1
|
Liao Y, Wen L, Zheng R, Shen Y, Ha TA, Lin M, Cheng R, Gao Y, Shang P. Novel Perspectives Focused on the Relationship Between Herpesvirus Encephalitis and Anti-GFAP-Antibody-Positive Astrocytopathy. Mol Neurobiol 2025; 62:6179-6194. [PMID: 39731639 DOI: 10.1007/s12035-024-04660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Virus encephalitis (VE), recognized as one of the common kinds of central nervous system (CNS) diseases after virus infection, has a surprising correlation with autoimmune encephalitis (AE) when autoimmune antibodies emerge in cerebrospinal fluid (CSF) or serum. Herpes simplex virus and Epstein-Barr virus are the most critical agents worldwide. By molecular mimicry, herpes viruses can invade the brain directly or indirectly. As a type-III intermediate filament, glial fibrillary acidic protein (GFAP) can be seen in both the central and peripheral nervous system and is regarded as a marker of astrocyte activation. Autoimmune glial fibrillary acidic protein astrocytopathy (GFAP-A), an autoimmune inflammatory CNS disorder with unearthed pathogenic mechanism yet, is correlated with CD8 + T cells and AQP4 astrocytopathy in TNF signaling. It brings a new concept of VE and GFAP coexisting, which has been documented in several case reports. Considering the infectious role of herpes viruses in CNS, EBV contributes to GFAP-IgG significantly and may result in GFAP-A. Coincidently, the existence of GFAP-IgG in patients with infection of herpes viruses has been documented as well. There exist multiple diagnoses of VE, ranging from traditional diagnostic criteria, such as CSF examination and electronic techniques, to a novel approach, according to case reports, the detection of GFAP-lgG. In terms of treatment, except for (IVIG), the explorations for new curative targets and optimal diagnostic time are of great necessity. In conclusion, emphasis given to the CNS autoimmune effect brought by the virus infection is highly worthy.
Collapse
Affiliation(s)
- Yuqiao Liao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linxin Wen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyi Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinan Shen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng-Ai Ha
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingkai Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Ruogu Cheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Gao
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pei Shang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
2
|
O’Shaughnessy KL, McMichael BD, Sasser AL, Bell KS, Riutta C, Ford JL, Stoker TE, Grindstaff RD, Pandiri AR, Gilbert ME. Thyroid hormone action controls multiple components of cell junctions at the ventricular zone in the newborn rat brain. Front Endocrinol (Lausanne) 2023; 14:1090081. [PMID: 36843608 PMCID: PMC9950412 DOI: 10.3389/fendo.2023.1090081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 02/12/2023] Open
Abstract
Thyroid hormone (TH) action controls brain development in a spatiotemporal manner. Previously, we demonstrated that perinatal hypothyroidism led to formation of a periventricular heterotopia in developing rats. This heterotopia occurs in the posterior telencephalon, and its formation was preceded by loss of radial glia cell polarity. As radial glia mediate cell migration and originate in a progenitor cell niche called the ventricular zone (VZ), we hypothesized that TH action may control cell signaling in this region. Here we addressed this hypothesis by employing laser capture microdissection and RNA-Seq to evaluate the VZ during a known period of TH sensitivity. Pregnant rats were exposed to a low dose of propylthiouracil (PTU, 0.0003%) through the drinking water during pregnancy and lactation. Dam and pup THs were quantified postnatally and RNA-Seq of the VZ performed in neonates. The PTU exposure resulted in a modest increase in maternal thyroid stimulating hormone and reduced thyroxine (T4). Exposed neonates exhibited hypothyroidism and T4 and triiodothyronine (T3) were also reduced in the telencephalon. RNA-Seq identified 358 differentially expressed genes in microdissected VZ cells of hypothyroid neonates as compared to controls (q-values ≤0.05). Pathway analyses showed processes like maintenance of the extracellular matrix and cytoskeleton, cell adhesion, and cell migration were significantly affected by hypothyroidism. Immunofluorescence also demonstrated that collagen IV, F-actin, radial glia, and adhesion proteins were reduced in the VZ. Immunohistochemistry of integrin αvβ3 and isoforms of both thyroid receptors (TRα/TRβ) showed highly overlapping expression patterns, including enrichment in the VZ. Taken together, our results show that TH action targets multiple components of cell junctions in the VZ, and this may be mediated by both genomic and nongenomic mechanisms. Surprisingly, this work also suggests that the blood-brain and blood-cerebrospinal fluid barriers may also be affected in hypothyroid newborns.
