1
|
Akrida I, Papadaki H. Adipokines and epithelial-mesenchymal transition (EMT) in cancer. Mol Cell Biochem 2023; 478:2419-2433. [PMID: 36715963 DOI: 10.1007/s11010-023-04670-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Obesity is a significant risk factor for cancer development. Within the tumor microenvironment, adipocytes interact with cancer cells, immune cells, fibroblasts and endothelial cells, and orchestrate several signaling pathways by secreting bioactive molecules, including adipokines. Adipokines or adipocytokines are produced predominantly by adipocytes and function as autocrine, paracrine and endocrine mediators. Adipokines can exert pro- and anti-inflammatory functions, and they play a pivotal role in the state of chronic low-grade inflammation that characterizes obesity. Epithelial-mesenchymal transition (EMT), a complex biological process whereby epithelial cells acquire the invasive, migratory mesenchymal phenotype is well-known to be implicated in cancer progression and metastasis. Emerging evidence suggests that there is a link between adipokines and EMT. This may contribute to the correlation that has been documented between obesity and cancer progression. This review summarizes the existing body of evidence supporting an association between the process of EMT in cancer and the adipokines leptin, adiponectin, resistin, visfatin/NAMPT, lipocalin-2/NGAL, as well as other newly discovered adipokines including chemerin, nesfatin-1/nucleobindin-2, AZGP1, SFRP5 and FABP4.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.
- Department of Surgery, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504, Rion, Greece.
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece
| |
Collapse
|
2
|
Reddy TP, Glynn SA, Billiar TR, Wink DA, Chang JC. Targeting Nitric Oxide: Say NO to Metastasis. Clin Cancer Res 2023; 29:1855-1868. [PMID: 36520504 PMCID: PMC10183809 DOI: 10.1158/1078-0432.ccr-22-2791] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Utilizing targeted therapies capable of reducing cancer metastasis, targeting chemoresistant and self-renewing cancer stem cells, and augmenting the efficacy of systemic chemo/radiotherapies is vital to minimize cancer-associated mortality. Targeting nitric oxide synthase (NOS), a protein within the tumor microenvironment, has gained interest as a promising therapeutic strategy to reduce metastatic capacity and augment the efficacy of chemo/radiotherapies in various solid malignancies. Our review highlights the influence of nitric oxide (NO) in tumor progression and cancer metastasis, as well as promising preclinical studies that evaluated NOS inhibitors as anticancer therapies. Lastly, we highlight the prospects and outstanding challenges of using NOS inhibitors in the clinical setting.
Collapse
Affiliation(s)
- Tejaswini P. Reddy
- Texas A&M University Health Science Center, Bryan, Texas
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Sharon A. Glynn
- Prostate Cancer Institute, National University of Ireland Galway, Galway, Ireland
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, Maryland
| | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, Texas
- Houston Methodist Neal Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Aibara D, Matsuo K, Matsusue K. Lipase family member N is a novel target gene for CCAAT/enhancer-binding protein α in type 2 diabetic model mouse liver. Endocr J 2022; 69:567-575. [PMID: 35082200 DOI: 10.1507/endocrj.ej21-0465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
CCAAT/enhancer-binding protein α (C/EBPα) is a transcription factor abundantly expressed in the liver and white adipose tissue (WAT). In this study, we investigated the mechanism by which C/EBPα regulates the lipase family member N (Lipn) gene in the mouse liver. Mouse Lipn consists of non-coding exon 1 and the translation start site located in exon 2. Lipn expression in the fatty liver of ob/ob mice was significantly higher than that in OB/OB mice and was significantly repressed by liver-specific C/EBPα deficiency. Lipn expression in ob/ob mice was detected in the liver, epididymal WAT (eWAT), subcutaneous WAT (sWAT), brown adipose tissue (BAT), and skeletal muscle, but not in the kidney, brain, and heart. Lipn expression in the liver, eWAT, and sWAT of wild-type mice was undetectable, although C/EBPα was highly expressed in these tissues. The database analysis revealed four putative C/EBP-responsive elements (CEBPREs), highly homologous with the typical CEBPRE consensus sequence at positions -2,686/-2,678, -1,364/-1,356, -106/-98, and -45/-37 from the transcription start site (+1) of Lipn. Reporter assays using reporter constructs with serial or internal deletions of the 5'-flanking regions of Lipn showed that two functional CEBPREs (-106/-98 and -45/-37) in the Lipn promoter region are essential for enhancing Lipn transcriptional activity by C/EBPα. Electrophoretic mobility shift assay showed that C/EBPα/β binds to CEBPRE (-106/-98). These results suggest that C/EBPα and type 2 diabetic environment may be required for hepatic Lipn expression.
Collapse
Affiliation(s)
- Daisuke Aibara
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kohei Matsuo
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kimihiko Matsusue
- Faculty of Pharmaceutical Science, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Fonseca M, Soares R, Coelho P. Lower melanoma pulmonary metastatic burden in obese mice: role of FGF-21. Melanoma Res 2021; 31:515-525. [PMID: 34524221 DOI: 10.1097/cmr.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Obesity is a risk factor for malignant melanoma. The lungs are main target organs for metastization and their immune response is a key modulator of this mechanism. The concept that the metastatic potential of some types of cancer is reduced or inhibited by obesity, known as the obesity paradox, drives major concerns on the prognosis of metastasized patients. The aim of this study was to investigate how high-fat diet (HFD)-induced obesity affects melanoma metastization. C57Bl6/J mice were fed with HFD or standard diet for 180 days and inoculated intravenously with B16F10 melanoma cells. Upon 21 days of inoculation, lung tissue of overweight and lean mice was assessed for histology and immunohistochemistry assays. Adipokine antibody arrays were performed in mice serum. In vitro RAW 264.7 macrophage cultures were established and incubated with FGF-21 and/or lipopolysaccharide (LPS). Conditioned media was added to B16F10 cells for viability quantification. HFD-fed mice presented a reduced number of metastases with lower proliferative rates. The high content of inflammatory foci observed in noninoculated obese mice was significantly decreased upon B16F10 inoculation, concurrent with a slight fibrosis reduction. Plasma levels of fibroblast growth factor-21 (FGF-21), an endocrine regulator, were elevated in noninoculated HFD mice and the expression of FGF receptor 1 (FGFR-1) was significantly upregulated after inoculation. FGF-21 reduced melanoma viability in LPS-stimulated macrophages. Altogether, these findings suggest that higher amounts of FGF-21 are able to counterbalance the proinflammatory effects associated with obesity, protecting the lungs from melanoma metastization.
