1
|
Zhang X, Cai W, Wang C, Tian J. N-methyl-d-aspartate receptors (NMDARs): a glutamate-activated cation channel with biased signaling and therapeutic potential in brain disorders. Pharmacol Ther 2025:108888. [PMID: 40412765 DOI: 10.1016/j.pharmthera.2025.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/21/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are a type of calcium-permeable ion channel receptors that are extensively distributed throughout the body, composed of various subunits. The presence of diverse ligands and subcellular localizations of the receptors confer biased signaling and distinct functional roles. Activation of the NMDARs induces calcium influx, which plays a pivotal role in neurotransmitter release, synaptic plasticity, and intracellular signaling. Differential localization of NMDARs at synaptic and extrasynaptic sites results in divergent physiological effects; excessive or insufficient activation of NMDARs disrupts calcium homeostasis, leading to neuronal damage and subsequent neurological dysfunction as well as related diseases. Therefore, it is crucial to develop drugs targeting NMDAR with high efficacy with low toxicity for treating disorders associated with NMDARs abnormalities. In this review, we summarize both fundamental and clinical studies on NMDARs while discussing potential therapeutic targets aimed at modulating ion channel activity through regulating mechanisms, subunit rearrangement, membrane expression, and the specific targeting of synaptic versus extrasynaptic NMDARs. Our goal is to provide new insights for innovative drug development.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China
| | - Wensheng Cai
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guang Dong, PR China
| | - Jing Tian
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China.
| |
Collapse
|
2
|
Rábago-Monzón ÁR, Osuna-Ramos JF, Armienta-Rojas DA, Camberos-Barraza J, Camacho-Zamora A, Magaña-Gómez JA, De la Herrán-Arita AK. Stress-Induced Sleep Dysregulation: The Roles of Astrocytes and Microglia in Neurodegenerative and Psychiatric Disorders. Biomedicines 2025; 13:1121. [PMID: 40426947 PMCID: PMC12109018 DOI: 10.3390/biomedicines13051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Stress and sleep share a reciprocal relationship, where chronic stress often leads to sleep disturbances that worsen neurodegenerative and psychiatric conditions. Non-neuronal cells, particularly astrocytes and microglia, play critical roles in the brain's response to stress and the regulation of sleep. Astrocytes influence sleep architecture by regulating adenosine signaling and glymphatic clearance, both of which can be disrupted by chronic stress, leading to reduced restorative sleep. Microglia, activated under stress conditions, drive neuroinflammatory processes that further impair sleep and exacerbate brain dysfunction. Additionally, the gut-brain axis mediates interactions between stress, sleep, and inflammation, with microbial metabolites influencing neural pathways. Many of these effects converge on the disruption of synaptic processes, such as neurotransmitter balance, synaptic plasticity, and pruning, which in turn contribute to the pathophysiology of neurodegenerative and psychiatric disorders. This review explores how these cellular and systemic mechanisms contribute to stress-induced sleep disturbances and their implications for neurodegenerative and psychiatric disorders, offering insights into potential therapeutic strategies targeting non-neuronal cells and the gut-brain axis.
Collapse
Affiliation(s)
- Ángel R. Rábago-Monzón
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
- Doctorado en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
| | - Juan F. Osuna-Ramos
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
| | | | - Josué Camberos-Barraza
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
- Doctorado en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
| | - Alejandro Camacho-Zamora
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
- Doctorado en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
| | - Javier A. Magaña-Gómez
- Facultad de Ciencias de la Nutrición y Gastronomía, Universidad Autónoma de Sinaloa, Culiacán 80019, Mexico
| | | |
Collapse
|
3
|
Kay N, Huang CY, Yu YC, Chen CC, Chang CC, Huang SJ. The Involvement of Mitochondrial Dysfunction during the Development of Adenomyosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:861-874. [PMID: 40010668 DOI: 10.1016/j.ajpath.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
The etiology of adenomyosis remains unclear. The association between epithelial-mesenchymal transition (EMT) and mitochondrial dysfunction is involved in fibrotic diseases. Adenomyosis is defined as the existence of endometrial glands and stroma in the myometrium with EMT and ultimate fibrosis. This study was designed to investigate the involvement of mitochondrial dysfunction in fibrotic adenomyosis. Mitochondrial integrity was examined in mouse and human adenomyotic tissues. Control and tamoxifen-treated mice were treated with 3-nitropropionic acid (a mitochondrial dysfunction inducer) and NG-nitro-L-arginine methyl ester (a mitochondrial dysfunction inhibitor), respectively, at postnatal day 21, followed by an evaluation of adenomyosis, EMT, and fibrosis as well as the expression of mitophagy, oxidative stress, and transforming growth factor-β1 (TGF-β1). The gene profiles of adenomyotic uteri were examined at postnatal day 42. Adenomyotic mice exhibited increased development of EMT and fibrosis. Adenomyotic tissues showed consistent mitochondrial destruction with increased fission, mitophagosomes, and lysosomes. Besides, mitophagy, oxidative stress, and TGF-β1 levels were consistently increased. The mitochondrial dysfunction, the development of mitophagy and fibrosis, and TGF-β1 expression were induced by 3-nitropropionic acid in control uteri. In contrast, NG-nitro-L-arginine methyl ester attenuated mitochondrial dysfunction, mitophagy, fibrosis, and TGF-β1 in adenomyotic uteri. Gene profiling demonstrated increased expression of mitochondrial dysfunction-related genes in adenomyotic uteri. This indicates that mitochondrial dysfunction-induced TGF-β1 dysregulation and fibrosis are associated with the development of adenomyosis.
Collapse
Affiliation(s)
- Nari Kay
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Yen Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Chun Yu
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Chen Chen
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Chang Chang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - S Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
4
|
Bao N, Liu J, Wang H, Xing L, Xie Z, Liu C, Jin S, Jia J, Zhang M, Fan J. Drug Repurposing and Screening for Multiple Sclerosis Targeting Microglia and Macrophages. Mol Neurobiol 2025; 62:4724-4742. [PMID: 39485630 DOI: 10.1007/s12035-024-04602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/27/2024] [Indexed: 11/03/2024]
Abstract
Microglia/macrophages (MG/Mφ) play a central role in the pathogenesis of multiple sclerosis (MS). However, the intricacies of the immunomodulatory microenvironment in MS, particularly the heterogeneity and regulatory mechanisms of MG/Mφ subpopulations, remain elusive. The commonly used treatment options for MS have several drawbacks, such as significant side effects and uncertain efficacy. The exploration of developing new drugs targeting MG/Mφ for the treatment of MS remains to be investigated. We identified three distinct subpopulations of MG/Mφ, among which MG/Mφ_3 significantly increased as the experimental autoimmune encephalomyelitis (EAE) progressed. Ifenprodil and RO-25-6981 demonstrated notable inhibition of inflammatory factor expression, accompanied by reduced cytotoxicity. The interaction modes of these compounds with the common binding pocket in the GluN1b-GluN2B amino terminal domain heterodimer were elucidated. Virtual docking, based on the N-methyl-D-aspartate (NMDA) receptor, showed that homo-skeleton compounds of ifenprodil potentially exhibit low binding free energy with the receptor, including eliprodil and volinanserin. In vitro cell models corroborated the effective inhibition of inflammatory factor expression and minimal cytotoxicity of eliprodil and volinanserin. CoMFA (standard error of estimate = 0.378, R2 = 0.928, F values = 241.255, Prob. of R2 = 0) and topomer CoMFA (q2 = 0.553, q2 stderr = 0.77, intercept = - 1.48, r2 = 0.908, r2 stderr = 0.35) were established based on the inhibitors of NMDA receptor. The contour maps of CoMFA and topomer CoMFA models give structural information to improve the inhibitory function. This study underscores the involvement of MG/Mφ in inflammatory pathways during MS progression and offers promising compound candidates for MS therapy targeting MG/Mφ.
Collapse
Affiliation(s)
- Nandi Bao
- Senior Department of Cardiology, the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Jing Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Heran Wang
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Lei Xing
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Zhonghui Xie
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chuanbin Liu
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Shaowei Jin
- National Supercomputing Shenzhen Center, Shenzhen, 518052, China
| | - Jianjun Jia
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Minghua Zhang
- Medical Supplies Center of PLA General Hospital, Beijing, 100853, China.
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, the Second Medical Center of PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
5
|
Kundu D, Wang M, Paudel S, Wang S, Jang CG, Kim KM. Structure-Activity Relationship of NMDA Receptor Ligands and Their Activities on the ERK Activation through Metabotropic Signaling Pathway. Biomol Ther (Seoul) 2025; 33:278-285. [PMID: 39934970 PMCID: PMC11893489 DOI: 10.4062/biomolther.2024.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
The N-methyl-D-aspartate receptor (NMDA-R) subunit GluN2B is abundantly expressed in brain regions critical for synaptic plasticity and cognitive processes. This study investigated the structure-activity relationships (SAR) of NMDA-R ligands using GluN2B as a molecular target. Thirty potential NMDA-R antagonists were categorized into two structural classes: 1-(1-phenylcyclohexyl) amines (series A) and α-amino-2-phenylcyclohexanone derivatives (series B). In series A compounds, the phenyl ring and R1 substituents were positioned at the carbon center of the cyclohexyl ring, with R2 substituents at the para- or meta-positions of the phenyl ring. SAR analysis revealed optimal binding affinity when R1 was carbonyl (C=O) and R2 was 4-methoxy (4-OMe). Series B compounds featured a cyclohexanone scaffold with NH-R1 at the α-position and a phenyl ring bearing R2 substituents at ortho-, meta-, or para-positions. Maximum binding affinity was achieved with R1 as hydrogen (H) and R2 as hydroxyl (OH). Compounds were assessed for GluN2B-mediated ERK activation to evaluate potential metabotropic signaling properties. Approximately 50% of the compounds demonstrated ERK activation through a non-ionotropic signaling cascade involving Src, phosphatidylinositol 3-kinase, and protein kinase C. This study elucidated key structural determinants for NMDA-R binding and characterized a novel metabotropic signaling pathway. Notably, our findings suggest that compounds acting as antagonists at the ionotropic site may simultaneously function as agonists through non-ionotropic mechanisms.