Collapse
Affiliation(s)
- Katherine L. O’Shaughnessy
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- *Correspondence: Katherine L. O’Shaughnessy,
| | - Benjamin D. McMichael
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Aubrey L. Sasser
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Kiersten S. Bell
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Cal Riutta
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
- Oak Ridge Institute for Science Education, Oak Ridge, TN, United States
| | - Jermaine L. Ford
- Chemical Characterization and Exposure Division, Center for Computational Toxicology and Exposure, United States Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Tammy E. Stoker
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Rachel D. Grindstaff
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| | - Arun R. Pandiri
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| | - Mary E. Gilbert
- United States Environmental Protection Agency, Public Health Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, United States
| |
Collapse
|
3
|
Seralini GE, Jungers G. Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicol Rep 2021; 8:1538-1557. [PMID: 34430217 PMCID: PMC8365328 DOI: 10.1016/j.toxrep.2021.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Endocrine disruption (ED) and endocrine disruptors (EDs) emerged as scientific concepts in 1995, after numerous chemical pollutants were found to be responsible for reproductive dysfunction. The World Health Organization established in the United Nations Environment Programme a list of materials, plasticizers, pesticides, and various pollutants synthesized from petrochemistry that impact not only reproduction, but also hormonal functions, directly or indirectly. Cells communicate via either chemical or electrical signals transmitted within the endocrine or nervous systems. To investigate whether hormone disruptors may also interfere directly or indirectly with the development or functioning of the nervous system through either a neuroendocrine or a more general mechanism, we examined the scientific literature to ascertain the effects of EDs on the nervous system, specifically in the categories of neurotoxicity, cognition, and behaviour. To date, we demonstrated that all of the 177 EDs identified internationally by WHO are known to have an impact on the nervous system. Furthermore, the precise mechanisms underlying this neurodisruption have also been established. It was previously believed that EDs primarily function via the thyroid. However, this study presents substantial evidence that approximately 80 % of EDs operate via other mechanisms. It thus outlines a novel concept: EDs are also neurodisruptors (NDs) and can be collectively termed endocrine and nervous disruptors (ENDs). Most of ENDs are derived from petroleum residues, and their various mechanisms of action are similar to those of "spam" in electronic communications technologies. Therefore, ENDs can be considered as an instance of spam in a biological context.
Collapse
Affiliation(s)
- Gilles-Eric Seralini
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| | - Gerald Jungers
- University of Caen Normandy, Network on Risks, Quality and Sustainable Development, Faculty of Sciences, Esplanade de la Paix, 14032, Caen, France
| |
Collapse
|
4
|
Talhada D, Santos CRA, Gonçalves I, Ruscher K. Thyroid Hormones in the Brain and Their Impact in Recovery Mechanisms After Stroke. Front Neurol 2019; 10:1103. [PMID: 31681160 PMCID: PMC6814074 DOI: 10.3389/fneur.2019.01103] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormones are of fundamental importance for brain development and essential factors to warrant brain functions throughout life. Their actions are mediated by binding to specific intracellular and membranous receptors regulating genomic and non-genomic mechanisms in neurons and populations of glial cells, respectively. Among others, mechanisms include the regulation of neuronal plasticity processes, stimulation of angiogenesis and neurogenesis as well modulating the dynamics of cytoskeletal elements and intracellular transport processes. These mechanisms overlap with those that have been identified to enhance recovery of lost neurological functions during the first weeks and months after ischemic stroke. Stimulation of thyroid hormone signaling in the postischemic brain might be a promising therapeutic strategy to foster endogenous mechanisms of repair. Several studies have pointed to a significant association between thyroid hormones and outcome after stroke. With this review, we will provide an overview on functions of thyroid hormones in the healthy brain and summarize their mechanisms of action in the developing and adult brain. Also, we compile the major thyroid-modulated molecular pathways in the pathophysiology of ischemic stroke that can enhance recovery, highlighting thyroid hormones as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Cecília Reis Alves Santos
