower than Quercetin. Furthermore, in vivo formalin-induced paw edema test revealed that, compounds 5a, 5c, 5f and 5g showed higher % inhibition than Celecoxib and compounds 5a, 5f and 5g showed higher % inhibition than Diclofenac sodium. In addition, compounds 5a-c, 5e-g showed in vivo superior gastrointestinal safety profile as Celecoxib in fasted rats. Besides, compounds 5d, 5e and 5g exhibited the highest activity against human CRC cell lines (Caco-2 and HCT-116) at doses less than their EC100 on normal human cells. Furthermore, compounds 5e and 5g induced apoptosis-dependent death by above 50% in the treated CRC cell lines. Moreover, compounds 5e and 5g induced caspase activation by >50% in human CRC. Also, compounds 5d, 5e and 5g showed in vitro inhibitory activity against both PIM-1\2 kinases comparable to the reference Staurosporine. In silico docking studies were concordant with the biological results. In conclusion, compound 5g, of simple chemical structure, achieved the target goal of inhibiting three targets leading to inhibition of human CRC cell proliferation. It inhibited the target key enzymes COX-2, 5-LOX and PIM-1\2 kinase in vitro. Besides, it revealed in vitro inhibition of cell proliferation in cancer cell lines via activation of caspase 3\7 dependent-apoptosis in human CRC cell lines. In addition, it elicited in vivo anti-inflammatory activity in formalin-induced paw edema test and in vivo oral safety in gastric ulcerogenic activity test.
Collapse
Affiliation(s)
- Mostafa M M El-Miligy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | | | - Saad R El-Zemity
- Department of Chemistry and Technology of Pesticides, Faculty of Agriculture, Alexandria University, Alexandria 21521, Egypt
| | - Rasha A Nassra
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Aly A Hazzaa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
11
|
Ning W, Qiao N, Zhang X, Pei D, Wang W. Metabolic profiling analysis for clinical urine of colorectal cancer. Asia Pac J Clin Oncol 2021; 17:403-413. [PMID: 34164923 DOI: 10.1111/ajco.13591] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
AIM To demonstrate the little-known metabolic changes and pathways in patients with colorectal cancer (CRC). METHODS We used gas chromatography time-of-flight mass spectrometry (GC-TOF/MS) to perform metabolic profiling of urine samples from 163 consecutive patients with CRC and 111 healthy controls without history of gastrointestinal tumors. The metabolic profiles were assayed using multivariate statistical analysis and one-way analysis of variance, and further analyzed to identify potential marker metabolites related to CRC. The GC-TOF/MS-derived models showed clear discriminations in metabolic profiles between the CRC group and healthy control group. RESULTS We demonstrated that 15 metabolites contributed to the differences. Among them, eleven metabolites were significantly upregulated, while other four metabolites were downregulated in the urine samples of CRC patients compared with healthy controls. Pathway analysis revealed changes in energy metabolism of patients with CRC, which are reflected in the upregulation of glycolysis and amino acid metabolism and the downregulation of lipid metabolism. Our study revealed the metabolic profile of urine from CRC patients and indicated that GC-TOF/MS-based methods can distinguish CRC from healthy controls. CONCLUSION GC-TOF/MS-based metabolomics has the potential to be developed into a novel, non-invasive, and painless clinical tool for CRC diagnosis, and may contribute to an improved understanding of disease mechanisms.
