1
|
Zhang Z, Ma T, Liu Q, Nan J, Liu G, Yang Y, Hu Y, Xie J. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Encapsulated in M2 Macrophage Cell Membrane Targeted to Inhibit Joint Periprosthetic Inflammation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22279-22292. [PMID: 40168527 DOI: 10.1021/acsami.4c22304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Periprosthetic osteolysis (PPOL) is a serious complication following total joint replacement surgery, and exploring treatments for this complication is of significant societal importance. Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos, Exos) have diverse cellular functions, such as inhibiting osteoclast formation, suppressing inflammation progression, and promoting M2 macrophage polarization. However, standalone Exosomes are easily recognized and phagocytosed by the immune system, have a short half-life, and lack specificity. This study is based on the homing effect possessed by M2 macrophages under the regulation of various factors. By combining this with cell membrane encapsulation technology and embedding BMSC-Exos within the membrane of M2 macrophages (M2M-Exos), the aim is to inhibit inflammation and treat PPOL. It was found that M2M-Exos can target the PPOL area, enhancing the therapeutic effects of the BMSC-Exos and reducing wear particle-induced cranial osteolysis. Additionally, M2M-Exos provide immune camouflage through the cell membrane, allowing the BMSC-Exos to evade clearance by the mononuclear macrophage system in the body. Therefore, the study demonstrates the targeting ability of M2M-Exos and their unique role in preventing PPOL. These biomimetic nanoparticles establish a targeted nanodrug delivery system for PPOL treatment.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Tianliang Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jiangyu Nan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Chen M, Wang R, Liao L, Li Y, Sun X, Wu H, Lan Q, Deng Z, Liu P, Xu T, Zhou H, Liu M. DanShen Decoction targets miR-93-5p to provide protection against MI/RI by regulating the TXNIP/NLRP3/Caspase-1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156225. [PMID: 39547100 DOI: 10.1016/j.phymed.2024.156225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) derived exosomes have demonstrated potential therapeutic efficacy on myocardial ischemia/reperfusion injury (MI/RI). This study has explored the underlying mechanisms of Danshen decoction (DSD) pretreated BMSCs-exosomes to treat MI/RI in vivo and in vitro. METHODS Extracellular vesicles extracted from BMSCs were identified, miRNA sequencing was performed to screen the effects of DSD, and verified to target TXNIP in vivo. After MI/RI modeling, rats were treated with BMSCs-exosomes pretreated with DSD or miRNA inhibitor. BMSCs-exosomes, DSD-pretreated BMSCs-exosomes, and miRNA inhibitor/anti-miRNA-pretreated BMSCs-exosomes were used to treat H9c2 cells or MI/RI rats. CCK-8, Tunnel staining, and flow cytometry were performed to measure cell viability. LDH, CK, CK-MB were detected to evaluate cell injury. MDA, SOD, and ROS were used to confirm oxidative stress. Furthermore, IL-1β, IL-18, cleaved-caspase-1, pro-caspase-1, NLRP3, TXNIP, and GSDMD were quantified for the TXNIP/NLRP3/Caspase-1 signaling activation. In addition, echocardiography was used to observe the heart function, and H&E stain was performed to detect pathological injury. RESULTS Following DSD pretreatment, there was a marked elevation in the expression levels of miR-93-5p, miR-16-5p, and miR-15b-5p, with miR-93-5p exhibiting the highest baseMean value. The administration of a miR-93-5p inhibitor yielded effects counteractive to those observed with DSD treatment, leading to reduced cell proliferation, heightened oxidative stress (as indicated by increased levels of SOD and ROS, alongside a decrease in MDA), and enhanced cell apoptosis. Furthermore, DSD effectively mitigated the miR-93-5p-induced upregulation of key inflammatory and apoptotic markers, including IL-1β, IL-18, caspase-1, NLRP3, TXNIP, and GSDMD. Notably, exosomes derived from DSD-pretreated BMSCs demonstrated a capacity to alleviate cardiac damage. CONCLUSION DSD may target miR-93-5p within BMSC-derived exosomes to confer protection against cardiac damage by inhibiting the activation of the TXNIP/NLRP3/Caspase-1 signaling pathway, thereby mitigating cardiomyocyte pyroptosis. This study provides a theoretical foundation for the application of DSD in the treatment of MI/RI.
Collapse
Affiliation(s)
- Mingtai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, PR China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, PR China
| | - Raoqiong Wang
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, PR China; Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Lishang Liao
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, PR China
| | - Yuanyuan Li
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, PR China
| | - Xingyu Sun
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Hao Wu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Qi Lan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Ziwen Deng
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Ping Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, PR China
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, PR China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Mengnan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, PR China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, PR China.
| |
Collapse
|
3
|
Selvadoss A, Baby HM, Zhang H, Bajpayee AG. Harnessing exosomes for advanced osteoarthritis therapy. NANOSCALE 2024; 16:19174-19191. [PMID: 39323205 PMCID: PMC11799831 DOI: 10.1039/d4nr02792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Exosomes are nanosized, lipid membrane vesicles secreted by cells, facilitating intercellular communication by transferring cargo from parent to recipient cells. This capability enables biological crosstalk across multiple tissues and cells. Extensive research has been conducted on their role in the pathogenesis of degenerative musculoskeletal diseases such as osteoarthritis (OA), a chronic and painful joint disease that particularly affects cartilage. Currently, no effective treatment exists for OA. Given that exosomes naturally modulate synovial joint inflammation and facilitate cartilage matrix synthesis, they are promising candidates as next generation nanocarriers for OA therapy. Recent advancements have focused on engineering exosomes through endogenous and exogenous approaches to enhance their joint retention, cartilage and chondrocyte targeting properties, and therapeutic content enrichment, further increasing their potential for OA drug delivery. Notably, charge-reversed exosomes that utilize electrostatic binding interactions with cartilage anionic aggrecan glycosaminoglycans have demonstrated the ability to penetrate the full thickness of early-stage arthritic cartilage tissue following intra-articular administration, maximizing their therapeutic potential. These exosomes offer a non-viral, naturally derived, cell-free carrier for OA drug and gene delivery applications. Efforts to standardize exosome harvest, engineering, and property characterization methods, along with scaling up production, will facilitate more efficient and rapid clinical translation. This article reviews the current state-of-the-art, explores opportunities for exosomes as OA therapeutics, and identifies potential challenges in their clinical translation.
Collapse
Affiliation(s)
- Andrew Selvadoss
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Helna M Baby
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Hengli Zhang
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Ambika G Bajpayee
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
4
|
Dowaidar M. Drug delivery based exosomes uptake pathways. Neurochem Int 2024; 179:105835. [PMID: 39147203 DOI: 10.1016/j.neuint.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Most cells secrete a material called extracellular vesicles (EVs), which play a crucial role in cellular communication. Exosomes are one of the most studied types of EVs. Recent research has shown the many functions and substrates of cellular exosomes. Multiple studies have shown the efficacy of exosomes in transporting a wide variety of cargo to their respective target cells. As a result, they are often utilized to transport medicaments to patients. Natural exosomes as well as exosomes modified with other compounds to enhance transport capabilities have been employed. In this article, we take a look at how different types of exosomes and modified exosomes may transport different types of cargo to their respective targets. Exosomes have a lot of potential as drug delivery vehicles for many synthetic compounds, proteins, nucleic acids, and gene repair specialists because they can stay in the body for a long time, are biocompatible, and can carry natural materials. A good way to put specific protein particles into exosomes is still not clear, though, and the exosomes can't be used in many situations yet. The determinants for exosome production, as well as ways for loading certain therapeutic molecules (proteins, nucleic acids, and small compounds), were covered in this paper. Further study and the development of therapeutic exosomes may both benefit from the information collected in this review.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
5
|
Kim M, Choi H, Jang DJ, Kim HJ, Sub Y, Gee HY, Choi C. Exploring the clinical transition of engineered exosomes designed for intracellular delivery of therapeutic proteins. Stem Cells Transl Med 2024; 13:637-647. [PMID: 38838263 PMCID: PMC11227971 DOI: 10.1093/stcltm/szae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, have emerged as promising drug delivery systems owing to their unique advantages, such as biocompatibility, immune tolerability, and target specificity. Various engineering strategies have been implemented to harness these innate qualities, with a focus on enhancing the pharmacokinetic and pharmacodynamic properties of exosomes via payload loading and surface engineering for active targeting. This concise review outlines the challenges in the development of exosomes as drug carriers and offers insights into strategies for their effective clinical translation. We also highlight preclinical studies that have successfully employed anti-inflammatory exosomes and suggest future directions for exosome therapeutics. These advancements underscore the potential for integrating exosome-based therapies into clinical practice, heralding promise for future medical interventions.