Collapse
Affiliation(s)
- Dooti Kundu
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Mengling Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Suresh Paudel
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Trofin DM, Sardaru DP, Trofin D, Onu I, Tutu A, Onu A, Onită C, Galaction AI, Matei DV. Oxidative Stress in Brain Function. Antioxidants (Basel) 2025; 14:297. [PMID: 40227270 PMCID: PMC11939459 DOI: 10.3390/antiox14030297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress (OS) is an important factor in the pathophysiology of numerous neurodegenerative disorders, such as Parkinson's disease, multiple sclerosis, cerebrovascular pathology or Alzheimer's disease. OS also significantly influences progression among the various neurodegenerative disorders. The imbalance between the formation of reactive oxygen species (ROS) and the body's capacity to neutralize these toxic byproducts renders the brain susceptible to oxidative injury. Increased amounts of ROS can result in cellular malfunction, apoptosis and neurodegeneration. They also represent a substantial factor in mitochondrial dysfunction, a defining characteristic of neurodegenerative disorders. Comprehending the fundamental mechanisms of OS and its interactions with mitochondrial function, neuroinflammation and cellular protective pathways becomes essential for formulating targeted therapeutics to maintain brain health and reduce the impacts of neurodegeneration. We address recent highlights on the role of OS in brain function in terms of significance for neuronal health and the progression of neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniela-Marilena Trofin
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania
| | - Dragos-Petrica Sardaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Dan Trofin
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Ilie Onu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Andrei Tutu
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania
| | - Ana Onu
- Doctoral School, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania
| | - Cristiana Onită
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| | - Daniela Viorelia Matei
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania (I.O.); (D.V.M.)
| |
Collapse
|
7
|
Kamiński K, Socała K, Abram M, Jakubiec M, Reeb KL, Temmermand R, Zagaja M, Maj M, Kolasa M, Faron‐Górecka A, Andres‐Mach M, Szewczyk A, Hameed MQ, Fontana ACK, Rotenberg A, Kamiński RM. Enhancement of Glutamate Uptake as Novel Antiseizure Approach: Preclinical Proof of Concept. Ann Neurol 2025; 97:344-357. [PMID: 39512205 PMCID: PMC11740271 DOI: 10.1002/ana.27124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
OBJECTIVE Excitotoxicity is a common hallmark of epilepsy and other neurological diseases associated with elevated extracellular glutamate levels. Thus, here, we studied the protective effects of (R)-AS-1, a positive allosteric modulator (PAM) of glutamate uptake in epilepsy models. METHODS (R)-AS-1 was evaluated in a range of acute and chronic seizure models, while its adverse effect profile was assessed in a panel of standard tests in rodents. The effect of (R)-AS-1 on glutamate uptake was assessed in COS-7 cells expressing the transporter. WAY 213613, a selective competitive EAAT2 inhibitor, was used to probe the reversal of the enhanced glutamate uptake in the same transporter expression system. Confocal microscopy and Western blotting analyses were used to study a potential influence of (R)-AS-1 on GLT-1 expression in mice. RESULTS (R)-AS-1 showed robust protection in a panel of animal models of seizures and epilepsy, including the maximal electroshock- and 6 Hz-induced seizures, corneal kindling, mesial temporal lobe epilepsy, lamotrigine-resistant amygdala kindling, as well as seizures induced by pilocarpine or Theiler's murine encephalomyelitis virus. Importantly, (R)-AS-1 displayed a favorable adverse effect profile in the rotarod, the minimal motor impairment, and the Irwin tests. (R)-AS-1 enhanced glutamate uptake in vitro and this effect was abolished by WAY 213613, while no influence on GLT-1 expression in vivo was observed after repeated treatment. INTERPRETATION Collectively, our results show that (R)-AS-1 has favorable tolerability and provides robust preclinical efficacy against seizures. Thus, allosteric enhancement of EAAT2 function could offer a novel therapeutic strategy for treatment of epilepsy and potentially other neurological disorders associated with glutamate excitotoxicity. ANN NEUROL 2025;97:344-357.
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and BiotechnologyMaria Curie‐Skłodowska UniversityLublinPoland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| | - Katelyn L. Reeb
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Rhea Temmermand
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Mirosław Zagaja
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Maciej Maj
- Department of BiopharmacyMedical University of LublinLublinPoland
| | - Magdalena Kolasa
- Department of PharmacologyMaj Institute of Pharmacology Polish Academy of SciencesKrakowPoland
| | - Agata Faron‐Górecka
- Department of PharmacologyMaj Institute of Pharmacology Polish Academy of SciencesKrakowPoland
| | - Marta Andres‐Mach
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Aleksandra Szewczyk
- Department of Experimental PharmacologyInstitute of Rural HealthLublinPoland
| | - Mustafa Q. Hameed
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Neurology, F.M. Kirby Neurobiology CenterBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Andréia C. K. Fontana
- Department of Pharmacology and PhysiologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation ProgramBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Neurology, F.M. Kirby Neurobiology CenterBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rafał M. Kamiński
- Department of Medicinal Chemistry, Faculty of PharmacyJagiellonian University Medical CollegeKrakowPoland
| |
Collapse
|
8
|
Bobkova NV, Chuvakova LN, Kovalev VI, Zhdanova DY, Chaplygina AV, Rezvykh AP, Evgen'ev MB. A Mouse Model of Sporadic Alzheimer's Disease with Elements of Major Depression. Mol Neurobiol 2025; 62:1337-1358. [PMID: 38980563 DOI: 10.1007/s12035-024-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
After olfactory bulbectomy, animals are often used as a model of major depression or sporadic Alzheimer's disease and, hence, the status of this model is still disputable. To elucidate the nature of alterations in the expression of the genome after the operation, we analyzed transcriptomes of the cortex, hippocampus, and cerebellum of the olfactory bulbectomized (OBX) mice. Analysis of the functional significance of genes in the brain of OBX mice indicates that the balance of the GABA/glutamatergic systems is disturbed with hyperactivation of the latter in the hippocampus, leading to the development of excitotoxicity and induction of apoptosis in the background of severe mitochondrial dysfunction and astrogliosis. On top of this, the synthesis of neurotrophic factors decreases leading to the disruption of the cytoskeleton of neurons, an increase in the level of intracellular calcium, and the activation of tau protein hyperphosphorylation. Moreover, the acetylcholinergic system is deficient in the background of the hyperactivation of acetylcholinesterase. Importantly, the activity of the dopaminergic, endorphin, and opiate systems in OBX mice decreases, leading to hormonal dysfunction. On the other hand, genes responsible for the regulation of circadian rhythms, cell migration, and innate immunity are activated in OBX animals. All this takes place in the background of a drastic downregulation of ribosomal protein genes in the brain. The obtained results indicate that OBX mice represent a model of Alzheimer's disease with elements of major depression.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - V I Kovalev
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - D Y Zhdanova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A V Chaplygina
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
9
|
Delint-Ramirez I, Madabhushi R. DNA damage and its links to neuronal aging and degeneration. Neuron 2025; 113:7-28. [PMID: 39788088 PMCID: PMC11832075 DOI: 10.1016/j.neuron.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 01/12/2025]
Abstract
DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage. Chromosome conformation capture-based approaches have shown that, while DNA damage and the ensuing cellular response alter chromatin topology, chromatin organization at damage sites also affects DNA repair outcomes in neurons. Additionally, neuronal activity results in the formation of programmed DNA breaks, which could burden DNA repair mechanisms and promote neuronal dysfunction. Finally, emerging evidence implicates DNA damage-induced inflammation as an important contributor to the age-related decline in neuronal functions. Together, these discoveries have ushered in a new understanding of the significance of genome maintenance for neuronal function.
Collapse
Affiliation(s)
- Ilse Delint-Ramirez
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ram Madabhushi
- Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Tichauer JE, Rovegno M. Role of astrocytes connexins - pannexins in acute brain injury. Neurotherapeutics 2025; 22:e00523. [PMID: 39848901 PMCID: PMC11840357 DOI: 10.1016/j.neurot.2025.e00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Acute brain injuries (ABIs) encompass a broad spectrum of primary injuries such as ischemia, hypoxia, trauma, and hemorrhage that converge into secondary injury where some mechanisms show common determinants. In this regard, astroglial connexin and pannexin channels have been shown to play an important role. These channels are transmembrane proteins sharing similar topology and form gateways between adjacent cells named gap junctions (GJs) and pores into unopposed membranes named hemichannels (HCs). In astrocytes, GJs and HCs enable intercellular communication and have active participation in normal brain physiological processes, such as calcium waves, synapsis modulation, regional blood flow regulation, and homeostatic control of the extracellular environment, among others. However, after acute brain injury, astrocytes can change their phenotype and modify the activity of both channels and hemichannels, which can result in the amplification of danger signals, increased mediators of inflammation, and neuronal death, contributing to the expansion of brain damage and neurological deterioration. This is known as secondary brain damage. In this review, we discussed the main biological mechanism of secondary brain damage with a particular focus on astroglial connexin and pannexin participation during acute brain injuries.
Collapse
Affiliation(s)
- Juan E Tichauer
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| | - Maximiliano Rovegno
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
11
|
Pikor D, Hurła M, Słowikowski B, Szymanowicz O, Poszwa J, Banaszek N, Drelichowska A, Jagodziński PP, Kozubski W, Dorszewska J. Calcium Ions in the Physiology and Pathology of the Central Nervous System. Int J Mol Sci 2024; 25:13133. [PMID: 39684844 DOI: 10.3390/ijms252313133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Calcium ions play a key role in the physiological processes of the central nervous system. The intracellular calcium signal, in nerve cells, is part of the neurotransmission mechanism. They are responsible for stabilizing membrane potential and controlling the excitability of neurons. Calcium ions are a universal second messenger that participates in depolarizing signal transduction and contributes to synaptic activity. These ions take an active part in the mechanisms related to memory and learning. As a result of depolarization of the plasma membrane or stimulation of receptors, there is an extracellular influx of calcium ions into the cytosol or mobilization of these cations inside the cell, which increases the concentration of these ions in neurons. The influx of calcium ions into neurons occurs via plasma membrane receptors and voltage-dependent ion channels. Calcium channels play a key role in the functioning of the nervous system, regulating, among others, neuronal depolarization and neurotransmitter release. Channelopathies are groups of diseases resulting from mutations in genes encoding ion channel subunits, observed including the pathophysiology of neurological diseases such as migraine. A disturbed ability of neurons to maintain an appropriate level of calcium ions is also observed in such neurodegenerative processes as Alzheimer's disease, Parkinson's disease, Huntington's disease, and epilepsy. This review focuses on the involvement of calcium ions in physiological and pathological processes of the central nervous system. We also consider the use of calcium ions as a target for pharmacotherapy in the future.