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilha, Portugal
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
- LUBIN Lab-Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Cell-matrix tension contributes to hypoxia in astrocyte-seeded viscoelastic hydrogels composed of collagen and hyaluronan. Exp Cell Res 2019; 376:49-57. [PMID: 30658092 DOI: 10.1016/j.yexcr.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 11/22/2022]
Abstract
Astrocyte activation is crucial for wound contraction and glial scar formation following central nervous system injury, but the mechanism by which activation leads to astrocyte contractility and matrix reorganization in the central nervous system (CNS) is unknown. Current means to measure cell traction forces within three-dimensional scaffolds are limited to analyzing individual or small groups of cells, within extracellular matrices, whereas gap junctions and other cell-cell adhesions connect astrocytes to form a functional syncytium within the glial scar. Here, we measure the viscoelastic properties of cell-seeded hydrogels to yield insight into the collective contractility of astrocytes as they exert tension on the surrounding matrix and change its bulk mechanical properties. Our results indicate that incorporation of the CNS matrix component hyaluronan into a collagen hydrogel increases expression of the intermediate filament protein GFAP and results in a higher shear storage modulus of the cell/matrix composite, establishing the correlation between astrocyte activation and increased cell contractility. The effects of thrombin and blebbistatin, known mediators of actomyosin-mediated contraction, verify that cell-matrix tension dictates the hydrogel mechanical properties. Viability assays indicate that increased cell traction exacerbates cell death at the center of the scaffold, and message level analysis reveals that cells in the hyaluronan-containing matrix have a ~ 3-fold increase in HIF-1α gene expression. Overall, these findings suggest that astrocyte activation not only increases cell traction, but may also contribute to hypoxia near sites of central nervous system injury.
Collapse
|
6
|
Domingues JT, Wajima CS, Cesconetto PA, Parisotto EB, Winkelmann-Duarte E, Santos KD, Saleh N, Filippin-Monteiro FB, Razzera G, Mena Barreto Silva FR, Pessoa-Pureur R, Zamoner A. Experimentally-induced maternal hypothyroidism alters enzyme activities and the sensorimotor cortex of the offspring rats. Mol Cell Endocrinol 2018; 478:62-76. [PMID: 30031104 DOI: 10.1016/j.mce.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/17/2018] [Accepted: 07/17/2018] [Indexed: 01/19/2023]
Abstract
In this study, we used an experimental model of congenital hypothyroidism to show that deficient thyroid hormones (TH) disrupt different neurochemical, morphological and functional aspects in the cerebral cortex of 15-day-old offspring. Our results showing decreased glutamine synthetase (GS) activity and Ca2+ overload in the cerebral cortex of hypothyroid pups suggest misregulated glutamate metabolism associated with developmentally induced TH deficiency. The 14C-MeAIB accumulation indicates upregulated System A activity and glutamine uptake by neurons. Energy metabolism in hypothyroid cortical slices was preserved, as demonstrated by unaltered glucose metabolism. We also found upregulated acetylcholinesterase activity, depleting acetylcholine from the synaptic cleft, pointing to disrupted cholinergic system. Increased reactive oxygen species (ROS) generation, lipid peroxidation, glutathione (GSH) depletion, which were associated with glutathione peroxidase, superoxide dismutase and gamma-glutamyltransferase downregulation suggest redox imbalance. Disrupted astrocyte cytoskeleton was evidenced by downregulated and hyperphosphorylated glial fibrillary acidic protein (GFAP). Morphological and structural characterization of the sensorimotor cerebral cortex (SCC) showed unaltered thickness of the SCC. However, decreased size of neurons on the layers II & III and IV in the right SCC and increased NeuN positive neurons in specific SCC layers, suggest that they are differently affected by the low TH levels during neurodevelopment. Hypothyroid pups presented increased number of foot-faults in the gridwalk test indicating affected motor functions. Taken together, our results show that congenital hypothyroidism disrupts glutamatergic and cholinergic neurotransmission, Ca2+ equilibrium, redox balance, cytoskeleton integrity, morphological and functional aspects in the cerebral cortex of young rats.
