1
|
Guo J, Zhu Y, Zhi J, Lou Q, Bai R, He Y. Antioxidants in anti-Alzheimer's disease drug discovery. Ageing Res Rev 2025; 107:102707. [PMID: 40021094 DOI: 10.1016/j.arr.2025.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Oxidative stress is widely recognized as a key contributor to the pathogenesis of Alzheimer's disease (AD). While not the sole factor, it is closely linked to critical pathological features, such as the formation of senile plaques and neurofibrillary tangles. The development of agents with antioxidant properties has become an area of growing interest in AD research. Between 2015 and 2024, several antioxidant-targeted drugs for AD progressed to clinical trials, with increasing attention to the evaluation of antioxidant properties during their development. Oxidative stress plays a pivotal role in linking various AD hypotheses, underscoring its importance in understanding the disease mechanisms. Despite this, comprehensive reviews addressing advancements in AD drug development from the perspective of antioxidant capacity remain limited, hindering the design of novel compounds. This review aims to explore the mechanistic relationship between oxidative stress and AD, summarize methods for assessing antioxidant capacity, and provide an overview of antioxidant compounds with anti-AD properties reported over the past decade. The goal is to offer strategies for identifying effective antioxidant-based therapies for AD and to deepen our understanding of the role of oxidative stress in AD pathology.
Collapse
Affiliation(s)
- Jianan Guo
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| | - Yalan Zhu
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Jia Zhi
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Qiuwen Lou
- Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China; Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China
| | - Renren Bai
- Department of Medicinal Chemistry, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Yiling He
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province 321000, PR China.
| |
Collapse
|
2
|
Zhou H, Yin X, Zhang G, Yang Z, Zhou R. Advancing Nanomaterial-Based Strategies for Alzheimer's Disease: A Perspective. JACS AU 2025; 5:1519-1537. [PMID: 40313833 PMCID: PMC12041962 DOI: 10.1021/jacsau.5c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 05/03/2025]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the most common cause of dementia. By 2050, the number of AD cases is projected to exceed 131 million, placing significant strain on healthcare systems and economies worldwide. The pathogenesis of AD is multifactorial, involving hypotheses/mechanisms, such as amyloid-β (Aβ) plaques, tau protein hyperphosphorylation, cholinergic neuron damage, oxidative stress, and inflammation. Despite extensive research, the complexity of these potentially entangled mechanisms has hindered the development of treatments that can reverse disease progression. Nanotechnology, leveraging the unique physical, electrical, magnetic, and optical properties of nanomaterials, has emerged as a promising approach for AD treatment. In this Perspective, we first outlined the major current pathogenic hypotheses of AD and then reviewed recent advances in nanomaterials in addressing these hypotheses. We have also discussed the challenges in translating nanomaterials into clinical applications and proposed future directions, particularly the development of multifunctional and multitarget nanomaterials, to enhance their therapeutic efficacy and clinical applicability in AD treatment.
Collapse
Affiliation(s)
- Hong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
- Department
of Medical Laboratory, School of Medicine, Shaoxing University, Shaoxing 312000, China
| | - Xiuhua Yin
- Center
of Translational Medicine and Clinical Laboratory, The Fourth Affiliated Hospital of Soochow University, Medical Center
of Soochow University, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Guanqiao Zhang
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zaixing Yang
- State
Key Laboratory of Radiation Medicine and Protection, School for Radiological
and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute
of Quantitative Biology, College of Life Sciences, College of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Gao T, Yan N, Pu Y, Zhang Z, Duan Z, Tang Z, Huang D, Chen Y, Yuan S, Yan X, Yuan M. Ginger leaf polyphenols mitigate β-amyloid toxicity via JNK/FOXO pathway activation in Caenorhabditis elegans. Food Funct 2025; 16:1072-1085. [PMID: 39829385 DOI: 10.1039/d4fo03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
β-Amyloid (Aβ) aggregation is the major pathological feature of Alzheimer's disease (AD), resulting in oxidative stress and further exacerbating Aβ aggregation. Ginger leaf polyphenols (GLP) have been found to possess antioxidant activity, evidencing their potential in addressing AD. GLP is mainly composed of 12 polyphenols, 8 organic acids, and 6 glycosides, of which polyphenols are predominantly composed of apigenin, kaempferol, and quercetin derivatives. Moreover, GLP alleviates reproductive toxicity, longevity toxicity, and neurotoxicity induced by Aβ via regulating the antioxidase system in Caenorhabditis elegans. As shown by the network pharmacology results, GLP might activate the JNK/Foxo signaling pathway to regulate the antioxidase system, which was evidenced by the up-regulation of gene expression levels of jnk-1, daf-16, sod-3, and hsp-16.2. Overall, GLP might be a potential antioxidant for combating AD.
Collapse
Affiliation(s)
- Tao Gao
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Ningning Yan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaying Pu
- Yaan People's Hospital, Yaan, 625099, China.
| | - Zhonghao Zhang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zhihao Duan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Daojian Huang
- Dazhu County Scientific and Technical Information Institute, Dazhou, 635100, China
| | - Yanger Chen
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | | | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
4
|
Myint SLL, Rodsiri R, Benya-Aphikul H, Rojanaratha T, Ritthidej G, Islamie R. Nasal Delivery of Asiatic Acid Ameliorates Scopolamine-Induced Memory Dysfunction in Mice. Adv Pharmacol Pharm Sci 2024; 2024:9941034. [PMID: 39286638 PMCID: PMC11405110 DOI: 10.1155/2024/9941034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Asiatic acid (AA) has previously shown its neuroprotective effects, but low oral bioavailability limits its penetration into the brain. This study aimed to investigate the effect of intranasal AA administration in mice with memory dysfunction induced by scopolamine. Mice received either intranasal AA (INAA), oral AA (POAA3 or POAA30), or donepezil, followed by scopolamine for 10 days. Morris water maze (MWM) was performed on days 0-5, 30 min after treatment. Locomotor activity was conducted on day 6 followed by brain collection. In MWM, INAA treatment had significantly reduced escape latency on days 2-4, while POAA3 decreased escape latency on day 3 and POAA30 and donepezil decreased escape latency on day 4. INAA inhibited acetylcholinesterase activity, increased catalase protein expression, and decreased malondialdehyde levels in the brain tissue. Therefore, intranasal administration of AA produced a rapid onset in the protection of learning and memory deficits induced by scopolamine through acetylcholinesterase inhibition and antioxidant effect.
Collapse
Affiliation(s)
- Su Lwin Lwin Myint
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Ratchanee Rodsiri
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Hattaya Benya-Aphikul
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit Chulalongkorn University, Bangkok 10330, Thailand
| | - Tissana Rojanaratha
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
| | - Garnpimol Ritthidej
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Queen Saovabha Memorial Institute The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ridho Islamie
- Department of Pharmacology and Physiology Faculty of Pharmaceutical Sciences Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical and Community Pharmacy Faculty of Pharmacy University of Surabaya, Surabaya 60293, Indonesia
| |
Collapse
|
5
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Gonçalves M, Vale N, Silva P. Neuroprotective Effects of Olive Oil: A Comprehensive Review of Antioxidant Properties. Antioxidants (Basel) 2024; 13:762. [PMID: 39061831 PMCID: PMC11274152 DOI: 10.3390/antiox13070762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Neurodegenerative diseases are a significant challenge to global healthcare, and oxidative stress plays a crucial role in their development. This paper presents a comprehensive analysis of the neuroprotective potential of olive oil, with a primary focus on its antioxidant properties. The chemical composition of olive oil, including key antioxidants, such as oleuropein, hydroxytyrosol, and oleocanthal, is systematically examined. The mechanisms by which these compounds provide neuroprotection, including counteracting oxidative damage and modulating neuroprotective pathways, are explored. The neuroprotective efficacy of olive oil is evaluated by synthesizing findings from various sources, including in vitro studies, animal models, and clinical trials. The integration of olive oil into dietary patterns, particularly its role in the Mediterranean diet, and its broader implications in neurodegenerative disease prevention are also discussed. The challenges in translating preclinical findings to clinical applications are acknowledged and future research directions are proposed to better understand the potential of olive oil in mitigating the risk of neurodegenerative conditions. This review highlights olive oil not only as a dietary component, but also as a promising candidate in preventive neurology, advocating for further investigation in the context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal;
- iNOVA Media Lab, ICNOVA-NOVA Institute of Communication, NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal
| |
Collapse
|
7
|
Hu Y, Hao R, Li D, Lu Y, Yu G. Experimental verification about treatment of Bu-Shen-Yi-Jing-Fang in Alzheimer's disease by the analysis of the feasible signaling pathway of network pharmacology. BMC Complement Med Ther 2024; 24:222. [PMID: 38851758 PMCID: PMC11162075 DOI: 10.1186/s12906-024-04527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
CONTEXT Bu-shen-yi-jing-fang (BSYJF) has been reported to reduce amyloid-β (Aβ)1-42 deposition in the brain of APP/PS1 mice and ameliorate cognitive function. However, its neuroprotective mechanism remains unclear. OBJECTIVE This study aims to investigate whether BSYJF exerts a protective effect on Aβ1-42-induced oxidative stress injury and explore its possible mechanism. MATERIALS AND METHODS The platform databases TCMSP, Swiss, TTD, DrugBank, and GeneCards were used to mine the targets of Alzheimer's disease (AD) and BSYJF. The platform databases STRING and Metascape were used to build the interaction network of the target protein, and Cytoscape software was used to analyze this network and screen out the key pathways. Aβ1-42-treated SKNMC cells were established to verify the mechanism of BSYJF and the key proteins. The downstream proteins and antioxidants as well as apoptosis and ferroptosis of the PI3K/AKT/Nrf2 signaling pathway were validated using an in vitro SKNMC cell model experiment. The expression levels of related proteins were detected using Western blotting. Flow cytometry and immunofluorescence staining were used to analyze apoptosis and ferroptosis. RESULTS Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis considered the key signal pathways, mainly involving the PI3K/AKT signaling pathway. Experimental validation demonstrated that BSYJF treatment markedly increased the activity of the PI3K/AKT pathway, which could exert anti-AD effects. CONCLUSIONS Our data provided compelling evidence that the protective effects of BSYJF might be associated with their regulation of the PI3K/AKT/Nrf2 signaling pathway. These studies offered a potential therapy for natural herbal medicine treatment of AD.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Renjuan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Deyu Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Yunwei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Guran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China.
