1
|
Mellya RVK, Hopcraft JGC, Mwakilema W, Eblate EM, Mduma S, Mnaya B, Chuma IS, Macha ES, Wambura D, Fyumagwa RD, Kilbride E, Ijaz UZ, Mable BK, Khan A. Natural dispersal is better than translocation for reducing risks of inbreeding depression in eastern black rhinoceros ( Diceros bicornis michaeli). Proc Natl Acad Sci U S A 2025; 122:e2414412122. [PMID: 40460127 PMCID: PMC12167989 DOI: 10.1073/pnas.2414412122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/01/2025] [Indexed: 06/18/2025] Open
Abstract
Due to increasing anthropogenic impacts, many species survive only in small and isolated populations. Active conservation management to reduce extinction risk includes increasing habitat connectivity, translocations from captive populations, or intensive surveillance of highly protected closed populations. Advances in sequencing technology mean that it is now possible to consider the genomic impacts of such strategies, as a proxy for variation in individual fitness. Using whole genome sequences from critically endangered eastern black rhinoceros (Diceros bicornis michaeli), we compare the consequences of different types of conservation efforts, based on cohorts of offspring resulting from parents from different sources. Based on the fraction of the genome in runs of homozygosity (ROH) of different lengths, we found lower inbreeding in offspring of individuals that had either been translocated from ex-situ populations (FROH>1Mb = 0.047) or dispersed between proximate native populations (FROH>1Mb = 0.065) compared to the intensively managed closed population from which the migrant moved (FROH>1Mb = 0.112). However, the benefit of such movement was removed after only a few generations of closed breeding (FROH>1Mb = 0.149). Although sample size restricted power to detect significance of differences, the relative abundance of highly deleterious mutations was higher for offspring resulting from translocation compared to the other cohorts and this load was sheltered by higher heterozygosity, which could increase risks of inbreeding depression if inbreeding subsequently occurs. In contrast, native dispersers reduced the negative effects of inbreeding without compromising the benefits of past purging of deleterious mutations. Our study highlights the importance of natural dispersal and reiterates the importance of maintaining habitat corridors between populations.
Collapse
Affiliation(s)
- Ronald. V. K. Mellya
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, United Kingdom
- Tanzania National Parks, P.O. Box 3134, Arusha, Tanzania
| | - J. Grant C. Hopcraft
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | | | - Ernest M. Eblate
- Tanzania Wildlife Research Institute, P.O. Box 661, Arusha, Tanzania
| | - Simon Mduma
- Serengeti Biodiversity Programme, P.O. Box 661, Arusha, Tanzania
| | - Bakari Mnaya
- Tanzania National Parks, P.O. Box 3134, Arusha, Tanzania
| | | | | | - Dickson Wambura
- Ngorongoro Conservation Area Authority, P.O. Box 1, Ngorongoro, Arusha, Tanzania
| | | | - Elizabeth Kilbride
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Umer Z. Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow12 8QQ, United Kingdom
| | - Barbara K. Mable
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, United Kingdom
| | - Anubhab Khan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, United Kingdom
- Center for Ecological Sciences, Indian Institute of Science, Bengaluru560012, India
| |
Collapse
|
2
|
Kim KR, Park JW, Park KI, Lee HJ. Genetic Diversity and Population Structure in Farmed and Wild Pacific Oysters ( Crassostrea gigas): A Comparative Study. Int J Mol Sci 2025; 26:4172. [PMID: 40362408 PMCID: PMC12072065 DOI: 10.3390/ijms26094172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The Pacific oyster, Crassostrea gigas, is an important commercially farmed species in Korea. C. gigas exhibits low genetic diversity in wild populations in Korea. To address this, we bred Japanese broodstock for more than five generations and released them into two populations to increase genetic diversity. We also assessed whether this improvement was achieved by comparing them with a control population. In this study, we analyzed genetic diversity using 16 microsatellite loci of C. gigas. The observed heterozygosity HO in the farmed population ranged up to 0.494, while in the wild population, it was 0.437. The farmed population had the highest genetic diversity, but the effective population size was low (105). The PD population size for resource creation was 403, which was higher than that of GH. The genetic structure was divided into two groups with K = 2. The first group consisted of the BR population, while the second group included the GH, GW, and PD populations. Therefore, we confirmed significant genetic differences between the farmed, wild, and resource creation populations. This study provides essential genetic information for future fishery resource development and conservation of C. gigas.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Namhae 52440, Republic of Korea;
| | - Jong-Won Park
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea;
| | - Kyung-Il Park
- Kunsan National University, Gunsan 541150, Republic of Korea;
| | - Hee-Jung Lee
- Southeast Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyeong 53085, Republic of Korea;
| |
Collapse
|
3
|
Faulk C, Walls C, Nelson B, Arakaki PR, Gonzalez IHL, Banevicius N, Teixeira RHF, Medeiros MA, Silva GP, Talebi M, Chung WCJ, Takeshita RSC. De novo whole-genome assembly of the critically endangered southern muriqui (Brachyteles arachnoides). G3 (BETHESDA, MD.) 2025; 15:jkaf034. [PMID: 39960481 PMCID: PMC12005144 DOI: 10.1093/g3journal/jkaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/08/2025] [Indexed: 04/18/2025]
Abstract
The southern muriqui (Brachyteles arachnoides) is one of the 2 species of muriquis (genus Brachyteles), the largest body-sized nonhuman primate from the Neotropics. Deforestation and illegal hunting have led to a continuing decline in the muriqui population, leading to their current classification as critically endangered. The lack of a reference genome for the genus Brachyteles prevents scientists from taking full advantage of genomic tools to improve their conservation status. This study reports the first whole-genome assemblies of the genus Brachyteles, using DNA from 2 zoo-housed southern muriqui females. We performed sequencing with Oxford Nanopore Technologies' PromethION 2 Solo using a native DNA library preparation to preserve DNA modifications. We used Flye to assemble genomes for each individual. The best final assembly was 2.6 Gb, in 319 contigs, with an N50 of 58.8 Mb and an L50 of 17. BUSCO completeness score for this assembly was 99.5%. The assembly of the second individual had similar quality, with a length of 2.6 Gb, 759 contigs, an N50 of 47.9 Mb, an L50 of 18, and a BUSCO completeness score of 99.04%. Both assemblies had <1% duplicates, missing, or fragments. Gene model mapper detected 24,353 protein-coding genes, and repetitive elements accounted for 46% of the genome. We also reported the mitogenome, which had 16,562 bp over 37 genes, and global methylation of CpG sites, which revealed a mean of 80% methylation. Our study provides a high-quality reference genome assembly for the southern muriqui, expanding the tools that can be used to aid in their conservation efforts.
Collapse
Affiliation(s)
- Christopher Faulk
- Department of Animal Science, University of Minnesota, Minneapolis, MN 55108, United States
| | - Carrie Walls
- Department of Animal Science, University of Minnesota, Minneapolis, MN 55108, United States
| | - Brandie Nelson
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| | - Paloma R Arakaki
- Coordenadoria de Fauna Silvestre, Secretaria de Meio Ambiente, Infraestrutura e Logística, São Paulo, SP 04301-905, Brazil
- Centro de Ciências da Natureza, Programa de Pós-Graduação em Conservação da Fauna, Universidade Federal de São Carlos, Buri, SP 18290-000, Brazil
| | - Irys H L Gonzalez
- Coordenadoria de Fauna Silvestre, Secretaria de Meio Ambiente, Infraestrutura e Logística, São Paulo, SP 04301-905, Brazil
| | - Nancy Banevicius
- Departamento de Pesquisa e Conservação da Fauna, Zoológico Municipal de Curitiba, Curitiba, PR 80020-290, Brazil
| | - Rodrigo H F Teixeira
- Departamento de Veterinária, Parque Zoológico Municipal Quinzinho de Barros, Sorocaba, SP 18020-286, Brazil
- Hospital Veterinário, Universidade de Sorocaba, Sorocaba, SP 18023-000, Brazil
- Programa de Pós-Graduação em Animais Silvestres, Universidade Estadual Paulista, Botucatu, SP 18618-681, Brazil
| | - Marina A Medeiros
- Departamento de Veterinária, Parque Zoológico Municipal Quinzinho de Barros, Sorocaba, SP 18020-286, Brazil
| | - Gessiane P Silva
- Instituto de Biodiversidades e Florestas, Universidade Federal do Oeste do Pará, PA, Santarém, PA 68035-110, Brazil
| | - Mauricio Talebi
- Departamento de Ciências Ambientais, Programa de Pós-Graduação Análise Ambiental Integrada, Universidade Federal de São Paulo, Diadema, SP 09913-030, Brazil
| | - Wilson C J Chung
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States
| | - Rafaela S C Takeshita
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, United States
- Department of Anthropology, Kent State University, Kent, OH 44242, United States
| |
Collapse
|
4
|
Johnson A, Zipfel K, Smith D, Welsh A. Fishing for Florida Bass in West Virginia: Genomic Evaluation of Florida Bass Presence and Establishing Baselines of Genetic Structure and Diversity for Native Largemouth Bass. BIOLOGY 2025; 14:392. [PMID: 40282257 PMCID: PMC12024669 DOI: 10.3390/biology14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Florida bass (Micropterus salmoides) and largemouth bass (Micropterus nigricans) are iconic sport fish that hybridize readily, influencing fishery management practices. While the Florida bass has been introduced to various U.S. states to create trophy fisheries, its genetic introgression into native populations can lead to ecological and genetic consequences. Recognizing the need to assess Florida bass presence to guide future management directions, diagnostic SNPs were genotyped for 856 putative largemouth bass across 31 sampling locations across the state of West Virginia. Florida bass controls and a reduced representative sample of 226 individuals from 19 sampling locations were sequenced using the genotype-by-sequencing dd-RAD protocol. The results from the two genomic investigations found no Florida bass ancestry in West Virginia populations, suggesting either no introduction or failed reproductive success of Florida bass in the state. Among West Virginia largemouth bass populations, unique genetic ancestries were found predominantly in introduced non-native largemouth bass populations, indicating that the only sub-structuring in the state is a result of stocking non-native ancestries into the state. Genomic diversity was found to be higher in Ohio River pools compared to inland reservoirs, as well as showing higher levels of potential inbreeding. These results underscore the need to preserve the genetic integrity of native Ohio River strain largemouth bass and prevent the introduction of the Florida bass or F1 hybrids into the Ohio River and other watersheds of West Virginia. Management recommendations include prioritizing the stocking of native strain bass to mitigate inbreeding and avoid introducing Florida bass to conserve genetic diversity.