Collapse
Affiliation(s)
- Juliana Tonietto Domingues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Carolinne Sayury Wajima
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Patricia Acordi Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Benedetti Parisotto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Elisa Winkelmann-Duarte
- Departamento de Ciências Morfológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Karin Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Najla Saleh
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fabíola Branco Filippin-Monteiro
- Departamento de Análises Clínicas, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Razzera
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Domingues JT, Cattani D, Cesconetto PA, Nascimento de Almeida BA, Pierozan P, Dos Santos K, Razzera G, Mena Barreto Silva FR, Pessoa-Pureur R, Zamoner A. Reverse T 3 interacts with αvβ3 integrin receptor and restores enzyme activities in the hippocampus of hypothyroid developing rats: Insight on signaling mechanisms. Mol Cell Endocrinol 2018; 470:281-294. [PMID: 29155306 DOI: 10.1016/j.mce.2017.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 01/18/2023]
Abstract
In the present study we provide evidence that 3,3',5'-triiodothyronine (reverse T3, rT3) restores neurochemical parameters induced by congenital hypothyroidism in rat hippocampus. Congenital hypothyroidism was induced by adding 0.05% propylthiouracil in the drinking water from gestation day 8 and continually up to lactation day 15. In the in vivo rT3 exposure, hypothyroid 12-day old pups were daily injected with rT3 (50 ng/kg body weight) or saline until day 14. In the ex vivo rT3 treatment, hippocampal slices from 15-day-old hypothyroid pups were incubated for 30 min with or without rT3 (1 nM). We found that ex vivo and/or in vivo exposure to rT3 failed in restoring the decreased 14C-glutamate uptake; however, restored the phosphorylation of glial fibrillary acidic protein (GFAP), 45Ca2+ influx, aspartate transaminase (AST), glutamine synthetase (GS) and gamma-glutamate transferase (GGT) activities, as well as glutathione (GSH) levels in hypothyroid hippocampus. In addition, rT3 improved 14C-2-deoxy-D-glucose uptake and lactate dehydrogenase (LDH) activity. Receptor agonists/antagonists (RGD peptide and AP-5), kinase inhibitors of p38MAPK, ERK1/2, CaMKII, PKA (SB239063, PD98059, KN93 and H89, respectively), L-type voltage-dependent calcium channel blocker (nifedipine) and intracellular calcium chelator (BAPTA-AM) were used to determine the mechanisms of the nongenomic rT3 action on GGT activity. Using molecular docking analysis, we found rT3 interaction with αvβ3 integrin receptors, nongenomically activating signaling pathways (PKA, CaMKII, p38MAPK) that restored GGT activity. We provide evidence that rT3 is an active TH metabolite and our results represent an important contribution to elucidate the nonclassical mechanism of action of this metabolite in hypothyroidism.
Collapse
Affiliation(s)
- Juliana Tonietto Domingues
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Daiane Cattani
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Patricia Acordi Cesconetto
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Karin Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Razzera
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
8
|
Morte B, Gil-Ibáñez P, Bernal J. Regulation of Gene Expression by Thyroid Hormone in Primary Astrocytes: Factors Influencing the Genomic Response. Endocrinology 2018; 159:2083-2092. [PMID: 29617759 DOI: 10.1210/en.2017-03084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/28/2018] [Indexed: 11/19/2022]
Abstract
Astrocytes mediate the action of thyroid hormone in the brain on other neural cells through the production of the active hormone triiodothyronine (T3) from its precursor thyroxine. T3 has also many effects on the astrocytes in vivo and in culture, but whether these actions are directly mediated by transcriptional regulation is not clear. In this work, we have analyzed the genomic response to T3 of cultured astrocytes isolated from the postnatal mouse cerebral cortex using RNA sequencing. Cultured astrocytes express relevant genes of thyroid hormone metabolism and action encoding type 2 deiodinase (Dio2), Mct8 transporter (Slc16a2), T3 receptors (Thra1 and Thrb), and nuclear corepressor (Ncor1) and coactivator (Ncoa1). T3 changed the expression of 668 genes (4.5% of expressed genes), of which 117 were responsive to T3 in the presence of cycloheximide. The Wnt and Notch pathways were downregulated at the posttranscriptional level. Comparison with the effect of T3 on astrocyte-enriched genes in mixed cerebrocortical cultures isolated from fetal cortex revealed that the response to T3 is influenced by the degree of astrocyte maturation and that, in agreement with its physiological effects, T3 promotes the transition between the fetal and adult patterns of gene expression.