| |
Collapse
|
8
|
Cannas C, Lostia G, Serra PA, Peana AT, Migheli R. Food and Food Waste Antioxidants: Could They Be a Potent Defence against Parkinson's Disease? Antioxidants (Basel) 2024; 13:645. [PMID: 38929084 PMCID: PMC11200518 DOI: 10.3390/antiox13060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidative stress, an imbalance between reactive oxygen species (ROS) and endogenous antioxidants, plays an important role in the development of neurodegenerative diseases, including Parkinson's. The human brain is vulnerable to oxidative stress because of the high rate of oxygen that it needs and the high levels of polyunsaturated fatty acids, which are substrates of lipid peroxidation. Natural antioxidants inhibit oxidation and reduce oxidative stress, preventing cancer, inflammation, and neurodegenerative disorders. Furthermore, in the literature, it is reported that antioxidants, due to their possible neuroprotective activity, may offer an interesting option for better symptom management, even Parkinson's disease (PD). Natural antioxidants are usually found in several foods, such as fruits, vegetables, meat, fish, and oil, and in food wastes, such as seeds, peels, leaves, and skin. They can help the system of endogenous antioxidants, protect or repair cellular components from oxidative stress, and even halt lipid, protein, and DNA damage to neurons. This review will examine the extent of knowledge from the last ten years, about the neuroprotective potential effect of natural antioxidants present in food and food by-products, in in vivo and in vitro PD models. Additionally, this study will demonstrate that the pool of dietary antioxidants may be an important tool in the prevention of PD and an opportunity for cost savings in the public health area.
Collapse
Affiliation(s)
| | | | | | | | - Rossana Migheli
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy (A.T.P.)
| |
Collapse
|
9
|
Tang J, Yousaf M, Wu YP, Li QQ, Xu YQ, Liu DM. Mechanisms and structure-activity relationships of polysaccharides in the intervention of Alzheimer's disease: A review. Int J Biol Macromol 2024; 254:127553. [PMID: 37865357 DOI: 10.1016/j.ijbiomac.2023.127553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease. Despite several decades of research, the development of effective treatments and responses for Alzheimer's disease remains elusive. The utilization of polysaccharides for Alzheimer's disease became more popular due to their beneficial characteristics, notably their multi-target activity and low toxicity. This review mainly focuses on the researches of recent 5 years in the regulation of AD by naturally derived polysaccharides, systematically lists the possible intervention pathways of polysaccharides from different mechanisms, and explores the structure-activity relationship between polysaccharide structural activities, so as to provide references for the intervention and treatment of AD by polysaccharides.
Collapse
Affiliation(s)
- Jun Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ya-Ping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Qin-Qin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Yi-Qian Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
10
|
Wang W, Jiang S, Zhao Y, Zhu G. Echinacoside: A promising active natural products and pharmacological agents. Pharmacol Res 2023; 197:106951. [PMID: 37804927 DOI: 10.1016/j.phrs.2023.106951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Echinacoside, a natural phenylethanoid glycoside, was discovered and isolated from the garden plant Echinacea angustifolia DC., belonging to the Compositae family, approximately sixty years ago. Extensive investigations have revealed that it possesses a wide array of pharmacologically beneficial activities for human health, particularly notable for its neuroprotective and anticancer activity. Several crucial concerns surfaced, encompassing the recognition of active metabolites that exhibited inadequate bioavailability in their prototype form, the establishment of precise molecular signal pathways or targets associated with the aforementioned effects of echinacoside, and the scarcity of dependable clinical trials. Hence, the question remains unanswered as to whether scientific research can effectively utilize this natural compound. To support future studies on this natural product, it is imperative to provide a systematic overview and insights into potential future prospects. The current review provides a comprehensive analysis of the existing knowledge on echinacoside, encompassing its wide distribution, structural diversity and metabolism, diverse therapeutic applications, and improvement of echinacoside bioavailability for its potential utilization.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujun Jiang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
11
|
Hu D, Mo X, Jihang L, Huang C, Xie H, Jin L. Novel diagnostic biomarkers of oxidative stress, immunological characterization and experimental validation in Alzheimer's disease. Aging (Albany NY) 2023; 15:10389-10406. [PMID: 37801482 PMCID: PMC10599743 DOI: 10.18632/aging.205084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/02/2023] [Indexed: 10/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition causing cognitive decline. Oxidative stress (OS) is believed to contribute to neuronal death and dysfunction in AD. We conducted a study to identify differentially expressed OS-related genes (DEOSGs) through bioinformatics analysis and experimental validation, aiming to develop a diagnostic model for AD. We analyzed the GSE33000 dataset to identify OS regulator expression profiles and create molecular clusters (C1 and C2) associated with immune cell infiltration using 310 AD samples. Cluster analysis revealed significant heterogeneity in immune infiltration. The 'WGCNA' algorithm identified cluster-specific and disease-specific differentially expressed genes (DGEs). Four machine learning models (random forest (RF), support vector machine (SVM), generalized linear model (GLM) and extreme gradient boosting (XGB)) were compared, with GLM performing the best (AUC = 0.812). Five DEOSGs (NFKBIA, PLCE1, CLIC1, SLCO4A1, TRAF3IP2) were identified based on the GLM model. AD subtype prediction accuracy was validated using nomograms and calibration curves. External datasets (GSE122063 and GSE106241) confirmed the expression levels and clinical significance of important genes. Experimental validation through RT-qPCR showed increased expression of NFKBIA, CLIC1, SLCO4A1, TRAF3IP2, and decreased expression of PLCE1 in the temporal cortex of AD mice. This study provides insights for AD research and treatment, particularly focusing on the five model-related DEOSGs.
Collapse
Affiliation(s)
- Di Hu
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaocong Mo
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Luo Jihang
- Department of Oncology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Infectious Diseases, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Cheng Huang
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hesong Xie
- Department of Neurology and Stroke Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ling Jin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Şirin S. Lactic Acid Bacteria-Derived Exopolysaccharides Mitigate the Oxidative Response via the NRF2-KEAP1 Pathway in PC12 Cells. Curr Issues Mol Biol 2023; 45:8071-8090. [PMID: 37886953 PMCID: PMC10605729 DOI: 10.3390/cimb45100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Parabiotics, including L-EPSs, have been administered to patients with neurodegenerative disorders. However, the antioxidant properties of L-EPSs against H2O2-induced oxidative stress in PC12 cells have not been studied. Herein, we aimed to investigate the antioxidant properties of the L-EPSs, their plausible targets, and their mechanism of action. We first determined the amount of L-EPSs in Lactobacillus delbrueckii ssp. bulgaricus B3 and Lactiplantibacillus plantarum GD2 using spectrophotometry. Afterwards, we studied their effects on TDH, TOS/TAS, antioxidant enzyme activities, and intracellular ROS level. Finally, we used qRT-PCR and ELISA to determine the effects of L-EPSs on the NRF2-KEAP1 pathway. According to our results, the L-EPS groups exhibited significantly higher total thiol activity, native thiol activity, disulfide activity, TAS levels, antioxidant enzyme levels, and gene expression levels (GCLC, HO-1, NRF2, and NQO1) than did the H2O2 group. Additionally, the L-EPS groups caused significant reductions in TOS levels and KEAP1 gene expression levels compared with those in the H2O2 group. Our results indicate that H2O2-induced oxidative stress was modified by L-EPSs. Thus, we revealed that L-EPSs, which regulate H2O2-induced oxidative stress, could have applications in the field of neurochemistry.
Collapse
Affiliation(s)
- Seda Şirin
- Department of Biology, Faculty of Science, Gazi University, Teknikokullar, 06500 Ankara, Turkey
| |
Collapse
|
13
|
Tian S, Ye T, Cheng X. The behavioral, pathological and therapeutic features of the triple transgenic Alzheimer's disease (3 × Tg-AD) mouse model strain. Exp Neurol 2023; 368:114505. [PMID: 37597764 DOI: 10.1016/j.expneurol.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
As a classic animal model of Alzheimer's disease (AD), the 3 × Tg-AD mouse not only recapitulates most of anatomical hallmarks observed in AD pathology but also displays cognitive alterations in memory and learning tasks. The 3 × Tg-AD can better show the two characteristics of AD, amyloid β (Aβ) and neurofibrillary tangles (NFT). Therefore, 3 × Tg-AD strain is widely used in AD pathogenesis research and new drug development of AD. In this paper, the construction methods, pathological changes, and treatment characteristics of 3 × Tg-AD mouse models commonly used in AD research are summarized and commented, hoping to provide reference for researchers to choose and establish experimental patterns.