Collapse
Affiliation(s)
- Andrew Johnson
- School of Natural Resources and the Environment, West Virginia University, Morgantown, WV 26506, USA;
| | - Katherine Zipfel
- West Virginia Division of Natural Resources, 324 4th Avenue, South Charleston, WV 25303, USA; (K.Z.); (D.S.)
| | - Dustin Smith
- West Virginia Division of Natural Resources, 324 4th Avenue, South Charleston, WV 25303, USA; (K.Z.); (D.S.)
| | - Amy Welsh
- School of Natural Resources and the Environment, West Virginia University, Morgantown, WV 26506, USA;
| |
Collapse
|
5
|
Nachtigall PG, Nystrom GS, Broussard EM, Wray KP, Junqueira-de-Azevedo ILM, Parkinson CL, Margres MJ, Rokyta DR. A Segregating Structural Variant Defines Novel Venom Phenotypes in the Eastern Diamondback Rattlesnake. Mol Biol Evol 2025; 42:msaf058. [PMID: 40101100 PMCID: PMC11965796 DOI: 10.1093/molbev/msaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Of all mutational mechanisms contributing to phenotypic variation, structural variants are both among the most capable of causing major effects as well as the most technically challenging to identify. Intraspecific variation in snake venoms is widely reported, and one of the most dramatic patterns described is the parallel evolution of streamlined neurotoxic rattlesnake venoms from hemorrhagic ancestors by means of deletion of snake venom metalloproteinase (SVMP) toxins and recruitment of neurotoxic dimeric phospholipase A2 (PLA2) toxins. While generating a haplotype-resolved, chromosome-level genome assembly for the eastern diamondback rattlesnake (Crotalus adamanteus), we discovered that our genome animal was heterozygous for a ∼225 Kb deletion containing six SVMP genes, paralleling one of the two steps involved in the origin of neurotoxic rattlesnake venoms. Range-wide population-genomic analysis revealed that, although this deletion is rare overall, it is the dominant homozygous genotype near the northwestern periphery of the species' range, where this species is vulnerable to extirpation. Although major SVMP deletions have been described in at least five other rattlesnake species, C. adamanteus is unique in not additionally gaining neurotoxic PLA2s. Previous work established a superficially complementary north-south gradient in myotoxin (MYO) expression based on copy number variation with high expression in the north and low in the south, yet we found that the SVMP and MYO genotypes vary independently, giving rise to an array of diverse, novel venom phenotypes across the range. Structural variation, therefore, forms the basis for the major axes of geographic venom variation for C. adamanteus.
Collapse
Affiliation(s)
- Pedro G Nachtigall
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- Laboratório de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Emilie M Broussard
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Kenneth P Wray
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | | | | | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
6
|
Gómez Díaz JA. Assessing the extinction risk of Veracruz cycads. CAMBRIDGE PRISMS. EXTINCTION 2025; 3:e7. [PMID: 40297132 PMCID: PMC12034500 DOI: 10.1017/ext.2025.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025]
Abstract
Cycads, an ancient lineage, face a higher threat of extinction than any other plant group. To address this urgent issue, a more comprehensive method for assessing extinction threat, the Conservation and Prioritization Index (CPI), is proposed and tested for cycads in the State of Veracruz, Mexico. The CPI is a multifaceted approach that incorporates techniques used in conservation status assessments by the IUCN and the Mexican NOM-059-SEMARNAT-2010 but incorporates other information, including georeferenced distribution data, endemism in Veracruz, number of locations, extent of occurrence, and distribution area. Using CPI, correlations were found between longitude and extinction risk for Ceratozamia species in Veracruz. Zamia vazquezii and Z. inermis were assessed to have the highest level of extinction risk. Overall, this study indicates that a more holistic approach, incorporating broader sources of environmental health, can be used to more effectively and proactively manage extinction threats to cycads in Veracruz. In this sense, Veracruz can serve as a model for conservation planning in different states in Mexico and worldwide. CPI is a tool that can be applied to other regions to manage another threatened biota. This method enhances objectivity and effectiveness in conservation efforts, promoting data-driven decision-making that can be used globally.
Collapse
Affiliation(s)
- Jorge Antonio Gómez Díaz
- Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Mexico
- Centro de Investigaciones Tropicales, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
7
|
MacDonald ZG, Dupuis JR, Glasier JRN, Sissons R, Moehrenschlager A, Shaffer HB, Sperling FAH. Whole-Genome Evaluation of Genetic Rescue: The Case of a Curiously Isolated and Endangered Butterfly. Mol Ecol 2025; 34:e17657. [PMID: 39898688 PMCID: PMC11789553 DOI: 10.1111/mec.17657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/08/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025]
Abstract
Genetic rescue, or the translocation of individuals among populations to augment gene flow, can help ameliorate inbreeding depression and loss of adaptive potential in small and isolated populations. Genetic rescue is currently under consideration for an endangered butterfly in Canada, the Half-moon Hairstreak (Satyrium semiluna). A small, unique population persists in Waterton Lakes National Park, Alberta, isolated from other populations by more than 400 km. However, whether genetic rescue would actually be helpful has not been evaluated. Here, we generate the first chromosome-level genome assembly and whole-genome resequence data for the species. We find that the Alberta population maintains extremely low genetic diversity and is genetically very divergent from the nearest populations in British Columbia and Montana. Runs of homozygosity suggest this is due to a long history of inbreeding, and coalescent analyses show that the population has been small and isolated, yet stable, for up to 40k years. When a population like this maintains its viability despite inbreeding and low genetic diversity, it has likely undergone purging of deleterious recessive alleles and could be threatened by the reintroduction of such alleles via genetic rescue. Ecological niche modelling indicates that the Alberta population also exhibits environmental associations that are atypical of the species. Together, these evolutionary and ecological divergences suggest that population crosses may result in outbreeding depression. We therefore infer that genetic rescue has a relatively unique potential to be harmful rather than helpful for this population at present. However, because of its reduced adaptive potential, the Alberta population may still benefit from future genetic rescue as climate and habitat conditions change. Proactive experimental population crosses should therefore be completed to assess reproductive compatibility and progeny fitness.
Collapse
Affiliation(s)
- Zachary G. MacDonald
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Julian R. Dupuis
- Department of EntomologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Robert Sissons
- Resource Conservation, Waterton Lakes National ParkWaterton ParkAlbertaCanada
| | - Axel Moehrenschlager
- Wilder Institute/Calgary ZooCalgaryAlbertaCanada
- IUCN SSC Conservation Translocation Specialist GroupCalgaryAlbertaCanada
- PantheraNew YorkNew YorkUSA
| | - H. Bradley Shaffer
- UCLA La Kretz Center for California Conservation Science, Institute of the Environment and SustainabilityUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | | |
Collapse
|
8
|
West G, Pointer M, Nash W, Lewis R, Gage MJG, Richardson DS. Sexual selection matters in genetic rescue, but productivity benefits fade over time: a multi-generation experiment to inform conservation. Proc Biol Sci 2025; 292:20242374. [PMID: 39876725 PMCID: PMC11775606 DOI: 10.1098/rspb.2024.2374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Globally, many species are threatened by population decline because of anthropogenic changes leading to population fragmentation, genetic isolation and inbreeding depression. Genetic rescue, the controlled introduction of genetic variation, is a method used to relieve such effects in small populations. However, without understanding how the characteristics of rescuers impact rescue attempts interventions run the risk of being sub-optimal, or even counterproductive. We use the red flour beetle (Tribolium castaneum) to test the impact of rescuer sex, and sexual selection background, on population productivity. We record the impact of genetic rescue on population productivity in 24 and 36 replicated populations for ten generations following intervention. We find little or no impact of rescuer sex on the efficacy of rescue but show that a background of elevated sexual selection makes individuals more effective rescuers. In both experiments, rescue effects diminish 6-10 generations after the rescue. Our results confirm that the efficacy of genetic rescue can be influenced by characteristics of the rescuers and that the level of sexual selection in the rescuing population is an important factor. We show that any increase in fitness associated with rescue may last for a limited number of generations, suggesting implications for conservation policy and practice.
Collapse
Affiliation(s)
- George West
- University of East Anglia School of Biological Sciences, Norwich, UK
| | - Michael Pointer
- University of East Anglia School of Biological Sciences, Norwich, UK
| | - Will Nash
- Natural History Museum, London, England, UK
- Earlham Institute, Norwich, England, UK
| | - Rebecca Lewis
- University of East Anglia School of Biological Sciences, Norwich, UK
| | - Matt J. G. Gage
- University of East Anglia School of Biological Sciences, Norwich, UK
| | | |
Collapse
|
9
|
Huang Y, Li Y, Hong X, Luo S, Cai D, Xiao X, Huang Y, Zheng Y. Genetic Variation for Wild Populations of the Rare and Endangered Plant Glyptostrobus pensilis Based on Double-Digest Restriction Site-Associated DNA Sequencing. Curr Issues Mol Biol 2024; 47:12. [PMID: 39852127 PMCID: PMC11764360 DOI: 10.3390/cimb47010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Glyptostrobus pensilis is an endangered tree species, and detecting its genetic diversity can reveal the mechanisms of endangerment, providing references for the conservation of genetic resources. Samples of 137 trees across seven populations within Fujian Province were collected and sequenced using double-digest restriction site-associated DNA (ddRAD-seq). A total of 3,687,189 single-nucleotide polymorphisms (SNPs) were identified, and 15,158 high-quality SNPs were obtained after filtering. The genetic diversity in the populations was found to be low (Ho = 0.08630, He = 0.03475, π = 0.07239), with a high genetic differentiation coefficient (Fst). When K = 4, the coefficient of variation (CV) error value was minimized, suggesting that the 137 individuals could be divided into four groups, with frequent gene flow between them. Principal component analysis (PCA) divided the seven populations into two major categories based on their north-south geographic location. The clustering was consistent with those obtained from the PCA. The main reasons for the endangerment of G. pensilis are likely to be poor natural regeneration, human disturbances, and climatic factors. It is recommended that methods such as in situ conservation, ex situ conservation, and the establishment of germplasm banks be implemented to maintain the genetic diversity of G. pensilis populations.
Collapse
Affiliation(s)
- Yongrong Huang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Y.L.); (X.H.)