Collapse
Affiliation(s)
| | - Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | - Deok-Jin Jang
- ILIAS Biologics Inc., Daejeon 34014, Korea
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | | | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | |
Collapse
|
6
|
Abdal Dayem A, Yan E, Do M, Kim Y, Lee Y, Cho SG, Kim DH. Engineering extracellular vesicles for ROS scavenging and tissue regeneration. NANO CONVERGENCE 2024; 11:24. [PMID: 38922501 PMCID: PMC11208369 DOI: 10.1186/s40580-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Stem cell therapy holds promise for tissue regeneration, yet significant challenges persist. Emerging as a safer and potentially more effective alternative, extracellular vesicles (EVs) derived from stem cells exhibit remarkable abilities to activate critical signaling cascades, thereby facilitating tissue repair. EVs, nano-scale membrane vesicles, mediate intercellular communication by encapsulating a diverse cargo of proteins, lipids, and nucleic acids. Their therapeutic potential lies in delivering cargos, activating signaling pathways, and efficiently mitigating oxidative stress-an essential aspect of overcoming limitations in stem cell-based tissue repair. This review focuses on engineering and applying EVs in tissue regeneration, emphasizing their role in regulating reactive oxygen species (ROS) pathways. Additionally, we explore strategies to enhance EV therapeutic activity, including functionalization and incorporation of antioxidant defense proteins. Understanding these molecular mechanisms is crucial for optimizing EV-based regenerative therapies. Insights into EV and ROS signaling modulation pave the way for targeted and efficient regenerative therapies harnessing the potential of EVs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ellie Yan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yoojung Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeongseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin- gu, Seoul, 05029, Republic of Korea.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Liu J, Gao J, Lu P, Wang Y, Xing S, Yan Y, Han R, Hao P, Li X. Mesenchymal Stem Cell-Derived Exosomes as Drug Carriers for Delivering miRNA-29b to Ameliorate Inflammation in Corneal Injury Via Activating Autophagy. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38856990 PMCID: PMC11166224 DOI: 10.1167/iovs.65.6.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Corneal injury (CI) resulting in corneal opacity remains a clinical challenge. Exosomes (Exos) derived from bone marrow mesenchymal stem cells (BMSCs) have been proven effective in repairing various tissue injuries and are also considered excellent drug carriers due to their biological properties. Recently, microRNA-29b (miR-29b) was found to play an important role in the autophagy regulation which correlates with cell inflammation and fibrosis. However, the effects of miR-29b and autophagy on CI remain unclear. To find better treatments for CI, we used Exos to carry miR-29b and investigated its effects in the treatment of CI. Methods BMSCs were transfected with miR-29b-3p agomir/antagomir and negative controls (NCs) to obtain Exos-29b-ago, Exos-29b-anta, and Exos-NC. C57BL/6J mice that underwent CI surgeries were treated with Exos-29b-ago, Exos-29b-anta, Exos-NC, or PBS. The autophagy, inflammation, and fibrosis of the cornea were estimated by slit-lamp, hematoxylin and eosin (H&E) staining, immunofluorescence, RT‒qPCR, and Western blot. The effects of miR-29b-3p on autophagy and inflammation in immortalized human corneal epithelial cells (iHCECs) were also investigated. Results Compared to PBS, Exos-29b-ago, Exos-29b-anta, and Exos-NC all could ameliorate corneal inflammation and fibrosis. However, Exos-29b-ago, which accumulated a large amount of miR-29b-3p, exerted excellent potency via autophagy activation by inhibiting the PI3K/AKT/mTOR pathway and further inhibited corneal inflammation via the mTOR/NF-κB/IL-1β pathway. After Exos-29b-ago treatment, the expressions of collagen type III, α-smooth muscle actin, fibronectin, and vimentin were significantly decreased than in other groups. In addition, overexpression of miR-29b-3p prevented iHCECs from autophagy impairment and inflammatory injury. Conclusions Exos from BMSCs carrying miR-29b-3p can significantly improve the therapeutic effect on CI via activating autophagy and further inhibiting corneal inflammation and fibrosis.
Collapse
Affiliation(s)
- Jinghua Liu
- School of Medicine, Nankai University, Tianjin, China; Nankai University Affiliated Eye Hospital, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Juan Gao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Ping Lu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Yuchuan Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Shulei Xing
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Yarong Yan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Ruifang Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Peng Hao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
| | - Xuan Li
- School of Medicine, Nankai University, Tianjin, China; Nankai University Affiliated Eye Hospital, Tianjin, China
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Vision Science, Tianjin Eye Institute, Tianjin, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Yuan R, Wang B, Wang Y, Liu P. Gene Therapy for Neurofibromatosis Type 2-Related Schwannomatosis: Recent Progress, Challenges, and Future Directions. Oncol Ther 2024; 12:257-276. [PMID: 38760612 PMCID: PMC11187037 DOI: 10.1007/s40487-024-00279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Neurofibromatosis type 2 (NF2)-related schwannomatosis is a rare autosomal dominant monogenic disorder caused by mutations in the NF2 gene. The hallmarks of NF2-related schwannomatosis are bilateral vestibular schwannomas (VS). The current treatment options for NF2-related schwannomatosis, such as observation with serial imaging, surgery, radiotherapy, and pharmacotherapies, have shown limited effectiveness and serious complications. Therefore, there is a critical demand for novel effective treatments. Gene therapy, which has made significant advancements in treating genetic diseases, holds promise for the treatment of this disease. This review covers the genetic pathogenesis of NF2-related schwannomatosis, the latest progress in gene therapy strategies, current challenges, and future directions of gene therapy for NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Ruofei Yuan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ying Wang
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Pinan Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neural Reconstruction, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Afridi S, Sharma P, Choudhary F, Rizwan A, Nizam A, Parvez A, Farooqi H. Extracellular Vesicles: A New Approach to Study the Brain's Neural System and Its Diseases. Cell Biochem Biophys 2024; 82:521-534. [PMID: 38727784 DOI: 10.1007/s12013-024-01271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 08/25/2024]
Abstract
In normal and pathophysiological conditions our cells secrete vesicular bodies known as extracellular particles. Extracellular vesicles are lipid-bound extracellular particles. A majority of these extracellular vesicles are linked to cell-to-cell communication. Brain consists of tightly packed neural cells. Neural cell releases extracellular vesicles in cerebrospinal fluid. Extracellular vesicle mediated crosstalk maintains neural homeostasis in the central nervous system via transferring cargos between neural cells. In neurodegenerative diseases, small extracellular vesicle transfer misfolded proteins to healthy cells in the neural microenvironment. They can also cross blood-brain barrier (BBB) and stimulate peripheral immune response inside central nervous system. In today's world different approaches employ extracellular vesicle in various therapeutics. This review gives a brief knowledge about the biological relevance of extracellular vesicles in the central nervous system and relevant advances in the translational application of EV in brain disorders.
Collapse
Affiliation(s)
- Shahid Afridi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Furqan Choudhary
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Amber Rizwan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Anam Nizam
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
10
|
Kawaguchi Y, Kawamura Y, Hirose H, Kiyokawa M, Hirate M, Hirata T, Higuchi Y, Futaki S. E3MPH16: An efficient endosomolytic peptide for intracellular protein delivery. J Control Release 2024; 367:877-891. [PMID: 38301930 DOI: 10.1016/j.jconrel.2024.01.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
To facilitate the introduction of proteins, such as antibodies, into cells, a variety of delivery peptides have been engineered. These peptides are typically highly cationic and somewhat hydrophobic, enabling cytosolic protein delivery at the cost of causing cell damage by rupturing membranes. This balance between delivery effectiveness and cytotoxicity presents obstacles for their real-world use. To tackle this problem, we designed a new endosome-disruptive cytosolic delivery peptide, E3MPH16, inspired by mastoparan X (MP). E3MPH16 was engineered to incorporate three Glu (E3) and 16 His (H16) residues at the N- and C-termini of MP, respectively. The negative charges of E3 substantially mitigate the cell-surface damage induced by MP. The H16 segment is known to enhance cell-surface adsorption and endocytic uptake of the associated molecules. With these modifications, E3MPH16 was successfully trapped within endosomes. The acidification of endosomes is expected to protonate the side chains of E3 and H16, enabling E3MPH16 to rupture endosomal membranes. As a result, nearly 100% of cells achieved cytosolic delivery of a model biomacromolecule, Alexa Fluor 488-labeled dextran (10 kDa), via endosomal escape by co-incubation with E3MPH16. The delivery process also suggested the involvement of macropinocytosis and caveolae-mediated endocytosis. With the assistance of E3MPH16, Cre recombinase and anti-Ras-IgG delivered into HEK293 cells and HT1080 cells enabled gene recombination and inhibited cell proliferation, respectively. The potential for in vivo application of this intracellular delivery method was further validated by topically injecting the green fluorescent protein fused with a nuclear localization signal (NLS-GFP) along with E3MPH16 into Colon-26 tumor xenografts in mice.
Collapse
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yuki Kawamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Megumi Kiyokawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Momo Hirate
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsuyoshi Hirata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
11
|
Sharma S, Rana R, Prakash P, Ganguly NK. Drug target therapy and emerging clinical relevance of exosomes in meningeal tumors. Mol Cell Biochem 2024; 479:127-170. [PMID: 37016182 PMCID: PMC10072821 DOI: 10.1007/s11010-023-04715-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/17/2023] [Indexed: 04/06/2023]
Abstract
Meningioma is the most common central nervous system (CNS) tumor. In recent decades, several efforts have been made to eradicate this disease. Surgery and radiotherapy remain the standard treatment options for these tumors. Drug therapy comes to play its role when both surgery and radiotherapy fail to treat the tumor. This mostly happens when the tumors are close to vital brain structures and are nonbenign. Although a wide variety of chemotherapeutic drugs and molecular targeted drugs such as tyrosine kinase inhibitors, alkylating agents, endocrine drugs, interferon, and targeted molecular pathway inhibitors have been studied, the roles of numerous drugs remain unexplored. Recent interest is growing toward studying and engineering exosomes for the treatment of different types of cancer including meningioma. The latest studies have shown the involvement of exosomes in the theragnostic of various cancers such as the lung and pancreas in the form of biomarkers, drug delivery vehicles, and vaccines. Proper attention to this new emerging technology can be a boon in finding the consistent treatment of meningioma.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, 110062 India
| | | |
Collapse
|
12
|
Owliaee I, Khaledian M, Boroujeni AK, Shojaeian A. Engineered small extracellular vesicles as a novel platform to suppress human oncovirus-associated cancers. Infect Agent Cancer 2023; 18:69. [PMID: 37915098 PMCID: PMC10621078 DOI: 10.1186/s13027-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Cancer, as a complex, heterogeneous disease, is currently affecting millions of people worldwide. Even if the most common traditional treatments, namely, chemotherapy (CTx) and radiotherapy (RTx), have been so far effective in some conditions, there is still a dire need for novel, innovative approaches to treat types of cancer. In this context, oncoviruses are responsible for 12% of all malignancies, such as human papillomavirus (HPV), Merkel cell polyomavirus (MCPyV), Epstein-Barr virus (EBV), human herpesvirus 8 (HHV-8), as well as hepatitis B virus (HBV) and hepatitis C virus (HCV), and the poorest in the world also account for 80% of all human cancer cases. Against this background, nanomedicine has developed nano-based drug delivery systems (DDS) to meet the demand for drug delivery vectors, e.g., extracellular vesicles (EVs). This review article aimed to explore the potential of engineered small EVs (sEVs) in suppressing human oncovirus-associated cancers. METHODS Our search was conducted for published research between 2000 and 2022 using several international databases, including Scopus, PubMed, Web of Science, and Google Scholar. We also reviewed additional evidence from relevant published articles. RESULTS In this line, the findings revealed that EV engineering as a new field is witnessing the development of novel sEV-based structures, and it is expected to be advanced in the future. EVs may be further exploited in specialized applications as therapeutic or diagnostic tools. The techniques of biotechnology have been additionally utilized to create synthetic bilayers based on the physical and chemical properties of parent molecules via a top-down strategy for downsizing complicated, big particles into nano-sized sEVs. CONCLUSION As the final point, EV-mediated treatments are less toxic to the body than the most conventional ones, making them a safer and even more effective option. Although many in vitro studies have so far tested the efficacy of sEVs, further research is still needed to develop their potential in animal and clinical trials to reap the therapeutic benefits of this promising platform.