Collapse
Affiliation(s)
- Wu Ning
- China-Japan Friendship Hospital, Beijing, China
| | - Nan Qiao
- China-Japan Friendship Hospital, Beijing, China
| | - Xiyin Zhang
- China-Japan Friendship Hospital, Beijing, China
| | - Dongpo Pei
- China-Japan Friendship Hospital, Beijing, China
| | - Wenyue Wang
- China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Wang Y, Wagner KM, Morisseau C, Hammock BD. Inhibition of the Soluble Epoxide Hydrolase as an Analgesic Strategy: A Review of Preclinical Evidence. J Pain Res 2021; 14:61-72. [PMID: 33488116 PMCID: PMC7814236 DOI: 10.2147/jpr.s241893] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a complicated condition which causes substantial physical, emotional, and financial impacts on individuals and society. However, due to high cost, lack of efficacy and safety problems, current treatments are insufficient. There is a clear unmet medical need for safe, nonaddictive and effective therapies in the management of pain. Epoxy-fatty acids (EpFAs), which are natural signaling molecules, play key roles in mediation of both inflammatory and neuropathic pain sensation. However, their molecular mechanisms of action remain largely unknown. Soluble epoxide hydrolase (sEH) rapidly converts EpFAs into less bioactive fatty acid diols in vivo; therefore, inhibition of sEH is an emerging therapeutic target to enhance the beneficial effect of natural EpFAs. In this review, we will discuss sEH inhibition as an analgesic strategy for pain management and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Karen M Wagner
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Finetti F, Biagi M, Ercoli J, Macrì G, Miraldi E, Trabalzini L. Phaseolus vulgaris L. var. Venanzio Grown in Tuscany: Chemical Composition and In Vitro Investigation of Potential Effects on Colorectal Cancer. Antioxidants (Basel) 2020; 9:antiox9121181. [PMID: 33256057 PMCID: PMC7760357 DOI: 10.3390/antiox9121181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 01/15/2023] Open
Abstract
Phaseolus vulgaris L. (common bean) is a leguminous species that is an important dietary component due to its high content of proteins, unsaturated fatty acids, minerals, dietary fibers and vitamins. Due to the high content of polyphenols, several biological activities have been described for bean extracts, making it possible to include P. vulgaris among food with beneficial effects for human health. Moreover, more than 40,000 varieties of beans have been recognised with different nutraceutical properties, pointing out the importance of food biodiversity. In this work, we describe for the first time the chemical composition and biological activity of a newly recognized Italian variety of P. vulgaris grown in a restricted area of the Tuscany region and named “Fagiola di Venanzio”. Fagiola di Venanzio water extract is rich in proteins, sugars and polyphenols and displays antioxidant, anti-inflammatory and antiproliferative activities in in vitro assays on colon cancer cellular models. Our data indicate that this variety of P. vulgaris appears to be a promising source of bioactive compounds and encourage more in-depth studies to better elucidate the implications of its consumption for public health.
Collapse
Affiliation(s)
- Federica Finetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.E.); (G.M.)
- Correspondence: (F.F.); (L.T.)
| | - Marco Biagi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy; (M.B.); (E.M.)
| | - Jasmine Ercoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.E.); (G.M.)
| | - Giulia Macrì
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.E.); (G.M.)
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Via Laterina 8, 53100 Siena, Italy; (M.B.); (E.M.)
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (J.E.); (G.M.)
- Correspondence: (F.F.); (L.T.)
| |
Collapse
|
14
|
Aberrant ALOX5 Activation Correlates with HER2 Status and Mediates Breast Cancer Biological Activities through Multiple Mechanisms. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1703531. [PMID: 33224971 PMCID: PMC7673939 DOI: 10.1155/2020/1703531] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
Arachidonate lipoxygenases (ALOX) have been implicated in playing a critical role in tumorigenesis, development, and metastasis. We previously reported that ALOX12 is involved in breast cancer chemoresistance. In this study, we demonstrate that the ALOX5 activation correlates with the HER2 expression and mediates breast cancer growth and migration. We found that the ALOX5 expression and activity were upregulated in breast cancer patients, particularly in those tissues with HER2-positive. ALOX5 upregulation was also observed in HER2-positive breast cancer cells. In contrast, HER2 inhibition led to decreased expression and activity of ALOX5 but not ALOX5AP, suggesting that HER2 specifically regulates the ALOX5 expression and activity in breast cancer cells. We further demonstrated that ALOX5 is important for breast cancer biological activities with the predominant roles in growth and migration, likely through RhoA, focal adhesion, and PI3K/Akt/mTOR signaling but not epithelial mesenchymal transition (EMT). Our work is the first to report a correlation between the ALOX5 activity and HER2 overexpression in breast cancer. Our findings also highlight the therapeutic value of inhibiting ALOX5 in breast cancer, particularly those patients with the HER2 overexpression.