Collapse
Affiliation(s)
- Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xiaorui Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
14
|
Feng J, Zheng Y, Guo M, Ares I, Martínez M, Lopez-Torres B, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Oxidative stress, the blood-brain barrier and neurodegenerative diseases: The critical beneficial role of dietary antioxidants. Acta Pharm Sin B 2023; 13:3988-4024. [PMID: 37799389 PMCID: PMC10547923 DOI: 10.1016/j.apsb.2023.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 10/07/2023] Open
Abstract
In recent years, growing awareness of the role of oxidative stress in brain health has prompted antioxidants, especially dietary antioxidants, to receive growing attention as possible treatments strategies for patients with neurodegenerative diseases (NDs). The most widely studied dietary antioxidants include active substances such as vitamins, carotenoids, flavonoids and polyphenols. Dietary antioxidants are found in usually consumed foods such as fresh fruits, vegetables, nuts and oils and are gaining popularity due to recently growing awareness of their potential for preventive and protective agents against NDs, as well as their abundant natural sources, generally non-toxic nature, and ease of long-term consumption. This review article examines the role of oxidative stress in the development of NDs, explores the 'two-sidedness' of the blood-brain barrier (BBB) as a protective barrier to the nervous system and an impeding barrier to the use of antioxidants as drug medicinal products and/or dietary antioxidants supplements for prevention and therapy and reviews the BBB permeability of common dietary antioxidant suplements and their potential efficacy in the prevention and treatment of NDs. Finally, current challenges and future directions for the prevention and treatment of NDs using dietary antioxidants are discussed, and useful information on the prevention and treatment of NDs is provided.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyue Guo
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| | - María-Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid (UCM), And Research Institute Hospital 12 de Octubre (i+12), Madrid 28040, Spain
| |
Collapse
|
15
|
Roy R, Mandal PK, Maroon JC. Oxidative Stress Occurs Prior to Amyloid Aβ Plaque Formation and Tau Phosphorylation in Alzheimer's Disease: Role of Glutathione and Metal Ions. ACS Chem Neurosci 2023; 14:2944-2954. [PMID: 37561556 PMCID: PMC10485904 DOI: 10.1021/acschemneuro.3c00486] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disorder that affects millions of people worldwide. Although the pathogenesis remains obscure, there are two dominant causal hypotheses. Since last three decades, amyloid beta (Aβ) deposition was the most prominent hypothesis, and the other is the tau hyperphosphorylation hypothesis. The confirmed diagnostic criterion for AD is the presence of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau and the deposition of toxic oligomeric Aβ in the autopsied brain. Consistent with these hypotheses, oxidative stress (OS) is garnering major attention in AD research. OS results from an imbalance of pro-oxidants and antioxidants. There is a considerable debate in the scientific community on which process occurs first, OS or plaque deposition/tau hyperphosphorylation. Based on recent scientific observations of various laboratories including ours along with critical analysis of those information, we believe that OS is the early event that leads to oligomeric Aβ deposition as well as dimerization of tau protein and its subsequent hyperphosphorylation. This OS hypothesis immediately suggests the consideration of novel therapeutic approaches to include antioxidants involving glutathione enrichment in the brain by supplementation with or without an iron chelator.
Collapse
Affiliation(s)
- Rimil
Guha Roy
- Neuroimaging
and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122052, India
| | - Pravat K Mandal
- Neuroimaging
and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon 122052, India
- Florey
Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, 3052 VIC, Australia
| | - Joseph C. Maroon
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
16
|
Gholami Mahmoudian Z, Ghanbari A, Rashidi I, Amiri I, Komaki A. Minocycline effects on memory and learning impairment in the beta-amyloid-induced Alzheimer's disease model in male rats using behavioral, biochemical, and histological methods. Eur J Pharmacol 2023:175784. [PMID: 37179042 DOI: 10.1016/j.ejphar.2023.175784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD), as an advanced neurodegenerative disease, is characterized by the everlasting impairment of memory, which is determined by hyperphosphorylation of intracellular Tau protein and accumulation of beta-amyloid (Aβ) in the extracellular space. Minocycline is an antioxidant with neuroprotective effects that can freely cross the blood-brain barrier (BBB). This study investigated the effect of minocycline on the changes in learning and memory functions, activities of blood serum antioxidant enzymes, neuronal loss, and the number of Aβ plaques after AD induced by Aβ in male rats. Healthy adult male Wistar rats (200-220g) were divided randomly into 11 groups (n = 10). The rats received minocycline (50 and 100 mg/kg/day; per os (P.O.)) before, after, and before/after AD induction for 30 days. At the end of the treatment course, behavioral performance was measured by standardized behavioral paradigms. Subsequently, brain samples and blood serum were collected for histological and biochemical analysis. The results indicated that Aβ injection impaired learning and memory performances in the Morris water maze test, reduced exploratory/locomotor activities in the open field test, and enhanced anxiety-like behavior in the elevated plus maze. The behavioral deficits were accompanied by hippocampal oxidative stress (decreased glutathione (GSH) peroxidase enzyme activity and increased malondialdehyde (MDA) levels in the brain (hippocampus) tissue), increased number of Aβ plaques, and neuronal loss in the hippocampus evidenced by Thioflavin S and H&E staining, respectively. Minocycline improved anxiety-like behavior, recovered Aβ-induced learning and memory deficits, increased GSH and decreased MDA levels, and prevented neuronal loss and the accumulation of Aβ plaques. Our results demonstrated that minocycline has neuroprotective effects and can reduce memory dysfunction, which are due to its antioxidant and anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Ali Ghanbari
- Department of Anatomical Science, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Iraj Rashidi
- Department of Anatomical Science, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
17
|
Larin ACR, Pfrunder MC, Mullen KM, Wiedbrauk S, Boase NR, Fairfull-Smith KE. Synergistic or antagonistic antioxidant combinations - a case study exploring flavonoid-nitroxide hybrids. Org Biomol Chem 2023; 21:1780-1792. [PMID: 36728689 DOI: 10.1039/d2ob02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurodegenerative diseases impose a considerable medical and public health burden on populations throughout the world. Oxidative stress, an imbalance in pro-oxidant/antioxidant homeostasis that leads to the generation of reactive oxygen species (ROS), has been implicated in the progression of a number of neurodegenerative diseases. The manipulation of ROS levels may represent a promising treatment option to slow down neurodegeneration, although adequate potency of treatments has not yet been achieved. Using a hybrid pharmacology approach, free radical nitroxide antioxidants were hybridised with a class of natural antioxidants, flavonoids, to form a potential multitargeted antioxidant. Modification of the Baker-Venkataraman reaction achieved the flavonoid-nitroxide hybrids (6-9) in modest yields. Antioxidant evaluation of the hybrids by cyclic voltammetry showed both redox functionalities were still active, with little influence on oxidation potential. Assessment of the peroxyl radical scavenging ability through an ORAC assay showed reduced antioxidant activity of the hybrids compared to their individual components. It was hypothesized that the presence of the phenol in the hybrids creates a more acidic medium which does not favour regeneration of the nitroxide from the corresponding oxammonium cation, disturbing the typical catalytic cycle of peroxyl radical scavenging by nitroxides. This work highlights the potential intricacies involved with drug hybridization as a strategy for new therapeutic development.
Collapse
Affiliation(s)
- Astrid C R Larin
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Michael C Pfrunder
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Kathleen M Mullen
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Sandra Wiedbrauk
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Nathan R Boase
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| | - Kathryn E Fairfull-Smith
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.,Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, 4001, Australia.
| |
Collapse
|
18
|
Ge K, Li Z, Wang A, Bai Z, Zhang X, Zheng X, Liu Z, Gao F. An NIR-Driven Upconversion/C 3N 4/CoP Photocatalyst for Efficient Hydrogen Production by Inhibiting Electron-Hole Pair Recombination for Alzheimer's Disease Therapy. ACS NANO 2023; 17:2222-2234. [PMID: 36688477 DOI: 10.1021/acsnano.2c08499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Redox imbalance and abnormal amyloid protein (Aβ) buildup are key factors in the etiology of Alzheimer's disease (AD). As an antioxidant, the hydrogen molecule (H2) has the potential to cure AD by specifically scavenging highly harmful reactive oxygen species (ROS) such as •OH. However, due to the low solubility of H2 (1.6 ppm), the traditional H2 administration pathway cannot easily achieve long-term and effective accumulation of H2 in the foci. Therefore, how to achieve the continuous release of H2 in situ is the key to improve the therapeutic effect on AD. As a corollary, we designed a rare earth ion doped g-C3N4 upconversion photocatalyst, which can respond to NIR and realize the continuous production of H2 by photocatalytic decomposition of H2O in biological tissue, which avoids the problem of the poor penetration of visible light. The introduction of CoP cocatalyst accelerates the separation and transfer of photogenerated electrons in g-C3N4, thus improving the photocatalytic activity of hydrogen evolution reaction. The morphology of the composite photocatalyst was shown by transmission electron microscopy, and the crystal structure was studied by X-ray diffractometry and Raman analysis. In addition, the ability of g-C3N4 to chelate metal ions and the photothermal properties of CoP can inhibit Aβ and reduce the deposition of Aβ in the brain. Efficient in situ hydrogen production therapy combined with multitarget synergism solves the problem of a poor therapeutic effect of a single target. In vivo studies have shown that UCNP@CoP@g-C3N4 can reduce Aβ deposition, improve memory impairment, and reduce neuroinflammation in AD mice.