Collapse
Affiliation(s)
- Iman Owliaee
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehran Khaledian
- Department of Medical Entomology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Armin Khaghani Boroujeni
- Skin Disease and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
13
|
Yin T, Liu Y, He B, Gong B, Chu J, Gao C, Liang W, Hao M, Sun W, Zhuang J, Gao J, Yin Y. Cell primitive-based biomimetic nanomaterials for Alzheimer's disease targeting and therapy. Mater Today Bio 2023; 22:100789. [PMID: 37706205 PMCID: PMC10495673 DOI: 10.1016/j.mtbio.2023.100789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, which is not just confined to the older population. Although developments have been made in AD treatment, various limitations remain to be addressed. These are partly contributed by biological hurdles, such as the blood-brain barrier and peripheral side effects, as well as by lack of carriers that can efficiently deliver the therapeutics to the brain while preserving their therapeutic efficacy. The increasing AD prevalence and the unavailability of effective treatments have encouraged researchers to develop improved, convenient, and affordable therapies. Functional materials based on primitive cells and nanotechnology are emerging as attractive therapeutics in AD treatment. Cell primitives possess distinct biological functions, including long-term circulation, lesion site targeting, and immune suppression. This review summarizes the challenges in the delivery of AD drugs and recent advances in cell primitive-based materials for AD treatment. Various cell primitives, such as cells, extracellular vesicles, and cell membranes, are presented together with their distinctive biological functions and construction strategies. Moreover, future research directions are discussed on the basis of foreseeable challenges and perspectives.
Collapse
Affiliation(s)
- Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Clinical pharmacy innovation institute, Shanghai Jiao Tong University of Medicine, Shanghai, 200000, China
| | - Bin He
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Baofeng Gong
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Chao Gao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- School of Health Science and Engineering, University of Shanghaifor Science and Technology, Shanghai, 200093, China
| | - Wenjing Sun
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| |
Collapse
|
14
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
15
|
Zhan Y, Song Y, Qiao W, Sun L, Wang X, Yi B, Yang X, Ji L, Su P, Zhao W, Liu Z, Ren W. Focused ultrasound combined with miR-1208-equipped exosomes inhibits malignant progression of glioma. Br J Cancer 2023; 129:1083-1094. [PMID: 37580442 PMCID: PMC10539517 DOI: 10.1038/s41416-023-02393-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Exosomes (Exos) can safely and effectively deliver therapeutic substances to glioma cells; however, their blood-brain barrier (BBB) crossing capacity remains limited. Focused ultrasound (FUS) can transiently, reversibly, and locally open the BBB, while the effects of FUS combined with Exos-miRNA on the treatment of glioma have not been explored to date. METHODS Exos were extracted by differential centrifugation and the efficacy of miR-1208-loaded Exos combined with FUS in the treatment of glioma was detected by CCK-8, colony formation, flow cytometry, transwell and tumour xenografts assays. The METTL3-mediated regulation of IGF2BP2 on mRNA stability of NUP214 was determined by MeRIP-qPCR, half-life and RIP assays. RESULTS We used Exos secreted by mesenchymal stem cells as carriers for the tumour suppressor gene miR-1208, and following FUS irradiation, more Exos carrying miR-1208 were allowed to pass through the BBB, and the uptake of miR-1208 in Exos by glioma cells was promoted, thereby achieving high-efficiency tumour-suppressive effects. Furthermore, the molecular mechanism underlying this effect was elucidated that miR-1208 downregulated the m6A methylation level of NUP214 mRNA by negatively regulating the expression of METTL3, thereby NUP214 expression and TGF-β pathway activity were suppressed. CONCLUSIONS MiR-1208-loaded Exos combined with FUS is expected to become an effective glioma treatment and deserves further clinical evaluation.
Collapse
Affiliation(s)
- Ying Zhan
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yichen Song
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Wei Qiao
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Lu Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Wang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Bolong Yi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xinyu Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Lian Ji
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Peng Su
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Wujun Zhao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weidong Ren
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
16
|
Yu L, Liu S, Jia S, Xu F. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. Biomed Pharmacother 2023; 165:115049. [PMID: 37364480 DOI: 10.1016/j.biopha.2023.115049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
The management and treatment of disease are achieved via the use of pharmacologically active substances or drugs. Drugs do not, however, have an intrinsic ability to be effective; rather, how well they work depends on how they are administered or supplied. Treatment of a variety of biological illnesses, such as autoimmune disorders, cancer, and bacterial infections, requires effective drug delivery. Drug absorption, distribution, metabolism, duration of therapeutic impact, pharmacokinetics, excretion, and toxicity can all be impacted by drug administration. Improved chemistry and materials are required for the delivery of therapeutic concentration of novel treatments to the specified targets within the body, as well as for the necessary duration of time. This requirement is accompanied by the development of new therapeutics. Formulating a medication as a DDS is a promising strategy for directly addressing numerous typical barriers to adherence, such as frequent dosage, such as frequent dosage, side effects, and a delayed beginning of the action. In the current review, we give a compendium of drug delivery and controlled release and subsequently highlight some of the newest developments in the realm, with a particular emphasis on cutting-edge methods for targeted therapy. In each instance, we outline the obstacles to efficient drug administration as well as the chemical and material developments that are allowing the sector to overcome these obstacles and have a positive clinical impact.
Collapse
Affiliation(s)
- Ling Yu
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shengmao Liu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Jia
- Digestive Diseases center, Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun 130041, China
| | - Feng Xu
- Department of Nephrology, the Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
17
|
Ramesh D, Bakkannavar S, Bhat VR, Sharan K. Extracellular vesicles as novel drug delivery systems to target cancer and other diseases: Recent advancements and future perspectives. F1000Res 2023; 12:329. [PMID: 37868300 PMCID: PMC10589634 DOI: 10.12688/f1000research.132186.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid-bound vesicles produced into the extracellular space by cells. Apoptotic bodies (ApoBD), microvesicles (MVs), and exosomes are examples of EVs, which act as essential regulators in cell-cell communication in both normal and diseased conditions. Natural cargo molecules such as miRNA, messenger RNA, and proteins are carried by EVs and transferred to nearby cells or distant cells through the process of circulation. Different signalling cascades are then influenced by these functionally active molecules. The information to be delivered to the target cells depends on the substances within the EVs that also includes synthesis method. EVs have attracted interest as potential delivery vehicles for therapies due to their features such as improved circulation stability, biocompatibility, reduced immunogenicity, and toxicity. Therefore, EVs are being regarded as potent carriers of therapeutics that can be used as a therapeutic agent for diseases like cancer. This review focuses on the exosome-mediated drug delivery to cancer cells and the advantages and challenges of using exosomes as a carrier molecule.
Collapse
Affiliation(s)
- Divya Ramesh
- Forensic Medicine and Toxicology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Shankar Bakkannavar
- Forensic Medicine and Toxicology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Vinutha R Bhat
- Biochemistry, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| | - Krishna Sharan
- Radiotherapy Oncology, Katsurba Medical College, Manipal, Manipal Academy of Higher Education, MAHE, Manipal, Karnataka, 576104, India
| |
Collapse
|
18
|
Chiasson-MacKenzie C, Vitte J, Liu CH, Wright EA, Flynn EA, Stott SL, Giovannini M, McClatchey AI. Cellular mechanisms of heterogeneity in NF2-mutant schwannoma. Nat Commun 2023; 14:1559. [PMID: 36944680 PMCID: PMC10030849 DOI: 10.1038/s41467-023-37226-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Schwannomas are common sporadic tumors and hallmarks of familial neurofibromatosis type 2 (NF2) that develop predominantly on cranial and spinal nerves. Virtually all schwannomas result from inactivation of the NF2 tumor suppressor gene with few, if any, cooperating mutations. Despite their genetic uniformity schwannomas exhibit remarkable clinical and therapeutic heterogeneity, which has impeded successful treatment. How heterogeneity develops in NF2-mutant schwannomas is unknown. We have found that loss of the membrane:cytoskeleton-associated NF2 tumor suppressor, merlin, yields unstable intrinsic polarity and enables Nf2-/- Schwann cells to adopt distinct programs of ErbB ligand production and polarized signaling, suggesting a self-generated model of schwannoma heterogeneity. We validated the heterogeneous distribution of biomarkers of these programs in human schwannoma and exploited the synchronous development of lesions in a mouse model to establish a quantitative pipeline for studying how schwannoma heterogeneity evolves. Our studies highlight the importance of intrinsic mechanisms of heterogeneity across human cancers.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ching-Hui Liu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Emily A Wright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Elizabeth A Flynn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Shannon L Stott
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA, 02129, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Extracellular vesicles throughout development: A potential roadmap for emerging glioblastoma therapies. Semin Cell Dev Biol 2023; 133:32-41. [PMID: 35697594 DOI: 10.1016/j.semcdb.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delimited vesicular bodies carrying different molecules, classified according to their size, density, cargo, and origin. Research on this topic has been actively growing through the years, as EVs are associated with critical pathological processes such as neurodegenerative diseases and cancer. Despite that, studies exploring the physiological functions of EVs are sparse, with particular emphasis on their role in organismal development, initial cell differentiation, and morphogenesis. In this review, we explore the topic of EVs from a developmental perspective, discussing their role in the earliest cell-fate decisions and neural tissue morphogenesis. We focus on the function of EVs through development to highlight possible conserved or novel processes that can impact disease progression. Specifically, we take advantage of what was learned about their role in development so far to discuss EVs impact on glioblastoma, a particular brain tumor of stem-cell origin and poor prognosis, and how their function can be hijacked to improve current therapies.