Collapse
Affiliation(s)
- Damian Pikor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mikołaj Hurła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Bartosz Słowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Oliwia Szymanowicz
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Joanna Poszwa
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Natalia Banaszek
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Alicja Drelichowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
12
|
Zhang H, Ren X, Wu C, He X, Huang Z, Li Y, Liao L, Xiang J, Li M, Wu L. Intracellular calcium dysregulation in heart and brain diseases: Insights from induced pluripotent stem cell studies. J Neuropathol Exp Neurol 2024; 83:993-1002. [PMID: 39001792 DOI: 10.1093/jnen/nlae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024] Open
Abstract
The central nervous system (CNS) plays a role in regulating heart rate and myocardial contractility through sympathetic and parasympathetic nerves, and the heart can impact the functional equilibrium of the CNS through feedback signals. Although heart and brain diseases often coexist and mutually influence each other, the potential links between heart and brain diseases remain unclear due to a lack of reliable models of these relationships. Induced pluripotent stem cells (iPSCs), which can differentiate into multiple functional cell types, stem cell biology and regenerative medicine may offer tools to clarify the mechanisms of these relationships and facilitate screening of effective therapeutic agents. Because calcium ions play essential roles in regulating both the cardiovascular and nervous systems, this review addresses how recent iPSC disease models reveal how dysregulation of intracellular calcium might be a common pathological factor underlying the relationships between heart and brain diseases.
Collapse
Affiliation(s)
- Huayang Zhang
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xueming Ren
- Department of Ophthalmology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chunyu Wu
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xinsen He
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Zhengxuan Huang
- Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yangpeng Li
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lei Liao
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Jie Xiang
- Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Cardiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Chen SF, Cheng WJ, Chao CC, Kuo CH, Liao RM. Baseline-dependent enhancement of working memory by memantine in male rats: Involvement of NMDA receptor subunits and CaMKII signaling. Pharmacol Biochem Behav 2024; 245:173904. [PMID: 39522650 DOI: 10.1016/j.pbb.2024.173904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/26/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
N-methyl-d-aspartate (NMDA) receptors, activated by glutamate, play a crucial role in learning and memory. Memantine (MEM), a non-competitive NMDA receptor antagonist, is currently prescribed for the treatment of Alzheimer's disease or dementia, which meanwhile simultaneously promotes a need to clarify its potential pro-cognitive effects that exist in normal healthy individuals. However, the neurobehavioral mechanisms underlying the cognitive improvement by MEM in normal individuals remain to be elucidated. This study aimed to assess the effects of MEM on working memory, measured by a discrete paired-trial delay alternation task in a T-maze in normal male rats. The impacts of MEM were hypothesized to vary depending on different baseline levels of working memory performance. Neurochemical examination of the levels of calcium/calmodulin-dependent kinase 2 (CaMKII) and NMDA receptor subunits within five targeted brain regions was conducted after behavioral tests. The results showed that acute administration of MEM enhanced working memory performance, with 2.5, 5.0, and 10 mg/kg doses increasing task accuracy compared to the vehicle, particularly in low performers. Neurochemically, the protein expression of CaMKII in the amygdala and that of the glutamate (Glu) N2A subunit in the dorsal striatum were greater in the low-performance group than in the high-performance group. Additionally, the protein expression of the GluN2A subunit in the dorsal striatum was negatively associated with task performance at baseline. The expression of GluN1 and GluN2B in the nucleus accumbens was negatively associated with task performance in the retest three weeks after drug treatment. These findings underscore the baseline-dependent improvement of working memory resulting from MEM administration, with observed drug effects associated with alterations in the levels of NMDA receptor subunits in striatal subareas and CaMKII in the amygdala.
Collapse
Affiliation(s)
- Shuo-Fu Chen
- Department of Psychology, Asia University, Taichung, Taiwan; Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan
| | - Wan-Ju Cheng
- Department of Psychiatry, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Public Health, China Medical University, Taichung, Taiwan; National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Chang Chao
- Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan
| | - Chun-Hsien Kuo
- Department of Psychology, Asia University, Taichung, Taiwan; Center for Prevention and Treatment of Internet Addiction, Asia University, Taichung, Taiwan
| | - Ruey-Ming Liao
- Department of Psychology, Asia University, Taichung, Taiwan; Institute of Neuroscience, National Cheng-Chi University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Yang XM, Yu H, Li JX, Li N, Li C, Xu DH, Zhang H, Fang TH, Wang SJ, Yan PY, Han BB. Excitotoxic Storms of Ischemic Stroke: A Non-neuronal Perspective. Mol Neurobiol 2024; 61:9562-9581. [PMID: 38662299 DOI: 10.1007/s12035-024-04184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Numerous neurological disorders share a fatal pathologic process known as glutamate excitotoxicity. Among which, ischemic stroke is the major cause of mortality and disability worldwide. For a long time, the main idea of developing anti-excitotoxic neuroprotective agents was to block glutamate receptors. Despite this, there has been little successful clinical translation to date. After decades of "neuron-centered" views, a growing number of studies have recently revealed the importance of non-neuronal cells. Glial cells, cerebral microvascular endothelial cells, blood cells, and so forth are extensively engaged in glutamate synthesis, release, reuptake, and metabolism. They also express functional glutamate receptors and can listen and respond for fast synaptic transmission. This broadens the thoughts of developing excitotoxicity antagonists. In this review, the critical contribution of non-neuronal cells in glutamate excitotoxicity during ischemic stroke will be emphasized in detail, and the latest research progress as well as corresponding therapeutic strategies will be updated at length, aiming to reconceptualize glutamate excitotoxicity in a non-neuronal perspective.
Collapse
Affiliation(s)
- Xiao-Man Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hao Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jia-Xin Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Na Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Dong-Han Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Hao Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China
| | - Tian-He Fang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Shi-Jun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| | - Pei-Yu Yan
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People's Republic of China.
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
- Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macau, People's Republic of China.
| | - Bing-Bing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China.
| |
Collapse
|
15
|
Mert H, Kerem Ö, Mıs L, Yıldırım S, Mert N. Effects of protocatechuic acid against cisplatin-induced neurotoxicity in rat brains: an experimental study. Int J Neurosci 2024; 134:725-734. [PMID: 36525373 DOI: 10.1080/00207454.2022.2147430] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/23/2022]
Abstract
Aims/Objectives: Cisplatin (CIS) is widely used in the treatment of various malignant tumors. The aim of study is to determine the potential protective effects of protocatechuic acid (PCA) on the brain in neurotoxicity induced by CIS in rats.Materials and methods: Forty rats were divided into four groups: 1-Control group: 2- PCA group: PCA was administered orally at a dose of 100 mg/kg/day for 5 weeks. 3-CIS group: 5 mg/kg/week of CIS was administered intraperiteonally 4-PCA + CIS group: The rats were given PCA orally daily for 5 weeks and CIS of 5 mg/kg/week. The brain tissues were used for histopathological examinations and for total antioxidant capacity (TAC), total oxidative state (TOS), oxidative stress index (OSI), tumornecrosis factor-alpha (T NF-α), interleukin 6 (IL-6) Interleukin 1 beta (IL-1β), acetylcholinesterase (AChE), glutamate, gamma aminobutyric acid (GABA), dopamine analyzes in ELISA. WBC, RBC, hemoglobin and hematocrit levels were measured.Results: PCA + CIS group compared to CIS group TOS, OSI, T NF-α, IL-6, IL-1β, AChE, glutamate, WBC levels decreased significantly, while TAC and GABA levels increased statistically significant. With this study, P CA corrected the deterioration in the oxidant / antioxidant status, suppressed neuro-inflammation, decreased AChE activity, partially normalized neurotransmitters, and decreased the increased WBC count. Necrosis seen in the CIS group in histopathological examinations was never seen in the PCA + CIS group.Conclusions: PCA may provide therapeutic benefit when used in conjunction with CIS.
Collapse
Affiliation(s)
- Handan Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Özge Kerem
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Leyla Mıs
- Department of Physiology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
16
|
Rahi V, Kaundal RK. Exploring the intricacies of calcium dysregulation in ischemic stroke: Insights into neuronal cell death and therapeutic strategies. Life Sci 2024; 347:122651. [PMID: 38642844 DOI: 10.1016/j.lfs.2024.122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Calcium ion (Ca2+) dysregulation is one of the main causes of neuronal cell death and brain damage after cerebral ischemia. During ischemic stroke, the ability of neurons to maintain Ca2+ homeostasis is compromised. Ca2+ regulates various functions of the nervous system, including neuronal activity and adenosine triphosphate (ATP) production. Disruptions in Ca2+ homeostasis can trigger a cascade of events, including activation of the unfolded protein response (UPR) pathway, which is associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction. This response occurs when the cell is unable to manage protein folding within the ER due to various stressors, such as a high influx of Ca2+. Consequently, the UPR is initiated to restore ER function and alleviate stress, but prolonged activation can lead to mitochondrial dysfunction and, ultimately, cell death. Hence, precise regulation of Ca2+ within the cell is mandatory. The ER and mitochondria are two such organelles that maintain intracellular Ca2+ homeostasis through various calcium-operating channels, including ryanodine receptors (RyRs), inositol trisphosphate receptors (IP3Rs), sarco/endoplasmic reticulum calcium ATPases (SERCAs), the mitochondrial Na+/Ca2+ exchanger (NCLX), the mitochondrial calcium uniporter (MCU) and voltage-dependent anion channels (VDACs). These channels utilize Ca2+ sequestering and release mechanisms to maintain intracellular Ca2+ homeostasis and ensure proper cellular function and survival. The present review critically evaluates the significance of Ca2+ and its physiological role in cerebral ischemia. We have compiled recent findings on calcium's role and emerging treatment strategies, particularly targeting mitochondria and the endoplasmic reticulum, to address Ca2+ overload in cerebral ischemia.