Collapse
Affiliation(s)
- Kezhen Ge
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zheng Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ali Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zetai Bai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xing Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xin Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhao Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
19
|
Ramezani M, Meymand AZ, Khodagholi F, Kamsorkh HM, Asadi E, Noori M, Rahimian K, Shahrbabaki AS, Talebi A, Parsaiyan H, Shiravand S, Darbandi N. A role for flavonoids in the prevention and/or treatment of cognitive dysfunction, learning, and memory deficits: a review of preclinical and clinical studies. Nutr Neurosci 2023; 26:156-172. [PMID: 35152858 DOI: 10.1080/1028415x.2022.2028058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Natural food substances, due to high rates of antioxidants, antiviral and anti-inflammatory properties, have been proposed to have the potential for the prevention or treatment of cognitive deficits, learning and memory deficits and neuro inflammation. In particular, medicinal plants with rich amounts of beneficial components such as flavonoids are one of the most promising therapeutic candidates for the cognitive deficit and memory loss. Herein, we aimed to review the impact of medicinal plants with focus on flavonoids on cognitive dysfunction, learning and memory loss by considering their signaling pathways. METHODS We extracted 93 preclinical and clinical studies related to the effects of flavonoids on learning and memory and cognition from published papers between 2000 and 2021 in the MEDLINE/PubMed, Cochrane Library, SCOPUS, and Airiti Library databases. RESULTS In the preclinical studies, at least there seem to be two main neurological and biological processes in which flavonoids contribute to the improvement and/or prevention of learning, memory deficit and cognitive dysfunction: (1) Regulation of neurotransmission system and (2) Enhancement of neurogenesis, synaptic plasticity and neuronal survival. CONCLUSION Although useful effects of flavonoids on learning and memory in preclinical investigations have been approved, more clinical trials are required to find out whether flavonoids and/or other ingredients of plants have the potent to prevent or treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Matin Ramezani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Asadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Noori
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Kimia Rahimian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aisa Talebi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Parsaiyan
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Shiravand
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Darbandi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
20
|
Lewis JE, Reginald McDaniel H, Woolger JM, Khan SA. The Characterization of the Th1/Th2 Ratio in Moderate-Severe Alzheimer's Disease Patients and Its Response to an Aloe Polymannose-Based Dietary Supplement. J Alzheimers Dis 2023; 96:1723-1737. [PMID: 38007658 DOI: 10.3233/jad-230659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a leading killer of Americans, imparting a tremendous societal toll. Relationships between immune function and inflammation with cognition are well-established in AD, but the Th1/Th2 ratio of immune function is unknown. Describing the Th1/Th2 ratio and its relationship with cognition may shed light on the disease's clinical context. How the Th1/Th2 ratio responds to dietary supplementation is another unknown question in this population. OBJECTIVE The objectives of the study were to: 1) characterize the Th1/Th2 ratio according to IL-2/IL-10, IFN-γ/IL-10, IL-2/IL-4, IFN-γ/IL-4, IL-2/TNF-α, and IFN-γ/TNF-α in subjects with moderate-to-severe AD and in comparison to healthy adults; 2) investigate the effect of an aloe polymannose multinutrient complex (APMC) dietary supplement on the Th1/Th2 ratios over 12 months; and 3) compare the changes in the Th1/Th2 ratios with the changes in cognition from baseline to 12 months. METHODS Subjects consumed 2.5 g of the APMC four times per day for 12 months, and they were assessed on cognition and cytokines at baseline and 12 months. RESULTS The Th1/Th2 ratios in AD patients were significantly higher than the healthy controls, and five of the six ratios decreased from baseline to 12 months follow-up (other than IL-2/TNF-α). Several significant relationships were noted between the changes in Th1/Th2 ratios with cognitive assessments. CONCLUSIONS Our results showed an overall rebalancing of the Th1/Th2 ratio in response to APMC, these changes were related to improved cognition in subjects with moderate-to-severe AD, and the APMC supplement was safely tolerated.
Collapse
Affiliation(s)
- John E Lewis
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Judi M Woolger
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sher Ali Khan
- Department of Family and Community Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
21
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
22
|
Bai R, Guo J, Ye XY, Xie Y, Xie T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev 2022; 77:101619. [PMID: 35395415 DOI: 10.1016/j.arr.2022.101619] [Citation(s) in RCA: 317] [Impact Index Per Article: 105.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/21/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
Abstract
As the number of patients with Alzheimer's disease (AD) increases, it brings great suffering to their families and causes a heavy socioeconomic burden to society. A vast amount of funds and a mass of research have been devoted to elucidating the pathology of AD. However, the main pathogenesis is still elusive, and its mechanism is not completely clear. Research on the mechanisms of AD mainly focuses on the amyloid cascade, tau protein, neuroinflammation, metal ions, and oxidative stress hypotheses. Oxidative stress is as a bridge that connects the different hypotheses and mechanisms of AD. It is a process that causes neuronal damage and occurs in various pathways. Oxidative stress plays a critical role in AD and can even be considered a crucial central factor in the pathogenesis of AD. Previous reviews have also summarized the role of oxidative stress in AD, but these mainly review a specific signaling pathway. Taking oxidative stress as the central point, this review comprehensively expands on the roles of oxidative stress that are involved in the pathogenesis of AD. The vivid and easy-to-understand figures systematically clarify the connected roles of oxidative stress in AD and allow readers to further understand oxidative stress and AD.
Collapse
Affiliation(s)
- Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Jianan Guo
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
23
|
Ge K, Mu Y, Liu M, Bai Z, Liu Z, Geng D, Gao F. Gold Nanorods with Spatial Separation of CeO 2 Deposition for Plasmonic-Enhanced Antioxidant Stress and Photothermal Therapy of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3662-3674. [PMID: 35023712 DOI: 10.1021/acsami.1c17861] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Activities of catalase (CAT) and superoxide dismutase (SOD) of ceria nanoparticles (CeO2 NPs) provide the possibility for their application in nervous system oxidative stress diseases including Alzheimer's disease (AD). The addition of hot electrons produced by a plasma photothermal effect can expand the photocatalytic activity of CeO2 to the near-infrared region (NIR), significantly improving its redox performance. Therefore, we coated both ends of gold nanorods (Au NRs) with CeO2 NPs, and photocatalysis and photothermal therapy in the NIR are introduced into the treatment of AD. Meanwhile, the spatially separate structure enhances the catalytic performance and photothermal conversion efficiency. In addition, the photothermal effect significantly improves the permeability of the blood-brain barrier (BBB) and overcomes the shortcomings of traditional anti-AD drugs. To further improve the therapeutic efficiency, Aβ-targeted inhibitory peptides were modified on the middle surface of gold nanorods to synthesize KLVFF@Au-CeO2 (K-CAC) nanocomposites. We have verified their biocompatibility and therapeutic effectiveness at multiple levels in vitro and in vivo, which have a profound impact on the research and clinical transformation of nanotechnology in AD therapy.
Collapse
Affiliation(s)
- Kezhen Ge
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yingfeng Mu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Miaoyan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zetai Bai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhao Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Deqin Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
24
|
Roh J, Subramanian S, Weinreb NJ, Kartha RV. Gaucher disease – more than just a rare lipid storage disease. J Mol Med (Berl) 2022; 100:499-518. [DOI: 10.1007/s00109-021-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
|
25
|
Singh B, Singh H, Singh B, Kumar N, Rajput A, Sidhu D, Kaur A, Arora S, Kaur S. A comprehensive review on medicinal herbs and novel formulations for the prevention of Alzheimer's disease. Curr Drug Deliv 2021; 19:212-228. [PMID: 34779370 DOI: 10.2174/1567201818666211015152733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases reported in the aging population across the globe. About 46.8 million people are reported to have dementia, and AD is mainly responsible for dementia in aged people. Alzheimer's disease (AD) is thought to occur due to the accumulation of β-amyloid (Aβ) in the neocortex portion of the brain, nitric oxide mediated dysfunctioning of blood-brain barrier, reduced activity of serine racemase enzyme, cell cycle disturbances, damage of N-methyl-D-aspartate (NMDA) receptors and glutamatergic neurotransmission. Modern treatment methods target the pathways responsible for the disease. To date, solely symptomatic treatments exist for this disease, all making an attempt to counterbalance the neurotransmitter disturbance. Treatments able to prevent or at least effectively modifying the course of AD, referred to as 'disease-modifying' drugs, are still under extensive research. Effective treatments entail a better indulgence of the herbal bioactives by novel drug delivery systems. The herbal bioactive administered by novel drug delivery systems have proved beneficial in treating this disease. This review provides detailed information about the role of medicinal plants and their formulations in treating Alzheimer disease which will be highly beneficial for the researchers working in this area.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Hasandeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Navkaran Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Ankita Rajput
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Disha Sidhu
- Department Pharmaceutical Sciences, Guru Nanak Dev University, Grand Trunk Road, Off, NH 1 . India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar. India
| | - Sarabjit Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar. India
| |
Collapse
|
26
|
Mountaki C, Dafnis I, Panagopoulou EA, Vasilakopoulou PB, Karvelas M, Chiou A, Karathanos VT, Chroni A. Mechanistic insight into the capacity of natural polar phenolic compounds to abolish Alzheimer's disease-associated pathogenic effects of apoE4 forms. Free Radic Biol Med 2021; 171:284-301. [PMID: 34019932 DOI: 10.1016/j.freeradbiomed.2021.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Polar phenols found in plant foods have been suggested to act protectively against pathogenic processes underlying Alzheimer's disease (AD), such as oxidative stress. The major risk factor for AD is apolipoprotein E4 (apoE4) and apoE4 forms can affect AD-related processes. It was shown previously that the hereditary apoE4 mutant apoE4[L28P], as well as the apoE4 fragment apoE4-165, induce neuronal oxidative stress. The effect of polar phenols on AD-related pathogenic functions of apoE4 forms is largely unexplored. The aim was to examine the effect of Corinthian currant polar phenolic extract and specific polar phenols resveratrol, quercetin, kaempferol and epigallocatechin gallate on AD-related functions of apoE4 forms. The polar phenolic extract and the individual compounds restored the viability of human neuroblastoma SK-N-SH cells in the presence of lipoprotein-associated apoE4[L28P] and prevented changes in cellular redox status. Furthermore, resveratrol, quercetin, kaempferol and epigallocatechin gallate prevented redox status changes induced by Aβ42 uptake in SK-N-SH cells treated with lipid-free apoE4[L28P] or apoE4-165. Investigation of the molecular mechanism of action of these polar phenols showed that resveratrol prevented cellular Aβ42 uptake via changes in cell membrane fluidity. Interestingly, kaempferol prevented cellular Aβ42 uptake by apoE4[L28P], but not by apoE4-165, due to a modulating effect on apoE4[L28P] secondary structure and stability. The action of quercetin and epigallocatechin gallate could be attributed to free radical-scavenging or other protective activity. Overall, it is shown for the first time that natural compounds could modify the structure of apoE4 forms and ameliorate AD-related pathogenic effects of apoE4 forms.
Collapse
Affiliation(s)
- Christina Mountaki
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece
| | - Eirini A Panagopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Paraskevi B Vasilakopoulou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Michalis Karvelas
- Research and Development Department, Agricultural Cooperatives' Union of Aeghion, Aeghion, Greece
| | - Antonia Chiou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Dietetics and Nutrition, Harokopio University, Kallithea, Greece; Research and Development Department, Agricultural Cooperatives' Union of Aeghion, Aeghion, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
27
|
Seyed MA, Ayesha S, Azmi N, Al-Rabae FM, Al-Alawy AI, Al-Zahrani OR, Hawsawi Y. The neuroprotective attribution of Ocimum basilicum: a review on the prevention and management of neurodegenerative disorders. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00295-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Bioactive principles from various natural resources including medicinal herbs have always played a crucial role in healthcare settings and increasingly became key players in drug discovery and development for many biopharmaceutical applications. Additionally, natural products (NPs) have immense arrangement of distinctive chemical structures with diverse functional groups that motivated numerous investigators including synthetic chemists to discover new therapeutic entities. Numerous pre-clinical investigations involving the animal models have evident the usefulness of these NPs against various human diseases including neurodegenerative disorders (NDs).