Collapse
Affiliation(s)
- Magda Fonseca
- Department of Biomedicine, Faculty of Medicine, University of Porto
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto
- Chemical Sciences and Biomolecules, School of Health, Polytechnic Institute of Porto, Porto, Portugal
| | - Pedro Coelho
- Department of Biomedicine, Faculty of Medicine, University of Porto
- Metabesity Research Group, I3S, Institute for Investigation and Innovation in Health, University of Porto
- Chemical Sciences and Biomolecules, School of Health, Polytechnic Institute of Porto, Porto, Portugal
| |
Collapse
|
5
|
Olszańska J, Pietraszek-Gremplewicz K, Nowak D. Melanoma Progression under Obesity: Focus on Adipokines. Cancers (Basel) 2021; 13:cancers13092281. [PMID: 34068679 PMCID: PMC8126042 DOI: 10.3390/cancers13092281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Obesity is a rapidly growing public health problem and the reason for numerous diseases in the human body, including cancer. This article reviews the current knowledge of the effect of molecules secreted by adipose tissue-adipokines on melanoma progression. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Abstract Obesity is a growing problem in the world and is one of the risk factors of various cancers. Among these cancers is melanoma, which accounts for the majority of skin tumor deaths. Current studies are looking for a correlation between obesity and melanoma. They suspect that a potential cause of its development is connected to the biology of adipokines, active molecules secreted by adipose tissue. Under physiological conditions, adipokines control many processes, including lipid and glucose homeostasis, insulin sensitivity, angiogenesis, and inflammations. However, when there is an increased amount of fat in the body, their secretion is dysregulated. This article reviews the current knowledge of the effect of adipokines on melanoma growth. This work focuses on the molecular pathways by which adipose tissue secreted molecules modify the angiogenesis, migration, invasion, proliferation, and death of melanoma cells. We also discuss the role of these factors as markers of incidence, metastasis, and melanoma patient survival. Understanding the functions of adipokines will lead to knowledge of whether and how obesity promotes melanoma growth. Further studies may contribute to the innovations of therapies and the use of adipokines as predictive and/or prognostic biomarkers.
Collapse
|
6
|
Pereira FV, Melo ACL, Silva MB, de Melo FM, Terra FF, Castro IA, Perandini LA, Miyagi MT, Sato FT, Origassa CST, Hiyane MI, Donato J, Wasinski F, Araujo RC, Festuccia WTL, da Silva JS, Camara NOS. Interleukin-6 and the Gut Microbiota Influence Melanoma Progression in Obese Mice. Nutr Cancer 2020; 73:642-651. [DOI: 10.1080/01635581.2020.1764982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Felipe V. Pereira
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Amanda C. L. Melo
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Marina B. Silva
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Filipe M. de Melo
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina- Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, São Paulo, Brazil
| | - Fernanda F. Terra
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Iris A. Castro
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Luiz A. Perandini
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Marcelli T. Miyagi
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Fabio T. Sato
- Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Clarice S. T. Origassa
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Meire I. Hiyane
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ronaldo C. Araujo
- Department of Biophysics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - William T. L. Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joao Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Niels Olsen S. Camara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol (Dordr) 2019; 42:243-260. [PMID: 30877623 DOI: 10.1007/s13402-019-00428-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Increasing evidence indicates that obesity is associated with tumor development and progression. Leptin is an adipocyte-related hormone with a key role in energy metabolism and whose circulating levels are elevated in obesity. The effect of leptin on cancer progression and metastasis and its underlying mechanisms are still unclear. Leptin can impact various steps in tumor metastasis, including epithelial-mesenchymal transition, cell adhesion to the extracellular matrix (ECM), and proteolysis of ECM components. To do so, leptin binds to its receptor (OB-Rb) to activate signaling pathways and downstream effectors that participate in tumor cell invasion as well as distant metastasis. CONCLUSIONS In this review, we describe metastasis steps in detail and characterize metastasis-related molecules activated by leptin, which may help to develop a roadmap that guides future work. In addition, we conclude that a profound understanding of the fundamental molecular processes that contribute to leptin-induced metastasis may pave the way for the development of new prognostic molecules and appropriate approaches to the treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohsen Azimi-Nejad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Genetic, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Sarkar PL, Lee W, Williams ED, Lubik AA, Stylianou N, Shokoohmand A, Lehman ML, Hollier BG, Gunter JH, Nelson CC. Insulin Enhances Migration and Invasion in Prostate Cancer Cells by Up-Regulation of FOXC2. Front Endocrinol (Lausanne) 2019; 10:481. [PMID: 31379747 PMCID: PMC6652804 DOI: 10.3389/fendo.2019.00481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/03/2019] [Indexed: 12/28/2022] Open
Abstract
Androgen deprivation therapy (ADT) is the standard treatment for advanced prostate cancer (PCa), yet many patients relapse with lethal metastatic disease. With this loss of androgens, increased cell plasticity has been observed as an adaptive response to ADT. This includes gain of invasive and migratory capabilities, which may contribute to PCa metastasis. Hyperinsulinemia, which develops as a side-effect of ADT, has been associated with increased tumor aggressiveness and faster treatment failure. We investigated the direct effects of insulin in PCa cells that may contribute to this progression. We measured cell migration and invasion induced by insulin using wound healing and transwell assays in a range of PCa cell lines of variable androgen dependency (LNCaP, 22RV1, DuCaP, and DU145 cell lines). To determine the molecular events driving insulin-induced invasion we used transcriptomics, quantitative real time-PCR, and immunoblotting in three PCa cell lines. Insulin increased invasiveness of PCa cells, upregulating Forkhead Box Protein C2 (FOXC2), and activating key PCa cell plasticity mechanisms including gene changes consistent with epithelial-to-mesenchymal transition (EMT) and a neuroendocrine phenotype. Additionally, analysis of publicly available clinical PCa tumor data showed metastatic prostate tumors demonstrate a positive correlation between insulin receptor expression and the EMT transcription factor FOXC2. The insulin receptor is not suitable to target clinically however, our data shows that actions of insulin in PCa cells may be suppressed by inhibiting downstream signaling molecules, PI3K and ERK1/2. This study identifies for the first time, a mechanism for insulin-driven cancer cell motility and supports the concept that targeting insulin signaling at the level of the PCa tumor may extend the therapeutic efficacy of ADT.