Collapse
|
15
|
Schulze MB, Minihane AM, Saleh RNM, Risérus U. Intake and metabolism of omega-3 and omega-6 polyunsaturated fatty acids: nutritional implications for cardiometabolic diseases. Lancet Diabetes Endocrinol 2020; 8:915-930. [PMID: 32949497 DOI: 10.1016/s2213-8587(20)30148-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Prospective observational studies support the use of long-chain omega-3 polyunsaturated fatty acids (PUFAs) in the primary prevention of atherosclerotic cardiovascular disease; however, randomised controlled trials, have often reported neutral findings. There is a long history of debate about the potential harmful effects of a high intake of omega-6 PUFAs, although this idea is not supported by prospective observational studies or randomised controlled trials. Health effects of PUFAs might be influenced by Δ-5 and Δ-6 desaturases, the key enzymes in the metabolism of PUFAs. The activity of these enzymes and modulation by variants in encoding genes (FADS1-2-3 gene cluster) are linked to several cardiometabolic traits. This Review will further consider non-genetic determinants of desaturase activity, which have the potential to modify the availability of PUFAs to tissues. Finally, we discuss the consequences of altered desaturase activity in the context of PUFA intake, that is, gene-diet interactions and their clinical and public health implications.
Collapse
Affiliation(s)
- Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany; German Center for Diabetes Research, Neuherberg, Germany.
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rasha Noureldin M Saleh
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, UK; Clinical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Ruan GT, Gong YZ, Zhu LC, Gao F, Liao XW, Wang XK, Zhu GZ, Liao C, Wang S, Yan L, Xie HL, Zhou X, Liu JQ, Shao MN, Gan JL. The Perspective of Diagnostic and Prognostic Values of Lipoxygenases mRNA Expression in Colon Adenocarcinoma. Onco Targets Ther 2020; 13:9389-9405. [PMID: 33061426 PMCID: PMC7520158 DOI: 10.2147/ott.s251965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background This study was mainly to explore and study the potential application of lipoxygenases (ALOX) family genes in the diagnostic and prognostic values of colon adenocarcinoma (COAD). Methods Data sets related to the ALOX genes of COAD were obtained from The Cancer Genome Atlas and the University of California, Santa Cruz Xena browser. Then, the relevant biological information was downloaded from the public data platform. Finally, the bioinformatics technologies and clinical verification were employed to comprehensively analyze the potential values of ALOX genes. Results The Pearson correlation analysis indicated that there were correlations among ALOXE3, ALOX5, ALOX12, and ALOX12B. The diagnostic receiver operating characteristic (ROC) curves suggested that ALOXE3 and ALOX12 had significant diagnosis in COAD: ALOXE3; P<0.001, area under curve (AUC) 95%CI:=0.818 (0.773–0.862) and ALOX12; P<0.001, AUC 95%CI=0.774 (0.682–0.807). Besides, the verification study indicated that ALOX12 had a diagnostic value in COAD. Finally, our multivariate survival analysis and comprehensive prognosis of ALOX genes in COAD suggested that the ALOXE3 and ALOX12 were associated with COAD overall survival: ALOXE3; P=0.025, HR 95%CI=1.765 (1.074–2.901), ALOX12; P=0.046, HR 95%CI=1.680 (1.009–2.796), and the low expression of ALOXE3 and ALOX12 had a favorable prognosis of COAD (all P<0.05); on the contrary, the high regulation of them increased the risk of death. Conclusion In our study, we observed that the mRNA expressions of ALOX genes were associated with the diagnosis and prognosis of COAD. The results of the diagnostic analysis suggested that ALOX12 might have a diagnosis value in COAD. Besides, our comprehensive prognosis analysis indicated that ALOXE3 combined ALOX12 might serve as potential prognosis biomarkers for COAD.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Zhen Gong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Feng Gao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shuai Wang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling Yan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hai-Lun Xie