Main text
Ocimum basilicum Linn (O. basilicum L.), also known as sweet basil, is well practiced in traditional healthcare systems and has been used to treat various human illnesses, which include malaria, skin disease, diarrhea, bronchitis, dysentery, arthritis, eye diseases, and insect bites and emphasize the significance of the ethno-botanical approach as a potential source of novel drug leads With the growing interest in advanced techniques, herbal medicine and medicinal plants explorations are still considered to be a novel resource for new pharmacotherapeutic discovery and development. O. basilicum L and its bioactive principles including apigenin, eugenol, myretenal, β-sitosterol, luteolin, rosmarinic acid, carnosic acid, essential oil (EO)-rich phenolic compounds, and others like anthocyanins and flavones could be of therapeutic values in NDs by exhibiting their neuro-protective efficacy on various signaling pathways. The present comprehensive review collected various related information using the following searching engines such as PubMed, Science Direct, Google Scholar, etc. and focused mainly the English written documents. The search period comprised of last two decades until present.
Conclusion
Although these efficacious plant genera of prime importance and has potential medical and socioeconomic importance, yet the pivotal evidence for its neuroprotective potential in novel clinical trials remains lacking. However, with the available wealth of obtainable literature on this medicinal plant, which supports this review and concludes that O. basilicum L may function as a promising therapeutics for the treatment of NDs.
Collapse
|
28
|
Sirin S, Aslim B. Protective effect of exopolysaccharides from lactic acid bacteria against amyloid beta1-42induced oxidative stress in SH-SY5Y cells: Involvement of the AKT, MAPK, and NF-κB signaling pathway. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Fanet H, Tournissac M, Leclerc M, Caron V, Tremblay C, Vancassel S, Calon F. Tetrahydrobiopterin Improves Recognition Memory in the Triple-Transgenic Mouse Model of Alzheimer's Disease, Without Altering Amyloid-β and Tau Pathologies. J Alzheimers Dis 2021; 79:709-727. [PMID: 33337360 PMCID: PMC7902975 DOI: 10.3233/jad-200637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a multifactorial disease, implying that multi-target treatments may be necessary to effectively cure AD. Tetrahydrobiopterin (BH4) is an enzymatic cofactor required for the synthesis of monoamines and nitric oxide that also exerts antioxidant and anti-inflammatory effects. Despite its crucial role in the CNS, the potential of BH4 as a treatment in AD has never been scrutinized. OBJECTIVE Here, we investigated whether BH4 peripheral administration improves cognitive symptoms and AD neuropathology in the triple-transgenic mouse model of AD (3xTg-AD), a model of age-related tau and amyloid-β (Aβ) neuropathologies associated with behavior impairment. METHODS Non-transgenic (NonTg) and 3xTg-AD mice were subjected to a control diet (5% fat - CD) or to a high-fat diet (35% fat - HFD) from 6 to 13 months to exacerbate metabolic disorders. Then, mice received either BH4 (15 mg/kg/day, i.p.) or vehicle for ten consecutive days. RESULTS This sub-chronic administration of BH4 rescued memory impairment in 13-month-old 3xTg-AD mice, as determined using the novel object recognition test. Moreover, the HFD-induced glucose intolerance was completely reversed by the BH4 treatment in 3xTg-AD mice. However, the HFD or BH4 treatment had no significant impact on Aβ and tau neuropathologies. CONCLUSION Overall, our data suggest a potential benefit from BH4 administration against AD cognitive and metabolic deficits accentuated by HFD consumption in 3xTg-AD mice, without altering classical neuropathology. Therefore, BH4 should be considered as a candidate for drug repurposing, at least in subtypes of cognitively impaired patients experiencing metabolic disorders.
Collapse
Affiliation(s)
- Hortense Fanet
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
- International Associated Laboratory OptiNutriBrain, Pavillon des Services, Québec, Canada
| | - Marine Tournissac
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- International Associated Laboratory OptiNutriBrain, Pavillon des Services, Québec, Canada
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
| | - Vicky Caron
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
| | - Sylvie Vancassel
- INRA, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
- Université de Bordeaux, Nutrition et Neurobiologie Intégrée, UMR, Bordeaux, France
- International Associated Laboratory OptiNutriBrain, Pavillon des Services, Québec, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- International Associated Laboratory OptiNutriBrain, Pavillon des Services, Québec, Canada
| |
Collapse
|
30
|
Wang Y, Wang Y, Bharti V, Zhou H, Hoi V, Tan H, Wu Z, Nagakannan P, Eftekharpour E, Wang JF. Upregulation of Thioredoxin-Interacting Protein in Brain of Amyloid-β Protein Precursor/Presenilin 1 Transgenic Mice and Amyloid-β Treated Neuronal Cells. J Alzheimers Dis 2020; 72:139-150. [PMID: 31561358 DOI: 10.3233/jad-190223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been hypothesized to play a role in the pathophysiology of Alzheimer's disease (AD). Previously, we found that total nitrosylated protein levels were increased in the brain of amyloid-β protein precursor (AβPP) and presenilin 1 (PS1) double transgenic mice, an animal model for AD, suggesting that cysteine oxidative protein modification may contribute to this disease. Thioredoxin (Trx) is a major oxidoreductase that can reverse cysteine oxidative modifications such as sulfenylation and nitrosylation, and inhibit oxidative stress. Thioredoxin-interacting protein (Txnip) is an endogenous Trx inhibitor. To understand the involvement of Trx and Txnip in AD development, we investigated Trx and Txnip in the brain of AβPP/PS1 mice. Using immunoblotting analysis, we found that although Trx protein levels were not changed, Txnip protein levels were significantly increased in hippocampus and frontal cortex of 9- and 12-month-old AβPP/PS1 mice when compared to wild-type mice. Txnip protein levels were also increased by amyloid-β treatment in primary cultured mouse cerebral cortical neurons and HT22 mouse hippocampal cells. Using biotin switch and dimedone conjugation methods, we found that amyloid-β treatment increased protein nitrosylation and sulfenylation in HT22 cells. We also found that downregulation of Txnip, using CRISPR/Cas9 method in HT22 cells, attenuated amyloid-β-induced protein nitrosylation and sulfenylation. Our findings suggest that amyloid-β may increase Txnip levels, subsequently inhibiting Trx reducing capability and enhancing protein cysteine oxidative modification. Our findings also indicate that Txnip may be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Veni Bharti
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Hong Zhou
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Vanessa Hoi
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Hua Tan
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Zijian Wu
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Jun-Feng Wang
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada.,Kleysen Institute for Advanced Medicine, Health Sciences Centre, Winnipeg, Canada.,Department of Psychiatry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
31
|
Idebenone protects mitochondrial function against amyloid beta toxicity in primary cultured cortical neurons. Neuroreport 2020; 31:1104-1110. [PMID: 32925607 DOI: 10.1097/wnr.0000000000001526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction has been repeatedly identified to be hallmark brain pathology underlying neuronal stress in Alzheimer's disease. As a result, mitochondrial medicine for the treatment of Alzheimer's disease has received increasing recognition. Idebenone (IDB) is a synthetic analog of Coenzyme Q10 (CoQ10) carrying antioxidizing property. Previous clinical trials reported a conflicting disease-modifying effect of IDB on Alzheimer's disease patients. However, whether IDB is preventive against amyloid beta (Aβ)-induced mitochondrial and neuronal stress has not been comprehensively investigated. In this study, we adopted an in-vitro setting by using primary cultured cortical neurons for the test. Neurons were pretreated with IDB prior to Aβ exposure. IDB pretreatment significant prevented neurons from Aβ-induced collapse of mitochondrial bioenergetics and perturbations of the protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling. Importantly, the treatment of IDB alone demonstrated an indiscernible side effect on the measured mitochondrial function, PKA/CREB signaling and neuronal viability. Therefore, our findings in together show a preventive effect of IDB against Aβ-mediated mitochondrial and neuronal injury. The use of IDB may hold potential to reduce the risk of Alzheimer's disease as a preventive strategy.