Collapse
Affiliation(s)
- Phoebe L. Sarkar
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
| | - Wendy Lee
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
| | - Amy A. Lubik
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nataly Stylianou
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
| | - Ali Shokoohmand
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
| | - Melanie L. Lehman
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Brett G. Hollier
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
| | - Jennifer H. Gunter
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
- *Correspondence: Jennifer H. Gunter
| | - Colleen C. Nelson
- Queensland University of Technology (QUT), Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Wu S, Dong K, Wang J, Bi Y. Tumor necrosis factor alpha improves glucose homeostasis in diabetic mice independent with tumor necrosis factor receptor 1 and tumor necrosis factor receptor 2. Endocr J 2018; 65:601-609. [PMID: 29576600 DOI: 10.1507/endocrj.ej17-0539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes is a serious threat to human health all over the world. It is particularly important to look for the pathogenesis of type 2 diabetes. Researchers have found that obesity was associated with a broad chronic inflammatory response and type 2 diabetes. And tumor necrosis factor alpha (TNF-α) is one of the most important cytokines related with obesity. To explore the functional role of TNF-α in the regulation of glucose homeostasis, TNF-α receptor 1 and TNF-α receptor 2 double knockout (TNFR1/R2 DKO) mouse model were used in our study. After high fat diet (HFD) feeding, we detected that the insulin resistance was dramatically improved and circulated TNF-α was upregulated in TNFR1/R2 DKO mice. Surprisingly, glucose homeostasis was worsened, when we down regulate the levels of plasma TNF-α in TNFR1/R2 DKO mice by administering Adeno associated virus-shRNA-TNF-α (AAV-shTNF-α). Subsequently, in ob/ob mice, we confirmed that the glucose homeostasis could be improved when we up regulate the levels of plasma TNF-α by administering Adeno associated virus-TNF-α (AAV-TNF-α). Our findings suggested that TNFR1 and TNFR2 may not be the only receptors for TNF-α and TNF-α probably plays a positive role in reducing insulin resistance via a TNFRs-independent way in diabetic mice.
Collapse
Affiliation(s)
- Shanshan Wu
- Department of Endocrinology, Bengbu Medical College, The First Affilited Hospital of Bengbu Medical College, Anhui, 233000, China
| | - Kai Dong
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jiajia Wang
- Department of Endocrinology, Medical College of Soochow University, Jiangsu 215213, China
| | - Yaxin Bi
- Department of Endocrinology, Bengbu Medical College, The First Affilited Hospital of Bengbu Medical College, Anhui, 233000, China
| |
Collapse
|
10
|
Malvi P, Chaube B, Singh SV, Mohammad N, Vijayakumar MV, Singh S, Chouhan S, Bhat MK. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state. Cancer Metab 2018; 6:2. [PMID: 29568521 PMCID: PMC5859707 DOI: 10.1186/s40170-018-0176-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 02/21/2018] [Indexed: 12/29/2022] Open
Abstract
Background Obesity is associated with increased risk, poor prognosis and outcome of therapy, in various cancers. Obesity-associated factors or adipokines, especially leptin and resistin, are purported to promote growth, survival, proliferation, and invasiveness of cancer cells. However, the mechanistic link between these adipokines and therapeutic response in malignancies is not clearly understood. Methods ob/ob and db/db mouse models were used in this study to evaluate the role of leptin and resistin towards the outcome of dacarbazine (DTIC) therapy in melanoma. Unique in vitro approaches were employed to complement in vivo findings by culturing melanoma cells in the serum collected from the experimental mice. Results Here, we have shown the role of important adipokines leptin and resistin in growth and the outcome of DTIC therapy in melanoma. Both leptin and resistin not only enhance proliferation of melanoma cells but also are involved in impairing the therapeutic efficacy of DTIC. Leptin and resistin treatment caused an increase in the protein levels of fatty acid synthase (FASN) and caveolin 1 (Cav-1) respectively, through their stabilization in A375 cells. Further, it was observed that leptin and resistin impaired the response of melanoma cells to DTIC via upregulation of heat shock protein 90 (Hsp90) and P-glycoprotein (P-gp) respectively. Conclusion These findings unraveled the involvement of adipokines (leptin and resistin) in melanoma progression, and more importantly, in the outcome of DTIC therapy.
Collapse
Affiliation(s)
- Parmanand Malvi
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Balkrishna Chaube
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Shivendra Vikram Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Naoshad Mohammad
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | | | - Snahlata Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Surbhi Chouhan
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, 411 007 India
| |
Collapse
|
11
|
De Giorgi V, Gori A, Savarese I, D'Errico A, Scarfì F, Papi F, Maio V, Covarelli P, Massi D, Gandini S. Role of BMI and hormone therapy in melanoma risk: a case-control study. J Cancer Res Clin Oncol 2017; 143:1191-1197. [PMID: 28289899 DOI: 10.1007/s00432-017-2387-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/27/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Currently, the association between body mass index (BMI) and hormone therapies and Cutaneous Melanoma (CM) development is strongly debated. This study was carried out to assess the association between BMI, hormone therapies, and CM risk. METHODS The present study is a hospital-based case-control study with 605 consecutive CM patients and 592 controls treated for non-neoplastic conditions at the Department of Dermatology in Florence. The associations of melanoma risk with BMI and hormone therapies were assessed performing unconditional logistic regression to estimate odds ratios (OR) and their 95% confidence intervals, adjusting for potential confounders. RESULTS We found a significant interaction of BMI with age (P < 0.0001): being overweight significantly increased CM risk among individuals less than 50 years old (OR = 1.85 with 95% CI 1.14-2.94), whereas the association was not significant for individuals over 50 years old (OR = 1.15 with 95% CI 0.77-1.71). For oestrogen therapy, women taking oral contraceptives (OCs)/hormone replacement therapy (HRT) showed a lower CM risk than men (OR = 0.63, 95% CI 0.44-0.89), with risk estimates significantly lower (P < 0.0001) than in non OCs/HRT users, which had an increased risk compared to men (OR = 1.81, 95% CI 1.29-2.53). CONCLUSIONS Being overweight was significantly associated with CM risk, and this relationship was highly age-conditioned; the second finding was the protective effect of oestrogen therapies for women. Both findings may have a significant impact on melanoma prevention, as the prevalence of obesity and hormone therapy use is increasing worldwide.
Collapse
Affiliation(s)
- Vincenzo De Giorgi
- Department of Dermatology, University of Florence, Via Michelangelo 41, 50124, Florence, Italy.
- Cancer Research "Attilia Pofferi" Foundation, Pistoia, Italy.