- Fujian Academy of Forestry, Fuzhou 350012, China; (X.X.); (Y.H.)
| | - Yu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Y.L.); (X.H.)
| | - Xiaojie Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Y.L.); (X.H.)
| | - Suzhen Luo
- Youxi State-Owned Forest Farm of Fujian Province, Youxi 365100, China;
| | - Dedan Cai
- Jianning State-Owned Forest Farm of Fujian Province, Jianning 354500, China;
| | - Xiangxi Xiao
- Fujian Academy of Forestry, Fuzhou 350012, China; (X.X.); (Y.H.)
| | - Yunpeng Huang
- Fujian Academy of Forestry, Fuzhou 350012, China; (X.X.); (Y.H.)
| | - Yushan Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Y.L.); (X.H.)
| |
Collapse
|
10
|
Chhina AK, Abhari N, Mooers A, Lewthwaite JMM. Linking the spatial and genomic structure of adaptive potential for conservation management: a review. Genome 2024; 67:403-423. [PMID: 39083766 DOI: 10.1139/gen-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We unified the recent literature with the goal to contribute to the discussion on how genetic diversity might best be conserved. We argue that this decision will be guided by how genomic variation is distributed among manageable populations (i.e., its spatial structure), the degree to which adaptive potential is best predicted by variation across the entire genome or the subset of that variation that is identified as putatively adaptive (i.e., its genomic structure), and whether we are managing species as single entities or as collections of diversifying lineages. The distribution of genetic variation and our ultimate goal will have practical implications for on-the-ground management. If adaptive variation is largely polygenic or responsive to change, its spatial structure might be broadly governed by the forces determining genome-wide variation (linked selection, drift, and gene flow), making measurement and prioritization straightforward. If we are managing species as single entities, then population-level prioritization schemes are possible so as to maximize future pooled genetic variation. We outline one such scheme based on the popular Shapley value from cooperative game theory that considers the relative genetic contribution of a population to an unknown future collection of populations.
Collapse
Affiliation(s)
- Avneet K Chhina
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Niloufar Abhari
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Arne Mooers
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Jayme M M Lewthwaite
- Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Parsons DJ, Green AE, Carstens BC, Pelletier TA. Predicting genetic biodiversity in salamanders using geographic, climatic, and life history traits. PLoS One 2024; 19:e0310932. [PMID: 39423177 PMCID: PMC11488749 DOI: 10.1371/journal.pone.0310932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
The geographic distribution of genetic variation within a species reveals information about its evolutionary history, including responses to historical climate change and dispersal ability across various habitat types. We combine genetic data from salamander species with geographic, climatic, and life history data collected from open-source online repositories to develop a machine learning model designed to identify the traits that are most predictive of unrecognized genetic lineages. We find evidence of hidden diversity distributed throughout the clade Caudata that is largely the result of variation in climatic variables. We highlight some of the difficulties in using machine-learning models on open-source data that are often messy and potentially taxonomically and geographically biased.
Collapse
Affiliation(s)
- Danielle J. Parsons
- Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Abigail E. Green
- Department of Biology, Radford University, Radford, Virginia, United States of America
| | - Bryan C. Carstens
- Museum of Biological Diversity, The Ohio State University, Columbus, Ohio, United States of America
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Tara A. Pelletier
- Department of Biology, Radford University, Radford, Virginia, United States of America
| |
Collapse
|
12
|
Luo L, Ye P, Lin Q, Liu M, Hao G, Wei T, Sahu SK. From sequences to sustainability: Exploring dipterocarp genomes for oleoresin production, timber quality, and conservation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112139. [PMID: 38838990 DOI: 10.1016/j.plantsci.2024.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/23/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Dipterocarp species dominate tropical forest ecosystems and provide key ecological and economic value through their use of aromatic resins, medicinal chemicals, and high-quality timber. However, habitat loss and unsustainable logging have endangered many Dipterocarpaceae species. Genomic strategies provide new opportunities for both elucidating the molecular pathways underlying these desirable traits and informing conservation efforts for at-risk taxa. This review summarizes the progress in dipterocarp genomics analysis and applications. We describe 16 recently published Dipterocarpaceae genome sequences, representing crucial genetic blueprints. Phylogenetic comparisons delineate evolutionary relationships among species and provide frameworks for pinpointing functional changes underlying specialized metabolism and wood development patterns. We also discuss connections revealed thus far between specific gene families and both oleoresin biosynthesis and wood quality traits-including the identification of key terpenoid synthases and cellulose synthases likely governing pathway flux. Moreover, the characterization of adaptive genomic markers offers vital resources for supporting conservation practices prioritizing resilient genotypes displaying valuable oleoresin and timber traits. Overall, progress in dipterocarp functional and comparative genomics provides key tools for addressing the intertwined challenges of preserving biodiversity in endangered tropical forest ecosystems while sustainably deriving aromatic chemicals and quality lumber that support diverse human activities.
Collapse
Affiliation(s)
- Liuming Luo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Peng Ye
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiongqiong Lin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Gang Hao
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China.
| |
Collapse
|
13
|
Khattak WA, Sun J, Hameed R, Zaman F, Abbas A, Khan KA, Elboughdiri N, Akbar R, He F, Ullah MW, Al-Andal A, Du D. Unveiling the resistance of native weed communities: insights for managing invasive weed species in disturbed environments. Biol Rev Camb Philos Soc 2024; 99:753-777. [PMID: 38174626 DOI: 10.1111/brv.13043] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Weed communities influence the dynamics of ecosystems, particularly in disturbed environments where anthropogenic activities often result in higher pollution. Understanding the dynamics existing between native weed communities and invasive species in disturbed environments is crucial for effective management and normal ecosystem functioning. Recognising the potential resistance of native weed communities to invasion in disturbed environments can help identify suitable native plants for restoration operations. This review aims to investigate the adaptations exhibited by native and non-native weeds that may affect invasions within disturbed environments. Factors such as ecological characteristics, altered soil conditions, and adaptations of native weed communities that potentially confer a competitive advantage relative to non-native or invasive weeds in disturbed environments are analysed. Moreover, the roles of biotic interactions such as competition, mutualistic relationships, and allelopathy in shaping the invasion resistance of native weed communities are described. Emphasis is given to the consideration of the resistance of native weeds as a key factor in invasion dynamics that provides insights for conservation and restoration efforts in disturbed environments. Additionally, this review underscores the need for further research to unravel the underlying mechanisms and to devise targeted management strategies. These strategies aim to promote the resistance of native weed communities and mitigate the negative effects of invasive weed species in disturbed environments. By delving deeper into these insights, we can gain an understanding of the ecological dynamics within disturbed ecosystems and develop valuable insights for the management of invasive species, and to restore long-term ecosystem sustainability.
Collapse
Affiliation(s)
- Wajid Ali Khattak
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, PO Box 215009, Suzhou City, Jiangsu Province, P.R. China
| | - Rashida Hameed
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Fawad Zaman
- Key Laboratory of National Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
- Jiangxi Provincial Key Laboratory of Silviculture, College of Forestry, Jiangxi Agricultural University, PO Box 330045, Nanchang City, Jiangxi Province, P.R. China
| | - Adeel Abbas
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, PO Box 2440, Ha'il, 81441, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Rasheed Akbar
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
- Department of Entomology, The University of Haripur, PO Box 22620, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Feng He
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of The Environmental and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| | - Abeer Al-Andal
- Department of Biology, College of Science, King Khalid University, PO Box 960, Abha, 61413, Saudi Arabia
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, No. 301, Xuefu Road, PO Box 212013, Zhenjiang City, Jiangsu Province, China
| |
Collapse
|
14
|
Femerling G, van Oosterhout C, Feng S, Bristol RM, Zhang G, Groombridge J, P Gilbert MT, Morales HE. Genetic Load and Adaptive Potential of a Recovered Avian Species that Narrowly Avoided Extinction. Mol Biol Evol 2023; 40:msad256. [PMID: 37995319 DOI: 10.1093/molbev/msad256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
High genetic diversity is a good predictor of long-term population viability, yet some species persevere despite having low genetic diversity. Here we study the genomic erosion of the Seychelles paradise flycatcher (Terpsiphone corvina), a species that narrowly avoided extinction after having declined to 28 individuals in the 1960s. The species recovered unassisted to over 250 individuals in the 1990s and was downlisted from Critically Endangered to Vulnerable in the International Union for the Conservation of Nature Red List in 2020. By comparing historical, prebottleneck (130+ years old) and modern genomes, we uncovered a 10-fold loss of genetic diversity. Highly deleterious mutations were partly purged during the bottleneck, but mildly deleterious mutations accumulated. The genome shows signs of historical inbreeding during the bottleneck in the 1960s, but low levels of recent inbreeding after demographic recovery. Computer simulations suggest that the species long-term small Ne reduced the masked genetic load and made the species more resilient to inbreeding and extinction. However, the reduction in genetic diversity due to the chronically small Ne and the severe bottleneck is likely to have reduced the species adaptive potential to face environmental change, which together with a higher load, compromises its long-term population viability. Thus, small ancestral Ne offers short-term bottleneck resilience but hampers long-term adaptability to environmental shifts. In light of rapid global rates of population decline, our work shows that species can continue to suffer the effect of their decline even after recovery, highlighting the importance of considering genomic erosion and computer modeling in conservation assessments.
Collapse
Affiliation(s)
- Georgette Femerling
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Rachel M Bristol
- Mahe, Seychelles
- Division of Human and Social Sciences, Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Jim Groombridge
- Division of Human and Social Sciences, Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - M Thomas P Gilbert
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Hernán E Morales
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Cidón CF, Turchetto-Zolet AC, Bajay MM, Zucchi MI, Konzen ER. Phenotypic and molecular basis for genetic variation in jelly palms (Butia sp.): where are we now and where are we headed to? Genet Mol Biol 2023; 46:e20230145. [PMID: 37948507 PMCID: PMC10637346 DOI: 10.1590/1678-4685-gmb-2023-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023] Open
Abstract
We compiled studies that addressed morphological and physicochemical traits, as well as population genetic studies involving jelly palms, genus Butia (Arecaceae). First, we conducted a bibliometric study with selected articles, by revising the fundamental contributions to unraveling phenotypic traits that have been used for describing the phenotypic variation within and among populations. Moreover, we sought to comprehend the patterns of genetic diversity and structure that have been presented so far, based on molecular markers. Finally, we conducted a review of the gene sequences registered to NCBI for Butia. Overall, morphological descriptors have been proposed to depict population-level variability, but the most significant results are available from chemical properties and characterization of metabolites, revealing important traits to being explored. Yet, limited information is available to describe population variation and their genetic components. On the molecular level, almost all studies so far provided results with classical molecular markers. The literature of SNP markers for Butia species is virtually non-existent. Given the current endangered state of Butia species, it is urgent that researchers pursue updated genomic technologies to invest in in-depth characterizations of the genetic diversity and structure of jelly palms. The current state of population fragmentation urges effective measures toward their conservation.