Collapse
|
20
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
21
|
Su Y, Sharma NS, John JV, Ganguli‐Indra G, Indra AK, Gombart AF, Xie J. Engineered Exosomes Containing Cathelicidin/LL-37 Exhibit Multiple Biological Functions. Adv Healthc Mater 2022; 11:e2200849. [PMID: 35930707 PMCID: PMC9588668 DOI: 10.1002/adhm.202200849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Indexed: 01/28/2023]
Abstract
Exosomes show great potential in diagnostic and therapeutic applications. Inspired by the human innate immune defense, herein, we report engineered exosomes derived from monocytic cells treated with immunomodulating compounds 1α,25-dihydroxyvitamin D3, and CYP24A1 inhibitor VID400 which are slowly released from electrospun nanofiber matrices. These engineered exosomes contain significantly more cathelicidin/LL-37 when compared with exosomes derived from either untreated cells or Cathelicidin Human Tagged ORF Clone transfected cells. In addition, such exosomes exhibit multiple biological functions evidenced by killing bacteria, facilitating human umbilical vein endothelial cell tube formation, and enhancing skin cell proliferation and migration. Taken together, the engineered exosomes developed in this study can be used as therapeutics alone or in combination with other biomaterials for effective infection management, wound healing, and tissue regeneration.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNebraska68198USA
| | - Navatha Shree Sharma
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNebraska68198USA
| | - Johnson V. John
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNebraska68198USA
| | - Gitali Ganguli‐Indra
- Department of Pharmaceutical SciencesCollege of PharmacyOregon State UniversityCorvallisOregon97331USA
- Knight Cancer InstituteOregon Health & Science UniversityPortlandOregon97239USA
| | - Arup K. Indra
- Department of Pharmaceutical SciencesCollege of PharmacyOregon State UniversityCorvallisOregon97331USA
- Department of DermatologyOregon Health & Science UniversityPortlandOregon97239USA
- Linus Pauling InstituteDepartment of Biochemistry and BiophysicsOregon State UniversityCorvallisOregon97331USA
| | - Adrian F. Gombart
- Linus Pauling InstituteDepartment of Biochemistry and BiophysicsOregon State UniversityCorvallisOregon97331USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaNebraska68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNebraska68588USA
| |
Collapse
|
22
|
Prabhakar S, Beauchamp RL, Cheah PS, Yoshinaga A, Haidar EA, Lule S, Mani G, Maalouf K, Stemmer-Rachamimov A, Jung DH, Welling DB, Giovannini M, Plotkin SR, Maguire CA, Ramesh V, Breakefield XO. Gene replacement therapy in a schwannoma mouse model of neurofibromatosis type 2. Mol Ther Methods Clin Dev 2022; 26:169-180. [PMID: 35846573 PMCID: PMC9263409 DOI: 10.1016/j.omtm.2022.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Loss of function of the neurofibromatosis type 2 (NF2) tumor suppressor gene leads to the formation of schwannomas, meningiomas, and ependymomas, comprising ∼50% of all sporadic cases of primary nervous system tumors. NF2 syndrome is an autosomal dominant condition, with bi-allelic inactivation of germline and somatic alleles resulting in loss of function of the encoded protein merlin and activation of mammalian target of rapamycin (mTOR) pathway signaling in NF2-deficient cells. Here we describe a gene replacement approach through direct intratumoral injection of an adeno-associated virus vector expressing merlin in a novel human schwannoma model in nude mice. In culture, the introduction of an AAV1 vector encoding merlin into CRISPR-modified human NF2-null arachnoidal cells (ACs) or Schwann cells (SCs) was associated with decreased size and mTORC1 pathway activation consistent with restored merlin activity. In vivo, a single injection of AAV1-merlin directly into human NF2-null SC-derived tumors growing in the sciatic nerve of nude mice led to regression of tumors over a 10-week period, associated with a decrease in dividing cells and an increase in apoptosis, in comparison with vehicle. These studies establish that merlin re-expression via gene replacement in NF2-null schwannomas is sufficient to cause tumor regression, thereby potentially providing an effective treatment for NF2.
Collapse
Affiliation(s)
- Shilpa Prabhakar
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Roberta L. Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pike See Cheah
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Center for Molecular Imaging Research, Massachusetts General Hospital, 25 Shattuck St, Boston, MA 02115, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, JALAN UNIVERSITI 1 Serdang, 43400 Seri Kembangan, Selangor, Malaysia
| | - Akiko Yoshinaga
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Edwina Abou Haidar
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sevda Lule
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Gayathri Mani
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Katia Maalouf
- Department of Neurology and Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - David H. Jung
- Department of Otolaryngology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02114, USA
| | - D. Bradley Welling
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear and Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02114, USA
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Scott R. Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Casey A. Maguire
- Department of Neurology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Vijaya Ramesh
- Department of Neurology and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xandra O. Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
23
|
Vieira SRL, Schapira AHV. Glucocerebrosidase mutations and Parkinson disease. J Neural Transm (Vienna) 2022; 129:1105-1117. [PMID: 35932311 PMCID: PMC9463283 DOI: 10.1007/s00702-022-02531-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The discovery of glucocerebrosidase (GBA1) mutations as the greatest numerical genetic risk factor for the development of Parkinson disease (PD) resulted in a paradigm shift within the research landscape. Efforts to elucidate the mechanisms behind GBA1-associated PD have highlighted shared pathways in idiopathic PD including the loss and gain-of-function hypotheses, endoplasmic reticulum stress, lipid metabolism, neuroinflammation, mitochondrial dysfunction and altered autophagy-lysosomal pathway responsible for degradation of aggregated and misfolded a-synuclein. GBA1-associated PD exhibits subtle differences in phenotype and disease progression compared to idiopathic counterparts notably an earlier age of onset, faster motor decline and greater frequency of non-motor symptoms (which also constitute a significant aspect of the prodromal phase of the disease). GBA1-targeted therapies have been developed and are being investigated in clinical trials. The most notable are Ambroxol, a small molecule chaperone, and Venglustat, a blood-brain-barrier-penetrant substrate reduction therapy agent. It is imperative that further studies clarify the aetiology of GBA1-associated PD, enabling the development of a greater abundance of targeted therapies in this new era of precision medicine.
Collapse
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, Rowland Hill St., London, NW3 2PF, UK.
| |
Collapse
|
24
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
25
|
Bashyal S, Thapa C, Lee S. Recent progresses in exosome-based systems for targeted drug delivery to the brain. J Control Release 2022; 348:723-744. [PMID: 35718214 DOI: 10.1016/j.jconrel.2022.06.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/08/2022] [Indexed: 12/18/2022]
Abstract
Despite the multiple ongoing and novel initiatives for developing brain-targeted drug delivery systems, insurmountable obstacles remain. A perfect drug delivery device that can bypass the brain-blood barrier and boost therapeutic efficacy is urgently needed for clinical applications. Exosomes hold unrivaled benefits as a drug delivery vehicle for treating brain diseases due to their endogenous and innate attributes. Unique properties, such as the ability to penetrate physical barriers, biocompatibility, innate targeting features, ability to leverage natural intracellular trafficking pathways, favored tumor homing, and stability, make exosomes suitable for brain-targeted drug delivery. Herein, we provide an overview of recent exosome-based drug delivery nanoplatforms and discuss how these inherent vesicles can be used to deliver therapeutic agents to the brain to cure neurodegenerative diseases, brain tumors, and other brain disorders. Moreover, we review the current roadblocks associated with exosomes and other brain-targeted drug delivery systems and discuss future directions for achieving successful therapy outcomes.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chhitij Thapa
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea.
| |
Collapse
|
26
|
Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem Cell-based Therapeutic and Diagnostic Approaches in Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1093-1115. [PMID: 34970956 PMCID: PMC9886816 DOI: 10.2174/1570159x20666211231090659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.
Collapse
Affiliation(s)
- Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | | | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
27
|
Channon LM, Tyma VM, Xu Z, Greening DW, Wilson JS, Perera CJ, Apte MV. Small extracellular vesicles (exosomes) and their cargo in pancreatic cancer: Key roles in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188728. [PMID: 35385773 DOI: 10.1016/j.bbcan.2022.188728] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is a devastating disease, offering poor mortality rates for patients. The current challenge being faced is the inability to diagnose patients in a timely manner, where potentially curative resection provides the best chance of survival. Recently, small/nanosized extracellular vesicles (sEVs), including exosomes, have gained significant preclinical and clinical attention due to their emerging roles in cancer progression and diagnosis. Extracellular vesicles (EVs) possess endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype of recipient cells. This review provides an overview of the role of EVs, their subtypes and their oncogenic cargo (as characterised by targeted studies as well as agnostic '-omics' analyses) in the pathobiology of pancreatic cancer. The discussion covers the progress of 'omics technology' that has enabled elucidation of the molecular mechanisms that mediate the role of EVs and their cargo in pancreatic cancer progression.