| | - Alessia Gori
- Cancer Research "Attilia Pofferi" Foundation, Pistoia, Italy
| | - Imma Savarese
- Department of Dermatology, University of Florence, Via Michelangelo 41, 50124, Florence, Italy
| | - Antonietta D'Errico
- Department of Dermatology, University of Florence, Via Michelangelo 41, 50124, Florence, Italy
| | - Federica Scarfì
- Department of Dermatology, University of Florence, Via Michelangelo 41, 50124, Florence, Italy
| | - Federica Papi
- Department of Dermatology, University of Florence, Via Michelangelo 41, 50124, Florence, Italy
| | - Vincenza Maio
- Department of Human Pathology and Oncology, University of Florence, Florence, Italy
| | - Piero Covarelli
- Department of Dermatology, University of Perugia, Perugia, Italy
| | - Daniela Massi
- Department of Human Pathology and Oncology, University of Florence, Florence, Italy
| | - Sara Gandini
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| |
Collapse
|
12
|
Du SF, Yu Q, Chuan K, Ye CL, He ZJ, Liu SJ, Zhu XY, Liu YJ. In obese mice, exercise training increases 11β-HSD1 expression, contributing to glucocorticoid activation and suppression of pulmonary inflammation. J Appl Physiol (1985) 2017; 123:717-727. [PMID: 28663379 DOI: 10.1152/japplphysiol.00652.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 11/22/2022] Open
Abstract
Exercise training is advocated for treating chronic inflammation and obesity-related metabolic syndromes. Glucocorticoids (GCs), the anti-inflammatory hormones, are synthesized or metabolized in extra-adrenal organs. This study aims to examine whether exercise training affects obesity-associated pulmonary inflammation by regulating local GC synthesis or metabolism. We found that sedentary obese (ob/ob) mice exhibited increased levels of interleukin (IL)-1β, IL-18, monocyte chemotactic protein (MCP)-1, and leukocyte infiltration in lung tissues compared with lean mice, which was alleviated by 6 wk of exercise training. Pulmonary corticosterone levels were decreased in ob/ob mice. Exercise training increased pulmonary corticosterone levels in both lean and ob/ob mice. Pulmonary corticosterone levels were negatively correlated with IL-1β, IL-18, and MCP-1. Immunohistochemical staining of the adult mouse lung sections revealed positive immunoreactivities for the steroidogenic acute regulatory protein, the cholesterol side-chain cleavage enzyme (CYP11A1), the steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (3β-HSD), and type 1 and type 2 11β-hydroxysteroid dehydrogenase (11β-HSD) but not for 11β-hydroxylase (CYP11B1). Exercise training significantly increased pulmonary 11β-HSD1 expression in both lean and ob/ob mice. In contrast, exercise training per se had no effect on pulmonary 11β-HSD2 expression, although pulmonary 11β-HSD2 levels in ob/ob mice were significantly higher than in lean mice. RU486, a glucocorticoid receptor antagonist, blocked the anti-inflammatory effects of exercise training in lung tissues of obese mice and increased inflammatory cytokines in lean exercised mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local GC activation and suppression of pulmonary inflammation in obese mice.NEW & NOTEWORTHY Treadmill training leads to a significant increase in pulmonary corticosterone levels in ob/ob mice, which is in parallel with the favorable effects of exercise on obesity-associated pulmonary inflammation. Exercise training increases pulmonary 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression but has no significant effect on 11β-HSD2 expression in both lean and ob/ob mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local glucocorticoid activation and suppression of pulmonary inflammation in obese mice.
Collapse
Affiliation(s)
- Shu-Fang Du
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Qing Yu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Department of Physiology, Second Military Medical University, Shanghai, China
| | - Kai Chuan
- Institute of Physical Education, Yibin University, Sichuan, China; and
| | - Chang-Lin Ye
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Ze-Jia He
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Shu-Juan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiao-Yan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Yu-Jian Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Kinesiology, Shanghai University of Sport, Shanghai, China;
| |
Collapse
|
13
|
Clement E, Lazar I, Muller C, Nieto L. Obesity and melanoma: could fat be fueling malignancy? Pigment Cell Melanoma Res 2017; 30:294-306. [PMID: 28222242 DOI: 10.1111/pcmr.12584] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/13/2017] [Indexed: 01/01/2023]
Abstract
Over the last decade, it has become increasingly clear that adipose tissue, and particularly adipocytes, contributes to tumor progression. Obesity, an ever-increasing worldwide phenomenon, exacerbates this effect. The influence of obesity on melanoma remains poorly studied, although recent data do underline an association between the two diseases in both humans and murine models. Herein, we review the impact of obesity on melanoma incidence and progression and discuss the underlying mechanisms known to be involved. Adipose tissue favors the proliferation and aggressiveness of melanoma cells through a direct dialog, mediated by soluble factors and by exosomes, and through remodeling of the tumor microenvironment. This knowledge could, in the future, help to design new personalized therapeutic options for obese melanoma patients.
Collapse
Affiliation(s)
- Emily Clement
- Université de Toulouse, CNRS, UPS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse Cedex, France
| | - Ikrame Lazar
- Université de Toulouse, CNRS, UPS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse Cedex, France
| | - Catherine Muller
- Université de Toulouse, CNRS, UPS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse Cedex, France
| | - Laurence Nieto
- Université de Toulouse, CNRS, UPS, Institut de Pharmacologie et de Biologie Structurale (IPBS), Toulouse Cedex, France
| |
Collapse
|
14
|
Ben-Shmuel S, Rostoker R, Scheinman EJ, LeRoith D. Metabolic Syndrome, Type 2 Diabetes, and Cancer: Epidemiology and Potential Mechanisms. Handb Exp Pharmacol 2016; 233:355-372. [PMID: 25903410 DOI: 10.1007/164_2015_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Obesity is associated with multiple metabolic disorders that drive cardiovascular disease, T2D and cancer. The doubling in the number of obese adults over the past 3 decades led to the recognition of obesity as a "disease". With over 42 million children obese or overweight, this epidemic is rapidly growing worldwide. Obesity and T2D are both associated together and independently with an increased risk for cancer and a worse prognosis. Accumulating evidence from epidemiological studies revealed potential factors that may explain the association between obesity-linked metabolic disorders and cancer risk. Studies based on the insulin resistance MKR mice, highlighted the roe of the insulin receptor and its downstream signaling proteins in mediating hyperinsulinemia's mitogenic effects. Hypercholesterolemia was also shown to promote the formation of larger tumors and enhancement in metastasis. Furthermore, the conversion of cholesterol into 27-Hydroxycholesterol was found to link high fat diet-induced hypercholesterolemia with cancer pathophysiology. Alteration in circulating adipokines and cytokines are commonly found in obesity and T2D. Adipokines are involved in tumor growth through multiple mechanisms including mTOR, VEGF and cyclins. In addition, adipose tissues are known to recruit and alter macrophage phenotype; these macrophages can promote cancer progression by secreting inflammatory cytokines such as TNF-α and IL-6. Better characterization on the above factors and their downstream effects is required in order to translate the current knowledge into the clinic, but more importantly is to understand which are the key factors that drive cancer in each patient. Until we reach this point, policies and activities toward healthy diets and physical activities remain the best medicine.