Collapse
Affiliation(s)
- Beatriz Morte
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Gil-Ibáñez
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Bernal
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Hercbergs A, Mousa SA, Davis PJ. Nonthyroidal Illness Syndrome and Thyroid Hormone Actions at Integrin αvβ3. J Clin Endocrinol Metab 2018; 103:1291-1295. [PMID: 29409047 DOI: 10.1210/jc.2017-01939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT The nonthyroidal illness syndrome (NTIS) is a constellation of changes in circulating thyroid hormone levels that occur in euthyroid patients with acute or chronic systemic diseases. The changes that occur include a reduction in serum T3, an increase in serum rT3, and variable changes in circulating T4 levels. No consensus exists regarding therapeutic intervention for NTIS. METHODS We briefly review the published literature on the physiological actions of T4 and of rT3-hormones that until recently have been seen to have little or no bioactivity-and analyze the apparent significance of changes in circulating T4 and T3 encountered in the setting of NTIS in patients with cancer. In the case of T4, these actions may be initiated at a cancer or endothelial cell plasma membrane receptor on integrin αvβ3 or at the cytoskeleton. RESULTS This review examines possible therapeutic intervention in NTIS in patients with cancer in terms of T4 reduction and T3 support. Evidence also exists that rT3 may support cancer. CONCLUSIONS Prospective study is proposed of pharmacological reduction of normal or elevated T4 in cancer-associated NTIS. We also support investigation of normally circulating levels of T3 in such patients.
Collapse
Affiliation(s)
- Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
- Department of Medicine, Albany Medical College, Albany, New York
| |
Collapse
|
10
|
Abstract
Thyroid hormones (THs) have important contributions to the development of the mammalian brain, targeting its actions on both neurons and glial cells. Astrocytes, which constitute about half of the glial cells, characteristically undergo dramatic changes in their morphology during development and such changes become necessary for the proper development of the brain. Interestingly, a large number of studies have suggested that THs play a profound role in such morphological maturation of the astrocytes. This review discusses the present knowledge on the mechanisms by which THs elicit progressive differentiation and maturation of the astrocytes. As a prelude, information on astrocyte morphology during development and its regulations, the role of THs in the various functions of astrocyte shall be dealt with for a thorough understanding of the subject of this review.
Collapse
|
11
|
Calcium signaling mechanisms disrupt the cytoskeleton of primary astrocytes and neurons exposed to diphenylditelluride. Biochim Biophys Acta Gen Subj 2016; 1860:2510-2520. [PMID: 27475002 DOI: 10.1016/j.bbagen.2016.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/20/2016] [Accepted: 07/25/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Diphenylditelluride (PhTe)2 is a potent neurotoxin disrupting the homeostasis of the cytoskeleton. METHODS Cultured astrocytes and neurons were incubated with (PhTe)2, receptor antagonists and enzyme inhibitors followed by measurement of the incorporation of [32P]orthophosphate into intermediate filaments (IFs). RESULTS (PhTe)2 caused hyperphosphorylation of glial fibrillary acidic protein (GFAP), vimentin and neurofilament subunits (NFL, NFM and NFH) from primary astrocytes and neurons, respectively. These mechanisms were mediated by N-methyl-d-aspartate (NMDA) receptors, L-type voltage-dependent calcium channels (L-VDCCs) as well as metabotropic glutamate receptors upstream of phospholipase C (PLC). Upregulated Ca(2+) influx activated protein kinase A (PKA) and protein kinase C (PKC) in astrocytes causing hyperphosphorylation of GFAP and vimentin. Hyperphosphorylated (IF) together with RhoA-activated stress fiber formation, disrupted the cytoskeleton leading to altered cell morphology. In neurons, the high intracellular Ca(2+) levels activated the MAPKs, Erk and p38MAPK, beyond PKA and PKC, provoking hyperphosphorylation of NFM, NFH and NFL. CONCLUSIONS Our findings support that intracellular Ca(2+) is one of the crucial signals that modulate the action of (PhTe)2 in isolated cortical astrocytes and neurons modulating the response of the cytoskeleton against the insult. GENERAL SIGNIFICANCE Cytoskeletal misregulation is associated with neurodegeneration. This compound could be a valuable tool to induce molecular changes similar to those found in different pathologies of the brain.