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun-Qi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Meng-Nan Shao
- Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia-Liang Gan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
17
|
Topi G, Satapathy SR, Dash P, Fred Mehrabi S, Ehrnström R, Olsson R, Lydrup ML, Sjölander A. Tumour-suppressive effect of oestrogen receptor β in colorectal cancer patients, colon cancer cells, and a zebrafish model. J Pathol 2020; 251:297-309. [PMID: 32333795 DOI: 10.1002/path.5453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022]
Abstract
Oestrogen receptor β (ERβ) has been suggested to have anti-proliferative and anti-tumour effects in breast and prostate cancer cells, but other studies have indicated its tumour-promoting effects. Understanding the complex effects of this receptor in different contexts requires further study. We reported that high ERβ expression is independently associated with improved prognosis in female colorectal cancer (CRC) patients. Herein, we investigated the possible anti-tumour effect of ERβ and its selective agonist. CRC patients with high ERβ expression had significantly higher levels of membrane-associated β-catenin, cysteinyl leukotriene receptor 2 (CysLT2 R), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which have anti-tumour effects, but lower levels of nuclear β-catenin, cysteinyl leukotriene receptor 1 (CysLT1 R), and cyclooxygenase-2 (COX-2), which have tumour-promoting effects. These interesting findings were further supported by two different publicly available CRC mRNA datasets that showed a significant positive correlation between ERβ expression and 15-PGDH and CysLT2 R expression and a negative correlation between ERβ expression and β-catenin, CysLT1 R, and COX-2 expression. We next evaluated ERβ expression in three different colon cancer mouse models; ERβ expression was negatively correlated with tumourigenesis. Furthermore, treatment with the ERβ-agonist ERB-041 reduced CysLT1 R, active β-catenin, and COX-2 levels but increased phospho-β-catenin, CysLT2 R, and 15-PGDH levels in HCT-116, Caco-2, and SW-480 colon cancer cells compared to vehicle-treated cells. Interestingly, ERB-041-treated cells showed significantly decreased migration, survival, and colonosphere formation and increased apoptotic activity, as indicated by increased CASPASE-3 and apoptotic blebs. Finally, patients with low ERβ expression had significantly more distant metastasis at the time of diagnosis than patients with high ERβ expression. Therefore, we studied the effects of ERB-041-treated colon cancer cells in a zebrafish xenograft model. We found significantly less distant metastasis of ERB-041-treated cells compared to vehicle-treated cells. These results further support ERβ's anti-tumour role in CRC and the possible use of its agonist in CRC patients. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Geriolda Topi
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Shakti Ranjan Satapathy
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Pujarini Dash
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Syrina Fred Mehrabi
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Roy Ehrnström
- Division of Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Roger Olsson
- The Chemical Biology and Therapeutics Division, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Marie-Louise Lydrup
- Division of Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Anita Sjölander
- Division of Cell Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
18
|
Hidalgo-Estévez AM, Stamatakis K, Jiménez-Martínez M, López-Pérez R, Fresno M. Cyclooxygenase 2-Regulated Genes an Alternative Avenue to the Development of New Therapeutic Drugs for Colorectal Cancer. Front Pharmacol 2020; 11:533. [PMID: 32410997 PMCID: PMC7201075 DOI: 10.3389/fphar.2020.00533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and recurrent types of cancer, with high mortality rates. Several clinical trials and meta-analyses have determined that the use of pharmacological inhibitors of cyclooxygenase 2 (COX-2), the enzyme that catalyses the rate-limiting step in the synthesis of prostaglandins (PG) from arachidonic acid, can reduce the incidence of CRC as well as the risk of recurrence of this disease, when