Collapse
Affiliation(s)
- Sarit Ben-Shmuel
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Health Care Campus, Haifa, Israel
| | - Ran Rostoker
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Health Care Campus, Haifa, Israel
| | - Eyal J Scheinman
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Health Care Campus, Haifa, Israel
| | - Derek LeRoith
- Clinical Research Institute at Rambam (CRIR), Diabetes and Metabolism Clinical Research Center of Excellence, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
15
|
Ezure T, Amano S. Increment of subcutaneous adipose tissue is associated with decrease of elastic fibres in the dermal layer. Exp Dermatol 2015; 24:924-9. [PMID: 26194659 DOI: 10.1111/exd.12816] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 12/25/2022]
Abstract
Obesity is a significant risk factor for various skin disorders, including pressure ulcer and delayed wound healing. We previously showed that increment of subcutaneous adipose tissue contributes to poor skin condition by decreasing dermal elasticity. Here, we examined the mechanism involved. Histologic observation of abdominal skin from middle-aged females with a wide range of body mass index (BMI), an indicator of subcutaneous fat mass, showed that dermal elastic fibre abundance was significantly decreased with increment of BMI. Concomitantly, adipocytes were significantly enlarged. Adipocyte enlargement was significantly negatively correlated with dermal elastic fibre abundance. We hypothesized that enlarged adipocytes negatively influence dermal elastic fibres, so we investigated elastic fibre-degrading factors in in vitro-cultured enlarged adipocytes. MMP9 gene expression and secretion were significantly increased; further, these changes were blocked by extracellular signal-regulated kinase (ERK) inhibitor. Nuclear translocation (activation) of AP-1, a downstream ERK signalling molecule, was also observed in enlarged adipocytes. MMP9 abundance was significantly increased in skin of subjects with high BMI and enlarged adipocytes. These results suggest that increment of subcutaneous adipose tissue leads to adipocyte enlargement together with increased degradation of dermal elastic fibres, mediated at least in part by an ERK signalling-mediated increase of MMP9 in enlarged adipocytes.
Collapse
Affiliation(s)
- Tomonobu Ezure
- Shiseido Research Center, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan
| | - Satoshi Amano
- Shiseido Research Center, Tsuzuki-ku, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
16
|
Wang L, Tang C, Cao H, Li K, Pang X, Zhong L, Dang W, Tang H, Huang Y, Wei L, Su M, Chen T. Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol Ther 2015; 16:1220-30. [PMID: 26121010 DOI: 10.1080/15384047.2015.1056409] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND INFORMATION Previous studies have revealed that leptin may be involved in epithelial-mesenchymal transition (EMT), a crucial initiator of cancer progression to facilitate metastatic cascade, increase tumor recurrence, and ultimately cause poor prognosis. However, the underlying mechanism remains unclear. The aim of our present study was to investigate the effect of leptin on EMT of breast cancer cells and the underlying mechanism. RESULTS Our data demonstrated that leptin significantly increased the phosphorylation of STAT3, Akt, and ERK1/2, elevated the expression of IL-8, and induced breast cancer cells to undergo EMT. The effect of leptin on IL-8 could visibly abolished by the inhibitor of PI3K LY294002. In addition, leptin-induced EMT of breast cancer cells was blocked by anti-IL-8 antibodies. Examination of the expression of ObR, leptin, IL-8 and EMT-related biomarkers in patient specimens demonstrated that malignant breast carcinoma with lymph node metastases (LNM), which represents poor prognosis, expressed higher levels of ObR, leptin, IL-8 than other types of breast cancer, and displayed more obvious EMT transversion. In vivo xenograft experiment revealed that leptin signally promoted tumor growth and metastasis and increased the expressions of IL-8 and EMT-related biomarkers. CONCLUSIONS Our results support that leptin-induced EMT in breast cancer cells requires IL-8 activation via the PI3K/Akt signal pathway.
Collapse
Key Words
- AKT, Protein Kinase B
- COX-2, cyclooxygenase-2
- EMT
- EMT, epithelial-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- IFN, interferon
- IL-8
- IL-8, Interleukin 8
- JAK, Junas Kinase
- LNM, lymph node metastases
- MAPK, Mitogen-activated protein kinase
- MMP, matrix metalloproteinase
- NF-κB, Nuclear factor kappa B
- Ob-R, Ob receptor
- PI-3K, phosphatidylinositol-3 kinase
- PI3K/Akt
- STAT, signal transduction and activators of transcription
- TGF, transforming growth factor
- TNF, tumor necorsis factor
- VEGF, vascular endothelial growth factor
- breast cancer
- leptin
- mTOR, Mammalian Target Of Rapamycin
- qRT-PCR, quantify reverse transcription-polymerase chain reaction
Collapse
Affiliation(s)
- Lin Wang
- a Department of Laboratory Medicine ; Key Laboratory of Diagnostic Medicine ; Ministry of Education ; Chongqing Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dietary lipids and adipocytes: potential therapeutic targets in cancers. J Nutr Biochem 2014; 26:303-11. [PMID: 25524629 DOI: 10.1016/j.jnutbio.2014.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
Lipids play an important role to support the rapid growth of cancer cells, which can be derived from both the endogenous synthesis and exogenous supplies. Enhanced de novo fatty acid synthesis and mobilization of stored lipids in cancer cells promote tumorigenesis. Besides, lipids and fatty acids derived from diet or transferred from neighboring adipocytes also influence the proliferation and metastasis of cancer cells. Indeed, the pathogenic roles of adipocytes in the tumor microenvironment have been recognized recently. The adipocyte-derived mediators or the cross talk between adipocytes and cancer cells in the microenvironment is gaining attention. This review will focus on the impacts of lipids on cancers and the pathogenic roles of adipocytes in tumorigenesis and discuss the possible anticancer therapeutic strategies targeting lipids in the cancer cells.
Collapse
|
18
|
Malvi P, Chaube B, Pandey V, Vijayakumar MV, Boreddy PR, Mohammad N, Singh SV, Bhat MK. Obesity induced rapid melanoma progression is reversed by orlistat treatment and dietary intervention: role of adipokines. Mol Oncol 2014; 9:689-703. [PMID: 25499031 DOI: 10.1016/j.molonc.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 01/11/2023] Open
Abstract
Obesity, owing to adiposity, is associated with increased risk and development of various cancers, and linked to their rapid growth as well as progression. Although a few studies have attempted to understand the relationship between obesity and melanoma, the consequences of controlling body weight by reducing adiposity on cancer progression is not well understood. By employing animal models of obesity, we report that controlling obesity either by orlistat treatment or by restricting caloric intake significantly slows down melanoma progression. The diminished tumor progression was correlated with decreased fat mass (adiposity) in obese mice. Obesity associated factors contributing to tumor progression were decreased in the experimental groups compared to respective controls. In tumors, protein levels of fatty acid synthase (FASN), caveolin (Cav)-1 and pAkt, which are tumor promoting molecules implicated in melanoma growth under obese state, were decreased. In addition, increased necrosis and reduction in angiogenesis as well as proliferative markers PCNA and cyclin D1 were observed in tumors of the orlistat treated and/or calorically restricted obese mice. We observed that growth of melanoma cells cultured in conditioned medium (CM) from orlistat-treated adipocytes was reduced. Adipokines (leptin and resistin), via activating Akt and modulation of FASN as well as Cav-1 respectively, enhanced melanoma cell growth and proliferation. Together, we demonstrate that controlling body weight reduces adipose mass thereby diminishing melanoma progression. Therefore, strategic means of controlling obesity by reduced caloric diet or with antiobesity drugs treatment may render obesity-promoted tumor progression in check and prolong survival of patients.