Collapse
|
12
|
|
13
|
Min H, Dong J, Wang Y, Wang Y, Yu Y, Shan Z, Xi Q, Teng W, Chen J. Marginal Iodine Deficiency Affects Dendritic Spine Development by Disturbing the Function of Rac1 Signaling Pathway on Cytoskeleton. Mol Neurobiol 2016; 54:437-449. [DOI: 10.1007/s12035-015-9657-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/17/2015] [Indexed: 12/18/2022]
|
14
|
Aoki T, Tsunekawa K, Araki O, Ogiwara T, Nara M, Sumino H, Kimura T, Murakami M. Type 2 Iodothyronine Deiodinase Activity Is Required for Rapid Stimulation of PI3K by Thyroxine in Human Umbilical Vein Endothelial Cells. Endocrinology 2015; 156:4312-24. [PMID: 26284425 PMCID: PMC4606755 DOI: 10.1210/en.2014-1988] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 08/12/2015] [Indexed: 02/06/2023]
Abstract
Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration.
Collapse
Affiliation(s)
- Tomoyuki Aoki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Takayuki Ogiwara
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Makoto Nara
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiroyuki Sumino
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| |
Collapse
|
15
|
Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 2015; 38:364-74. [PMID: 25975510 PMCID: PMC4559283 DOI: 10.1016/j.tins.2015.04.003] [Citation(s) in RCA: 656] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Min H, Dong J, Wang Y, Wang Y, Teng W, Xi Q, Chen J. Maternal Hypothyroxinemia-Induced Neurodevelopmental Impairments in the Progeny. Mol Neurobiol 2015; 53:1613-1624. [PMID: 25666160 DOI: 10.1007/s12035-015-9101-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
Abstract
Maternal hypothyroxinemia can induce neurodevelopmental impairments in the developing fetus. We here review recent studies on the epidemiology and molecular mechanisms associated with this important public health issue. In 2011, the American Thyroid Association defined maternal hypothyroxinemia as low serum free thyroxine (FT4) levels (<5th or <10th percentile) existing in conjunction with normal serum free triiodothyronine (FT3) or thyroid stimulating hormone (TSH) levels during pregnancy. Compared to clinical or subclinical hypothyroidism, hypothyroxinemia is more commonly found in pregnant women. Hypothyroxinemia usually ensues in response to several factors, such as mild iodine deficiency, environmental endocrine disrupters, or certain thyroid diseases. Unequivocal evidence demonstrates that maternal hypothyroxinemia leads to negative effects on fetal brain development, increasing the risks for cognitive deficits and poor psychomotor development in resulting progeny. In support of this, rodent models provide direct evidence of neurodevelopmental damage induced by maternal hypothyroxinemia, including dendritic and axonal growth limitation, neural abnormal location, and synaptic function alteration. The neurodevelopmental impairments induced by hypothyroxinemia suggest an independent role of T4. Increasing evidence indicates that adequate thyroxine is required for the mothers in order to protect against the abnormal brain development in their progeny.
Collapse
Affiliation(s)
- Hui Min
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110013, People's Republic of China
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110013, People's Republic of China
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110013, People's Republic of China
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110013, People's Republic of China
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Weiping Teng
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Qi Xi
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110013, People's Republic of China.
- Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
17
|
Ocaranza P, Lammoglia JJ, Iñiguez G, Román R, Cassorla F. Effects of thyroid hormone on the GH signal transduction pathway. Growth Horm IGF Res 2014; 24:42-46. [PMID: 24439614 DOI: 10.1016/j.ghir.2014.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/30/2013] [Accepted: 01/06/2014] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIM The importance of thyroid hormone on growth and development in children is well recognized. In addition, linear growth is highly dependent on the response of peripheral tissues to growth hormone, a process known as GH sensitivity, but little is known about the possible effects of T4 on this process. METHODS We determined the effect of stimulation with recombinant human GH (rhGH; 200 ng/mL) alone or in combination with two different concentrations of T4 (250 nM and 500 nM for 24 h) on JAK2 and STAT5 activation in skin fibroblast cultures obtained from prepubertal boys with normal height. RESULTS JAK2 and STAT5 were activated under co-incubation with T4 (at both concentrations) and rhGH in the non-nuclear fraction of the fibroblasts. In addition, after 24h of co-incubation with rhGH and T4 (500 nM), we observed an increase in phospho-STAT5 in the nuclear fraction, when compared to GH and T4 stimulation alone. This effect was not observed when the fibroblasts were co-incubated with GH and the lower concentration of T4 (250 nM). CONCLUSION Combined stimulation with GH and T4 at a concentration of 500 nM increases synergistically nuclear phospho-STAT5 in skin fibroblasts, which may amplify tissue sensitivity to GH. These findings may help to explain the effect of T4 administration on growth velocity in some children with idiopathic short stature.