Collapse
|
32
|
Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox-Responsive Nanobiomaterials-Based Therapeutics for Neurodegenerative Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907308. [PMID: 32940007 DOI: 10.1002/smll.201907308] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Redox regulation has recently been proposed as a critical intracellular mechanism affecting cell survival, proliferation, and differentiation. Redox homeostasis has also been implicated in a variety of degenerative neurological disorders such as Parkinson's and Alzheimer's disease. In fact, it is hypothesized that markers of oxidative stress precede pathologic lesions in Alzheimer's disease and other neurodegenerative diseases. Several therapeutic approaches have been suggested so far to improve the endogenous defense against oxidative stress and its harmful effects. Among such approaches, the use of artificial antioxidant systems has gained increased popularity as an effective strategy. Nanoscale drug delivery systems loaded with enzymes, bioinspired catalytic nanoparticles and other nanomaterials have emerged as promising candidates. The development of degradable hydrogels scaffolds with antioxidant effects could also enable scientists to positively influence cell fate. This current review summarizes nanobiomaterial-based approaches for redox regulation and their potential applications as central nervous system neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- UCL Centre for Nerve Engineering, University College London, London, WC1E 6BT, UK
| | - Despoina Kesidou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Francisco Moura
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Eric Felli
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| |
Collapse
|
33
|
Aging Alters Olfactory Bulb Network Oscillations and Connectivity: Relevance for Aging-Related Neurodegeneration Studies. Neural Plast 2020; 2020:1703969. [PMID: 32774353 PMCID: PMC7396091 DOI: 10.1155/2020/1703969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 11/18/2022] Open
Abstract
The aging process eventually cause a breakdown in critical synaptic plasticity and connectivity leading to deficits in memory function. The olfactory bulb (OB) and the hippocampus, both regions of the brain considered critical for the processing of odors and spatial memory, are commonly affected by aging. Using an aged wild-type C57B/6 mouse model, we sought to define the effects of aging on hippocampal plasticity and the integrity of cortical circuits. Specifically, we measured the long-term potentiation of high-frequency stimulation (HFS-LTP) at the Shaffer-Collateral CA1 pyramidal synapses. Next, local field potential (LFP) spectra, phase-amplitude theta-gamma coupling (PAC), and connectivity through coherence were assessed in the olfactory bulb, frontal and entorhinal cortices, CA1, and amygdala circuits. The OB of aged mice showed a significant increase in the number of histone H2AX-positive neurons, a marker of DNA damage. While the input-output relationship measure of basal synaptic activity was found not to differ between young and aged mice, a pronounced decline in the slope of field excitatory postsynaptic potential (fEPSP) and the population spike amplitude (PSA) were found in aged mice. Furthermore, aging was accompanied by deficits in gamma network oscillations, a shift to slow oscillations, reduced coherence and theta-gamma PAC in the OB circuit. Thus, while the basal synaptic activity was unaltered in older mice, impairment in hippocampal synaptic transmission was observed only in response to HFS. However, age-dependent alterations in neural network appeared spontaneously in the OB circuit, suggesting the neurophysiological basis of synaptic deficits underlying olfactory processing. Taken together, the results highlight the sensitivity and therefore potential use of LFP quantitative network oscillations and connectivity at the OB level as objective electrophysiological markers that will help reveal specific dysfunctional circuits in aging-related neurodegeneration studies.
Collapse
|
34
|
Targeting Oxidative Stress for Disease Prevention and Therapy: Where Do We Stand, and Where Do We Go from Here. Molecules 2020; 25:molecules25112653. [PMID: 32517368 PMCID: PMC7321135 DOI: 10.3390/molecules25112653] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OxS) is one of the main processes related to aging and a common denominator of many different chronic/degenerative diseases (e.g., cardiovascular and neurodegenerative conditions and cancer). Thus, its potential modulation by supplementation/pharmacological therapy caused a lot of interest. However, these expectations have been mitigated by the obtainment of controversial results (beneficial, null, or adverse effects) following antioxidant interventions. Here, we discuss the current understanding of OxS assessment in health and disease, challenges and the potential of its evaluation in clinical practice, and available and future development for supplementation and pharmacologic strategies targeting OxS.
Collapse
|
35
|
Liu Z, Qin G, Mana L, Dong Y, Huang S, Wang Y, Wu Y, Shi J, Tian J, Wang P. GAPT regulates cholinergic dysfunction and oxidative stress in the brains of learning and memory impairment mice induced by scopolamine. Brain Behav 2020; 10:e01602. [PMID: 32174034 PMCID: PMC7218254 DOI: 10.1002/brb3.1602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholinergic dysfunction and oxidative stress are the crucial mechanisms of Alzheimer's disease (AD). GAPT, also called GEPT (a combination of several active components extracted from the Chinese herbs ginseng, epimedium, polygala and tuber curcumae) or Jinsiwei, is a patented Chinese herbal compound, has been clinically widely used to improve learning and memory impairment, but whether it can play a neuroprotective role by protecting cholinergic neurons and reducing oxidative stress injury remains unclear. METHODS Male ICR mice were intraperitoneally injected with scopolamine (3 mg/kg) to establish a learning and memory disordered model. An LC-MS method was established to study the chemical compounds and in vivo metabolites of GAPT. After scopolamine injection, a step-down passive-avoidance test (SDPA) and a Y maze test were used to estimate learning ability and cognitive function. In addition, ELISA detected the enzymatic activities of acetylcholinesterase (AChE), acetylcholine (ACh), choline acetyltransferase (ChAT), malondialdehyde (MDA), glutathione peroxidase (GPX), and total superoxide dismutase (T-SOD). The protein expressions of AChE, ChAT, SOD1, and GPX1 were observed by western blot, and the distribution of ChAT, SOD1, and GPX1 was observed by immunohistochemical staining. RESULTS After one-half or 1 month of intragastric administration, GAPT can ameliorate scopolamine-induced behavioral changes in learning and memory impaired mice. It can also decrease the activity of MDA and protein expression level of AChE, increase the activity of Ach, and increase activity and protein expression level of ChAT, SOD, and GPX in scopolamine-treated mice. After one and a half month of intragastric administration of GAPT, echinacoside, salvianolic acid A, ginsenoside Rb1, ginsenoside Rg2, pachymic acid, and beta asarone could be absorbed into mice blood and pass through BBB. CONCLUSIONS GAPT can improve the learning and memory ability of scopolamine-induced mice, and its mechanism may be related to protecting cholinergic neurons and reducing oxidative stress injury.
Collapse
Affiliation(s)
- Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Gaofeng Qin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Lulu Mana
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Department of Integrative Medicine, School of TCM, Xinjiang Medical University, Urumqi, China
| | - Yunfang Dong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Zhongkang International Health Physical Examination Center-Qingdao Ruiyuan Hospital of Traditional Chinese Medicine, Qingdao, China
| | - Shuaiyang Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Yahan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Yiqiong Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,Jiangsu Province Hospital on Integrated Chinese and Western Medicines, Nanjing, China
| | - Jing Shi
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,BUCM Neurology Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinzhou Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China.,BUCM Neurology Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, China
| |
Collapse
|
36
|
Nitroxide Radical-Containing Redox Nanoparticles Protect Neuroblastoma SH-SY5Y Cells against 6-Hydroxydopamine Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9260748. [PMID: 32377313 PMCID: PMC7196160 DOI: 10.1155/2020/9260748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/06/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Parkinson's disease (PD) patients can benefit from antioxidant supplementation, and new efficient antioxidants are needed. The aim of this study was to evaluate the protective effect of selected nitroxide-containing redox nanoparticles (NRNPs) in a cellular model of PD. Antioxidant properties of NRNPs were studied in cell-free systems by protection of dihydrorhodamine 123 against oxidation by 3-morpholino-sydnonimine and protection of fluorescein against bleaching by 2,2-azobis(2-amidinopropane) hydrochloride and sodium hypochlorite. Model blood-brain barrier penetration was studied using hCMEC/D3 cells. Human neuroblastoma SH-SY5Y cells, exposed to 6-hydroxydopamine (6-OHDA), were used as an in vitro model of PD. Cells were preexposed to NRNPs or free nitroxides (TEMPO or 4-amino-TEMPO) for 2 h and treated with 6-OHDA for 1 h and 24 h. The reactive oxygen species (ROS) level was estimated with dihydroethidine 123 and Fluorimetric Mitochondrial Superoxide Activity Assay Kit. Glutathione level (GSH) was measured with ortho-phtalaldehyde, ATP by luminometry, changes in mitochondrial membrane potential with JC-1, and mitochondrial mass with 10-Nonyl-Acridine Orange. NRNP1, TEMPO, and 4-amino-TEMPO (25-150 μM) protected SH-SY5Y cells from 6-OHDA-induced viability loss; the protection was much higher for NRNP1 than for free nitroxides. NRNP1 were better antioxidants in vitro and permeated better the model BBB than free nitroxides. Exposure to 6-OHDA decreased the GSH level after 1 h and increased it considerably after 24 h (apparently a compensatory overresponse); NRNPs and free nitroxides prevented this increase. NRNP1 and free nitroxides prevented the decrease in ATP level after 1 h and increased it after 24 h. 6-OHDA increased the intracellular ROS level and mitochondrial superoxide level. Studied antioxidants mostly decreased ROS and superoxide levels. 6-OHDA decreased the mitochondrial potential and mitochondrial mass; both effects were prevented by NRNP1 and nitroxides. These results suggest that the mitochondria are the main site of 6-OHDA-induced cellular damage and demonstrate a protective effect of NRNP1 in a cellular model of PD.
Collapse
|
37
|
Teimouri E, Rainey-Smith SR, Bharadwaj P, Verdile G, Martins RN. Amla Therapy as a Potential Modulator of Alzheimer’s Disease Risk Factors and Physiological Change. J Alzheimers Dis 2020; 74:713-733. [PMID: 32083581 DOI: 10.3233/jad-191033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elham Teimouri
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
| | - Prashant Bharadwaj
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Giuseppe Verdile
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit (Hollywood Private Hospital), Perth, Western Australia, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
38
|
Liao J, Nai Y, Feng L, Chen Y, Li M, Xu H. Walnut Oil Prevents Scopolamine-Induced Memory Dysfunction in a Mouse Model. Molecules 2020; 25:molecules25071630. [PMID: 32252285 PMCID: PMC7180932 DOI: 10.3390/molecules25071630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
For thousands of years, it has been widely believed that walnut is a kind of nut that has benefits for the human body. Walnut oil, accounting for about 70% of walnut, mainly consists of polyunsaturated fatty acids. To investigate the effect of walnut oil on memory impairment in mice, scopolamine (3 mg/kg body weight/d) was used to establish the animal model during Morris Water Maze (MWM) tests. Walnut oil was administrated orally at 10 mL/kg body weight/d for 8 consecutive weeks. The results showed that walnut oil treatment ameliorated the behavior of the memory-impaired mice in the MWM test. Additionally, walnut oil obviously inhibited acetylcholinesterase activity (1.26 ± 0.12 U/mg prot) (p = 0.013) and increased choline acetyltransferase activity (129.75 ± 6.76 U/mg tissue wet weight) in the brains of scopolamine-treated mice (p = 0.024), suggesting that walnut oil could prevent cholinergic function damage in mice brains. Furthermore, walnut oil remarkably prevented the decrease in total superoxide dismutase activity (93.30 ± 5.50 U/mg prot) (p = 0.006) and glutathione content (110.45 ± 17.70 mg/g prot) (p = 0.047) and the increase of malondialdehyde content (13.79 ± 0.96 nmol/mg prot) (p = 0.001) in the brain of scopolamine-treated mice, indicating that walnut oil could inhibit oxidative stress in the brain of mice. Furthermore, walnut oil prevented histological changes of neurons in hippocampal CA1 and CA3 regions induced by scopolamine. These findings indicate that walnut oil could prevent memory impairment in mice, which might be a potential way for the prevention of memory dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | - Mei Li
- Correspondence: (M.L.); (H.X.); Tel./Fax: +86-029-8709-2486 (M.L. & H.X.)