Collapse
Affiliation(s)
- Camila Fritzen Cidón
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Porto Alegre RS, Brazil
| | - Miklos Maximiliano Bajay
- Universidade do Estado de Santa Catarina, Centro de Educação
Superior da Região Sul, Laguna, SC, Brazil
| | - Maria Imaculada Zucchi
- Agência Paulista de Tecnologia dos Agronegócios, Laboratório de
Conservação Genética e Genômica, Piracicaba, SP, Brazil
| | - Enéas Ricardo Konzen
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento
Interdisciplinar, Centro de Estudos Costeiros, Limnológicos e Marinhos, Campus
Litoral Norte, Imbé, RS, Brazil
| |
Collapse
|
16
|
Coupé S, Giantsis IA, Vázquez Luis M, Scarpa F, Foulquié M, Prévot J, Casu M, Lattos A, Michaelidis B, Sanna D, García‐March JR, Tena‐Medialdea J, Vicente N, Bunet R. The characterization of toll-like receptor repertoire in Pinna nobilis after mass mortality events suggests adaptive introgression. Ecol Evol 2023; 13:e10383. [PMID: 37546570 PMCID: PMC10401143 DOI: 10.1002/ece3.10383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The fan mussel Pinna nobilis is currently on the brink of extinction due to a multifactorial disease mainly caused to the highly pathogenic parasite Haplosporidium pinnae, meaning that the selection pressure outweighs the adaptive potential of the species. Hopefully, rare individuals have been observed somehow resistant to the parasite, stretching the need to identify the traits underlying this better fitness. Among the candidate to explore at first intention are fast-evolving immune genes, of which toll-like receptor (TLR). In this study, we examined the genetic diversity at 14 TLR loci across P. nobilis, Pinna rudis and P. nobilis × P. rudis hybrid genomes, collected at four physically distant regions, that were found to be either resistant or sensitive to the parasite H. pinnae. We report a high genetic diversity, mainly observed at cell surface TLRs compared with that of endosomal TLRs. However, the endosomal TLR-7 exhibited unexpected level of diversity and haplotype phylogeny. The lack of population structure, associated with a high genetic diversity and elevated dN/dS ratio, was interpreted as balancing selection, though both directional and purifying selection were detected. Interestingly, roughly 40% of the P. nobilis identified as resistant to H. pinnae were introgressed with P. rudis TLR. Specifically, they all carried a TLR-7 of P. rudis origin, whereas sensitive P. nobilis were not introgressed, at least at TLR loci. Small contributions of TLR-6 and TLR-4 single-nucleotide polymorphisms to the clustering of resistant and susceptible individuals could be detected, but their specific role in resistance remains highly speculative. This study provides new information on the diversity of TLR genes within the P. nobilis species after MME and additional insights into adaptation to H. pinnae that should contribute to the conservation of this Mediterranean endemic species.
Collapse
Affiliation(s)
- Stéphane Coupé
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIOMarseilleFrance
| | | | - Maite Vázquez Luis
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de BalearesPalma de MallorcaSpain
| | - Fabio Scarpa
- Department of Biomedical SciencesFabio Scarpa, Daria Sanna: University of SassariSassariItaly
| | - Mathieu Foulquié
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIOMarseilleFrance
- Institut océanographique Paul RicardIle des Embiez, VarFrance
| | | | - Marco Casu
- Department of Veterinary MedicineUniversity of SassariSassariItaly
| | - Athanasios Lattos
- Faculty of Agricultural SciencesUniversity of Western MacedoniaKozaniGreece
| | - Basile Michaelidis
- Faculty of Agricultural SciencesUniversity of Western MacedoniaKozaniGreece
| | - Daria Sanna
- Department of Biomedical SciencesFabio Scarpa, Daria Sanna: University of SassariSassariItaly
| | - José Rafa García‐March
- IMEDMAR‐UCV, Institute of Environment and Marine Science ResearchUniversidad Católica de Valencia SVMCalpe, AlicanteSpain
| | - José Tena‐Medialdea
- IMEDMAR‐UCV, Institute of Environment and Marine Science ResearchUniversidad Católica de Valencia SVMCalpe, AlicanteSpain
| | - Nardo Vicente
- Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), Aix‐Marseille Université, CNRS, IRD, Avignon UniversitéAvignonFrance
| | - Robert Bunet
- Institut océanographique Paul RicardIle des Embiez, VarFrance
| |
Collapse
|
17
|
Qi S, Wang J, Zhang Y, Naz M, Afzal MR, Du D, Dai Z. Omics Approaches in Invasion Biology: Understanding Mechanisms and Impacts on Ecological Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091860. [PMID: 37176919 PMCID: PMC10181282 DOI: 10.3390/plants12091860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Invasive species and rapid climate change are affecting the control of new plant diseases and epidemics. To effectively manage these diseases under changing environmental conditions, a better understanding of pathophysiology with holistic approach is needed. Multiomics approaches can help us to understand the relationship between plants and microbes and construct predictive models for how they respond to environmental stresses. The application of omics methods enables the simultaneous analysis of plant hosts, soil, and microbiota, providing insights into their intricate relationships and the mechanisms underlying plant-microbe interactions. This can help in the development of novel strategies for enhancing plant health and improving soil ecosystem functions. The review proposes the use of omics methods to study the relationship between plant hosts, soil, and microbiota, with the aim of developing a new technique to regulate soil health. This approach can provide a comprehensive understanding of the mechanisms underlying plant-microbe interactions and contribute to the development of effective strategies for managing plant diseases and improving soil ecosystem functions. In conclusion, omics technologies offer an innovative and holistic approach to understanding plant-microbe interactions and their response to changing environmental conditions.
Collapse
Affiliation(s)
- Shanshan Qi
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiahao Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhicong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
18
|
Kuang W, Zinner D, Li Y, Yao X, Roos C, Yu L. Recent Advances in Genetics and Genomics of Snub-Nosed Monkeys ( Rhinopithecus) and Their Implications for Phylogeny, Conservation, and Adaptation. Genes (Basel) 2023; 14:985. [PMID: 37239345 PMCID: PMC10218336 DOI: 10.3390/genes14050985] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The snub-nosed monkey genus Rhinopithecus (Colobinae) comprises five species (Rhinopithecus roxellana, Rhinopithecus brelichi, Rhinopithecus bieti, Rhinopithecus strykeri, and Rhinopithecus avunculus). They are range-restricted species occurring only in small areas in China, Vietnam, and Myanmar. All extant species are listed as endangered or critically endangered by the International Union for Conservation of Nature (IUCN) Red List, all with decreasing populations. With the development of molecular genetics and the improvement and cost reduction in whole-genome sequencing, knowledge about evolutionary processes has improved largely in recent years. Here, we review recent major advances in snub-nosed monkey genetics and genomics and their impact on our understanding of the phylogeny, phylogeography, population genetic structure, landscape genetics, demographic history, and molecular mechanisms of adaptation to folivory and high altitudes in this primate genus. We further discuss future directions in this research field, in particular how genomic information can contribute to the conservation of snub-nosed monkeys.
Collapse
Affiliation(s)
- Weimin Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-University of Göttingen, 37077 Göttingen, Germany
- Leibniz-Science Campus Primate Cognition, 37077 Göttingen, Germany
| | - Yuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Xueqin Yao
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| | - Christian Roos
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650500, China (Y.L.); (X.Y.)
| |
Collapse
|
19
|
Chung MY, Merilä J, Li J, Mao K, López-Pujol J, Tsumura Y, Chung MG. Neutral and adaptive genetic diversity in plants: An overview. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1116814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Genetic diversity is a prerequisite for evolutionary change in all kinds of organisms. It is generally acknowledged that populations lacking genetic variation are unable to evolve in response to new environmental conditions (e.g., climate change) and thus may face an increased risk of extinction. Although the importance of incorporating genetic diversity into the design of conservation measures is now well understood, less attention has been paid to the distinction between neutral (NGV) and adaptive (AGV) genetic variation. In this review, we first focus on the utility of NGV by examining the ways to quantify it, reviewing applications of NGV to infer ecological and evolutionary processes, and by exploring its utility in designing conservation measures for plant populations and species. Against this background, we then summarize the ways to identify and estimate AGV and discuss its potential use in plant conservation. After comparing NGV and AGV and considering their pros and cons in a conservation context, we conclude that there is an urgent need for a better understanding of AGV and its role in climate change adaptation. To date, however, there are only a few AGV studies on non-model plant species aimed at deciphering the genetic and genomic basis of complex trait variation. Therefore, conservation researchers and practitioners should keep utilizing NGV to develop relevant strategies for rare and endangered plant species until more estimates of AGV are available.
Collapse
|
20
|
Solanki S, Kumar V, Kashyap P, Kumar R, De S, Datta TK. Beta-defensins as marker for male fertility: a comprehensive review†. Biol Reprod 2023; 108:52-71. [PMID: 36322147 DOI: 10.1093/biolre/ioac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
Bovine male fertility in animals has a direct impact on the productivity of dairy herds. The epididymal sperm maturations involve extensive sperm surface modifications to gain the fertilizing ability, especially by absorptions of the plethora of biomolecules, including glycoprotein beta-defensins (BDs), enzymes, organic ions, protein, and phospholipids. Defensins are broad-range nonspecific antimicrobial peptides that exhibit strong relations with innate and adaptive immunity, but their roles in male fertility are relatively recently identified. In the course of evolution, BD genes give rise to different clusters with specific functions, especially reproductive functions, by undergoing duplications and nonsynonymous mutations. BD polymorphisms have been reported with milk compositions, disease resistance, and antimicrobial activities. However, in recent decades, the link of BD polymorphisms with fertility has emerged as an appealing improvement of reproductive performance such as sperm motility, membrane integrity, cervical mucus penetration, evading of uterus immunosurveillance, oviduct cell attachment, and egg recognition. The reproductive-specific glycosylated BD class-A BDs (CA-BDs) have shown age- and sex-specific expressions in male reproductive organs, signifying their physiological pleiotropism, especially in the sperm maturation and sperm transport in the female reproductive tract. By considering adult male reproductive organ-specific BD expressions, importance in sperm functionalities, and bioinformatic analysis, we have selected two bovine BBD126 and BBD129 genes as novel potential biomarkers of bovine male fertility. Despite the importance of BDs, however, genomic characterization of most BD genes across most livestock and nonmodel organisms remains predictive/incomplete. The current review discusses our understanding of BD pleiotropic functions, polymorphism, and genomic structural attributes concerning the fertilizability of the male gamete in dairy animals.