used together with commonly used chemotherapeutic agents. These observations suggest that inhibition of COX-2 may be useful in the treatment of CRC, although the current drugs targeting COX-2 are not widely used since they increase the risk of health complications. To overcome this difficulty, a possibility is to identify genes regulated by COX-2 activity that could give an advantage to the cells to form tumors and/or metastasize. The modulation of those genes as effectors of COX-2 may cancel the beneficial effects of COX-2 in tumor transformation and metastasis. A review of the available databases and literature and our own data have identified some interesting molecules induced by prostaglandins or COX-2 that have been also described to play a role in colon cancer, being thus potential pharmacological targets in colon cancer. Among those mPGES-1, DUSP4, and 10, Programmed cell death 4, Trop2, and many from the TGFβ and p53 pathways have been identified as genes upregulated in response to COX-2 overexpression or PGs in colon carcinoma lines and overexpressed in colon tumor tissue. Here, we review the available evidence of the potential roles of those molecules in colon cancer in the context of PG/COX signaling pathways that could be critical mediators of some of the tumor growth and metastasis advantage induced by COX-2. At the end, this may allow defining new therapeutic targets/drugs against CRC that could act specifically against tumor cells and would be effective in the prevention and treatment of CRC, lacking the unwanted side effects of COX-2 pharmacological inhibitors, providing alternative approaches in colon cancer.
Collapse
Affiliation(s)
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Marta Jiménez-Martínez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo López-Pérez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
19
|
Mármol I, Castellnou P, Alvarez R, Gimeno MC, Rodríguez-Yoldi MJ, Cerrada E. Alkynyl Gold(I) complexes derived from 3-hydroxyflavones as multi-targeted drugs against colon cancer. Eur J Med Chem 2019; 183:111661. [PMID: 31546196 DOI: 10.1016/j.ejmech.2019.111661] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023]
Abstract
The design of multi-targeted drugs has gained considerable interest in the last decade thanks to their advantages in the treatment of different diseases, including cancer. The simultaneous inhibition of selected targets from cancerous cells to induce their death represents an attractive objective for the medicinal chemist in order to enhance the efficiency of chemotherapy. In the present work, several alkynyl gold(I) phosphane complexes derived from 3-hydroxyflavones active against three human cancer cell lines, colorectal adenocarcinoma Caco-2/TC7, breast adenocarcinoma MCF-7 and hepatocellular carcinoma HepG2, have been synthesized and characterized. Moreover, these compounds display high selective index values towards differentiated Caco-2 cells, which are considered as a model of non-cancerous cells. The antiproliferative effect of the most active complexes [Au(L2b)PPh3] (3b) and [Au(L2c)PTA] (4c) on Caco-2 cells, seems to be mediated by the inhibition of the enzyme cyclooxygenase-1/2 and alteration of the activities of the redox enzymes thioredoxin reductase and glutathione reductase. Both complexes triggered cell death by apoptosis, alterations in cell cycle progression and increased of ROS production. These results provide support for the suggestion that multi-targeting approach involving the interaction with cyclooxygenase-1/2 and the redox enzymes that increases ROS production, enhances cell death in vitro. All these results indicate that complexes [Au(L2b)PPh3] and [Au(L2c)PTA] are promising antiproliferative agents for further anticancer drug development.
Collapse
Affiliation(s)
- Inés Mármol
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009, Zaragoza, Spain; Departamento de Farmacología y Fisiología, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013, Zaragoza, Spain
| | - Pilar Castellnou
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009, Zaragoza, Spain
| | - Raquel Alvarez
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009, Zaragoza, Spain
| | - M Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013, Zaragoza, Spain.