Collapse
Affiliation(s)
- Lily M Channon
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Victoria M Tyma
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Victoria 3004, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Victoria 3086, Australia; Central Clinical School, Monash University, Australia, Victoria 3800, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria 3000, Australia
| | - Jeremy S Wilson
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Chamini J Perera
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia
| | - Minoti V Apte
- Pancreatic Research Group, South Western Sydney Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia; Ingham Institute of Applied Medical Research, Sydney 2170, Australia.
| |
Collapse
|
28
|
Guo Y, Gil Z. The Role of Extracellular Vesicles in Cancer-Nerve Crosstalk of the Peripheral Nervous System. Cells 2022; 11:cells11081294. [PMID: 35455973 PMCID: PMC9027707 DOI: 10.3390/cells11081294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Although the pathogenic operations of cancer–nerve crosstalk (e.g., neuritogenesis, neoneurogensis, and perineural invasion—PNI) in the peripheral nervous system (PNS) during tumorigenesis, as well as the progression of all cancer types is continuing to emerge as an area of unique scientific interest and study, extensive, wide-ranging, and multidisciplinary investigations still remain fragmented and unsystematic. This is especially so in regard to the roles played by extracellular vesicles (EVs), which are lipid bilayer-enclosed nano- to microsized particles that carry multiple-function molecular cargos, facilitate intercellular communication in diverse processes. Accordingly, the biological significance of EVs has been greatly elevated in recent years, as there is strong evidence that they could contribute to important and possibly groundbreaking diagnostic and therapeutic innovations. This can be achieved and the pace of discoveries accelerated through cross-pollination from existing knowledge and studies regarding nervous system physiology and pathology, as well as thoroughgoing collaborations between oncologists, neurobiologists, pathologists, clinicians, and researchers. This article offers an overview of current and recent past investigations on the roles of EVs in cancer–nerve crosstalk, as well as in neural development, physiology, inflammation, injury, and regeneration in the PNS. By highlighting the mechanisms involved in physiological and noncancerous pathological cellular crosstalk, we provide hints that may inspire additional translational studies on cancer–nerve interplay.
Collapse
Affiliation(s)
- Yuanning Guo
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel;
| | - Ziv Gil
- Rappaport Family Institute for Research in the Medical Sciences, Technion—Israel Institute of Technology, Haifa 31096, Israel;
- Head and Neck Institute, The Holy Family Hospital Nazareth, Nazareth 1641100, Israel
- Correspondence: ; Tel.: +972-4-854-2480
| |
Collapse
|
29
|
Zheng W, Fan D. Glucocerebrosidase Mutations Cause Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease: Pathogenesis and Therapeutic Implications. Front Aging Neurosci 2022; 14:851135. [PMID: 35401150 PMCID: PMC8984109 DOI: 10.3389/fnagi.2022.851135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by multiple motor and non-motor symptoms. Mutations in the glucocerebrosidase (GBA) gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), which hydrolyzes glucosylceramide (GlcCer) to glucose and ceramide, are the most important and common genetic PD risk factors discovered to date. Homozygous GBA mutations result in the most common lysosomal storage disorder, Gaucher’s disease (GD), which is classified according to the presence (neuronopathic types, type 2 and 3 GD) or absence (non-neuronopathic type, type 1 GD) of neurological symptoms. The clinical manifestations of PD in patients with GBA mutations are indistinguishable from those of sporadic PD at the individual level. However, accumulating data have indicated that GBA-associated PD patients exhibit a younger age of onset and a greater risk for cognitive impairment and psychiatric symptoms. The mechanisms underlying the increased risk of developing PD in GBA mutant carriers are currently unclear. Contributors to GBA-PD pathogenesis may include mitochondrial dysfunction, autophagy-lysosomal dysfunction, altered lipid homeostasis and enhanced α-synuclein aggregation. Therapeutic strategies for PD and GD targeting mutant GCase mainly include enzyme replacement, substrate reduction, gene and pharmacological small-molecule chaperones. Emerging clinical, genetic and pathogenic studies on GBA mutations and PD are making significant contributions to our understanding of PD-associated pathogenetic pathways, and further elucidating the interactions between GCase activity and neurodegeneration may improve therapeutic approaches for slowing PD progression.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
30
|
Ortega-Pineda L, Sunyecz A, Salazar-Puerta AI, Rincon-Benavides MA, Alzate-Correa D, Anaparthi AL, Guilfoyle E, Mezache L, Struckman HL, Duarte-Sanmiguel S, Deng B, McComb DW, Dodd D, Lawrence WR, Moore J, Zhang J, Reátegui E, Veeraraghavan R, Nelson MT, Gallego-Perez D, Higuita-Castro N. Designer Extracellular Vesicles Modulate Pro-Neuronal Cell Responses and Improve Intracranial Retention. Adv Healthc Mater 2022; 11:e2100805. [PMID: 35014204 PMCID: PMC9466406 DOI: 10.1002/adhm.202100805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 12/28/2021] [Indexed: 12/11/2022]
Abstract
Gene/oligonucleotide therapies have emerged as a promising strategy for the treatment of different neurological conditions. However, current methodologies for the delivery of neurogenic/neurotrophic cargo to brain and nerve tissue are fraught with caveats, including reliance on viral vectors, potential toxicity, and immune/inflammatory responses. Moreover, delivery to the central nervous system is further compounded by the low permeability of the blood brain barrier. Extracellular vesicles (EVs) have emerged as promising delivery vehicles for neurogenic/neurotrophic therapies, overcoming many of the limitations mentioned above. However, the manufacturing processes used for therapeutic EVs remain poorly understood. Here, we conducted a detailed study of the manufacturing process of neurogenic EVs by characterizing the nature of cargo and surface decoration, as well as the transfer dynamics across donor cells, EVs, and recipient cells. Neurogenic EVs loaded with Ascl1, Brn2, and Myt1l (ABM) are found to show enhanced neuron-specific tropism, modulate electrophysiological activity in neuronal cultures, and drive pro-neurogenic conversions/reprogramming. Moreover, murine studies demonstrate that surface decoration with glutamate receptors appears to mediate enhanced EV delivery to the brain. Altogether, the results indicate that ABM-loaded designer EVs can be a promising platform nanotechnology to drive pro-neuronal responses, and that surface functionalization with glutamate receptors can facilitate the deployment of EVs to the brain.
Collapse
Affiliation(s)
- Lilibeth Ortega-Pineda
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Alec Sunyecz
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Ana I. Salazar-Puerta
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | | | - Diego Alzate-Correa
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | | | - Ellie Guilfoyle
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Louisa Mezache
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Heather L. Struckman
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Silvia Duarte-Sanmiguel
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, Ohio, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel Dodd
- Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States
| | - William R. Lawrence
- Biomedical Science Graduate Program, The Ohio State University, Columbus, Ohio, United States
| | - Jordan Moore
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, United States
| | | | - M. Tyler Nelson
- Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Ohio, United States
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| | - Natalia Higuita-Castro
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, United States
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
31
|
Liu S, Fan M, Xu JX, Yang LJ, Qi CC, Xia QR, Ge JF. Exosomes derived from bone-marrow mesenchymal stem cells alleviate cognitive decline in AD-like mice by improving BDNF-related neuropathology. J Neuroinflammation 2022; 19:35. [PMID: 35130907 PMCID: PMC8822863 DOI: 10.1186/s12974-022-02393-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by a progressive decline in cognitive ability. Exosomes derived from bone-marrow mesenchymal stem cells (BMSC-exos) are extracellular vesicles that can execute the function of bone-marrow mesenchymal stem cells (BMSCs). Given the versatile therapeutic potential of BMSC and BMSC-exos, especially their neuroprotective effect, the aim of this study was to investigate the potential effect of BMSC-exos on AD-like behavioral dysfunction in mice and explore the possible molecular mechanism. METHODS BMSC-exos were extracted from the supernatant of cultured mouse BMSCs, which were isolated from the femur and tibia of adult C57BL/6 mice, purified and sorted via flow cytometry, and cultured in vitro. BMSC-exos were identified via transmission electron microscopy, and typical marker proteins of exosomes were also detected via Western blot. A sporadic AD mouse model was established by intracerebroventricular injection of streptozotocin (STZ). Six weeks later, BMSC-exos were administered via lateral ventricle injection or caudal vein injection lasting five consecutive days, and the control mice were intracerebroventricularly administered an equal volume of solvent. Behavioral performance was observed via the open field test (OFT), elevated plus maze test (EPM), novel object recognition test (NOR), Y maze test (Y-maze), and tail suspension test (TST). The mRNA and protein expression levels of IL-1β, IL-6, and TNF-α in the hippocampus were measured via quantitative polymerase chain reaction (qPCR) and Western blot, respectively. Moreover, the protein expression of Aβ1-42, BACE, IL-1β, IL-6, TNF-α, GFAP, p-Tau (Ser396), Tau5, synaptotagmin-1 (Syt-1), synapsin-1, and brain-derived neurotrophic factor (BDNF) in the hippocampus was detected using Western blot, and the expression of GFAP, IBA1, Aβ1-42 and DCX in the hippocampus was measured via immunofluorescence staining. RESULTS Lateral ventricle administration, but not caudal vein injection of BMSC-exos improved AD-like behaviors in the STZ-injected mouse model, as indicated by the increased number of rearing, increased frequency to the central area, and increased duration and distance traveled in the central area in the OFT, and improved preference index of the novel object in the NOR. Moreover, the hyperactivation of microglia and astrocytes in the hippocampus of the model mice was inhibited after treatment with BMSC-exos via lateral ventricle administration, accompanied by the reduced expression of IL-1β, IL-6, TNF-α, Aβ1-42, and p-Tau and upregulated protein expression of synapse-related proteins and BDNF. Furthermore, the results of the Pearson test showed that the preference index of the novel object in the NOR was positively correlated with the hippocampal expression of BDNF, but negatively correlated with the expression of GFAP, IBA1, and IL-1β. Apart from a positive correlation between the hippocampal expression of BDNF and Syt-1, BDNF abundance was found to be negatively correlated with markers of glial activation and the expression of the inflammatory cytokines, Aβ1-42, and p-Tau, which are characteristic neuropathological features of AD. CONCLUSIONS Lateral ventricle administration, but not caudal vein injection of BMSC-exos, can improve AD-like behavioral performance in STZ-injected mice, the mechanism of which might be involved in the regulation of glial activation and its associated neuroinflammation and BDNF-related neuropathological changes in the hippocampus.