Collapse
Affiliation(s)
- Parmanand Malvi
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Balkrishna Chaube
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Vimal Pandey
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | | | - Purushotham Reddy Boreddy
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Naoshad Mohammad
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Shivendra Vikram Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India
| | - Manoj Kumar Bhat
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007, India.
| |
Collapse
|
19
|
n-3 polyunsaturated fatty acids and mechanisms to mitigate inflammatory paracrine signaling in obesity-associated breast cancer. Nutrients 2014; 6:4760-93. [PMID: 25360510 PMCID: PMC4245562 DOI: 10.3390/nu6114760] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/08/2014] [Accepted: 10/10/2014] [Indexed: 02/06/2023] Open
Abstract
Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA) may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.
Collapse
|
20
|
Kwan HY, Fu X, Liu B, Chao X, Chan CL, Cao H, Su T, Tse AKW, Fong WF, Yu ZL. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid. J Biol Chem 2014; 289:30525-30537. [PMID: 25228694 DOI: 10.1074/jbc.m114.593210] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumorigenesis involves constant communication between tumor cells and neighboring normal cells such as adipocytes. The canonical function of adipocytes is to store triglyceride and release fatty acids for other tissues. This study was aimed to find out if adipocytes promoted melanoma cell growth and to investigate the underlying mechanism. Here we isolated adipocytes from inguinal adipose tissue in mice and co-cultured with melanoma cells. We found that the co-cultured melanoma had higher lipid accumulation compared with mono-cultured melanoma. In addition, fluorescently labeled fatty acid BODIPY® FLC16 signal was detected in melanoma co-cultured with the adipocytes that had been loaded with the fluorescent dye, suggesting that the adipocytes provide fatty acids to melanoma cells. Compared with mono-cultured melanoma, co-cultured melanoma cells had a higher proliferation and phospho-Akt (Ser-473 and Thr-450) expression. Overexpression of Akt mutants in melanoma cells reduced the co-culture-enhanced proliferation. A lipidomic study showed that the co-cultured melanoma had an elevated palmitic acid level. Interestingly, we found that palmitic acid stimulated melanoma cell proliferation, changed the cell cycle distribution, and increased phospho-Akt (Ser-473 and Thr-450) and PI3K but not phospho-PTEN (phosphophosphatase and tensin homolog) expressions. More importantly, the palmitic acid-stimulated proliferation was further enhanced in the Akt-overexpressed melanoma cells and was reduced by LY294002 or knockdown of endogenous Akt or overexpression of Akt mutants. We also found that palmitic acid-pretreated B16F10 cells were grown to a significantly larger tumor in mice compared with control cells. Taken together, we suggest that adipocytes may serve as an exogenous source of palmitic acid that promotes melanoma cell growth by activating Akt.
Collapse
Affiliation(s)
- Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and.
| | - Xiuqiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaojuan Chao
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and
| | - Chi Leung Chan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and
| | - Huihui Cao
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and
| | - Tao Su
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and
| | - Anfernee Kai Wing Tse
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and
| | - Wang Fun Fong
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China and.
| |
Collapse
|
21
|
Sumikawa Y, Inui S, Nakajima T, Itami S. Hair cycle control by leptin as a new anagen inducer. Exp Dermatol 2014; 23:27-32. [PMID: 24237265 DOI: 10.1111/exd.12286] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
Our purpose is to clarify the physiological role of leptin in hair cycle as leptin reportedly causes activation of Stat3, which is indispensable for hair cycling. While hair follicles in dorsal skin of 5-week-old C57/BL6 mice had progressed to late anagen phase, those in dorsal skin of 5-week-old leptin receptor deficient db/db mice remained in the first telogen and later entered the anagen at postnatal day 40, indicating that deficiency in leptin receptor signalling delayed the second hair cycle progression. Next, we shaved dorsal hairs on wild-type mice at postnatal 7 weeks and injected skin with mouse leptin or a mock. After 20 days, although mock injection showed no effect, hair growth occurred around leptin injection area. Human leptin fragment (aa22-56) had similar effects. Although the hair cycle of ob/ob mice was similar to that of wild-type mice, injection of mouse leptin on ob/ob mice at postnatal 7 weeks induced anagen transition. Immunohistochemically, leptin is expressed in hair follicles from catagen to early anagen in wild-type mice, suggesting that leptin is an anagen inducer in vivo. Phosphorylation of Erk, Jak2 and Stat3 in human keratinocytes was stimulated by leptin and leptin fragment. In addition, RT-PCR and ELISA showed that the production of leptin by human dermal papilla cells increased under hypoxic condition, suggesting that hypoxia in catagen/telogen phase promotes leptin production, preparing for entry into the next anagen. In conclusion, leptin, a well-known adipokine, acts as an anagen inducer and represents a new player in hair biology.
Collapse
Affiliation(s)
- Yasuyuki Sumikawa
- Department of Regenerative Dermatology, Osaka University School of Medicine, Osaka, Japan
| | | | | | | |
Collapse
|
22
|
Vona-Davis L, Rose DP. The obesity-inflammation-eicosanoid axis in breast cancer. J Mammary Gland Biol Neoplasia 2013; 18:291-307. [PMID: 24170420 DOI: 10.1007/s10911-013-9299-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammation of the adipose tissues occurs in association with obesity. This inflammatory process leads to the induction of cyclooxygenase-2 (COX-2) expression and a consequent elevation in prostaglandin (PG) production, which, together with proinflammatory cytokines, induce aromatase expression and estrogen synthesis. Infiltrating macrophages support the growth of breast epithelial cells and vascular endothelial cells by producing a milieu of cytokines and growth factors. This scenario creates a microenvironment favorable to breast cancer growth and invasion. The eicosanoids promote further development and growth of breast cancers indirectly by the induction of aromatase, particularly in estrogen positive breast cancers, or by direct stimulatory effect of PGE2 and lipoxygenase (LOX) products on the more aggressive, estrogen-independent tumors. Beyond this, the local production of estrogens and proinflammatory cytokines which occurs in association with breast adipose tissue inflammation, and consequent activation of the estrogen receptor and nuclear factor-κB, provides a mechanism by which breast cancers develop resistance to selective estrogen receptor modulation and aromatase inhibitor therapy. The obesity-inflammation-eicosanoid axis in breast cancer does offer a therapeutic target for the prevention of relapse in breast cancer by improving the efficacy of antiaromatase therapy using COX/LOX inhibitors; however, careful consideration of menopausal status and obesity in patients is warranted.