Collapse
Affiliation(s)
- Subhash Solanki
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Vijay Kumar
- NMR lab-II, National Institute of immunology, New Delhi, India
| | - Poonam Kashyap
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Sachinandan De
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, National Dairy Research Institute, Karnal, India.,ICAR- Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
21
|
Huang L, Feng G, Li D, Shang W, Zhang L, Yan R, Jiang Y, Li S. Genetic variation of endangered Jankowski’s Bunting (Emberiza jankowskii): High connectivity and a moderate history of demographic decline. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.996617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IntroductionContinued discovery of “mismatch” patterns between population size and genetic diversity, involving wild species such as insects, amphibians, birds, mammals, and others, has raised issues about how population history, especially recent dynamics under human disturbance, affects currently standing genetic variation. Previous studies have revealed high genetic diversity in endangered Jankowski’s Bunting. However, it is unclear how the demographic history and recent habitat changes shape the genetic variation of Jankowski’s Bunting.MethodsTo explore the formation and maintenance of high genetic diversity in endangered Jankowski’s Bunting, we used a mitochondrial control region (partial mtDNA CR) and 15 nuclear microsatellite markers to explore the recent demographic history of Jankowski’s Bunting, and we compared the historical and contemporary gene flows between populations to reveal the impact of habitat change on population connectivity. Specifically, we aimed to test the following hypotheses: (1) Jankowski’s Bunting has a large historical Ne and a moderate demographic history; and (2) recent habitat change might have no significant impact on the species’ population connectivity.ResultsThe results suggested that large historical effective population size, as well as severe but slow population decline, may partially explain the high observable genetic diversity. Comparison of historical (over the past 4Ne generations) and contemporary (1–3 generations) gene flow indicated that the connectivity between five local populations was only marginally affected by landscape changes.DiscussionOur results suggest that high population connectivity and a moderate history of demographic decline are powerful explanations for the rich genetic variation in Jankowski’s Bunting. Although there is no evidence that the genetic health of Jankowski’s Bunting is threatened, the time-lag effects on the genetic response to recent environmental changes is a reminder to be cautious about the current genetic characteristics of this species. Where possible, factors influencing genetic variation should be integrated into a systematic framework for conducting robust population health assessments. Given the small contemporary population size, inbreeding, and ecological specialization, we recommend that habitat protection be maintained to maximize the genetic diversity and population connectivity of Jankowski’s Bunting.
Collapse
|
22
|
Discerning the global phylogeographic distribution of Phyllosticta citricarpa by means of whole genome sequencing. Fungal Genet Biol 2022; 162:103727. [PMID: 35870700 DOI: 10.1016/j.fgb.2022.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022]
Abstract
Phyllosticta citricarpa is a fungal pathogen causing citrus black spot (CBS). As a regulated pest in some countries, the presence of the pathogen limits the export of fruit and is therefore of agricultural and economic importance. In this study, we used high throughput sequencing data to infer the global phylogeographic distribution of this pathogen, including 71 isolates from eight countries, Argentina, Australia, Brazil, China, Cuba, Eswatini, South Africa and the United States of America. We assembled draft genomes and used a pairwise read mapping approach for the detection and enumeration of variants between isolates. We performed SSR marker discovery based on the assembled genome with the best assembly statistics, and generated genotype profiles for all isolates with 1987 SSR markers in silico. Furthermore, we identified 32,560 SNPs relative to a reference sequence followed by population genetic analyses based on the three datasets; pairwise variant counts, SSR genotypes and SNP genotypes. All three analysis approaches gave similar overall results. Possible pathways of dissemination among the populations from China, Australia, southern Africa and the Americas are postulated. The Chinese population is the most diverse, and is genetically the furthest removed from all other populations, and is therefore considered the closest to the origin of the pathogen. Isolates from Australia, Eswatini and the South African province Mpumalanga are closely associated and clustered together with those from Argentina and Brazil. The Eastern Cape, North West, and KwaZulu-Natal populations in South Africa grouped in another cluster, while isolates from Limpopo are distributed between the two aforementioned clusters. Southern African populations showed a close relationship to populations in North America, and could be a possible source of P. citricarpa populations that are now found in North America. This study represents the largest whole genome sequencing survey of P. citricarpa to date and provides a more comprehensive assessment of the population genetic diversity and connectivity of P. citricarpa from different geographic origins. This information could further assist in a better understanding of the epidemiology of the CBS pathogen, its long-distance dispersal and dissemination pathways, and can be used to refine phytosanitary regulations and management programmes for the disease.
Collapse
|
23
|
Genomics of Adaptation and Speciation. Genes (Basel) 2022; 13:genes13071187. [PMID: 35885970 PMCID: PMC9321343 DOI: 10.3390/genes13071187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
|
24
|
Marques AJD, Hanson JO, Camacho-Sanchez M, Martínez-Solano I, Moritz C, Tarroso P, Velo-Antón G, Veríssimo A, Carvalho SB. Range-wide genomic scans and tests for selection identify non-neutral spatial patterns of genetic variation in a non-model amphibian species (Pelobates cultripes). CONSERV GENET 2022. [DOI: 10.1007/s10592-021-01425-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Shatokhin KS. Problems of mini-pig breeding. Vavilovskii Zhurnal Genet Selektsii 2021; 25:284-291. [PMID: 34901725 PMCID: PMC8627873 DOI: 10.18699/vj21.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
This article provides an overview of some problems of the breeding and reproduction of laboratory minipigs. The most obvious of these are the lack of centralized accounting of breeding groups, uniform selection standards
for reproduction and evaluation of breeding animals, as well as minimizing the accumulation of fitness-reducing
mutations and maintaining genetic diversity. According to the latest estimates, there are at least 30 breeding groups
of mini-pigs systematically used as laboratory animals in the world. Among them, there are both breed formations
represented by several colonies, and breeding groups consisting of a single herd. It was shown that the main selection
strategy is selection for the live weight of adults of 50–80 kg and the adaptation of animals to a specific type of biomedical experiments. For its implementation in the breeding of foreign mini-pigs, selection by live weight is practiced
at 140- and 154-day-old age. It was indicated that different herds of mini-pigs have their own breeding methods to
counteract inbred depression and maintain genetic diversity. Examples are the maximization of coat color phenotypes, the cyclical system of matching parent pairs, and the structuring of herds into subpopulations. In addition,
in the breeding of foreign mini-pigs, molecular genetic methods are used to monitor heterozygosity. Every effort is
made to keep the number of inbred crosses in the breeding of laboratory mini-pigs to a minimum, which is not always
possible due to their small number. It is estimated that to avoid close inbreeding, the number of breeding groups
should be at least 28 individuals, including boars of at least 4 genealogical lines and at least 4 families of sows. The
accumulation of genetic cargo in herds of mini-pigs takes place, but the harmful effect is rather the result of erroneous
decisions of breeders. Despite the fact that when breeding a number of mini-pigs, the goal was to complete the herds
with exclusively white animals, in most breeding groups there is a polymorphism in the phenotype of the coat color
Collapse
Affiliation(s)
- K S Shatokhin
- Novosibirsk State Agrarian University, Novosibirsk, Russia
| |
Collapse
|
26
|
Ramesh A, Domingues MM, Stamhuis EJ, Groothuis TGG, Weissing FJ, Nicolaus M. Does genetic differentiation underlie behavioral divergence in response to migration barriers in sticklebacks? A common garden experiment. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03097-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
Water management measures in the 1970s in the Netherlands have produced a large number of “resident” populations of three-spined sticklebacks that are no longer able to migrate to the sea. This may be viewed as a replicated field experiment, allowing us to study how the resident populations are coping with human-induced barriers to migration. We have previously shown that residents are smaller, bolder, more exploratory, more active, and more aggressive and exhibited lower shoaling and lower migratory tendencies compared to their ancestral “migrant” counterparts. However, it is not clear if these differences in wild-caught residents and migrants reflect genetic differentiation, rather than different developmental conditions. To investigate this, we raised offspring of four crosses (migrant ♂ × migrant ♀, resident ♂ × resident ♀, migrant ♂ × resident ♀, resident ♂ × migrant ♀) under similar controlled conditions and tested for differences in morphology and behavior as adults. We found that lab-raised resident sticklebacks exhibited lower shoaling and migratory tendencies as compared to lab-raised migrants, retaining the differences in their wild-caught parents. This indicates genetic differentiation of these traits. For all other traits, the lab-raised sticklebacks of the various crosses did not differ significantly, suggesting that the earlier-found contrast between wild-caught fish reflects differences in their environment. Our study shows that barriers to migration can lead to rapid differentiation in behavioral tendencies over contemporary timescales (~ 50 generations) and that part of these differences reflects genetic differentiation.
Significance statement
Many organisms face changes to their habitats due to human activities. Much research is therefore dedicated to the question whether and how organisms are able to adapt to novel conditions. We address this question in three-spined sticklebacks, where water management measures cut off some populations, prohibiting their seasonal migration to the North Sea. In a previous study, we showed that wild-caught “resident” fish exhibited markedly different behavior than migrants. To disentangle whether these differences reflect genetic differentiation or differences in the conditions under which the wild-caught fish grew up, we conducted crosses, raising the F1 offspring under identical conditions. As their wild-caught parents, the F1 of resident × resident crosses exhibited lower migratory and shoaling tendencies than the F1 of migrant × migrant crosses, while the F1 of hybrid crosses were intermediate. This suggests that ~ 50 years of isolation are sufficient to induce behaviorally relevant genetic differentiation.
Collapse
|
27
|
Reyne M, Dicks K, McFarlane C, Aubry A, Emmerson M, Marnell F, Reid N, Helyar S. Population genetic structure of the Natterjack toad (Epidalea calamita) in Ireland: implications for conservation management. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01421-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractMolecular methods can play a crucial role in species management and conservation. Despite the usefulness of genetic approaches, they are often not explicitly included as part of species recovery plans and conservation practises. The Natterjack toad (Epidalea calamita) is regionally Red-Listed as Endangered in Ireland. The species is declining and is now present at just seven sites within a highly restricted range. This study used 13 highly polymorphic microsatellite markers to analyse the population genetic diversity and structure. Genetic diversity was high with expected heterozygosity between 0.55 and 0.61 and allelic richness between 4.77 and 5.92. Effective population sizes were small (Ne < 100 individuals), but not abnormal for pond breeding amphibians. However, there was no evidence of historical or contemporary genetic bottlenecks or high levels of inbreeding. We identified a positive relationship between Ne and breeding pond surface area, suggesting that environmental factors are a key determinant of population size. Significant genetic structuring was detected throughout the species’ range, and we identified four genetic entities that should be considered in the species’ conservation strategies. Management should focus on preventing further population declines and future loss of genetic diversity overall and within genetic entities while maintaining adequate local effective population size through site-specific protection, human-mediated translocations and head-start programs. The apparent high levels of genetic variation give hope for the conservation of Ireland’s rarest amphibian if appropriately protected and managed.