Collapse
Affiliation(s)
- Vikrant Rahi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India
| | - Ravinder K Kaundal
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226 002, India.
| |
Collapse
|
17
|
Guan S, Li Y, Xin Y, Wang D, Lu P, Han F, Xu H. Deciphering the dual role of N-methyl-D-Aspartate receptor in postoperative cognitive dysfunction: A comprehensive review. Eur J Pharmacol 2024; 971:176520. [PMID: 38527701 DOI: 10.1016/j.ejphar.2024.176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgery, adversely impacting patients' recovery, increasing the risk of negative outcomes, prolonged hospitalization, and higher mortality rates. The N-methyl-D-aspartate (NMDA) receptor, crucial for learning, memory, and synaptic plasticity, plays a significant role in the development of POCD. Various perioperative factors, including age and anesthetic use, can reduce NMDA receptor function, while surgical stress, inflammation, and pain may lead to its excessive activation. This review consolidates preclinical and clinical research to explore the intricate relationship between perioperative factors affecting NMDA receptor functionality and the onset of POCD. It discusses the influence of aging, anesthetic administration, perioperative injury, pain, and inflammation on the NMDA receptor-related pathophysiology of POCD. The comprehensive analysis presented aims to identify effective treatment targets for POCD, contributing to the improvement of patient outcomes post-surgery.
Collapse
Affiliation(s)
- Shaodi Guan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danning Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Lu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fanglong Han
- Department of Anesthesiology, Xiangyang Maternal and Child Health Hospital, Xiangyang, 441003, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Gordon-Blake J, Ratia K, Weidig V, Velma GR, Ackerman-Berrier M, Penton C, Musku SR, Alves ET, Driver T, Tai L, Thatcher GRJ. Nicotinamide Phosphoribosyltransferase Positive Allosteric Modulators Attenuate Neuronal Oxidative Stress. ACS Med Chem Lett 2024; 15:205-214. [PMID: 38352833 PMCID: PMC10860701 DOI: 10.1021/acsmedchemlett.3c00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Evidence supports boosting nicotinamide adenine dinucleotide (NAD+) to counteract oxidative stress in aging and neurodegenerative disease. One approach is to enhance the activity of nicotinamide phosphoribosyltransferase (NAMPT). Novel NAMPT positive allosteric modulators (N-PAMs) were identified. A cocrystal structure confirmed N-PAM binding to the NAMPT rear channel. Early hit-to-lead efforts led to a 1.88-fold maximum increase in the level of NAD+ in human THP-1 cells. Select N-PAMs were assessed for mitigation of reactive oxygen species (ROS) in HT-22 neuronal cells subject to inflammatory stress using tumor necrosis factor alpha (TNFα). N-PAMs that increased NAD+ more effectively in THP-1 cells attenuated TNFα-induced ROS more effectively in HT-22 cells. The most efficacious N-PAM completely attenuated ROS elevation in glutamate-stressed HT-22 cells, a model of neuronal excitotoxicity. This work demonstrates for the first time that N-PAMs are capable of mitigating elevated ROS in neurons stressed with TNFα and glutamate and provides support for further N-PAM optimization for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jesse Gordon-Blake
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Kiira Ratia
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Victoria Weidig
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ganga Reddy Velma
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Martha Ackerman-Berrier
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Penton
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Soumya Reddy Musku
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Erick T.M. Alves
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Tom Driver
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Leon Tai
- Department
of Pharmaceutical Sciences, Research Resources Center, Department of Chemistry, and Department of
Anatomy and Cell Biology, University of
Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, R Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Wang J, Zhao J, Zhao K, Wu S, Chen X, Hu W. The Role of Calcium and Iron Homeostasis in Parkinson's Disease. Brain Sci 2024; 14:88. [PMID: 38248303 PMCID: PMC10813814 DOI: 10.3390/brainsci14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Calcium and iron are essential elements that regulate many important processes of eukaryotic cells. Failure to maintain homeostasis of calcium and iron causes cell dysfunction or even death. PD (Parkinson's disease) is the second most common neurological disorder in humans, for which there are currently no viable treatment options or effective strategies to cure and delay progression. Pathological hallmarks of PD, such as dopaminergic neuronal death and intracellular α-synuclein deposition, are closely involved in perturbations of iron and calcium homeostasis and accumulation. Here, we summarize the mechanisms by which Ca2+ signaling influences or promotes PD progression and the main mechanisms involved in ferroptosis in Parkinson's disease. Understanding the mechanisms by which calcium and iron imbalances contribute to the progression of this disease is critical to developing effective treatments to combat this devastating neurological disorder.
Collapse
Affiliation(s)
- Ji Wang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China;
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Jindong Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Kunying Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Shangpeng Wu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Xinglong Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| |
Collapse
|
20
|
Yap RS, Kumar J, Teoh SL. Potential Neuroprotective Role of Neurotrophin in Traumatic Brain Injury. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1189-1202. [PMID: 38279761 DOI: 10.2174/0118715273289222231219094225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
Traumatic brain injury (TBI) is a major global health issue that affects millions of people every year. It is caused by any form of external force, resulting in temporary or permanent impairments in the brain. The pathophysiological process following TBI usually involves excitotoxicity, mitochondrial dysfunction, oxidative stress, inflammation, ischemia, and apoptotic cell death. It is challenging to find treatment for TBI due to its heterogeneous nature, and no therapeutic interventions have been approved thus far. Neurotrophins may represent an alternative approach for TBI treatment because they influence various functional activities in the brain. The present review highlights recent studies on neurotrophins shown to possess neuroprotective roles in TBI. Neurotrophins, specifically brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have demonstrated reduced neuronal death, alleviated neuroinflammatory responses and improved neurological functions following TBI via their immunomodulatory, anti-inflammatory and antioxidant properties. Further studies are required to ensure the efficacy and safety of neurotrophins to be used as TBI treatment in clinical settings.
Collapse
Affiliation(s)
- Rei Shian Yap
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Liu W, Li Y, Zhao T, Gong M, Wang X, Zhang Y, Xu L, Li W, Li Y, Jia J. The role of N-methyl-D-aspartate glutamate receptors in Alzheimer's disease: From pathophysiology to therapeutic approaches. Prog Neurobiol 2023; 231:102534. [PMID: 37783430 DOI: 10.1016/j.pneurobio.2023.102534] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDARs) are involved in multiple physiopathological processes, including synaptic plasticity, neuronal network activities, excitotoxic events, and cognitive impairment. Abnormalities in NMDARs can initiate a cascade of pathological events, notably in Alzheimer's disease (AD) and even other neuropsychiatric disorders. The subunit composition of NMDARs is plastic, giving rise to a diverse array of receptor subtypes. While they are primarily found in neurons, NMDAR complexes, comprising both traditional and atypical subunits, are also present in non-neuronal cells, influencing the functions of various peripheral tissues. Furthermore, protein-protein interactions within NMDAR complexes has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation, and mitochondrial dysfunction, all of which potentially served as an obligatory relay of cognitive impairment. Nonetheless, the precise mechanistic link remains to be fully elucidated. In this review, we provided an in-depth analysis of the structure and function of NMDAR, investigated their interactions with various pathogenic proteins, discussed the current landscape of NMDAR-based therapeutics, and highlighted the remaining challenges during drug development.
Collapse
Affiliation(s)
- Wenying Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Xuechu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Yue Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Wenwen Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, PR China; Beijing Key Laboratory of Geriatric Cognitive Disorders, PR China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, PR China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, PR China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, PR China.
| |
Collapse
|
22
|
Burnyasheva AO, Stefanova NA, Kolosova NG, Telegina DV. Changes in the Glutamate/GABA System in the Hippocampus of Rats with Age and during Alzheimer's Disease Signs Development. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1972-1986. [PMID: 38462444 DOI: 10.1134/s0006297923120027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
GABA and glutamate are the most abundant neurotransmitters in the CNS and play a pivotal part in synaptic stability/plasticity. Glutamate and GABA homeostasis is important for healthy aging and reducing the risk of various neurological diseases, while long-term imbalance can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). Normalization of the homeostasis has been discussed as a promising strategy for prevention and/or treatment of AD, however, data on the changes in the GABAergic and glutamatergic systems with age, as well as on the dynamics of AD development, are limited. It is not clear whether imbalance of the excitatory/inhibitory systems is the cause or the consequence of the disease development. Here we analyzed the age-related alterations of the levels of glutamate, GABA, as well as enzymes that synthesize them (glutaminase, glutamine synthetase, GABA-T, and GAD67), transporters (GLAST, GLT-1, and GAT1), and relevant receptors (GluA1, NMDAR1, NMDA2B, and GABAAr1) in the whole hippocampus of the Wistar rats and of the senescence-accelerated OXYS rats, a model of the most common (> 95%) sporadic AD. Our results suggest that there is a decline in glutamate and GABA signaling with age in hippocampus of the both rat strains. However, we have not identified significant changes or compensatory enhancements in this system in the hippocampus of OXYS rats during the development of neurodegenerative processes that are characteristic of AD.