Collapse
Affiliation(s)
- Paula Ocaranza
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile.
| | - Juan Javier Lammoglia
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Germán Iñiguez
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Rossana Román
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Fernando Cassorla
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
18
|
Zanatta L, Goulart PB, Gonçalves R, Pierozan P, Winkelmann-Duarte EC, Woehl VM, Pessoa-Pureur R, Silva FRMB, Zamoner A. 1α,25-Dihydroxyvitamin D3 mechanism of action: Modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1708-19. [DOI: 10.1016/j.bbamcr.2012.06.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 12/22/2022]
|
19
|
Membrane-initiated actions of thyroid hormones on the male reproductive system. Life Sci 2011; 89:507-14. [PMID: 21557952 DOI: 10.1016/j.lfs.2011.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022]
Abstract
The presence of specific nuclear receptors to thyroid hormones, described in prepubertal Sertoli cells, implies the existence of an early and critical influence of these hormones on testis development. Although the mechanism of action thyroid hormones has been classically established as a genomic action regulating testis development, our research group has demonstrated that these hormones exert several effects in Sertoli cells lacking nuclear receptor activation. These findings led to the identification of non-classical thyroid hormone binding elements in the plasma membrane of testicular cells. Through binding to these sites, thyroid hormones could exert nongenomic effects, including those on ion fluxes at the plasma membrane, on signal transduction via kinase pathways, on amino acid accumulation, on modulation of extracellular nucleotide levels and on vimentin cytoskeleton. The evidence of the participation of different K(+), Ca(2+) and Cl(-) channels in the mechanism of action of thyroid hormones, characterizes the plasma membrane as an important microenvironment able to coordinate strategic signal transduction pathways in rat testis. The physiological responses of the Sertoli cells to hormones are dependent on continuous cross-talking of different signal transduction pathways. Apparently, the choice of the signaling pathways to be activated after the interaction of the hormone with cell surface binding sites is directly related to the physiological action to be accomplished. Yet, the enormous complexity of the nongenomic actions of thyroid hormones implies that different specific binding sites located on the plasma membrane or in the cytosol are believed to initiate specific cell responses.
Collapse
|
20
|
Zamoner A, Heimfarth L, Oliveira Loureiro S, Royer C, Mena Barreto Silva FR, Pessoa-Pureur R. Nongenomic actions of thyroxine modulate intermediate filament phosphorylation in cerebral cortex of rats. Neuroscience 2008; 156:640-52. [PMID: 18760334 DOI: 10.1016/j.neuroscience.2008.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
The developmental effects of thyroid hormones (TH) in mammalian brain are mainly mediated by nuclear receptors regulating gene expression. However, there are increasing evidences of nongenomic mechanisms of these hormones associated with kinase- and calcium-activated signaling pathways. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of TH on cytoskeletal phosphorylation in cerebral cortex of 15-day-old male rats. Results showed that L-thyroxine (L-T4) increased the intermediate filament (IF) phosphorylation independently of protein synthesis, without altering the total immunocontent of these proteins. Otherwise, neither 3,5,3'-triiodo-L-thyronine (L-T3) nor neurotransmitters (GABA, ATP, L-glutamate or epinephrine) acted on the IF-associated phosphorylation level. We also demonstrated that the mechanisms underlying the L-T4 effect on the cytoskeleton involve membrane initiated actions through Gi protein-coupled receptor. This evidence was reinforced by the inhibition of cyclic adenosine 5'-monophosphate (cAMP) levels. Moreover, we showed the participation of phospholipase C, protein kinase C, mitogen-activated protein kinase, calcium/calmodulin-dependent protein kinase II, intra- and extracellular Ca2+ mediating the effects of L-T4 on the cytoskeleton. Stimulation of 45Ca2+ uptake by L-T4 was also demonstrated. These findings demonstrate that L-T4 has important physiological roles modulating the cytoskeleton of neural cells during development.
Collapse
Affiliation(s)
- A Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|