Collapse
|
28
|
Foster Y, Dutoit L, Grosser S, Dussex N, Foster BJ, Dodds KG, Brauning R, Van Stijn T, Robertson F, McEwan JC, Jacobs JME, Robertson BC. Genomic signatures of inbreeding in a critically endangered parrot, the kākāpō. G3 (BETHESDA, MD.) 2021; 11:jkab307. [PMID: 34542587 PMCID: PMC8527487 DOI: 10.1093/g3journal/jkab307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Events of inbreeding are inevitable in critically endangered species. Reduced population sizes and unique life-history traits can increase the severity of inbreeding, leading to declines in fitness and increased risk of extinction. Here, we investigate levels of inbreeding in a critically endangered flightless parrot, the kākāpō (Strigops habroptilus), wherein a highly inbred island population and one individual from the mainland of New Zealand founded the entire extant population. Genotyping-by-sequencing (GBS), and a genotype calling approach using a chromosome-level genome assembly, identified a filtered set of 12,241 single-nucleotide polymorphisms (SNPs) among 161 kākāpō, which together encompass the total genetic potential of the extant population. Multiple molecular-based estimates of inbreeding were compared, including genome-wide estimates of heterozygosity (FH), the diagonal elements of a genomic-relatedness matrix (FGRM), and runs of homozygosity (RoH, FRoH). In addition, we compared levels of inbreeding in chicks from a recent breeding season to examine if inbreeding is associated with offspring survival. The density of SNPs generated with GBS was sufficient to identify chromosomes that were largely homozygous with RoH distributed in similar patterns to other inbred species. Measures of inbreeding were largely correlated and differed significantly between descendants of the two founding populations. However, neither inbreeding nor ancestry was found to be associated with reduced survivorship in chicks, owing to unexpected mortality in chicks exhibiting low levels of inbreeding. Our study highlights important considerations for estimating inbreeding in critically endangered species, such as the impacts of small population sizes and admixture between diverse lineages.
Collapse
Affiliation(s)
- Yasmin Foster
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Stefanie Grosser
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brodie J Foster
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Ken G Dodds
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Rudiger Brauning
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Tracey Van Stijn
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - John C McEwan
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | | | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
29
|
Matthee CA, de Wet N, Robinson TJ. Conservation Genetics of the Critically Endangered Riverine Rabbit, Bunolagus monticularis: Structured Populations and High mtDNA Genetic Diversity. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09577-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Galla SJ, Brown L, Couch-Lewis Ngāi Tahu Te Hapū O Ngāti Wheke Ngāti Waewae Y, Cubrinovska I, Eason D, Gooley RM, Hamilton JA, Heath JA, Hauser SS, Latch EK, Matocq MD, Richardson A, Wold JR, Hogg CJ, Santure AW, Steeves TE. The relevance of pedigrees in the conservation genomics era. Mol Ecol 2021; 31:41-54. [PMID: 34553796 PMCID: PMC9298073 DOI: 10.1111/mec.16192] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023]
Abstract
Over the past 50 years conservation genetics has developed a substantive toolbox to inform species management. One of the most long‐standing tools available to manage genetics—the pedigree—has been widely used to characterize diversity and maximize evolutionary potential in threatened populations. Now, with the ability to use high throughput sequencing to estimate relatedness, inbreeding, and genome‐wide functional diversity, some have asked whether it is warranted for conservation biologists to continue collecting and collating pedigrees for species management. In this perspective, we argue that pedigrees remain a relevant tool, and when combined with genomic data, create an invaluable resource for conservation genomic management. Genomic data can address pedigree pitfalls (e.g., founder relatedness, missing data, uncertainty), and in return robust pedigrees allow for more nuanced research design, including well‐informed sampling strategies and quantitative analyses (e.g., heritability, linkage) to better inform genomic inquiry. We further contend that building and maintaining pedigrees provides an opportunity to strengthen trusted relationships among conservation researchers, practitioners, Indigenous Peoples, and Local Communities.
Collapse
Affiliation(s)
- Stephanie J Galla
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA.,School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| | - Liz Brown
- New Zealand Department of Conservation, Twizel, Canterbury, New Zealand
| | | | - Ilina Cubrinovska
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| | - Daryl Eason
- New Zealand Department of Conservation, Invercargill, Southland, New Zealand
| | - Rebecca M Gooley
- Smithsonian-Mason School of Conservation, Front Royal, Maryland, USA.,Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Jill A Hamilton
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Julie A Heath
- Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - Samantha S Hauser
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Emily K Latch
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science, Program in Ecology, Evolution and Conservation Biology, University of Nevada Reno, Reno, Nevada, USA
| | - Anne Richardson
- The Isaac Conservation and Wildlife Trust, Christchurch, Canterbury, New Zealand
| | - Jana R Wold
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, Auckland, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Christchurch, Canterbury, New Zealand
| |
Collapse
|
31
|
Kloch A, Biedrzycka A, Szewczyk M, Nowak S, Niedźwiedzka N, Kłodawska M, Hájková A, Hulva P, Jędrzejewska B, Mysłajek R. High genetic diversity of immunity genes in an expanding population of a highly mobile carnivore, the grey wolf
Canis
lupus
, in Central Europe. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Agnieszka Kloch
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | | | - Maciej Szewczyk
- Department of Vertebrate Ecology and Zoology Faculty of Biology University of Gdańsk Gdańsk Poland
| | - Sabina Nowak
- Association for Nature “Wolf” Twardorzeczka Poland
| | | | - Monika Kłodawska
- Department of Zoology Faculty of Science Charles University Prague Czech Republic
| | - Andrea Hájková
- State Nature Conservancy of the Slovak Republic Spišská Nová Ves Slovakia
| | - Pavel Hulva
- Department of Zoology Faculty of Science Charles University Prague Czech Republic
- Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | - Robert Mysłajek
- Department of Ecology, Institute of Functional Biology and Ecology, Faculty of Biology, Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| |
Collapse
|
32
|
Chromosome-Level Genome Assemblies Expand Capabilities of Genomics for Conservation Biology. Genes (Basel) 2021; 12:genes12091336. [PMID: 34573318 PMCID: PMC8466942 DOI: 10.3390/genes12091336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/26/2022] Open
Abstract
Genome assemblies are in the process of becoming an increasingly important tool for understanding genetic diversity in threatened species. Unfortunately, due to limited budgets typical for the area of conservation biology, genome assemblies of threatened species, when available, tend to be highly fragmented, represented by tens of thousands of scaffolds not assigned to chromosomal locations. The recent advent of high-throughput chromosome conformation capture (Hi-C) enables more contiguous assemblies containing scaffolds spanning the length of entire chromosomes for little additional cost. These inexpensive contiguous assemblies can be generated using Hi-C scaffolding of existing short-read draft assemblies, where N50 of the draft contigs is larger than 0.1% of the estimated genome size and can greatly improve analyses and facilitate visualization of genome-wide features including distribution of genetic diversity in markers along chromosomes or chromosome-length scaffolds. We compared distribution of genetic diversity along chromosomes of eight mammalian species, including six listed as threatened by IUCN, where both draft genome assemblies and newer chromosome-level assemblies were available. The chromosome-level assemblies showed marked improvement in localization and visualization of genetic diversity, especially where the distribution of low heterozygosity across the genomes of threatened species was not uniform.
Collapse
|
33
|
Wold J, Koepfli KP, Galla SJ, Eccles D, Hogg CJ, Le Lec MF, Guhlin J, Santure AW, Steeves TE. Expanding the conservation genomics toolbox: Incorporating structural variants to enhance genomic studies for species of conservation concern. Mol Ecol 2021; 30:5949-5965. [PMID: 34424587 PMCID: PMC9290615 DOI: 10.1111/mec.16141] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
Structural variants (SVs) are large rearrangements (>50 bp) within the genome that impact gene function and the content and structure of chromosomes. As a result, SVs are a significant source of functional genomic variation, that is, variation at genomic regions underpinning phenotype differences, that can have large effects on individual and population fitness. While there are increasing opportunities to investigate functional genomic variation in threatened species via single nucleotide polymorphism (SNP) data sets, SVs remain understudied despite their potential influence on fitness traits of conservation interest. In this future-focused Opinion, we contend that characterizing SVs offers the conservation genomics community an exciting opportunity to complement SNP-based approaches to enhance species recovery. We also leverage the existing literature-predominantly in human health, agriculture and ecoevolutionary biology-to identify approaches for readily characterizing SVs and consider how integrating these into the conservation genomics toolbox may transform the way we manage some of the world's most threatened species.
Collapse
Affiliation(s)
- Jana Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, Front Royal, Virginia, USA.,Centre for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA.,Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Stephanie J Galla
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biological Sciences, Boise State University, Boise, Idaho, USA
| | - David Eccles
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Marissa F Le Lec
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Joseph Guhlin
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand.,Genomics Aotearoa, Dunedin, Otago, New Zealand
| | - Anna W Santure
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
34
|
Steele SE, Ryder OA, Maschinski J. RNA-Seq reveals adaptive genetic potential of the rare Torrey pine (Pinus torreyana) in the face of Ips bark beetle outbreaks. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01394-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Byer NW, Holding ML, Crowell MM, Pierson TW, Dilts TE, Larrucea ES, Shoemaker KT, Matocq MD. Adaptive divergence despite low effective population size in a peripherally isolated population of the pygmy rabbit, Brachylagus idahoensis. Mol Ecol 2021; 30:4173-4188. [PMID: 34166550 DOI: 10.1111/mec.16040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Local adaptation can occur when spatially separated populations are subjected to contrasting environmental conditions. Historically, understanding the genetic basis of adaptation has been difficult, but increased availability of genome-wide markers facilitates studies of local adaptation in non-model organisms of conservation concern. The pygmy rabbit (Brachylagus idahoensis) is an imperiled lagomorph that relies on sagebrush for forage and cover. This reliance has led to widespread population declines following reductions in the distribution of sagebrush, leading to geographic separation between populations. In this study, we used >20,000 single nucleotide polymorphisms, genotype-environment association methods, and demographic modeling to examine neutral genetic variation and local adaptation in the pygmy rabbit in Nevada and California. We identified 308 loci as outliers, many of which had functional annotations related to metabolism of plant secondary compounds. Likewise, patterns of spatial variation in outlier loci were correlated with landscape and climatic variables including proximity to streams, sagebrush cover, and precipitation. We found that populations in the Mono Basin of California probably diverged from other Great Basin populations during late Pleistocene climate oscillations, and that this region is adaptively differentiated from other regions in the southern Great Basin despite limited gene flow and low effective population size. Our results demonstrate that peripherally isolated populations can maintain adaptive divergence.