Collapse
Affiliation(s)
- Linda Vona-Davis
- Department of Surgery and Breast Cancer Research Program, Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, P.O. Box 9238, Morgantown, WV, 26506, USA,
| | | |
Collapse
|
23
|
Cuprous oxide nanoparticles inhibit the growth and metastasis of melanoma by targeting mitochondria. Cell Death Dis 2013; 4:e783. [PMID: 23990023 PMCID: PMC3763466 DOI: 10.1038/cddis.2013.314] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 07/05/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023]
Abstract
Metal and its oxide nanoparticles show ideal pharmacological activity, especially in anti-tumor therapy. Our previous study demonstrated that cuprous oxide nanoparticles (CONPs) selectively induce apoptosis of tumor cells in vitro. To explore the anti-tumor properties of CONPs in vivo, we used the particles to treat mouse subcutaneous melanoma and metastatic lung tumors, based on B16-F10 mouse melanoma cells, by intratumoral and systemic injections, respectively. The results showed that CONPs significantly reduced the growth of melanoma, inhibited the metastasis of B16-F10 cells and increased the survival rate of tumor-bearing mice. Importantly, the results also indicated that CONPs were rapidly cleared from the organs and that these particles exhibited little systemic toxicity. Furthermore, we observed that CONPs targeted the mitochondria, which resulted in the release of cytochrome C from the mitochondria and the activation of caspase-3 and caspase-9 after the CONPs entered the cells. In conclusion, CONPs can induce the apoptosis of cancer cells through a mitochondrion-mediated apoptosis pathway, which raises the possibility that CONPs could be used to cure melanoma and other cancers.
Collapse
|
24
|
Abstract
The major factor in the morbidity and mortality of cancer patients is metastasis. There exists a relative lack of specific therapeutic approaches to control metastasis, and this is a fruitful area for investigation. A healthy diet and lifestyle not only can inhibit tumorigenesis but also can have a major impact on cancer progression and survival. Many chemicals found in edible plants are known to inhibit metastatic progression of cancer. While the mechanisms underlying antimetastatic activity of some phytochemicals are being delineated, the impact of diet, dietary components, and various phytochemicals on metastasis suppressor genes is underexplored. Epigenetic regulation of metastasis suppressor genes promises to be a potentially important mechanism by which dietary components can impact cancer metastasis since many dietary constituents are known to modulate gene expression. The review addresses this area of research as well as the current state of knowledge regarding the impact of diet, dietary components, and phytochemicals on metastasis suppressor genes.
Collapse
|
25
|
Ford NA, Nunez NP, Holcomb VB, Hursting SD. IGF1 dependence of dietary energy balance effects on murine Met1 mammary tumor progression, epithelial-to-mesenchymal transition, and chemokine expression. Endocr Relat Cancer 2013; 20:39-51. [PMID: 23152442 DOI: 10.1530/erc-12-0329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Luminal breast tumors with little or no estrogen receptor α expression confer poor prognosis. Using the Met1 murine model of luminal breast cancer, we characterized the IGF1-dependency of diet-induced obesity (DIO) and calorie restriction (CR) effects on tumor growth, growth factor signaling, epithelial-to-mesenchymal transition (EMT), and chemokine expression. Liver-specific IGF1-deficient (LID) and littermate control (LC) mice were administered control, DIO, or 30% CR diets for 3 months before orthotopic injection of Met1 cells. Tumors grew for 1 month and then were assessed for Akt pathway activation and mRNA expression of chemokine and EMT constituents. LID mice, regardless of diet, displayed reduced Met1 tumor growth and downregulated Akt, EMT, and chemokine pathways. CR, relative to control, reduced serum IGF1 and Met1 tumor growth in LC (but not LID) mice. DIO, relative to control, increased Met1 tumor growth and chemokine expression in LID mice, and had no effect on serum IGF1 or pAkt or cyclin D1 expression in either genotype. Thus, circulating IGF1 (in association with Akt, EMT, and chemokines) regulated Met1 tumor growth. While the anticancer effects of CR were largely IGF1-dependent, the procancer effects of DIO manifested only when circulating IGF1 levels were low. Thus, in a murine model of luminal breast cancer, IGF1 and its downstream signaling pathway, EMT, and chemokines present possible mechanistic regulatory targets. Transplanted MMTV1 Wnt1 mammary tumor growth was also reduced in LID mice, relative to LC mice, suggesting that the IGF1 effects on mammary tumor growth are not limited to Met1 tumors.
Collapse
Affiliation(s)
- Nikki A Ford
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, 78722, USA
| | | | | | | |
Collapse
|
26
|
Li L, Hua Y, Dong M, Li Q, Smith DT, Yuan M, Jones KR, Ren J. Short-term lenalidomide (Revlimid) administration ameliorates cardiomyocyte contractile dysfunction in ob/ob obese mice. Obesity (Silver Spring) 2012; 20:2174-85. [PMID: 22522886 DOI: 10.1038/oby.2012.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lenalidomide is a potent immunomodulatory agent capable of downregulating proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and upregulating anti-inflammatory cytokines. Lenalidomide has been shown to elicit cardiovascular effects, although its impact on cardiac function remains obscure. This study was designed to examine the effect of lenalidomide on cardiac contractile function in ob/ob obese mice. C57BL lean and ob/ob obese mice were given lenalidomide (50 mg/kg/day, p.o.) for 3 days. Body fat composition was assessed by dual-energy X-ray absorptiometry. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated. Expression of TNF-α, interleukin-6 (IL-6), Fas, Fas ligand (FasL), the short-chain fatty acid receptor GPR41, the NFκB regulator IκB, endoplasmic reticulum (ER) stress, the apoptotic protein markers Bax, Bcl-2, caspase-8, tBid, cytosolic cytochrome C, and caspase-12; and the stress signaling molecules p38 and extracellular signal-regulated kinase (ERK) were evaluated by western blot. ob/ob mice displayed elevated serum TNF-α and IL-6 levels, fat composition and glucose intolerance, the effects of which except glucose intolerance and fat composition were attenuated by lenalidomide. Cardiomyocytes from ob/ob mice exhibited depressed peak shortening (PS) and maximal velocity of shortening/relengthening, prolonged time-to-PS and time-to-90% relengthening as well as intracellular Ca(2+) mishandling, which were ablated by lenalidomide. Western blot analysis revealed elevated levels of TNF-α, IL-6, Fas, Bip, Bax, caspase-8, tBid, cleaved caspase-3 caspase-12, cytochrome C, phosphorylation of p38, and ERK in ob/ob mouse hearts, the effects of which with the exception of Bip, Bax, and caspase-12 were alleviated by lenalidomide. Taken together, these data suggest that lenalidomide is protective against obesity-induced cardiomyopathy possibly through antagonism of cytokine/Fas-induced activation of stress signaling and apoptosis.
Collapse
Affiliation(s)
- Linlin Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Nieto MA, Cano A. The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol 2012; 22:361-8. [PMID: 22613485 DOI: 10.1016/j.semcancer.2012.05.003] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/13/2012] [Indexed: 12/31/2022]
Abstract
The epithelial to mesenchymal transition or EMT has become one of the most exciting fields in cancer research. Nevertheless, its relevance in tumor biology and the metastatic process still faces some controversy. Clarification may arise when considering the EMT as a reversible and often incomplete process, essentially a manifestation of strong epithelial plasticity. Transient cellular states are generated to fulfill specific requirements in each and all the steps of the metastatic process, from primary tumor cell detachment to dissemination and colonization. Opposing multiple cellular programs that promote or prevent EMT, thereby destabilizing or reinforcing epithelial integrity, play a central role in the inherent cellular dynamics of cancer progression. These cell biology programs not only drive cells towards the epithelial or the mesenchymal state but also impinge into multiple cellular and global responses including proliferation, stemness, chemo and immunotherapy resistance, inflammation and immunity, all relevant for the development of the metastatic disease.