| | - Huaide Xu
- Correspondence: (M.L.); (H.X.); Tel./Fax: +86-029-8709-2486 (M.L. & H.X.)
| |
Collapse
|
39
|
Cr(VI) induces ROS-mediated mitochondrial-dependent apoptosis in neuronal cells via the activation of Akt/ERK/AMPK signaling pathway. Toxicol In Vitro 2020; 65:104795. [PMID: 32061800 DOI: 10.1016/j.tiv.2020.104795] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022]
Abstract
Hexavalent chromium (Cr(VI)), a well-known toxic industrial and environmental pollutant, has been shown to cause serious toxic and health effects. However, limited information is available on Cr(VI)-induced neurotoxic potential, with the underlying toxicological mechanisms remain mostly unclear. The present study demonstrated that the mitochondria-dependent apoptosis pathway was involved in Cr(VI)-induced SH-SY5Y cell (the human neuroblastoma cell line) death, which was accompanied by the appearance of cell shrinkage, increased mitochondrial membrane potential (MMP) depolarization and cytochrome c release, and the activation of caspase cascades and poly (ADP-ribose) polymerase (PARP). Cr(VI) treatment also increased the generation of intracellular reactive oxygen species (ROS). Pretreatment of SH-SY5Y cells with antioxidant N-acetylcysteine (NAC) effectively attenuated ROS production and reversed these Cr(VI)-induced cytotoxicity and apoptotic responses. Furthermore, exposure to Cr(VI) significantly increased the phosphorylation levels of Akt, extracellular regulated kinase (ERK)1/2, and AMP-activated protein kinase (AMPK)α. NAC and the pharmacological inhibitor of Akt (LY294002), ERK1/2 (PD980590), and AMPKα (Compound C) markedly abrogated the Cr(VI)-induced activation of Akt, ERK1/2, and AMPKα signal, respectively, with the concomitant inhibition of mitochondrial dysfunction and caspase activation. Additionally, all these inhibitors suppressed Cr(VI)-induced phosphorylation of Akt, ERK1/2, and AMPKα and of each other. Collectively, these results suggest that Cr(VI) exerts its cytotoxicity on neuronal cells by inducing mitochondria-dependent apoptosis through the interdependent activation of Akt, ERK1/2, and AMPKα, which are mainly mediated by ROS generation.
Collapse
|
40
|
Cassidy L, Fernandez F, Johnson JB, Naiker M, Owoola AG, Broszczak DA. Oxidative stress in alzheimer's disease: A review on emergent natural polyphenolic therapeutics. Complement Ther Med 2019; 49:102294. [PMID: 32147039 DOI: 10.1016/j.ctim.2019.102294] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/26/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES The aim of this research was to review the literature on Alzheimer's disease (AD) with a focus on polyphenolics as antioxidant therapeutics. DESIGN This review included a search of the literature up to and including September 2019 in PubMed and MEDLINE databases using search terms that included: Alzheimer's Disease, Aβ peptide, tau, oxidative stress, redox, oxidation, therapeutic, antioxidant, natural therapy, polyphenol. Any review articles, case studies, research reports and articles in English were identified and subsequently interrogated. Citations within relevant articles were also examined for consideration in this review. RESULTS Alzheimer's disease is a neurodegenerative disorder that is clinically characterised by the progressive deterioration of cognitive functions and drastic changes in behaviour and personality. Due to the significant presence of oxidative damage associated with abnormal Aβ accumulation and neurofibrillary tangle deposition in AD patients' brains, antioxidant drug therapy has been investigated as potential AD treatment. In particular, naturally occurring compounds, such as plant polyphenols, have been suggested to have potential neuroprotective effects against AD due to their diverse array of physiological actions, which includes potent antioxidant effects. CONCLUSIONS The impact of oxidative stress and various mechanisms of pathogenesis in AD pathophysiology was demonstrated along with the therapeutic potential of emergent antioxidant drugs to address such mechanism of oxidation.
Collapse
Affiliation(s)
- Luke Cassidy
- School of Behavioural & Health Sciences, Faculty of Heath Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD, 4014, Australia
| | - Francesca Fernandez
- School of Behavioural & Health Sciences, Faculty of Heath Sciences, Australian Catholic University, 1100 Nudgee Rd, Banyo, QLD, 4014, Australia.
| | - Joel B Johnson
- School of Health, Medical and Applied Sciences, Central Queensland University, 630 Ibis Ave, North Rockhampton, QLD, 4701, Australia.
| | - Mani Naiker
- School of Health, Medical and Applied Sciences, Central Queensland University, 630 Ibis Ave, North Rockhampton, QLD, 4701, Australia.
| | - Akeem G Owoola
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George St, Brisbane, 4000, QLD, Australia; Tissue Repair & Translational Physiology Program, Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Queensland, 4059, Australia.
| | - Daniel A Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George St, Brisbane, 4000, QLD, Australia; Tissue Repair & Translational Physiology Program, Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, Queensland, 4059, Australia.
| |
Collapse
|
41
|
Fahmy HM, Aly EM, Mohamed FF, Noor NA, Elsayed AA. Neurotoxicity of green- synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats. Neurotoxicology 2019; 77:80-93. [PMID: 31899250 DOI: 10.1016/j.neuro.2019.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
AIMS The aim of the present study was to evaluate the toxicity of magnetic iron oxide nanoparticles (MIONs) which were synthesized using carob leaf extract on various brain areas of Wistar rats. MAIN METHODS Carob leaf synthesized-MIONs were characterized using different techniques: Dynamic Light Scattering (DLS), Transmission Electron Microscope (TEM), UV-vis spectrophotometer, Fourier Transform infrared (FTIR), X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM). The toxicity of MIONs in vivo was evaluated by: monitoring rat's body weight, measuring iron content in different brain areas, evaluating some oxidative stress parameters, estimating acetylcholinesterase (AChE) in addition to histopathological investigations. KEY FINDINGS The present study demonstrated no body weight changes of MIONs- treated rats. According to the conditions of the present study, the hippocampus and striatum were the most affected areas and demonstrated neuronal degeneration due to MIONs exposure. MIONs treatment of Wistar rats, also affected the iron homeostasis in both striatum and midbrain by decreasing iron content in these areas. The least affected areas were thalamus and cerebellum. The histopathological examination of brain areas demonstrated moderate neuronal degeneration in hippocampus and striatum, mild neuronal degeneration in cortex and slight degeneration in hypothalamus and pons-medulla areas were detected. SIGNIFICANCE The results suggested that MIONs have a toxic impact on different brain areas and the effect varies according to the brain area.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Esraa M Aly
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Faten F Mohamed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12613, Giza, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Anwar A Elsayed
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
42
|
Chen L, Xu S, Wu T, Shao Y, Luo L, Zhou L, Ou S, Tang H, Huang W, Guo K, Xu J. Studies on APP metabolism related to age-associated mitochondrial dysfunction in APP/PS1 transgenic mice. Aging (Albany NY) 2019; 11:10242-10251. [PMID: 31744937 PMCID: PMC6914425 DOI: 10.18632/aging.102451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
The aging brain with mitochondrial dysfunction and a reduced adenosine 5'-triphosphate (ATP) has been implicated in the onset and progression of β-Amyloid (Aβ)-induced neuronal toxicity in AD. To unravel the function of ATP and the underlying mechanisms on AD development, APP/PS1 double transgenic mice and wild-type (WT) C57 mice at 6 and 10 months of age were studied. We demonstrated a decreased ATP release in the hippocampus and platelet of APP/PS1 mice, comparing to C57 mice at a relatively early age. Levels of Aβ were raised in both hippocampus and platelet of APP/PS1 mice, accompanied by a decrease of α-secretase activity and an increase of β-secretase activity. Moreover, our results presented an age-dependent rise in mitochondrial vulnerability to oxidation in APP/PS1 mice. In addition, we found decreased pSer473-Akt levels, increased GSK3β activity by inhibiting phosphorylation at Ser9 in aged APP/PS1 mice and these dysfunctions probably due to down-regulation of Bcl-2 and up-regulation of cleaved caspase-3. Therefore, we demonstrate that PI3K/Akt/GSK3β signaling pathway could be involved in Aβ-associated mitochondrial dysfunction of APP/PS1 mice and APP abnormal metabolism in platelet might provide potential biomarkers for early diagnosis of AD.