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009, Zaragoza, Spain.
| |
Collapse
|
20
|
Montrose DC, Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:1-26. [PMID: 31451211 DOI: 10.1016/bs.ircmb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As compared to their normal counterparts, neoplastic cells exhibit a variety of metabolic changes that reflect not only genetic and epigenetic defects underlying malignant transformation, but also the nutritional and immunobiological conditions of the tumor microenvironment. Such alterations, including the so-called Warburg effect (an increase in glucose uptake largely feeding anabolic and antioxidant metabolism), have attracted considerable attention as potential targets for the development of novel anticancer therapeutics. However, very few drugs specifically conceived to target bioenergetic cancer metabolism are currently approved by regulatory agencies for use in humans. This reflects the elevated degree of heterogeneity and redundancy in the metabolic circuitries exploited by neoplastic cells from different tumors (even of the same type), as well as the resemblance of such metabolic pathways to those employed by highly proliferating normal cells. Here, we summarize the major metabolic alterations that accompany oncogenesis, the potential of targeting bioenergetic metabolism for cancer therapy, and the obstacles that still prevent the clinical translation of such a promising therapeutic paradigm.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
21
|
Huang Z, Xia L, Zhou X, Wei C, Mo Q. ALOX12 inhibition sensitizes breast cancer to chemotherapy via AMPK activation and inhibition of lipid synthesis. Biochem Biophys Res Commun 2019; 514:24-30. [PMID: 31014671 DOI: 10.1016/j.bbrc.2019.04.101] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
Abstract
Arachidonate lipoxygenase12 (Alox12) and its metabolites 12S-hydroxyeicosatetraenoic acid (12S-HETE) have been implicated in influencing tumor transformation and progression. In this study, we have systematically evaluated the expression, function and the downstream effectors of Alox12 in breast cancer using loss- and gain-of-function approaches. We demonstrated that both mRNA and protein levels of Alox12 were significantly increased in multiple breast cancer cell lines compared to normal breast cells. The upregulation of Alox12 expression was also observed in breast cancer tissues and their matched normal breast tissues obtained from patients. Functionally, we demonstrated that Alox12 overexpression was sufficient to stimulate growth in normal breast cells but not breast cancer cells. This also protects breast cancer cell from chemotherapy-induced growth arrest and apoptosis. In contrast, Alox12 depletion inhibited breast cancer growth and survival, and significantly enhanced the chemotherapeutic agents' efficacy. Mechanism studies showed that Alox12 depletion activated AMP-activated protein kinase (AMPK), leading to the inhibition of acetyl-CoA carboxylase1 (ACC1) enzyme activity and lipid synthesis. The recuse of the effects of Alox12 depletion using Alox12 metabolites 12S-HETE further confirmed that AMPK and its subsequent inhibition of ACC1 activity and lipid synthesis were the downstream signaling of Alox12 inhibition. Our findings highlighted the important role of Alox12 in breast cancer, particularly in response to chemotherapy. Our work also demonstrate that inhibiting Alox12 is a possible alternative therapeutic strategy to overcome chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Longjie Xia
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Zhou
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Changyuan Wei
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Qinguo Mo
- Department of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Wang W, Yang J, Edin ML, Wang Y, Luo Y, Wan D, Yang H, Song CQ, Xue W, Sanidad KZ, Song M, Bisbee HA, Bradbury JA, Nan G, Zhang J, Shih PAB, Lee KSS, Minter LM, Kim D, Xiao H, Liu JY, Hammock BD, Zeldin DC, Zhang G. Targeted Metabolomics Identifies the Cytochrome P450 Monooxygenase Eicosanoid Pathway as a Novel Therapeutic Target of Colon Tumorigenesis. Cancer Res 2019; 79:1822-1830. [PMID: 30803995 PMCID: PMC6467714 DOI: 10.1158/0008-5472.can-18-3221] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