Collapse
Affiliation(s)
- Alena O Burnyasheva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia A Stefanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nataliya G Kolosova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Darya V Telegina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
23
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
24
|
Song Y, Cao H, Zuo C, Gu Z, Huang Y, Miao J, Fu Y, Guo Y, Jiang Y, Wang F. Mitochondrial dysfunction: A fatal blow in depression. Biomed Pharmacother 2023; 167:115652. [PMID: 37801903 DOI: 10.1016/j.biopha.2023.115652] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondria maintain the normal physiological function of nerve cells by producing sufficient cellular energy and performing crucial roles in maintaining the metabolic balance through intracellular Ca2+ homeostasis, oxidative stress, and axonal development. Depression is a prevalent psychiatric disorder with an unclear pathophysiology. Damage to the hippocampal neurons is a key component of the plasticity regulation of synapses and plays a critical role in the mechanism of depression. There is evidence suggesting that mitochondrial dysfunction is associated with synaptic impairment. The maintenance of mitochondrial homeostasis includes quantitative maintenance and quality control of mitochondria. Mitochondrial biogenesis produces new and healthy mitochondria, and mitochondrial dynamics cooperates with mitophagy to remove damaged mitochondria. These processes maintain mitochondrial population stability and exert neuroprotective effects against early depression. In contrast, mitochondrial dysfunction is observed in various brain regions of patients with major depressive disorders. The accumulation of defective mitochondria accelerates cellular nerve dysfunction. In addition, impaired mitochondria aggravate alterations in the brain microenvironment, promoting neuroinflammation and energy depletion, thereby exacerbating the development of depression. This review summarizes the influence of mitochondrial dysfunction and the underlying molecular pathways on the pathogenesis of depression. Additionally, we discuss the maintenance of mitochondrial homeostasis as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yufeng Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Guo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan 430030, Hubei, China; Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, 430030 Hubei, China.
| |
Collapse
|
25
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
26
|
Romariz SAA, Main BS, Harvey AC, Longo BM, Burns MP. Delayed treatment with ceftriaxone reverses the enhanced sensitivity of TBI mice to chemically-induced seizures. PLoS One 2023; 18:e0288363. [PMID: 37440485 PMCID: PMC10343160 DOI: 10.1371/journal.pone.0288363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The pathophysiological changes that occur after traumatic brain injury (TBI) can lead to the development of post-traumatic epilepsy, a life-long complication of brain trauma. The etiology of post-traumatic epilepsy remains unknown, but TBI brains exhibit an abnormal excitatory / inhibitory balance. In this study, we examine how brain injury alters susceptibility to chemically-induced seizures in C57Bl/6J mice, and if pharmacological enhancement of glutamate transporters can reduce chronic post-traumatic seizures. We found that controlled cortical impact (CCI) mice display delayed susceptibility to pentylenetetrazol (PTZ)-induced seizures. While CCI mice have no change in seizure susceptibility at 7d post-injury (dpi), at 70dpi they have reduced latency to PTZ-induced seizure onset, higher seizure frequency and longer seizure duration. Quantification of glutamate transporter mRNA showed that levels of Scl1a2 and Scl1a3 mRNA were increased at 7dpi, but significantly decreased at 70dpi. To test if increased levels of glutamate transporters can ameliorate delayed-onset seizure susceptibility in TBI mice, we exposed a new cohort of mice to CCI and administered ceftriaxone (200mg/kg/day) for 14d from 55-70dpi. We found that ceftriaxone significantly increased Scl1a2 and Scl1a3 in CCI mouse brain at 70dpi, and prevented the susceptibility of CCI mice to PTZ-induced seizures. This study demonstrates cortical impact can induce a delayed-onset seizure phenotype in mice. Delayed (55dpi) ceftriaxone treatment enhances glutamate transporter mRNA in the CCI brain, and reduces PTZ-induced seizures in CCI mice.
Collapse
Affiliation(s)
- Simone A. A. Romariz
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Bevan S. Main
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Alex C. Harvey
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| | - Beatriz M. Longo
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Mark P. Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
27
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
28
|
Müller SG, Jardim NS, Lutz G, Zeni G, Nogueira CW. (m-CF 3-PhSe) 2 benefits against anxiety-like phenotype associated with synaptic plasticity impairment and NMDAR-mediated neurotoxicity in young mice exposed to a lifestyle model. Chem Biol Interact 2023; 378:110486. [PMID: 37054933 DOI: 10.1016/j.cbi.2023.110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023]
Abstract
Lifestyle habits including energy-dense foods and ethanol intake are associated with anxiety disorders. m-Trifluoromethyl-diphenyl diselenide [(m-CF3-PhSe)2] has been reported to modulate serotonergic and opioidergic systems and elicit an anxiolytic-like phenotype in animal models. This study investigated if the modulation of synaptic plasticity and NMDAR-mediated neurotoxicity contributes to the (m-CF3-PhSe)2 anxiolytic-like effect in young mice exposed to a lifestyle model. Swiss male mice (25-days old) were subjected to a lifestyle model, an energy-dense diet (20:20% lard: corn syrup) from the postnatal day (PND) 25-66 and sporadic ethanol (2 g/kg) (3 x a week, intragastrically, i.g.) from PND 45 to 60. From PND 60 to 66, mice received (m-CF3-PhSe)2 (5 mg/kg/day; i.g). The corresponding vehicle (control) groups were carried out. After, mice performed anxiety-like behavioral tests. Mice exposed only to an energy-dense diet or sporadic ethanol did not show an anxiety-like phenotype. (m-CF3-PhSe)2 abolished the anxiety-like phenotype in young mice exposed to a lifestyle model. Anxious-like mice showed increased levels of cerebral cortical NMDAR2A and 2B, NLRP3 and inflammatory markers, and decreased contents of synaptophysin, PSD95, and TRκB/BDNF/CREB signaling. (m-CF3-PhSe)2 reversed cerebral cortical neurotoxicity, the increased levels of NMDA2A and 2B, and decreased levels of synaptic plasticity-related signaling in the cerebral cortex of young mice exposed to a lifestyle model. In conclusion, the (m-CF3-PhSe)2 anxiolytic-like effect was associated with the modulation of NMDAR-mediated neurotoxicity and synaptic plasticity in the cerebral cortex of young mice exposed to the lifestyle model.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Natália S Jardim
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Guilherme Lutz
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Gilson Zeni
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Cristina W Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
29
|
Jiang Y, Liu Q, Zhao Y, Wang C, Sun M. Activation of CREB-BDNF Pathway in Pyramidal Neurons in the Hippocampus Improves the Neurological Outcome of Mice with Ischemic Stroke. Mol Neurobiol 2023; 60:1766-1781. [PMID: 36571720 DOI: 10.1007/s12035-022-03174-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022]
Abstract
Cerebral ischemia is characterized by several pathological reaction evolving over time. Hyperactivation of glutamatergic neurons is the main factor leading to excitotoxicity which potentiates oxidative stress and triggers the mechanisms of neural apoptosis after cerebral ischemia. However, it is unclear whether glutamate in the ventral hippocampal Cornus Ammonis 1 (vCA1) acts a part in neurological deficits, pain perception, anxiety, and depression induced by ischemic stroke. We investigated the effects of chemogenetic inhibition or activation of vCA1 pyramidal neurons which are mainly glutamatergic neurons on sequelae induced by cerebral ischemia. Our results revealed that inhibition of vCA1 pyramidal neurons by chemogenetics alleviated neurological deficits, pain perception, anxiety, and depression caused by cerebral ischemia in mice, but activation of vCA1 pyramidal neurons had limited effects. Moreover, we found that stroke was accompanied by decreased levels of cAMP-response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) in vCA1, which are modulated by glutamate. In this study, overexpression of CREB protein in pyramidal neurons in vCA1 by AAV virus significantly upregulated the content of BDNF and ameliorated the dysfunction induced by ischemic stroke. Our results demonstrated activation of the CREB-BDNF pathway in vCA1 pyramidal neurons significantly improved neurological deficits, pain perception, anxiety, and depression induced by ischemic stroke.
Collapse
Affiliation(s)
- Yingying Jiang
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qingying Liu
- Department of Pain Management, the First Affiliated Hospital, Zhengzhou University, Henan, China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Chunyang Wang
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
30
|
Torres AK, Jara C, Llanquinao J, Lira M, Cortés-Díaz D, Tapia-Rojas C. Mitochondrial Bioenergetics, Redox Balance, and Calcium Homeostasis Dysfunction with Defective Ultrastructure and Quality Control in the Hippocampus of Aged Female C57BL/6J Mice. Int J Mol Sci 2023; 24:ijms24065476. [PMID: 36982549 PMCID: PMC10056753 DOI: 10.3390/ijms24065476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Aging is a physiological process that generates progressive decline in many cellular functions. There are many theories of aging, and one of great importance in recent years is the mitochondrial theory of aging, in which mitochondrial dysfunction that occurs at advanced age could be responsible for the aged phenotype. In this context, there is diverse information about mitochondrial dysfunction in aging, in different models and different organs. Specifically, in the brain, different studies have shown mitochondrial dysfunction mainly in the cortex; however, until now, no study has shown all the defects in hippocampal mitochondria in aged female C57BL/6J mice. We performed a complete analysis of mitochondrial function in 3-month-old and 20-month-old (mo) female C57BL/6J mice, specifically in the hippocampus of these animals. We observed an impairment in bioenergetic function, indicated by a decrease in mitochondrial membrane potential, O2 consumption, and mitochondrial ATP production. Additionally, there was an increase in ROS production in the aged hippocampus, leading to the activation of antioxidant signaling, specifically the Nrf2 pathway. It was also observed that aged animals had deregulation of calcium homeostasis, with more sensitive mitochondria to calcium overload and deregulation of proteins related to mitochondrial dynamics and quality control processes. Finally, we observed a decrease in mitochondrial biogenesis with a decrease in mitochondrial mass and deregulation of mitophagy. These results show that during the aging process, damaged mitochondria accumulate, which could contribute to or be responsible for the aging phenotype and age-related disabilities.
Collapse
Affiliation(s)
- Angie K. Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Jesús Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Matías Lira
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Daniela Cortés-Díaz
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago 7510156, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
- Correspondence:
| |
Collapse
|
31
|
Abd El-Hay RI, Mazroa SA, El-Mohandes E, Am M. The possible protective role of melatonin versus garlic on monosodium Glutamate-induced changes in rat cerebellar cortex: histological, immunohistochemical and electron microscope study. Ultrastruct Pathol 2023; 47:1-24. [PMID: 36803391 DOI: 10.1080/01913123.2023.2175943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/21/2023]
Abstract
Monosodium glutamate (MSG) is widely used as a flavor enhancer. Melatonin and garlic are well known as antioxidant. The present study was performed to evaluate the microscopic changes in the cerebellar cortex of rats after the administration of MSG and the possible protective effect of melatonin versus garlic on those changes. The rats were divided into four main groups. Group I (control group). Group II received MSG (4 mg/ g/day). Group III received MSG+ melatonin (10 mg/kg bw/day). Group IV received MSG+garlic (300 mg/kg bw/day). Immunohistochemical staining for glial fibrillary acidic protein (GFAP) was done as a marker for astrocyte demonstration. Morphometric study was done to assess the mean number and diameter of Purkinje cells, the number of astrocytes and the percentage area of positive GFAP immune stain. MSG group demonstrated congested blood vessels, vacuolations in the molecular layer, and Purkinje cells appeared irregular with nuclear degeneration. Granule cells appeared shrunken with darkly stained nuclei. The immunohistochemical stain for GFAP was less than expected in the three layers of the cerebellar cortex. Purkinje cells and granule cells appeared irregular in shape with dark small heterochromatic nuclei. The myelinated nerve fibers showed splitting and loss of the lamellar structure of their myelin sheath. Melatonin group showed that the cerebellar cortex was nearly similar to that of control group. Garlic treated group showed partial improvement. In conclusion, melatonin and garlic could partially protect against MSG induced changes and the protective effect of melatonin was better than garlic.