Collapse
Affiliation(s)
- Nathan W Byer
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Matthew L Holding
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Miranda M Crowell
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Todd W Pierson
- Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Thomas E Dilts
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | | | - Kevin T Shoemaker
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| | - Marjorie D Matocq
- Department of Natural Resources and Environmental Science, University of Nevada-Reno, Reno, Nevada, USA
| |
Collapse
|
36
|
Population genetics and species distribution modeling highlight conservation needs of the endemic trout from the Northern Sierra Madre Occidental. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Characterization of metapopulation of Ellobium chinense through Pleistocene expansions and four covariate COI guanine-hotspots linked to G-quadruplex conformation. Sci Rep 2021; 11:12239. [PMID: 34112865 PMCID: PMC8192772 DOI: 10.1038/s41598-021-91675-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
The land snail Ellobium chinense (L. Pfeiffer, 1855) (Eupulmonata, Ellobiida, Ellobiidae), which inhabits the salt marshes along the coastal areas of northwestern Pacific, is an endangered species on the IUCN Red List. Over recent decades, the population size of E. chinense has consistently decreased due to environmental interference caused by natural disasters and human activities. Here, we provide the first assessment of the genetic diversity and population genetic structures of northwestern Pacific E. chinense. The results analyzed with COI and microsatellites revealed that E. chinense population exhibit metapopulation characteristics, retaining under the influence of the Kuroshio warm currents through expansion of the Late-Middle and Late Pleistocene. We also found four phylogenetic groups, regardless of geographical distributions, which were easily distinguishable by four unidirectional and stepwise adenine-to-guanine transitions in COI (sites 207–282–354–420: A–A–A–A, A–A–G–A, G–A–G–A, and G–G–G–G). Additionally, the four COI hotspots were robustly connected with a high degree of covariance between them. We discuss the role of these covariate guanines which link to form four consecutive G-quadruplexes, and their possible beneficial effects under positive selection pressure.
Collapse
|
38
|
Seaborn T, Griffith D, Kliskey A, Caudill CC. Building a bridge between adaptive capacity and adaptive potential to understand responses to environmental change. GLOBAL CHANGE BIOLOGY 2021; 27:2656-2668. [PMID: 33666302 DOI: 10.1111/gcb.15579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Adaptive capacity is a topic at the forefront of environmental change research with roots in both social, ecological, and evolutionary science. It is closely related to the evolutionary biology concept of adaptive potential. In this systematic literature review, we: (1) summarize the history of these topics and related fields; (2) assess relationship(s) between the concepts among disciplines and the use of the terms in climate change research, and evaluate methodologies, metrics, taxa biases, and the geographic scale of studies; and (3) provide a synthetic conceptual framework to clarify concepts. Bibliometric analyses revealed the terms have been used most frequently in conservation and evolutionary biology journals, respectively. There has been a greater growth in studies of adaptive potential than adaptive capacity since 2001, but a greater geographical extent of adaptive capacity studies. Few studies include both, and use is often superficial. Our synthesis considers adaptive potential as one process contributing to adaptive capacity of complex systems, notes "sociological" adaptive capacity definitions include actions aimed at desired outcome (i.e., policies) as a system driver whereas "biological" definitions exclude such drivers, and suggests models of adaptive capacity require integration of evolutionary and social-ecological system components.
Collapse
Affiliation(s)
- Travis Seaborn
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | - David Griffith
- Center for Resilient Communities, University of Idaho, Moscow, ID, USA
| | - Andrew Kliskey
- Center for Resilient Communities, University of Idaho, Moscow, ID, USA
| | | |
Collapse
|
39
|
Mable BK. Genomic regulation of plant mating systems: flexibility and adaptative potential. A commentary on: 'A new genetic locus for self-compatibility in the outcrossing grass species perennial ryegrass (Lolium perenne)'. ANNALS OF BOTANY 2021; 127:iv-vi. [PMID: 33754631 PMCID: PMC8103798 DOI: 10.1093/aob/mcab024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This article comments on: Lucy M. Slatter, Susanne Barth, Chloe Manzanares, Janaki Velmurugan, Iain Place and Daniel Thorogood A new genetic locus for self-compatibility in the outcrossing grass species perennial ryegrass (Lolium perenne), Annals of Botany, Volume 127, Issue 6, 7 May 2021, Pages 715–722, https://doi.org/10.1093/aob/mcaa140
Collapse
Affiliation(s)
- Barbara K Mable
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
40
|
Sanger TJ. Integrative developmental biology in the age of anthropogenic change. Evol Dev 2021; 23:320-332. [PMID: 33848387 DOI: 10.1111/ede.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Humans are changing and challenging nature in many ways. Conservation Biology seeks to limit human impacts on nature and preserve biological diversity. Traditionally, Developmental Biology and Conservation Biology have had nonoverlapping objectives, operating in distinct spheres of biological science. However, this chasm can and should be filled to help combat the emerging challenges of the 21st century. The means by which to accomplish this goal were already established within the conceptual framework of evo- and eco-devo and can be further expanded to address the ways that anthropogenic disturbance affect embryonic development. Herein, I describe ways that these approaches can be used to advance the study of reptilian embryos. More specifically, I explore the ways that a developmental perspective can advance ongoing studies of embryonic physiology in the context of global warming and chemical pollution, both of which are known stressors of reptilian embryos. I emphasize ways that these developmental perspectives can inform conservation biologists trying to develop management practices that will address the complexity of challenges facing reptilian embryos.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Leitwein M, Cayuela H, Bernatchez L. Associative Overdominance and Negative Epistasis Shape Genome-Wide Ancestry Landscape in Supplemented Fish Populations. Genes (Basel) 2021; 12:genes12040524. [PMID: 33916757 PMCID: PMC8065892 DOI: 10.3390/genes12040524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between recombination rate, genetic drift and selection modulates variation in genome-wide ancestry. Understanding the selective processes at play is of prime importance toward predicting potential beneficial or negative effects of supplementation with domestic strains (i.e., human-introduced strains). In a system of lacustrine populations supplemented with a single domestic strain, we documented how population genetic diversity and stocking intensity produced lake-specific patterns of domestic ancestry by taking the species’ local recombination rate into consideration. We used 552 Brook Charr (Salvelinus fontinalis) from 22 small lacustrine populations, genotyped at ~32,400 mapped SNPs. We observed highly variable patterns of domestic ancestry between each of the 22 populations without any consistency in introgression patterns of the domestic ancestry. Our results suggest that such lake-specific ancestry patterns were mainly due to variable associative overdominance (AOD) effects among populations (i.e., potential positive effects due to the masking of possible deleterious alleles in low recombining regions). Signatures of AOD effects were also emphasized by highly variable patterns of genetic diversity among and within lakes, potentially driven by predominant genetic drift in those small isolated populations. Local negative effects such as negative epistasis (i.e., potential genetic incompatibilities between the native and the introduced population) potentially reflecting precursory signs of outbreeding depression were also observed at a chromosomal scale. Consequently, in order to improve conservation practices and management strategies, it became necessary to assess the consequences of supplementation at the population level by taking into account both genetic diversity and stocking intensity when available.
Collapse
|
42
|
Warwick AR, Barrow LN, Smith ML, Means DB, Lemmon AR, Lemmon EM. Signatures of north-eastern expansion and multiple refugia: genomic phylogeography of the Pine Barrens tree frog, Hyla andersonii (Anura: Hylidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Range fragmentation poses challenges for species persistence over time and can be caused by both historical and contemporary processes. We combined genomic data, phylogeographical model testing and palaeoclimatic niche modelling to infer the evolutionary history of the Pine Barrens tree frog (Hyla andersonii), a seepage bog specialist, in eastern North America to gain a better understanding of the historical context of its fragmented distribution. We sampled H. andersonii populations across the three disjunct regions of the species range: Alabama/Florida (AF), the Carolinas (CL) and New Jersey (NJ). Phylogenetic relationships within H. andersonii were consistent between the nuclear species tree and mitochondrial analyses, indicating divergence between AF and CL/NJ (Atlantic clade) ~0.9 Mya and divergence of the NJ clade ~0.15 Mya. Several predictions of north-eastern expansion along the Atlantic coast were supported by phylogeographical analyses. Model testing using genome-wide single nucleotide polymorphism data and species distribution models both provided evidence for multiple disjunct refugia. This comprehensive phylogeographical study of H. andersonii demonstrates a long history of range fragmentation within an endemic coastal plain species and highlights the influence of historical climate change on the current distribution of species and their genetic diversity.
Collapse
Affiliation(s)
- Alexa R Warwick
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Lisa N Barrow
- Museum of Southwestern Biology and Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Megan L Smith
- Department of Biology and Department of Computer Science, Indiana University, Bloomington, IN, USA
| | - D Bruce Means
- Coastal Plains Institute and Land Conservancy, Tallahassee, FL, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | | |
Collapse
|
43
|
Andrews KR, Epstein B, Leslie MS, Fiedler P, Morin PA, Hoelzel AR. Genomic signatures of divergent selection are associated with social behaviour for spinner dolphin ecotypes. Mol Ecol 2021; 30:1993-2008. [PMID: 33645853 DOI: 10.1111/mec.15865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/16/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Understanding the genomic basis of adaptation is critical for understanding evolutionary processes and predicting how species will respond to environmental change. Spinner dolphins in the eastern tropical Pacific (ETP) present a unique system for studying adaptation. Within this large geographical region are four spinner dolphin ecotypes with weak neutral genetic divergence and no obvious barriers to gene flow, but strong spatial variation in morphology, behaviour and habitat. These ecotypes have large population sizes, which could reduce the effects of drift and facilitate selection. To identify genomic regions putatively under divergent selective pressures between ecotypes, we used genome scans with 8994 RADseq single nucleotide polymorphisms (SNPs) to identify population differentiation outliers and genotype-environment association outliers. Gene ontology enrichment analyses indicated that outlier SNPs from both types of analyses were associated with multiple genes involved in social behaviour and hippocampus development, including 15 genes associated with the human social disorder autism. Evidence for divergent selection on social behaviour is supported by previous evidence that these spinner dolphin ecotypes differ in mating systems and associated social behaviours. In particular, three of the ETP ecotypes probably have a polygynous mating system characterized by strong premating competition among males, whereas the fourth ecotype probably has a polygynandrous mating system characterized by strong postmating competition such as sperm competition. Our results provide evidence that selection for social behaviour may be an evolutionary force driving diversification of spinner dolphins in the ETP, potentially as a result of divergent sexual selection associated with different mating systems. Future studies should further investigate the potential adaptive role of the candidate genes identified here, and could probably find further signatures of selection using whole genome sequence data.