Colon cancer is the third most common cancer and the second leading cause of cancer-related death in the United States, emphasizing the need for the discovery of new cellular targets. Using a metabolomics approach, we report here that epoxygenated fatty acids (EpFA), which are eicosanoid metabolites produced by cytochrome P450 (CYP) monooxygenases, were increased in both the plasma and colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. CYP monooxygenases were overexpressed in colon tumor tissues and colon cancer cells. Pharmacologic inhibition or genetic ablation of CYP monooxygenases suppressed AOM/DSS-induced colon tumorigenesis in vivo. In addition, treatment with 12,13-epoxyoctadecenoic acid (EpOME), which is a metabolite of CYP monooxygenase produced from linoleic acid, increased cytokine production and JNK phosphorylation in vitro and exacerbated AOM/DSS-induced colon tumorigenesis in vivo. Together, these results demonstrate that the previously unappreciated CYP monooxygenase pathway is upregulated in colon cancer, contributes to its pathogenesis, and could be therapeutically explored for preventing or treating colon cancer. SIGNIFICANCE: This study finds that the previously unappreciated CYP monooxygenase eicosanoid pathway is deregulated in colon cancer and contributes to colon tumorigenesis.
Collapse
Affiliation(s)
- Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yuxin Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Ying Luo
- Center for Nephrology and Metabolomics and Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Debin Wan
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
- Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, and Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Mingyue Song
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Heather A Bisbee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Jennifer A Bradbury
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Guanjun Nan
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Pei-An Betty Shih
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Lisa M Minter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Daeyoung Kim
- Department of Mathematics & Statistics, University of Massachusetts, Amherst, Massachusetts
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Jun-Yan Liu
- Center for Nephrology and Metabolomics and Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California.
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
23
|
Blanchard TG, Czinn SJ, Banerjee V, Sharda N, Bafford AC, Mubariz F, Morozov D, Passaniti A, Ahmed H, Banerjee A. Identification of Cross Talk between FoxM1 and RASSF1A as a Therapeutic Target of Colon Cancer. Cancers (Basel) 2019; 11:cancers11020199. [PMID: 30744076 PMCID: PMC6406751 DOI: 10.3390/cancers11020199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Metastatic colorectal cancer (mCRC) is characterized by the expression of cellular oncogenes, the loss of tumor suppressor gene function. Therefore, identifying integrated signaling between onco-suppressor genes may facilitate the development of effective therapy for mCRC. To investigate these pathways we utilized cell lines and patient derived organoid models for analysis of gene/protein expression, gene silencing, overexpression, and immunohistochemical analyses. An inverse relationship in expression of oncogenic FoxM1 and tumor suppressor RASSF1A was observed in various stages of CRC. This inverse correlation was also observed in mCRC cells lines (T84, Colo 205) treated with Akt inhibitor. Inhibition of FoxM1 expression in mCRC cells as well as in our ex vivo model resulted in increased RASSF1A expression. Reduced levels of RASSF1A expression were found in normal cells (RWPE-1, HBEpc, MCF10A, EC) stimulated with exogenous VEGF165. Downregulation of FoxM1 also coincided with increased YAP phosphorylation, indicative of tumor suppression. Conversely, downregulation of RASSF1A coincided with FoxM1 overexpression. These studies have identified for the first time an integrated signaling pathway between FoxM1 and RASSF1A in mCRC progression, which may facilitate the development of novel therapeutic options for advanced colon cancer therapy.
Collapse
Affiliation(s)
- Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Vivekjyoti Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Andrea C Bafford
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Fahad Mubariz
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Dennis Morozov
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Antonino Passaniti
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- The Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Biochemistry & Molecular Biology and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
24
|
Wang W, Sanidad KZ, Zhang G. Cytochrome P450 Eicosanoid Signaling Pathway in Colorectal Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:115-123. [DOI: 10.1007/978-3-030-21735-8_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|