Collapse
Affiliation(s)
- Reem Ibrahim Abd El-Hay
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University Al Mansurah Egypt
| | - Shireen A Mazroa
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University Al Mansurah Egypt
| | - E El-Mohandes
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University Al Mansurah Egypt
| | - Moustafa Am
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University Al Mansurah Egypt
| |
Collapse
|
32
|
Gomes GM, Bär J, Karpova A, Kreutz MR. A Jacob/nsmf gene knockout does not protect against acute hypoxia- and NMDA-induced excitotoxic cell death. Mol Brain 2023; 16:23. [PMID: 36774487 PMCID: PMC9921040 DOI: 10.1186/s13041-023-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/02/2023] [Indexed: 02/13/2023] Open
Abstract
Jacob is a synapto-nuclear messenger protein that encodes and transduces the origin of synaptic and extrasynaptic NMDA receptor signals to the nucleus. The protein assembles a signalosome that differs in case of synaptic or extrasynaptic NMDAR activation. Following nuclear import Jacob docks these signalosomes to the transcription factor CREB. We have recently shown that amyloid-β and extrasynaptic NMDAR activation triggers the translocation of a Jacob signalosome that results in inactivation of the transcription factor CREB, a phenomenon termed Jacob-induced CREB shut-off (JaCS). JaCS contributes to early Alzheimer's disease pathology and the absence of Jacob protects against amyloid pathology. Given that extrasynaptic activity is also involved in acute excitotoxicity, like in stroke, we asked whether nsmf gene knockout will also protect against acute insults, like oxygen and glucose deprivation and excitotoxic NMDA stimulation. nsmf is the gene that encodes for the Jacob protein. Here we show that organotypic hippocampal slices from wild-type and nsmf-/- mice display similar degrees of degeneration when exposed to either oxygen glucose deprivation or 50 µM NMDAto induce excitotoxicity. This lack of neuroprotection indicates that JaCS is mainly relevant in conditions of low level chronic extrasynaptic NMDAR activation that results in cellular degeneration induced by alterations in gene transcription.
Collapse
Affiliation(s)
- Guilherme M. Gomes
- grid.418723.b0000 0001 2109 6265Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto-Von-Guericke University, Magdeburg, Germany
| | - Julia Bär
- grid.418723.b0000 0001 2109 6265Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany ,grid.7468.d0000 0001 2248 7639Research Group Optobiology, Institute of Biology, HU Berlin, 10115 Berlin, Germany
| | - Anna Karpova
- grid.418723.b0000 0001 2109 6265Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto-Von-Guericke University, Magdeburg, Germany
| | - Michael R. Kreutz
- grid.418723.b0000 0001 2109 6265Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestrasse 6, 39118 Magdeburg, Germany ,grid.5807.a0000 0001 1018 4307Center for Behavioral Brain Sciences, Otto-Von-Guericke University, Magdeburg, Germany ,grid.13648.380000 0001 2180 3484Leibniz Group “Dendritic Organelles and Synaptic Function”, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, Hamburg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| |
Collapse
|
33
|
Mira RG, Quintanilla RA, Cerpa W. Mild Traumatic Brain Injury Induces Mitochondrial Calcium Overload and Triggers the Upregulation of NCLX in the Hippocampus. Antioxidants (Basel) 2023; 12:antiox12020403. [PMID: 36829963 PMCID: PMC9952386 DOI: 10.3390/antiox12020403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Traumatic brain injury (TBI) is brain damage due to external forces. Mild TBI (mTBI) is the most common form of TBI, and repeated mTBI is a risk factor for developing neurodegenerative diseases. Several mechanisms of neuronal damage have been described in the cortex and hippocampus, including mitochondrial dysfunction. However, up until now, there have been no studies evaluating mitochondrial calcium dynamics. Here, we evaluated mitochondrial calcium dynamics in an mTBI model in mice using isolated hippocampal mitochondria for biochemical studies. We observed that 24 h after mTBI, there is a decrease in mitochondrial membrane potential and an increase in basal matrix calcium levels. These findings are accompanied by increased mitochondrial calcium efflux and no changes in mitochondrial calcium uptake. We also observed an increase in NCLX protein levels and calcium retention capacity. Our results suggest that under mTBI, the hippocampal cells respond by incrementing NCLX levels to restore mitochondrial function.
Collapse
Affiliation(s)
- Rodrigo G. Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
| | - Rodrigo A. Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontifica Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6213515, Chile
- Correspondence:
| |
Collapse
|
34
|
Does treatment with autophagy-enhancers and/or ROS-scavengers alleviate behavioral and neurochemical consequences of low-dose rotenone-induced mild mitochondrial dysfunction in mice? Mol Psychiatry 2023; 28:1667-1678. [PMID: 36690794 DOI: 10.1038/s41380-023-01955-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Bipolar-disorder's pathophysiology and the mechanism by which medications exert their beneficial effect is yet unknown, but others' and our data implicate patients' brain mitochondrial-dysfunction and its amendment by mood-stabilizers. We recently designed a novel mouse bipolar-disorder-like model using chronic administration of a low-dose of the oxidative-phosphorylation complex I inhibitor, rotenone. Four and eight weeks rotenone treatment induced manic- and depressive-like behavior, respectively, accompanied by mood-related neurochemical changes. Here we aimed to investigate whether each of the autophagy-enhancers lithium (a mood-stabilizer), trehalose and resveratrol and/or each of the reactive oxygen species (ROS)-scavengers, resveratrol and N-acetylcystein and/or the combinations lithium+resveratrol or trehalose+N-acetylcystein, can ameliorate behavioral and neurochemical consequences of neuronal mild mitochondrial-dysfunction. We observed that lithium, trehalose and N-acetylcystein reversed rotenone-induced manic-like behavior as well as deviations in protein levels of mitochondrial complexes and the autophagy marker LC3-II. This raises the possibility that mild mitochondrial-dysfunction accompanied by impaired autophagy and a very mild increase in ROS levels are related to predisposition to manic-like behavior. On the other hand, although, as expected, most of the drugs tested eliminated the eight weeks rotenone-induced increase in protein levels of all hippocampal mitochondrial complexes, only lithium ubiquitously ameliorated the depressive-like behaviors. We cautiously deduce that aberrant autophagy and/or elevated ROS levels are not involved in predisposition to the depressive phase of bipolar-like behavior. Rather, that amending the depressive-like characteristics requires different mitochondria-related interventions. The latter might be antagonizing N-methyl-D-aspartate receptors (NMDARs), thus protecting from disruption of mitochondrial calcium homeostasis and its detrimental consequences. In conclusion, our findings suggest that by-and-large, among the autophagy-enhancers and ROS-scavengers tested, lithium is the most effective in counteracting rotenone-induced changes. Trehalose and N-acetylcystein may also be effective in attenuating manic-like behavior.
Collapse
|
35
|
Billard JM, Freret T. Improved NMDA Receptor Activation by the Secreted Amyloid-Protein Precursor-α in Healthy Aging: A Role for D-Serine? Int J Mol Sci 2022; 23:ijms232415542. [PMID: 36555191 PMCID: PMC9779005 DOI: 10.3390/ijms232415542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Impaired activation of the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) by D-serine is linked to cognitive aging. Whether this deregulation may be used to initiate pharmacological strategies has yet to be considered. To this end, we performed electrophysiological extracellular recordings at CA3/CA1 synapses in hippocampal slices from young and aged mice. We show that 0.1 nM of the soluble N-terminal recombinant fragment of the secreted amyloid-protein precursor-α (sAPPα) added in the bath significantly increased NMDAR activation in aged but not adult mice without impacting basal synaptic transmission. In addition, sAPPα rescued the age-related deficit of theta-burst-induced long-term potentiation. Significant NMDAR improvement occurred in adult mice when sAPPα was raised to 1 nM, and this effect was drastically reduced in transgenic mice deprived of D-serine through genetic deletion of the synthesizing enzyme serine racemase. Altogether, these results emphasize the interest to consider sAPPα treatment targeting D-serine-dependent NMDAR deregulation to alleviate cognitive aging.
Collapse
|
36
|
Astaxanthin Protection against Neuronal Excitotoxicity via Glutamate Receptor Inhibition and Improvement of Mitochondrial Function. Mar Drugs 2022; 20:md20100645. [PMID: 36286468 PMCID: PMC9605357 DOI: 10.3390/md20100645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Excitotoxicity is known to associate with neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease, as well as aging, stroke, trauma, ischemia and epilepsy. Excessive release of glutamate, overactivation of glutamate receptors, calcium overload, mitochondrial dysfunction and excessive reactive oxygen species (ROS) formation are a few of the suggested key mechanisms. Astaxanthin (AST), a carotenoid, is known to act as an antioxidant and protect neurons from excitotoxic injuries. However, the exact molecular mechanism of AST neuroprotection is not clear. Thus, in this study, we investigated the role of AST in neuroprotection in excitotoxicity. We utilized primary cortical neuronal culture and live cell fluorescence imaging for the study. Our results suggest that AST prevents neuronal death, reduces ROS formation and decreases the abnormal mitochondrial membrane depolarization induced by excitotoxic glutamate insult. Additionally, AST modulates intracellular calcium levels by inhibiting peak and irreversible secondary sustained calcium levels in neurons. Furthermore, AST regulates the ionotropic glutamate subtype receptors NMDA, AMPA, KA and mitochondrial calcium. Moreover, AST decreases NMDA and AMPA receptor protein expression levels, while KA remains unaffected. Overall, our results indicate that AST protects neurons from excitotoxic neuronal injury by regulating ionotropic glutamate receptors, cytosolic secondary calcium rise and mitochondrial calcium buffering. Hence, AST could be a promising therapeutic agent against excitotoxic insults in neurodegenerative diseases.