Collapse
Affiliation(s)
- Sen Liu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Min Fan
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Jing-Xian Xu
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China
| | - Long-Jun Yang
- Chaohu Clinical Medical College, Anhui Medical University, Hefei, China
| | - Cong-Cong Qi
- Neurodevelopmental Laboratory, Fudan University, Shanghai, China
| | - Qing-Rong Xia
- Department of Pharmacy, Hefei Fourth People's Hospital, Anhui Mental Health Center, 316 Huangshan Road, Hefei, 230032, China.
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, China.
- Clinical Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, 81 Meishan Road, Anhui, 230032, Hefei, People's Republic of China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.
| |
Collapse
|
32
|
Tong PH, Zhu L, Zang Y, Li J, He XP, James TD. Metal-organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chem Commun (Camb) 2021; 57:12098-12110. [PMID: 34714306 DOI: 10.1039/d1cc05157a] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomacromolecular drugs have become an important class of therapeutic agents for the treatment of human diseases. Considering their high propensity for being degraded in the human body, the choice of an appropriate delivery system is key to ensure the therapeutic efficacy of biomacromolecular drugs in vivo. As an emerging class of supramolecular "host" materials, metal-organic frameworks (MOFs) exhibit advantages in terms of the tunability of pore size, encapsulation efficiency, controllable drug release, simplicity in surface functionalization and good biocompatibility. As a result, MOF-based host-guest systems have been extensively developed as a new class of flexible and powerful platform for the delivery of therapeutic biomacromolecules. In this review, we summarize current research progress in the synthesis of MOFs as delivery materials for a variety of biomacromolecules. Firstly, we briefly introduce the advances made in the use of biomacromolecular drugs for disease therapy and the types of commonly used clinical delivery systems. We then describe the advantages of using MOFs as delivery materials. Secondly, the strategies for the construction of MOF-encapsulated biomacromolecules (Biomacromolecules@MOFs) and the release mechanisms of the therapeutics are categorized. Thirdly, the application of MOFs to deliver different types of biomacromolecules (e.g., antigens/antibodies, enzymes, therapeutic proteins, DNA/RNA, polypeptides, and polysaccharides) for the treatment of various human diseases based on immunotherapy, gene therapy, starvation therapy and oxidation therapy is summarized. Finally, the remaining challenges and available opportunities for MOFs as drug delivery systems are outlined, which we anticipate will encourage additional research efforts directed towards developing Biomacromolecules@MOFs systems for biomedical applications.
Collapse
Affiliation(s)
- Pei-Hong Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Ling Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
33
|
Engineering and loading therapeutic extracellular vesicles for clinical translation: A data reporting frame for comparability. Adv Drug Deliv Rev 2021; 178:113972. [PMID: 34509573 DOI: 10.1016/j.addr.2021.113972] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) have emerged as new drug delivery systems as well as a regenerative cell-free effectors going beyond academic research to reach industrial research and development (R&D). Many proof-of-concept studies are now published describing the delivery of drugs, nanoparticles or biologics among which nucleic acids, proteins, viruses, etc. Their main interests rely on their intrinsic biocompatibility, targeting capabilities and biological activities. The possibility of loading EVs with exogenous therapeutic drug/nanoparticles or imaging tracers opens up the perspectives to extend EV therapeutic properties and enable EV tracking. Clinical translation is still hampered by the difficulty to produce and load EVs with large scale, efficient and cGMP methods. In this review, we critically discuss important notions related to EV engineering and the methods available with a particular focus on technologies fitted for clinical translation. Besides, we provide a tentative data reporting frame in order to support comparability and standardization in the field.
Collapse
|
34
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
36
|
Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem Cell-Derived Exosomes: a New Strategy of Neurodegenerative Disease Treatment. Mol Neurobiol 2021; 58:3494-3514. [PMID: 33745116 PMCID: PMC7981389 DOI: 10.1007/s12035-021-02324-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Short-term symptomatic treatment and dose-dependent side effects of pharmacological treatment for neurodegenerative diseases have forced the medical community to seek an effective treatment for this serious global health threat. Therapeutic potential of stem cell for treatment of neurodegenerative disorders was identified in 1980 when fetal nerve tissue was used to treat Parkinson's disease (PD). Then, extensive studies have been conducted to develop this treatment strategy for neurological disease therapy. Today, stem cells and their secretion are well-known as a therapeutic environment for the treatment of neurodegenerative diseases. This new paradigm has demonstrated special characteristics related to this treatment, including neuroprotective and neurodegeneration, remyelination, reduction of neural inflammation, and recovery of function after induced injury. However, the exact mechanism of stem cells in repairing nerve damage is not yet clear; exosomes derived from them, an important part of their secretion, are introduced as responsible for an important part of such effects. Numerous studies over the past few decades have evaluated the therapeutic potential of exosomes in the treatment of various neurological diseases. In this review, after recalling the features and therapeutic history, we will discuss the latest stem cell-derived exosome-based therapies for these diseases.
Collapse
Affiliation(s)
- Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
37
|
Intracerebral Administration of Autologous Mesenchymal Stem Cells as HSV-TK Gene Vehicle for Treatment of Glioblastoma Multiform: Safety and Feasibility Assessment. Mol Neurobiol 2021; 58:4425-4436. [PMID: 34021868 DOI: 10.1007/s12035-021-02393-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Widespread investigation has revealed the promising ability of suicidal genes in the treatment of glioma tumors; nevertheless, promoting their effects relies on the ability to apply suitable vehicles and techniques. In this study, the safety and feasibility of using bone marrow-derived mesenchymal stem cells (MSCs) in combination with prodrug for treatment of patients with primary and secondary glioblastoma multiform (GBM) was assessed. Five GBM patients were recruited. Following gross total resection of the tumor and adjuvant radiotherapy and chemotherapy, intracerebral injection of autologous MSCs transduced with lentivirus containing herpes simplex virus thymidine kinase (HSV-TK) was performed followed by intravenous administration of ganciclovir for 2 weeks. The treatment was well tolerated by all patients. Mild-to-moderate fever, headache, and cerebrospinal fluid leukocytosis were evident in three, two, and one patient, respectively. The progression-free survival (PFS) and overall survival (OS) of patients were 95.79 ± 51.40 and 128.85 ± 48.81 weeks, respectively. The 1-year PFS and OS were 60% and 100%, respectively, among our patients, and two patients had more than 3 years of OS and more than 2 years of PFS. It seems that intracerebral administration of bone marrow MSC containing the HSV-TK gene in combination with intravenous ganciclovir would be safe and feasible in the treatment of patients with GBM.
Collapse
|
38
|
Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small Extracellular Vesicles: A Novel Avenue for Cancer Management. Front Oncol 2021; 11:638357. [PMID: 33791224 PMCID: PMC8005721 DOI: 10.3389/fonc.2021.638357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles are small membrane particles derived from various cell types. EVs are broadly classified as ectosomes or small extracellular vesicles, depending on their biogenesis and cargoes. Numerous studies have shown that EVs regulate multiple physiological and pathophysiological processes. The roles of small extracellular vesicles in cancer growth and metastasis remain to be fully elucidated. As endogenous products, small extracellular vesicles are an ideal drug delivery platform for anticancer agents. However, several aspects of small extracellular vesicle biology remain unclear, hindering the clinical implementation of small extracellular vesicles as biomarkers or anticancer agents. In this review, we summarize the utility of cancer-related small extracellular vesicles as biomarkers to detect early-stage cancers and predict treatment outcomes. We also review findings from preclinical and clinical studies of small extracellular vesicle-based cancer therapies and summarize interventional clinical trials registered in the United States Food and Drug Administration and the Chinese Clinical Trials Registry. Finally, we discuss the main challenges limiting the clinical implementation of small extracellular vesicles and recommend possible approaches to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Guo Y, Wang H, Huang L, Ou L, Zhu J, Liu S, Xu X. Small extracellular vesicles-based cell-free strategies for therapy. MedComm (Beijing) 2021; 2:17-26. [PMID: 34766134 PMCID: PMC8491241 DOI: 10.1002/mco2.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Small extracellular vesicles (sEVs) are extracellular nanovesicles that contain bioactive proteins, lipids, RNA, and DNA. A variety of biological process is regulated with sEVs. sEVs are an intercellular messenger regulating recipient cell function and play a role in disease initiation and progression. sEVs derived from certain cells, such as mesenchymal stem cells and immune cells, have the potential for clinical therapy as they possess the characteristics of their parental cells. With better understanding of sEVs biogenesis, their transportation properties, extended circulatory capability, and exceptional biocompatibility, sEVs emerge as a potential therapeutic tool in the clinic. Here, we summarize applications of sEVs-based therapies in different diseases and current knowledge about the strategies in bioengineered sEVs, as well as the challenges for their use in clinical settings.