Collapse
Affiliation(s)
- Lizhi Chen
- Department of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shicheng Xu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tong Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yijia Shao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Luo
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingqi Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shanshan Ou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hai Tang
- Department of Anatomy, Guangdong Jiangmen Chinese Traditional Medicine College, Jiangmen, China
| | - Wenhua Huang
- Department of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
43
|
Li Q, Xing S, Chen Y, Liao Q, Li Q, Liu Y, He S, Feng F, Chen Y, Zhang J, Liu W, Guo Q, Sun Y, Sun H. Reasonably activating Nrf2: A long-term, effective and controllable strategy for neurodegenerative diseases. Eur J Med Chem 2019; 185:111862. [PMID: 31735576 DOI: 10.1016/j.ejmech.2019.111862] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases are a variety of debilitating and fatal disorder in central nervous system (CNS). Besides targeting neuronal activity by influencing neurotransmitters or their corresponding receptors, modulating the underlying processes that lead to cell death, such as oxidative stress and mitochondrial dysfunction, should also be emphasized as an assistant strategy for neurodegeneration therapy. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been closely verified to be related to anti-inflammation and oxidative stress, rationally regulating its belonging pathway and activating Nrf2 is emphasized to be a potential treatment approach. There have existed multiple Nrf2 activators with different mechanisms and diverse structures, but those applied for neuro-disorders are still limited. On the basis of research arrangement and compound summary, we put forward the limitations of existing Nrf2 activators for neurodegenerative diseases and their future developing directions in enhancing the blood-brain barrier permeability to make Nrf2 activators function in CNS and designing Nrf2-based multi-target-directed ligands to affect multiple nodes in pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shuaishuai Xing
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ying Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qinghong Liao
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qihang Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yang Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siyu He
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Feng Feng
- Jiangsu Food and Pharmaceutical Science College, No.4 Meicheng Road, Huai'an, 223003, PR China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenyuan Liu
- Department of Analytical Chemistry, School of Pharmacy, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuan Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, 95817, USA
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China; Jiangsu Food and Pharmaceutical Science College, No.4 Meicheng Road, Huai'an, 223003, PR China.
| |
Collapse
|
44
|
Khatoonabadi AR, Masumi J. Study protocol: Language profile in mild cognitive impairment: A prospective study. Med J Islam Repub Iran 2019; 33:53. [PMID: 31456977 PMCID: PMC6708094 DOI: 10.34171/mjiri.33.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 11/16/2022] Open
Abstract
Background: The present study will be a longitudinal investigation of language abilities in individuals with mild cognitive impairment (MCI). The research question will include whether there will be an evidence for language impairment in individuals with MCI, and if so, what aspects of language will be the most affected and whether language abilities will be significantly changed over a 12-month period.
Methods: We will diagnose 30 individuals with mild cognitive impairment (MCI), Alzheimer’s disease (AD), and controlled participants using Montreal Cognitive Assessment-Basic (MoCA-B), as a cognitive test, and by asking expert opinions and conducting interviews. Participants will be selected from memory clinics and nursing homes in Tehran during 2018-2019. A comprehensive language test (Barnes Language Assessment (BLA)) will be performed to obtain baseline performance in the elderly. These tests will be repeated after 3, 6, and 12 months. Repeated measures analysis of variance (ANOVA) will be used to determine whether there will be a significant change in participants' language abilities over a 12-month period. In the case of deficient language performance, a discriminant function analysis will be used to identify the language task type that will be highly sensitive to change.
Results and Conclusion: The present study will provide evidence for the nature of language change and will be done in a-year course on individuals with MCI and AD and on healthy elders. Also, in this study, the relative sensitivity of various language components to MCI will be determined, and the relationship between language performance and performance on (MoCA-B) neuropsychological test will be examined.
Collapse
Affiliation(s)
- Ahmad R Khatoonabadi
- Speech Therapy Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Masumi
- Department of Speech Therapy, School of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Arrigoni F, Prosdocimi T, Mollica L, De Gioia L, Zampella G, Bertini L. Copper reduction and dioxygen activation in Cu-amyloid beta peptide complexes: insight from molecular modelling. Metallomics 2019; 10:1618-1630. [PMID: 30345437 DOI: 10.1039/c8mt00216a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) involves a number of factors including an anomalous interaction of copper with the amyloid peptide (Aβ), inducing oxidative stress with radical oxygen species (ROS) production through a three-step cycle in which O2 is gradually reduced to superoxide, oxygen peroxide and finally OH radicals. The purpose of this work has been to investigate the reactivity of 14 different Cu(ii)-Aβ coordination models with the aim of identifying on an energy basis (Density Functional Theory (DFT) and classical Molecular Dynamics (MD)) the redox competent form(s). Accordingly, we have specifically focused on the first three steps of the cycle, i.e. ascorbate binding to Cu(ii), Cu(ii) → Cu(i) reduction and O2 reduction to O2-. Compared to the recent literature, our results broaden the set of possible redox competent metallopeptide forms responsible for ROS production. Indeed, in addition to the three-coordinated species containing one His ligand, a N-terminal amine group and the carboxylate side chain of the Asp1 residue of Aβ already proposed, we found two other Cu-Aβ coordination modes involving two histidines.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Akbari S, Soodi M, Hajimehdipoor H, Ataei N. Protective effects of Sanguisorba minor and Ferulago angulata total extracts against beta-amyloid induced cytotoxicity and oxidative stress in cultured cerebellar granule neurons. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.36] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Introduction: Alzheimer’s disease (AD) is an age-dependent neurodegenerative disorder and major cause of mortality in the elderly. AD has a complex pathophysiology and needs new multi-targeted compounds to halt the disease progression through several mechanisms. Medicinal plants contain various compounds with heterogeneous pharmacological effects, therefore are a good source. The aim of this study was to evaluate the protective effect of total extracts of Sanguisorba minor and Ferulago angulata on beta-amyloid (Aβ)-induced toxicity in primary neural cell culture.Methods: Cerebellar granule neurons (CGNs) were cultured according to standard protocols. The cultured neurons were incubated with Aβ alone or in combination with different concentrations of extracts for 24 hours. Cell viability was measured by methylthiazolyldiphenyl-tetrazolium (MTT) assay. In addition acetylcholinesterase (AChE) activity and oxidative stress markers were measured after incubation. Also, the effects of different concentrations of the extracts on AChE activity of the cultured neurons were investigated. For measuring the acute toxicity of the extract, LD50 was estimated by limit test.Results: Both extracts could protect CGNs against Aβ-induced cell death. Aβ-induced oxidative stress and increase of AChE activity were ameliorated by both extracts. S. minor extract dose-dependently reduced AChE activity in cultured CGNs. LD50 of both extracts was estimated above 2000 mg/kg and considered as safe.Conclusion: Both studied extracts protected CGNs against Aβ-induced toxicity by ameliorating oxidative stress mechanism. According to these results, these extracts are recommended for further investigation in AD treatment.
Collapse
Affiliation(s)
- Sholeh Akbari
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Soodi
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Homa Hajimehdipoor
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Ataei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
47
|
Haque MM, Murale DP, Kim YK, Lee JS. Crosstalk between Oxidative Stress and Tauopathy. Int J Mol Sci 2019; 20:ijms20081959. [PMID: 31013607 PMCID: PMC6514575 DOI: 10.3390/ijms20081959] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tauopathy is a collective term for neurodegenerative diseases associated with pathological modifications of tau protein. Tau modifications are mediated by many factors. Recently, reactive oxygen species (ROS) have attracted attention due to their upstream and downstream effects on tauopathy. In physiological conditions, healthy cells generate a moderate level of ROS for self-defense against foreign invaders. Imbalances between ROS and the anti-oxidation pathway cause an accumulation of excessive ROS. There is clear evidence that ROS directly promotes tau modifications in tauopathy. ROS is also highly upregulated in the patients’ brain of tauopathies, and anti-oxidants are currently prescribed as potential therapeutic agents for tauopathy. Thus, there is a clear connection between oxidative stress (OS) and tauopathies that needs to be studied in more detail. In this review, we will describe the chemical nature of ROS and their roles in tauopathy.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Dhiraj P Murale
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Yun Kyung Kim
- Bio-Med Division, KIST-School UST, Seoul 02792, Korea.
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- Bio-Med Division, KIST-School UST, Seoul 02792, Korea.
| |
Collapse
|
48
|
A comprehensive study of oxidative stress in patients with somatic symptom disorder. Acta Neuropsychiatr 2019; 31:100-105. [PMID: 30558690 DOI: 10.1017/neu.2018.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate oxidative stress parameters [total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI), paraoxonase (PON), arylesterase (ARE) and thiol-disulphide homeostasis] in patients who were diagnosed as having somatic symptom disorder in accordance with Diagnostic and Statistical Manual of Mental Disorders-5. METHODS The study included 41 medication-free patients with somatic symptom disorder and 47 age, sex, and sociodemographic-matched healthy individuals. The patients were administered the Patient Health Questionnaire-15, Somatic Symptom Amplification Scale, Beck Depression Inventory, and Beck Anxiety Inventory. TOS, TAS, OSI, PON, ARE thiol, disulphide levels, and routine biochemical parameters were compared between the two groups. RESULTS TOS, OSI, disulphide levels, disulphide/native thiol, and disulphide/total thiol ratios were found significantly higher in the patient group compared with the control group (p < 0.001). There was no significant difference in PON, ARE, and TAS parameters between the two groups (p > 0.05). CONCLUSION This study showed that the level of oxidants increased and oxidative balance was impaired in somatic symptom disorder. Oxidative stress may play a role in the aetiopathogenesis of this disorder. This is the first study to report an association between oxidative stress and somatic symptom disorder.
Collapse
|
49
|
Eskandary A, Moazedi AA, Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran, Department of Biology, Faculty of Sciences, Shahid Chamran University, Ahvaz, Iran. Effect of co-administration of donepezil and folic acid on spatial memory impairment in adult male rat model of Alzheimer's disease. THE JOURNAL OF QAZVIN UNIVERSITY OF MEDICAL SCIENCES 2018. [DOI: 10.29252/qums.22.5.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
50
|
Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J Nanobiotechnology 2018; 16:87. [PMID: 30390681 PMCID: PMC6215349 DOI: 10.1186/s12951-018-0412-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress (OS) and nitrative stress (NS) accompany many diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Antioxidants have been proposed to counteract OS/NS in these diseases. Nevertheless, the effects of antioxidants are limited and new, more efficient antioxidants are searched for. Redox-active nanoparticles (RNPs), containing antioxidants create a new therapeutical perspective. This review examines the recent literature describing synthesis and potential applications of cerium oxide RNPs, boron cluster-containing and silica containing RNPs, Gd3N@C80 encapsulated RNPs, and concentrates on nitroxide-containing RNPs. Nitroxides are promising antioxidants, preventing inter alia glycation and nitration, but their application poses several problems. It can be expected that application of RNPs containing covalently bound nitroxides, showing low toxicity and able to penetrate the blood-brain barrier will be more efficient in the treatment of neurodegenerative disease, in particular AD and PD basing on their effects in cellular and animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza Street 4, 35-601, Rzeszow, Poland.
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236, Lodz, Poland
| |
Collapse
|