Collapse
|
37
|
Excitatory Synaptic Transmission in Ischemic Stroke: A New Outlet for Classical Neuroprotective Strategies. Int J Mol Sci 2022; 23:ijms23169381. [PMID: 36012647 PMCID: PMC9409263 DOI: 10.3390/ijms23169381] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota–gut–brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).
Collapse
|
38
|
Boccuni I, Fairless R. Retinal Glutamate Neurotransmission: From Physiology to Pathophysiological Mechanisms of Retinal Ganglion Cell Degeneration. Life (Basel) 2022; 12:638. [PMID: 35629305 PMCID: PMC9147752 DOI: 10.3390/life12050638] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate neurotransmission and metabolism are finely modulated by the retinal network, where the efficient processing of visual information is shaped by the differential distribution and composition of glutamate receptors and transporters. However, disturbances in glutamate homeostasis can result in glutamate excitotoxicity, a major initiating factor of common neurodegenerative diseases. Within the retina, glutamate excitotoxicity can impair visual transmission by initiating degeneration of neuronal populations, including retinal ganglion cells (RGCs). The vulnerability of RGCs is observed not just as a result of retinal diseases but has also been ascribed to other common neurodegenerative and peripheral diseases. In this review, we describe the vulnerability of RGCs to glutamate excitotoxicity and the contribution of different glutamate receptors and transporters to this. In particular, we focus on the N-methyl-d-aspartate (NMDA) receptor as the major effector of glutamate-induced mechanisms of neurodegeneration, including impairment of calcium homeostasis, changes in gene expression and signalling, and mitochondrial dysfunction, as well as the role of endoplasmic reticular stress. Due to recent developments in the search for modulators of NMDA receptor signalling, novel neuroprotective strategies may be on the horizon.
Collapse
Affiliation(s)
- Isabella Boccuni
- Institute for Physiology and Pathophysiology, Heidelberg University, 69120 Heidelberg, Germany
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, 69120 Heidelberg, Germany;
- Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Zhang W, Ye F, Pang N, Kessi M, Xiong J, Chen S, Peng J, Yang L, Yin F. Restoration of Sarco/Endoplasmic Reticulum Ca 2+-ATPase Activity Functions as a Pivotal Therapeutic Target of Anti-Glutamate-Induced Excitotoxicity to Attenuate Endoplasmic Reticulum Ca 2+ Depletion. Front Pharmacol 2022; 13:877175. [PMID: 35517826 PMCID: PMC9065279 DOI: 10.3389/fphar.2022.877175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Glutamate-induced excitotoxicity is a pathological basis of many acute/chronic neurodegenerative diseases. Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2b) is a membrane-embedded P-type ATPase pump that manages the translocation of calcium ions (Ca2+) from cytosol into the lumen of the endoplasmic reticulum (ER) calcium stores. It participates in a wide range of biological functions in the central nervous system (CNS). However, the role of SERCA2b in glutamate-induced excitotoxicity and its mechanism must be elucidated. Herein, we demonstrate that SERCA2b mutants exacerbate the excitotoxicity of hypo-glutamate stimulation on HT22 cells. In this study, SERCA2b mutants accelerated Ca2+ depletion through loss-of-function (reduced pumping capacity) or gain-of-function (acquired leakage), resulting in ER stress. In addition, the occurrence of ER Ca2+ depletion increased mitochondria-associated membrane formation, which led to mitochondrial Ca2+ overload and dysfunction. Moreover, the enhancement of SERCA2b pumping capacity or inhibition of Ca2+ leakage attenuated Ca2+ depletion and impeded excitotoxicity in response to hypo-glutamate stimulation. In conclusion, SERCA2b mutants exacerbate ER Ca2+-depletion-mediated excitotoxicity in glutamate-sensitive HT22 cells. The mechanism of disruption is mainly related to the heterogeneity of SERCA2b mutation sites. Stabilization of SRECA2b function is a critical therapeutic approach against glutamate-induced excitotoxicity. These data will expand understanding of organelle regulatory networks and facilitate the discovery and creation of drugs against excitatory/inhibitory imbalance in the CNS.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Pediatrics, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Engineered Neutral Phosphorous Dendrimers Protect Mouse Cortical Neurons and Brain Organoids from Excitotoxic Death. Int J Mol Sci 2022; 23:ijms23084391. [PMID: 35457211 PMCID: PMC9024777 DOI: 10.3390/ijms23084391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoparticles are playing an increasing role in biomedical applications. Excitotoxicity plays a significant role in the pathophysiology of neurodegenerative diseases, such as Alzheimer’s or Parkinson’s disease. Glutamate ionotropic receptors, mainly those activated by N-methyl-D-aspartate (NMDA), play a key role in excitotoxic death by increasing intraneuronal calcium levels; triggering mitochondrial potential collapse; increasing free radicals; activating caspases 3, 9, and 12; and inducing endoplasmic reticulum stress. Neutral phosphorous dendrimers, acting intracellularly, have neuroprotective actions by interfering with NMDA-mediated excitotoxic mechanisms in rat cortical neurons. In addition, phosphorous dendrimers can access neurons inside human brain organoids, complex tridimensional structures that replicate a significant number of properties of the human brain, to interfere with NMDA-induced mechanisms of neuronal death. Phosphorous dendrimers are one of the few nanoparticles able to gain access to the inside of neurons, both in primary cultures and in brain organoids, and to exert pharmacological actions by themselves.
Collapse
|
41
|
Research Progress on Neuroprotection of Insulin-like Growth Factor-1 towards Glutamate-Induced Neurotoxicity. Cells 2022; 11:cells11040666. [PMID: 35203315 PMCID: PMC8870287 DOI: 10.3390/cells11040666] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Insulin-like growth factor-1 (IGF-1) and its binding proteins and receptors are widely expressed in the central nervous system (CNS), proposing IGF-1-induced neurotrophic actions in normal growth, development, and maintenance. However, while there is convincing evidence that the IGF-1 system has specific endocrine roles in the CNS, the concept is emerging that IGF-I might be also important in disorders such as ischemic stroke, brain trauma, Alzheimer’s disease, epilepsy, etc., by inducing neuroprotective effects towards glutamate-mediated excitotoxic signaling pathways. Research in rodent models has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 was administered by different routes, and several clinical studies have shown safety and promise of efficacy in neurological disorders of the CNS. Focusing on the relationship between IGF-1-induced neuroprotection and glutamate-induced excitatory neurotoxicity, this review addresses the research progress in the field, intending to provide a rationale for using IGF-I clinically to confer neuroprotective therapy towards neurological diseases with glutamate excitotoxicity as a common pathological pathway.
Collapse
|
42
|
Wan R, Fan J, Song H, Sun W, Yin Y. Oxygen-Glucose Deprivation/Reperfusion-Induced Sirt3 Reduction Facilitated Neuronal Injuries in an Apoptosis-Dependent Manner During Prolonged Reperfusion. Neurochem Res 2022; 47:1012-1024. [PMID: 35091982 DOI: 10.1007/s11064-021-03502-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022]
Abstract
Cerebral ischemia is a major cause of morbidity and permanent disability. To date, no treatments for cerebral ischemia/reperfusion injury can be effectively administered beyond 4-6 h after the ischemic insult. Our study aimed to clarify the significance of Sirt3 during acute cerebral ischemia and explore Sirt3-targeted therapy for ischemic injuries. Upon establishing the oxygen-glucose deprivation/reperfusion (OGD/R) cell model, changes of Sirt3 protein levels and the effects of Sirt3 overexpression on primary hippocampal neurons were detected at indicated time points. Moreover, mitochondrial damage was observed in neurons upon OGD/R injury. The results showed that compared with the normoxia group, Sirt3 protein was significantly decreased in hippocampal neurons exposed to 1 h of OGD followed by 12 h of reperfusion. In addition, the reduction of Sirt3 protein levels contributed to OGD/R-induced neuronal injuries, a higher ratio of neuronal apoptosis, and extensive production of reactive oxygen species (ROS). However, all neuronal injuries were partly rescued by Sirt3 overexpression induced by lentivirus transfection. Mitochondrial morphologies were significantly impaired after OGD/R, but partly salvaged by Sirt3 overexpression. We further explored whether pharmacologically activating Sirt3 is protective for neurons, and found that treatment with honokiol (a Sirt3 agonist) after OGD exposure activated Sirt3 during reperfusion and significantly alleviated OGD/R-induced neuronal injuries. Because mitochondrial functions are essential for neuronal survival, the current results indicate that Sirt3 may be an efficient target to suppress ischemic injuries via maintenance of mitochondrial homeostasis. Our current findings shed light on a novel therapeutic strategy against subacute ischemic injuries.
Collapse
Affiliation(s)
- Rongqi Wan
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jiahui Fan
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Huimeng Song
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Wei Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Yanling Yin
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China.
| |
Collapse
|
43
|
Disrupted expression of mitochondrial NCLX sensitizes neuroglial networks to excitotoxic stimuli and renders synaptic activity toxic. J Biol Chem 2021; 298:101508. [PMID: 34942149 PMCID: PMC8808183 DOI: 10.1016/j.jbc.2021.101508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial sodium/calcium/lithium exchanger (NCLX) is an important mediator of calcium extrusion from mitochondria. In this study, we tested the hypothesis that physiological expression levels of NCLX are essential for maintaining neuronal resilience in the face of excitotoxic challenge. Using a short hairpin RNA (shRNA)-mediated approach, we showed that reduced NCLX expression exacerbates neuronal mitochondrial calcium dysregulation, mitochondrial membrane potential (ΔΨm) breakdown, and reactive oxygen species (ROS) generation during excitotoxic stimulation of primary hippocampal cultures. Moreover, NCLX knockdown-which affected both neurons and glia-resulted not only in enhanced neurodegeneration following an excitotoxic insult, but also in neuronal and astrocytic cell death under basal conditions. Our data also revealed that synaptic activity, which promotes neuroprotective signaling, can become lethal upon NCLX depletion; expression of NCLX-targeted shRNA impaired the clearance of mitochondrial calcium following action potential bursts and was associated both with ΔΨmbreakdown and substantial neurodegeneration in hippocampal cultures undergoing synaptic activity. Finally, we showed that NCLX knockdown within the hippocampal cornu ammonis 1 (CA1) region in vivo causes substantial neuro- and astrodegeneration. In summary, we demonstrated that dysregulated NCLX expression not only sensitizes neuroglial networks to excitotoxic stimuli but notably also renders otherwise neuroprotective synaptic activity toxic. These findings may explain the emergence of neuro- and astrodegeneration in patients with disorders characterized by disrupted NCLX expression or function, and suggest that treatments aimed at enhancing or restoring NCLX function may prevent central nervous system damage in these disease states.