Collapse
Affiliation(s)
- M Angela Nieto
- Instituto de Neurociencias, CSIC-UMH. Av. Santiago Ramón y Cajal s/n, 03550 San Juan de Alicante, Spain.
| | | |
Collapse
|
28
|
Dunlap SM, Chiao LJ, Nogueira L, Usary J, Perou CM, Varticovski L, Hursting SD. Dietary energy balance modulates epithelial-to-mesenchymal transition and tumor progression in murine claudin-low and basal-like mammary tumor models. Cancer Prev Res (Phila) 2012; 5:930-42. [PMID: 22588949 DOI: 10.1158/1940-6207.capr-12-0034] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Using novel murine models of claudin-low and basal-like breast cancer, we tested the hypothesis that diet-induced obesity (DIO) and calorie restriction (CR) differentially modulate progression of these aggressive breast cancer subtypes. For model development, we characterized two cell lines, "mesenchymal (M)-Wnt" and "epithelial (E)-Wnt," derived from MMTV-Wnt-1 transgenic mouse mammary tumors. M-Wnt, relative to E-Wnt, cells were tumor-initiating cell (TIC)-enriched (62% vs. 2.4% CD44(high)/CD24(low)) and displayed enhanced ALDEFLUOR positivity, epithelial-to-mesenchymal transition (EMT) marker expression, mammosphere-forming ability, migration, invasion, and tumorigenicity (P < 0.001; each parameter). M-Wnt and E-Wnt cells clustered with claudin-low and basal-like breast tumors, respectively, in gene expression profiles and recapitulated these tumors when orthotopically transplanted into ovariectomized C57BL/6 mice. To assess the effects of energy balance interventions on tumor progression and EMT, mice were administered DIO, control, or CR diets for 8 weeks before orthotopic transplantation of M-Wnt or E-Wnt cells (for each cell line, n = 20 mice per diet) and continued on their diets for 6 weeks while tumor growth was monitored. Relative to control, DIO enhanced M-Wnt (P = 0.01), but not E-Wnt, tumor progression; upregulated EMT- and TIC-associated markers including N-cadherin,fibronectin, TGFβ, Snail, FOXC2, and Oct4 (P < 0.05, each); and increased intratumoral adipocytes. Conversely, CR suppressed M-Wnt and E-Wnt tumor progression (P < 0.02, each) and inhibited EMT and intratumoral adipocyte accumulation. Thus, dietary energy balance interventions differentially modulate EMT and progression of claudin-low and basal-like tumors. EMT pathway components may represent targets for breaking the obesity-breast cancer link, particularly for preventing and/or controlling TIC-enriched subtypes such as claudin-low breast cancer.
Collapse
Affiliation(s)
- Sarah M Dunlap
- Department of Nutritional Sciences, University of Texas, Austin, TX, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3β to downregulate β-catenin transcription target, osteopontin. Oncogene 2012; 31:4472-83. [PMID: 22266849 DOI: 10.1038/onc.2011.623] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated levels of the oncoprotein, osteopontin (OPN), are associated with poor outcome of several types of cancers including melanoma. We have previously reported an important involvement of DNAJB6, a member of heat-shock protein 40 (HSP40) family, in negatively impacting tumor growth. The current study was prompted by our observations reported here which revealed a reciprocal relationship between DNAJB6 and OPN in melanoma specimens. The 'J domain' is the most conserved domain of HSP40 family of proteins. Hence, we assessed the functional role of the J domain in activities of DNAJB6. We report that the J domain of DNAJB6 is involved in mediating OPN suppression. Deletion of the J domain renders DNAJB6 incapable of impeding malignancy and suppressing OPN. Our mechanistic investigations reveal that DNAJB6 binds HSPA8 (heat-shock cognate protein, HSC70) and causes dephosphorylation of glycogen synthase kinase 3β (GSK3β) at Ser 9 by recruiting protein phosphatase, PP2A. This dephosphorylation activates GSK3β, leading to degradation of β-catenin and subsequent loss of TCF/LEF (T cell factor1/lymphoid enhancer factor1) activity. Deletion of the J domain abrogates assembly of this multiprotein complex and renders GSK3β inactive, thus, stabilizing β-catenin, a transcription co-activator for OPN expression. Our in-vitro and in-vivo functional analyses show that silencing OPN expression in the background of deletion of the J domain renders the resultant tumor cells less malignant despite the presence of stabilized β-catenin. Thus, we have uncovered a new mechanism for regulation of GSK3β activity leading to inhibition of Wnt/β-catenin signaling.
Collapse
|
31
|
Mitra A, Menezes ME, Pannell LK, Mulekar MS, Honkanen RE, Shevde LA, Samant RS. DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3β to downregulate β-catenin transcription target, osteopontin. Oncogene 2012. [PMID: 22266849 DOI: 10.1038/onc.2011.623.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elevated levels of the oncoprotein, osteopontin (OPN), are associated with poor outcome of several types of cancers including melanoma. We have previously reported an important involvement of DNAJB6, a member of heat-shock protein 40 (HSP40) family, in negatively impacting tumor growth. The current study was prompted by our observations reported here which revealed a reciprocal relationship between DNAJB6 and OPN in melanoma specimens. The 'J domain' is the most conserved domain of HSP40 family of proteins. Hence, we assessed the functional role of the J domain in activities of DNAJB6. We report that the J domain of DNAJB6 is involved in mediating OPN suppression. Deletion of the J domain renders DNAJB6 incapable of impeding malignancy and suppressing OPN. Our mechanistic investigations reveal that DNAJB6 binds HSPA8 (heat-shock cognate protein, HSC70) and causes dephosphorylation of glycogen synthase kinase 3β (GSK3β) at Ser 9 by recruiting protein phosphatase, PP2A. This dephosphorylation activates GSK3β, leading to degradation of β-catenin and subsequent loss of TCF/LEF (T cell factor1/lymphoid enhancer factor1) activity. Deletion of the J domain abrogates assembly of this multiprotein complex and renders GSK3β inactive, thus, stabilizing β-catenin, a transcription co-activator for OPN expression. Our in-vitro and in-vivo functional analyses show that silencing OPN expression in the background of deletion of the J domain renders the resultant tumor cells less malignant despite the presence of stabilized β-catenin. Thus, we have uncovered a new mechanism for regulation of GSK3β activity leading to inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- A Mitra
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | | | | | | | | | | |
Collapse
|