Collapse
Affiliation(s)
- Yeye Guo
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jinjin Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
40
|
Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201:102022. [PMID: 33617919 DOI: 10.1016/j.pneurobio.2021.102022] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/27/2020] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are heterogeneous cell-derived membranous structures that arise from the endosome system or directly detach from the plasma membrane. In recent years, many advances have been made in the understanding of the clinical definition and pathogenesis of neurodegenerative diseases, but translation into effective treatments is hampered by several factors. Current research indicates that EVs are involved in the pathology of diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Besides, EVs are also involved in the process of myelin formation, and can also cross the blood-brain barrier to reach the sites of CNS injury. It is suggested that EVs have great potential as a novel therapy for the treatment of neurodegenerative diseases. Here, we reviewed the advances in understanding the role of EVs in neurodegenerative diseases and addressed the critical function of EVs in the CNS. We have also outlined the physiological mechanisms of EVs in myelin regeneration and highlighted the therapeutic potential of EVs in neurodegenerative diseases.
Collapse
|
41
|
Song S, Zhang Y, Ding T, Ji N, Zhao H. The Dual Role of Macropinocytosis in Cancers: Promoting Growth and Inducing Methuosis to Participate in Anticancer Therapies as Targets. Front Oncol 2021; 10:570108. [PMID: 33542897 PMCID: PMC7851083 DOI: 10.3389/fonc.2020.570108] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Macropinocytosis is an important mechanism of internalizing extracellular materials and dissolved molecules in eukaryotic cells. Macropinocytosis has a dual effect on cancer cells. On the one hand, cells expressing RAS genes (such as K-RAS, H-RAS) under the stress of nutrient deficiency can spontaneously produce constitutive macropinocytosis to promote the growth of cancer cells by internalization of extracellular nutrients (like proteins), receptors, and extracellular vesicles(EVs). On the other hand, abnormal expression of RAS genes and drug treatment (such as MOMIPP) can induce a novel cell death associated with hyperactivated macropinocytosis: methuosis. Based on the dual effect, there is immense potential for designing anticancer therapies that target macropinocytosis in cancer cells. In view of the fact that there has been little review of the dual effect of macropinocytosis in cancer cells, herein, we systematically review the general process of macropinocytosis, its specific manifestation in cancer cells, and its application in cancer treatment, including anticancer drug delivery and destruction of macropinocytosis. This review aims to serve as a reference for studying macropinocytosis in cancers and designing macropinocytosis-targeting anticancer drugs in the future.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tingting Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Wang J, Zhuang X, Greene KS, Si H, Antonyak MA, Druso JE, Wilson KF, Cerione RA, Feng Q, Wang H. Cdc42 functions as a regulatory node for tumour-derived microvesicle biogenesis. J Extracell Vesicles 2021; 10:e12051. [PMID: 33473262 PMCID: PMC7804048 DOI: 10.1002/jev2.12051] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Tumour-derived microvesicles (MVs) serve as critical mediators of cell-to-cell communication in the tumour microenvironment. So far, the underlying mechanisms of MV biogenesis, especially how key tumorigenesis signals such as abnormal EGF signalling regulates MV release, remain unclear. Here, we set out to establish reliable readouts for MV biogenesis and then explore the molecular mechanisms that regulate MV generation. We found that Rho family small G protein Cdc42 is a convergent node of multiple regulatory signals that occur in MV biogenesis. The binding of activated GTP-bound Cdc42 and its downstream effector, Ras GTPase-activating-like protein 1 (IQGAP1), is required for MV shedding. Activated Cdc42 maintains sustained EGF signalling by inhibiting the internalization of cell surface receptors, including EGFR and the VEGF oligomer, VEGF90K, and then facilitates MV release. Subsequently, we further demonstrated that blocking these signalling pathways using the corresponding mutants effectively reduced MV shedding and significantly inhibited MV-promoted in vivo tumour angiogenesis. These findings reveal a complex regulation of MV shedding by tumour cells, shedding light on the regulatory mechanism of MV biogenesis, and potentially contributing to strategies that target MVs in cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Xiangjin Zhuang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Kai Su Greene
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Ha Si
- National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China.,Affiliated Hospital of Inner Mongolia University for the Nationalities Tongliao Inner Mongolia China
| | - Marc A Antonyak
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Joseph E Druso
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Kristin F Wilson
- Department of Molecular Medicine Cornell University Ithaca New York USA
| | - Richard A Cerione
- Department of Molecular Medicine Cornell University Ithaca New York USA.,Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Qiyu Feng
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| | - Hongyang Wang
- Cancer Research Center The First Affiliated Hospital of USTC Division of Life Sciences and Medicine University of Science and Technology of China Hefei Anhui China.,National Center for Liver Cancer Eastern Hepatobiliary Surgery Hospital/Institute the Second Military Medical University Shanghai China
| |
Collapse
|
43
|
Pashazadeh M. The role of tumor-isolated exosomes on suppression of immune reactions and cancer progression: A systematic review. Med J Islam Repub Iran 2020; 34:91. [PMID: 33306056 PMCID: PMC7713497 DOI: 10.34171/mjiri.34.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Exosomes are extracellular cells (EVs) emancipated by various cell types and are involved in cell-to-cell transmission. In cancer diseases, exosomes emerge as local and systemic cells to cell mediators of oncogenic information and play a significant role in the advancement of cancer through the horizontal transfer of various molecules, such as proteins and miRNAs.
Methods: In this study, 66 articles from PubMed, MEDLINE, Science Direct, Cochrane, EMBASE, and Scopus were used as English sources.
Results: The biological distribution of cancer cell-derived exosomes in tumor tissue is an important factor in detecting their role in tumor increase; on the other hand, a limited number of studies have examined the biodistribution of exosomes in tumor tissues. While exosomes function as cancer biomarkers and support cancer treatment, we have a long way to improve the antitumor treatment of exosomes and develop exosome-based cancer diagnostic and therapeutic strategies.
Conclusion: This review describes the science and significance of cancer pathogenesis and exosomes relative to cancer treatment resistance.
Collapse
Affiliation(s)
- Mehrdad Pashazadeh
- Immunology Division, Department of Microbiology, Health Science Institute, Bursa Uludag University, Bursa, Turkey.,Department of Immunology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
44
|
Schweiger MW, Tannous BA. Small but Fierce: Tracking the Role of Extracellular Vesicles in Glioblastoma Progression and Therapeutic Resistance. ADVANCED BIOSYSTEMS 2020; 4:e2000035. [PMID: 32881418 PMCID: PMC7968117 DOI: 10.1002/adbi.202000035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/10/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma is the most common and aggressive brain tumor in adults. Most patients die within a year and long-term survival remains rare, owing to a combination of rapid progression/degeneration, lack of successful treatments, and high recurrence rates. Extracellular vesicles are cell-derived membranous structures involved in numerous physiological and pathological processes. In the context of cancer, these biological nanoparticles play an important role in intercellular communication, allowing cancer cells to exchange information with each other, the tumor microenvironment as well as distant cells. Here, light is shed on the role of extracellular vesicles in glioblastoma heterogeneity, tumor microenvironment interactions, and therapeutic resistance, and an overview on means to track their release, uptake, and cargo delivery is provided.
Collapse
Affiliation(s)
- Markus W Schweiger
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
- Department of Neurosurgery, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, HV 1081, The Netherlands
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Boston, MA, 02129, USA
- Neuroscience Program, Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
45
|
Xu M, Yang Q, Sun X, Wang Y. Recent Advancements in the Loading and Modification of Therapeutic Exosomes. Front Bioeng Biotechnol 2020; 8:586130. [PMID: 33262977 PMCID: PMC7686035 DOI: 10.3389/fbioe.2020.586130] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Exosomes have a rapid development of bio-nanoparticles for drug delivery and confluent advances in next-generation diagnostics, monitoring the progression of several diseases, and accurate guidance for therapy. Based on their prominent stability, cargo-carriage properties, stable circulating capability, and favorable safety profile, exosomes have great potential to regulate cellular communication by carrying variable cargoes into specific site. However, the specific loading strategies and modification methods for engineered exosomes to enhance the targeting ability are unclear. The clinical application of exosomes is still limited. In this review, we discuss both original and modified exosomes for loading specific therapeutic molecules (proteins, nucleic acids, and small molecules) and the design strategies used to target specific cells. This review can be used as a reference for further loading and modification strategies as well as for the therapeutic applications of exosomes.
Collapse
Affiliation(s)
- Mengqiao Xu
- Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yue Wang
- Department of Histology and Embryology, Second Military Medical University, Shanghai, China.,Shanghai Key Lab of Cell Engineering, Shanghai, China
| |
Collapse
|
46
|
Bajetto A, Thellung S, Dellacasagrande I, Pagano A, Barbieri F, Florio T. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies. Stem Cells Transl Med 2020; 9:1310-1330. [PMID: 32543030 PMCID: PMC7581451 DOI: 10.1002/sctm.20-0161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from bone marrow or other adult tissues (adipose tissue, dental pulp, amniotic fluid, and umbilical cord). In vitro, MSCs grow as adherent cells, display fibroblast-like morphology, and self-renew, undergoing specific mesodermal differentiation. High heterogeneity of MSCs from different origin, and differences in preparation techniques, make difficult to uniform their functional properties for therapeutic purposes. Immunomodulatory, migratory, and differentiation ability, fueled clinical MSC application in regenerative medicine, whereas beneficial effects are currently mainly ascribed to their secretome and extracellular vesicles. MSC translational potential in cancer therapy exploits putative anti-tumor activity and inherent tropism toward tumor sites to deliver cytotoxic drugs. However, controversial results emerged evaluating either the therapeutic potential or homing efficiency of MSCs, as both antitumor and protumor effects were reported. Glioblastoma (GBM) is the most malignant brain tumor and its development and aggressive nature is sustained by cancer stem cells (CSCs) and the identification of effective therapeutic is required. MSC dualistic action, tumor-promoting or tumor-targeting, is dependent on secreted factors and extracellular vesicles driving a complex cross talk between MSCs and GBM CSCs. Tumor-tropic ability of MSCs, besides providing an alternative therapeutic approach, could represent a tool to understand the biology of GBM CSCs and related paracrine mechanisms, underpinning MSC-GBM interactions. In this review, recent findings on the complex nature of MSCs will be highlighted, focusing on their elusive impact on GBM progression and aggressiveness by direct cell-cell interaction and via secretome, also facing the perspectives and challenges in treatment strategies.