Collapse
|
44
|
Yuan M, Wu H. Astrocytes in the Traumatic Brain Injury: the Good and the Bad. Exp Neurol 2021; 348:113943. [PMID: 34863998 DOI: 10.1016/j.expneurol.2021.113943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes control many processes of the nervous system in health and disease, and respond to injury quickly. Astrocytes produce neuroprotective factors in the injured brain to clear cellular debris and to orchestrate neurorestorative processes that are beneficial for neurological recovery after traumatic brain injury (TBI). However, astrocytes also become dysregulated and produce cytotoxic mediators that hinder CNS repair by induction of neuronal dysfunction and cell death. Hence, we discuss the potential role of astrocytes in neuropathological processes such as neuroinflammation, neurogenesis, synaptogenesis and blood-brain barrier repair after TBI. Thus, an improved understanding of the dual role of astrocytes may advance our knowledge of post-brain injury recovery, and provide opportunities for the development of novel therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Mengqi Yuan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Haitao Wu
- Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, Jiangsu, China; Chinese Institute for Brain Research (CIBR), 102206 Beijing, China.
| |
Collapse
|
45
|
Casaril AM, Dantzer R, Bas-Orth C. Neuronal Mitochondrial Dysfunction and Bioenergetic Failure in Inflammation-Associated Depression. Front Neurosci 2021; 15:725547. [PMID: 34790089 PMCID: PMC8592286 DOI: 10.3389/fnins.2021.725547] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/12/2021] [Indexed: 01/28/2023] Open
Abstract
Depression is a leading cause of disability and affects more than 4% of the population worldwide. Even though its pathophysiology remains elusive, it is now well accepted that peripheral inflammation might increase the risk of depressive episodes in a subgroup of patients. However, there is still insufficient knowledge about the mechanisms by which inflammation induces alterations in brain function. In neurodegenerative and neuroinflammatory diseases, extensive studies have reported that inflammation negatively impacts mitochondrial health, contributing to excitotoxicity, oxidative stress, energy deficits, and eventually neuronal death. In addition, damaged mitochondria can release a wide range of damage-associated molecular patterns that are potent activators of the inflammatory response, creating a feed-forward cycle between oxidative stress, mitochondrial impairment, inflammation, and neuronal dysfunction. Surprisingly, the possible involvement of this vicious cycle in the pathophysiology of inflammation-associated depression remains understudied. In this mini-review we summarize the research supporting the association between neuroinflammation, mitochondrial dysfunction, and bioenergetic failure in inflammation-associated depression to highlight the relevance of further studies addressing this crosstalk.
Collapse
Affiliation(s)
- Angela Maria Casaril
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.,Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Carlos Bas-Orth
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
46
|
Mira RG, Lira M, Cerpa W. Traumatic Brain Injury: Mechanisms of Glial Response. Front Physiol 2021; 12:740939. [PMID: 34744783 PMCID: PMC8569708 DOI: 10.3389/fphys.2021.740939] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a heterogeneous disorder that involves brain damage due to external forces. TBI is the main factor of death and morbidity in young males with a high incidence worldwide. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including synaptic dysfunction, protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Glial cells comprise most cells in CNS, which are mediators in the brain’s response to TBI. In the CNS are present astrocytes, microglia, oligodendrocytes, and polydendrocytes (NG2 cells). Astrocytes play critical roles in brain’s ion and water homeostasis, energy metabolism, blood-brain barrier, and immune response. In response to TBI, astrocytes change their morphology and protein expression. Microglia are the primary immune cells in the CNS with phagocytic activity. After TBI, microglia also change their morphology and release both pro and anti-inflammatory mediators. Oligodendrocytes are the myelin producers of the CNS, promoting axonal support. TBI causes oligodendrocyte apoptosis, demyelination, and axonal transport disruption. There are also various interactions between these glial cells and neurons in response to TBI that contribute to the pathophysiology of TBI. In this review, we summarize several glial hallmarks relevant for understanding the brain injury and neuronal damage under TBI conditions.
Collapse
Affiliation(s)
- Rodrigo G Mira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matías Lira
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
47
|
Torres AK, Jara C, Park-Kang HS, Polanco CM, Tapia D, Alarcón F, de la Peña A, Llanquinao J, Vargas-Mardones G, Indo JA, Inestrosa NC, Tapia-Rojas C. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1391-1414. [PMID: 34719499 DOI: 10.3233/jad-215139] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by cognitive impairment and the presence of neurofibrillary tangles and senile plaques in the brain. Neurofibrillary tangles are composed of hyperphosphorylated tau, while senile plaques are formed by amyloid-β (Aβ) peptide. The amyloid hypothesis proposes that Aβ accumulation is primarily responsible for the neurotoxicity in AD. Multiple Aβ-mediated toxicity mechanisms have been proposed including mitochondrial dysfunction. However, it is unclear if it precedes Aβ accumulation or if is a consequence of it. Aβ promotes mitochondrial failure. However, amyloid β precursor protein (AβPP) could be cleaved in the mitochondria producing Aβ peptide. Mitochondrial-produced Aβ could interact with newly formed ones or with Aβ that enter the mitochondria, which may induce its oligomerization and contribute to further mitochondrial alterations, resulting in a vicious cycle. Another explanation for AD is the tau hypothesis, in which modified tau trigger toxic effects in neurons. Tau induces mitochondrial dysfunction by indirect and apparently by direct mechanisms. In neurons mitochondria are classified as non-synaptic or synaptic according to their localization, where synaptic mitochondrial function is fundamental supporting neurotransmission and hippocampal memory formation. Here, we focus on synaptic mitochondria as a primary target for Aβ toxicity and/or formation, generating toxicity at the synapse and contributing to synaptic and memory impairment in AD. We also hypothesize that phospho-tau accumulates in mitochondria and triggers dysfunction. Finally, we discuss that synaptic mitochondrial dysfunction occur in aging and correlates with age-related memory loss. Therefore, synaptic mitochondrial dysfunction could be a predisposing factor for AD or an early marker of its onset.
Collapse
Affiliation(s)
- Angie K Torres
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Jara
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Han S Park-Kang
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Catalina M Polanco
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Diego Tapia
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Fabián Alarcón
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Adely de la Peña
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Jesus Llanquinao
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Gabriela Vargas-Mardones
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Javiera A Indo
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebasti´n Sede Los Leones, Santiago, Chile
| |
Collapse
|
48
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
49
|
White TL, Gonsalves MA. Dignity neuroscience: universal rights are rooted in human brain science. Ann N Y Acad Sci 2021; 1505:40-54. [PMID: 34350987 PMCID: PMC9291326 DOI: 10.1111/nyas.14670] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/22/2023]
Abstract
Universal human rights are defined by international agreements, law, foreign policy, and the concept of inherent human dignity. However, rights defined on this basis can be readily subverted by overt and covert disagreements and can be treated as distant geopolitical events rather than bearing on individuals’ everyday lives. A robust case for universal human rights is urgently needed and must meet several disparate requirements: (1) a framework that resolves tautological definitions reached solely by mutual, revocable agreement; (2) a rationale that transcends differences in beliefs, creed, and culture; and (3) a personalization that empowers both individuals and governments to further human rights protections. We propose that human rights in existing agreements comprise five elemental types: (1) agency, autonomy, and self‐determination; (2) freedom from want; (3) freedom from fear; (4) uniqueness; and (5) unconditionality, including protections for vulnerable populations. We further propose these rights and protections are rooted in fundamental properties of the human brain. We provide a robust, empirical foundation for universal rights based on emerging work in human brain science that we term dignity neuroscience. Dignity neuroscience provides an empirical foundation to support and foster human dignity, universal rights, and their active furtherance by individuals, nations, and international law.
Collapse
Affiliation(s)
- Tara L White
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island.,Center for Alcohol and Addiction Studies, Brown University, Providence, Rhode Island.,Carney Institute for Brain Science, Brown University, Providence, Rhode Island.,University of Cambridge, England, Cambridge, UK
| | - Meghan A Gonsalves
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island
| |
Collapse
|
50
|
Morris RH, Counsell SJ, McGonnell IM, Thornton C. Early life exposure to air pollution impacts neuronal and glial cell function leading to impaired neurodevelopment. Bioessays 2021; 43:e2000288. [PMID: 33751627 DOI: 10.1002/bies.202000288] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/06/2022]
Abstract
The World Health Organisation recently listed air pollution as the most significant threat to human health. Air pollution comprises particulate matter (PM), metals, black carbon and gases such as ozone (O3 ), nitrogen dioxide (NO2 ) and carbon monoxide (CO). In addition to respiratory and cardiovascular disease, PM exposure is linked with increased risk of neurodegeneration as well as neurodevelopmental impairments. Critically, studies suggest that PM crosses the placenta, making direct in utero exposure a reality. Rodent models reveal that neuroinflammation, neurotransmitter imbalance and oxidative stress are triggered following gestational/early life exposure to PM, and may be exacerbated by concomitant mitochondrial dysfunction. Gestational PM exposure (potentiated by mitochondrial impairment in the metabolically active neonatal brain) not only impacts neurodevelopment but may sensitise the brain to subsequent cognitive impairment. Having reviewed this field, we conclude that strategies are urgently required to reduce exposure to PM during this sensitive developmental period.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|