Collapse
Affiliation(s)
- Adriana Bajetto
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
| | | | | | - Aldo Pagano
- Dipartimento di Medicina SperimentaleUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | | | - Tullio Florio
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
47
|
Wang Y, Yao J, Cai L, Liu T, Wang X, Zhang Y, Zhou Z, Li T, Liu M, Lai R, Liu X. Bone-Targeted Extracellular Vesicles from Mesenchymal Stem Cells for Osteoporosis Therapy. Int J Nanomedicine 2020; 15:7967-7977. [PMID: 33116512 PMCID: PMC7573321 DOI: 10.2147/ijn.s263756] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Background Current drugs used for osteoporosis therapy show strong adverse effects. Stem cell-derived extracellular vesicles (EVs) provide another choice for osteoporosis therapy. Mouse mesenchymal stem cells (mMSCs)-derived EVs promote bone regeneration; however, their clinical application is limited due to non-specific tissue targeting. Alendronate specifically targets bone tissue via hydroxyapatite. Therefore, EVs were combined with alendronate to generate Ale-EVs by “click chemistry” to facilitate EVs targeting bone via alendronate/hydroxyapatite binding. Methods Ale-EVs were characterized based on size using dynamic light scattering analysis and morphology was visualized by transmission electron microscopy. Hydroxyapatite affinity of Ale-EVs was detected by flow cytometry. Bone targeting of Ale-EVs was tested by ex vivo fluorescent imaging. Cell viability was assessed by using WST-8 reduction assay kit for testing the ability of Ale-EVs to promote mMSCs proliferation. Alkaline phosphatase experiment was used to detect ability of Ale-EVs to promote differentiation of mouse mesenchymal stem cells in vitro. Western blotting and Q-PCR assay were used to detect the early marker of osteogenic differentiation. Antiosteoporotic effects of Ale-EVs were detected in ovariectomy (OVX)-induced osteoporosis rat model. The safety of the Ale-EVs in vivo was measured by H&E staining and serum markers assay. Results In vitro, Ale-EVs had high affinity with hydroxyapatite. Also, ex vivo data indicated that Ale-EVs-DiD treatment of mice induced strong fluorescece in bone tissues compared with EVs-DiD group. Furthermore, results suggested that Ale-EVs promoted the growth and differentiation of mouse MSCs. They also protected against osteoporosis in ovariectomy (OVX)-induced osteoporotic rats. Ale-EVs were well tolerated and no side effects were found, indicating that Ale-EVs specifically target bone and can be used as a new therapeutic in osteoporosis treatment. Conclusion We used the Ale-N3 to modify mouse mesenchymal stem cells-derived extracellular vesicles by copper-free “click chemistry” to generate a Ale-EVs system. The Ale-EVs had a high affinity for bone and have great potential for clinical applications in osteoporosis therapy with low systemic toxicity.
Collapse
Affiliation(s)
- Yayu Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jie Yao
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Lizhao Cai
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Tong Liu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiaogang Wang
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Ye Zhang
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Zhiying Zhou
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Tingwei Li
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Minyi Liu
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Renfa Lai
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| | - Xiangning Liu
- Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
48
|
Negahdaripour M, Owji H, Eskandari S, Zamani M, Vakili B, Nezafat N. Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opin Biol Ther 2020; 21:371-394. [PMID: 32945228 DOI: 10.1080/14712598.2021.1825677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are cell-created delivery systems of proteins, lipids, or nucleic acids, and means of extracellular communication. Though sEVs were initially considered to be the waste disposal mechanism, today they are at the forefront of research with different biological and pathological functions. Such EVs play a key role in the immunoregulation, CNS development, nervous system physiology, mammary gland development, induction of immunosuppression in pregnancy, the developmental signaling pathways, regeneration of different tissues, inflammation, angiogenesis, coagulation, apoptosis, stem cell differentiation, and extracellular matrix turnover. AREAS COVERED SEVs contribute to the pathogenesis of different cancers and the progression of various neurodegenerative diseases, infections, as well as metabolic and cardiovascular diseases. Expert Opinion: There is no exact classification for EVs; however, according to size, density, morphological features, content, and biogenesis, they can be categorized into three major classes: microvesicles (ectosomes or microparticles), apoptotic bodies, and sEVs. SEVs, as an important class of EVs, have a crucial role in distinct biological functions. Moreover, shedding light on different structural and molecular aspects of sEV has led to their application in various therapeutic, diagnostic, and drug delivery fields. In this review, we have endeavored to elaborate on different aspects of EVs, especially sEVs.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Hajar Owji
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sedigheh Eskandari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
49
|
Beeraka NM, Doreswamy SH, Sadhu SP, Srinivasan A, Pragada RR, Madhunapantula SV, Aliev G. The Role of Exosomes in Stemness and Neurodegenerative Diseases-Chemoresistant-Cancer Therapeutics and Phytochemicals. Int J Mol Sci 2020; 21:ijms21186818. [PMID: 32957534 PMCID: PMC7555629 DOI: 10.3390/ijms21186818] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes exhibit a wide range of biological properties and functions in the living organisms. They are nanometric vehicles and used for delivering drugs, as they are biocompatible and minimally immunogenic. Exosomal secretions derived from cancer cells contribute to metastasis, immortality, angiogenesis, tissue invasion, stemness and chemo/radio-resistance. Exosome-derived microRNAs (miRNAs) and long non-coding RNAs (lnc RNAs) are involved in the pathophysiology of cancers and neurodegenerative diseases. For instance, exosomes derived from mesenchymal stromal cells, astrocytes, macrophages, and acute myeloid leukemia (AML) cells are involved in the cancer progression and stemness as they induce chemotherapeutic drug resistance in several cancer cells. This review covered the recent research advances in understanding the role of exosomes in cancer progression, metastasis, angiogenesis, stemness and drug resistance by illustrating the modulatory effects of exosomal cargo (ex. miRNA, lncRNAs, etc.) on cell signaling pathways involved in cancer progression and cancer stem cell growth and development. Recent reports have implicated exosomes even in the treatment of several cancers. For instance, exosomes-loaded with novel anti-cancer drugs such as phytochemicals, tumor-targeting proteins, anticancer peptides, nucleic acids are known to interfere with drug resistance pathways in several cancer cell lines. In addition, this review depicted the need to develop exosome-based novel diagnostic biomarkers for early detection of cancers and neurodegenerative disease. Furthermore, the role of exosomes in stroke and oxidative stress-mediated neurodegenerative diseases including Alzheimer’s disease (AD), and Parkinson’s disease (PD) is also discussed in this article.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (N.M.B.); (S.H.D.)
| | - Shalini H. Doreswamy
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (N.M.B.); (S.H.D.)
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India; (S.P.S.); (R.R.P.)
| | - Asha Srinivasan
- Center of Excellence in Regenerative Medicine and Molecular Biology (CERM), Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Rajeswara Rao Pragada
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India; (S.P.S.); (R.R.P.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
- Correspondence: (S.V.M.); or (G.A.); Tel.: +1-440-263-7461 or +7-964-493-1515 (G.A.)
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, 119991 Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia
- Research Institute of Human Morphology, 3 Tsyurupy Street, 117418 Moscow, Russia
- GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA
- Correspondence: (S.V.M.); or (G.A.); Tel.: +1-440-263-7461 or +7-964-493-1515 (G.A.)
| |
Collapse
|
50
|
Nelson BC, Maragh S, Ghiran IC, Jones JC, DeRose PC, Elsheikh E, Vreeland WN, Wang L. Measurement and standardization challenges for extracellular vesicle therapeutic delivery vectors. Nanomedicine (Lond) 2020; 15:2149-2170. [PMID: 32885720 PMCID: PMC7546159 DOI: 10.2217/nnm-2020-0206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, are nonreplicating lipid bilayer particles shed by most cell types which have the potential to revolutionize the development and efficient delivery of clinical therapeutics. This article provides an introduction to the landscape of EV-based vectors under development for the delivery of protein- and nucleic acid-based therapeutics. We highlight some of the most pressing measurement and standardization challenges that limit the translation of EVs to the clinic. Current challenges limiting development of EVs for drug delivery are the lack of: standardized cell-based platforms for the production of EV-based therapeutics; EV reference materials that allow researchers/manufacturers to validate EV measurements and standardized measurement systems for determining the molecular composition of EVs.
Collapse
Affiliation(s)
- Bryant C Nelson
- National Institute of Standards & Technology, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Samantha Maragh
- National Institute of Standards & Technology, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Ionita C Ghiran
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jennifer C Jones
- National Institutes of Health, National Cancer Institute, Bethesda, MD 20892, USA
| | - Paul C DeRose
- National Institute of Standards & Technology, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Elzafir Elsheikh
- National Institute of Standards & Technology, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Wyatt N Vreeland
- National Institute of Standards & Technology, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| | - Lili Wang
- National Institute of Standards & Technology, Material Measurement Laboratory, Gaithersburg, MD 20899, USA
| |
Collapse
|