Collapse
Affiliation(s)
- Kimberly R Andrews
- School of Biosciences, Durham University, Durham, UK.,Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, USA
| | - Brendan Epstein
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | | | - Paul Fiedler
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - A Rus Hoelzel
- School of Biosciences, Durham University, Durham, UK
| |
Collapse
|
44
|
Allopatric Plant Pathogen Population Divergence following Disease Emergence. Appl Environ Microbiol 2021; 87:AEM.02095-20. [PMID: 33483307 DOI: 10.1128/aem.02095-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Within the landscape of globally distributed pathogens, populations differentiate via both adaptive and nonadaptive forces. Individual populations are likely to show unique trends of genetic diversity, host-pathogen interaction, and ecological adaptation. In plant pathogens, allopatric divergence may occur particularly rapidly within simplified agricultural monoculture landscapes. As such, the study of plant pathogen populations in monocultures can highlight the distinct evolutionary mechanisms that lead to local genetic differentiation. Xylella fastidiosa is a plant pathogen known to infect and damage multiple monocultures worldwide. One subspecies, Xylella fastidiosa subsp. fastidiosa, was first introduced to the United States ∼150 years ago, where it was found to infect and cause disease in grapevines (Pierce's disease of grapevines, or PD). Here, we studied PD-causing subsp. fastidiosa populations, with an emphasis on those found in the United States. Our study shows that following their establishment in the United States, PD-causing strains likely split into populations on the East and West Coasts. This diversification has occurred via both changes in gene content (gene gain/loss events) and variations in nucleotide sequence (mutation and recombination). In addition, we reinforce the notion that PD-causing populations within the United States acted as the source for subsequent subsp. fastidiosa outbreaks in Europe and Asia.IMPORTANCE Compared to natural environments, the reduced diversity of monoculture agricultural landscapes can lead bacterial plant pathogens to quickly adapt to local biological and ecological conditions. Because of this, accidental introductions of microbial pathogens into naive regions represents a significant economic and environmental threat. Xylella fastidiosa is a plant pathogen with an expanding host and geographic range due to multiple intra- and intercontinental introductions. X. fastidiosa subsp. fastidiosa infects and causes disease in grapevines (Pierce's disease of grapevines [PD]). This study focused on PD-causing X. fastidiosa populations, particularly those found in the United States but also invasions into Taiwan and Spain. The analysis shows that PD-causing X. fastidiosa has diversified via multiple cooccurring evolutionary forces acting at an intra- and interpopulation level. This analysis enables a better understanding of the mechanisms leading to the local adaptation of X. fastidiosa and how a plant pathogen diverges allopatrically after multiple and sequential introduction events.
Collapse
|
45
|
Cairns KM, Newman KD, Crowther MS, Letnic M. Pelage variation in dingoes across southeastern Australia: implications for conservation and management. J Zool (1987) 2021. [DOI: 10.1111/jzo.12875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- K. M. Cairns
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| | - K. D. Newman
- School of Biosciences University of Melbourne Parkville VIC Australia
| | - M. S. Crowther
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - M. Letnic
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
- Evolution and Ecology Research Centre School of Biological, Earth and Environmental Sciences University of New South Wales Sydney NSW Australia
| |
Collapse
|
46
|
Carducci F, Biscotti MA, Trucchi E, Giuliani ME, Gorbi S, Coluccelli A, Barucca M, Canapa A. Omics approaches for conservation biology research on the bivalve Chamelea gallina. Sci Rep 2020; 10:19177. [PMID: 33154500 PMCID: PMC7645701 DOI: 10.1038/s41598-020-75984-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
The striped venus (Chamelea gallina) is an important economic resource in the Mediterranean Basin; this species has exhibited a strong quantitative decline in the Adriatic Sea. The aim of this work was to provide a comprehensive view of the biological status of C. gallina to elucidate the bioecological characteristics and genetic diversity of wild populations. To the best of our knowledge, this investigation is the first to perform a multidisciplinary study on C. gallina based on two omics approaches integrated with histological, ecotoxicological, and chemical analyses and with the assessment of environmental parameters. The results obtained through RNA sequencing indicated that the striped venus has a notable ability to adapt to different environmental conditions. Moreover, the stock reduction exhibited by this species in the last 2 decades seems not to have negatively affected its genetic diversity. Indeed, the high level of genetic diversity that emerged from our ddRAD dataset analyses is ascribable to the high larval dispersal rate, which might have played a “compensatory role” on local fluctuations, conferring to this species a good adaptive potential to face the environmental perturbations. These findings may facilitate the efforts of conservation biologists to adopt ad hoc management plans for this fishery resource.
Collapse
Affiliation(s)
- Federica Carducci
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Emiliano Trucchi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandro Coluccelli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Barucca
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Adriana Canapa
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
47
|
Díez-Del-Molino D, von Seth J, Gyllenstrand N, Widemo F, Liljebäck N, Svensson M, Sjögren-Gulve P, Dalén L. Population genomics reveals lack of greater white-fronted introgression into the Swedish lesser white-fronted goose. Sci Rep 2020; 10:18347. [PMID: 33110153 PMCID: PMC7591532 DOI: 10.1038/s41598-020-75315-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/21/2020] [Indexed: 11/09/2022] Open
Abstract
Interspecific introgression is considered a potential threat to endangered taxa. One example where this has had a major impact on conservation policy is the lesser white-fronted goose (LWfG). After a dramatic decline in Sweden, captive breeding birds were released between 1981-1999 with the aim to reinforce the population. However, the detection of greater white-fronted goose (GWfG) mitochondrial DNA in the LWfG breeding stock led to the release program being dismantled, even though the presence of GWfG introgression in the actual wild Swedish LWfG population was never documented. To examine this, we sequenced the complete genomes of 21 LWfG birds from the Swedish, Russian and Norwegian populations, and compared these with genomes from other goose species, including the GWfG. We found no evidence of interspecific introgression into the wild Swedish LWfG population in either nuclear genomic or mitochondrial data. Moreover, Swedish LWfG birds are genetically distinct from the Russian and Norwegian populations and display comparatively low genomic diversity and high levels of inbreeding. Our findings highlight the utility of genomic approaches in providing scientific evidence that can help improve conservation management as well as policies for breeding and reinforcement programmes.
Collapse
Affiliation(s)
- David Díez-Del-Molino
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden. .,Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Johanna von Seth
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.,Department of Zoology, Stockholm University, 10691, Stockholm, Sweden
| | - Niclas Gyllenstrand
- Centre for Genetic Identification, Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden
| | - Fredrik Widemo
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Niklas Liljebäck
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 73091, Riddarhyttan, Sweden
| | - Mikael Svensson
- Swedish Species Information Centre, SLU ArtDatabanken, Box 7007, 750 07, Uppsala, Sweden
| | - Per Sjögren-Gulve
- The Wildlife Analysis Unit, Swedish Environmental Protection Agency, 106 48, Stockholm, Sweden
| | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| |
Collapse
|
48
|
Genome-wide genetic diversity yields insights into genomic responses of candidate climate-selected loci in an Andean wetland plant. Sci Rep 2020; 10:16851. [PMID: 33033367 PMCID: PMC7546723 DOI: 10.1038/s41598-020-73976-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 11/28/2022] Open
Abstract
Assessing population evolutionary potential has become a central tenet of conservation biology. Since adaptive responses require allelic variation at functional genes, consensus has grown that genetic variation at genes under selection is a better surrogate for adaptive evolutionary potential than neutral genetic diversity. Although consistent with prevailing theory, this argument lacks empirical support and ignores recent theoretical advances questioning the very concept of neutral genetic diversity. In this study, we quantified genome-wide responses of single nucleotide polymorphism loci linked to climatic factors over a strong latitudinal gradient in natural populations of the high Andean wetland plant, Carex gayana, and then assessed whether genetic variation of candidate climate-selected loci better predicted their genome-wide responses than genetic variation of non-candidate loci. Contrary to this expectation, genomic responses of climate-linked loci only related significantly to environmental variables and genetic diversity of non-candidate loci. The effects of genome-wide genetic diversity detected in this study may be a result of either the combined influence of small effect variants or neutral and demographic factors altering the adaptive evolutionary potential of C. gayana populations. Regardless of the processes involved, our results redeem genome-wide genetic diversity as a potentially useful indicator of population adaptive evolutionary potential.
Collapse
|
49
|
Muir AP, Dubois SF, Ross RE, Firth LB, Knights AM, Lima FP, Seabra R, Corre E, Le Corguillé G, Nunes FLD. Seascape genomics reveals population isolation in the reef-building honeycomb worm, Sabellaria alveolata (L.). BMC Evol Biol 2020; 20:100. [PMID: 32778052 PMCID: PMC7418442 DOI: 10.1186/s12862-020-01658-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Under the threat of climate change populations can disperse, acclimatise or evolve in order to avoid fitness loss. In light of this, it is important to understand neutral gene flow patterns as a measure of dispersal potential, but also adaptive genetic variation as a measure of evolutionary potential. In order to assess genetic variation and how this relates to environment in the honeycomb worm (Sabellaria alveolata (L.)), a reef-building polychaete that supports high biodiversity, we carried out RAD sequencing using individuals from along its complete latitudinal range. Patterns of neutral population genetic structure were compared to larval dispersal as predicted by ocean circulation modelling, and outlier analyses and genotype-environment association tests were used to attempt to identify loci under selection in relation to local temperature data. RESULTS We genotyped 482 filtered SNPs, from 68 individuals across nine sites, 27 of which were identified as outliers using BAYESCAN and ARLEQUIN. All outlier loci were potentially under balancing selection, despite previous evidence of local adaptation in the system. Limited gene flow was observed among reef-sites (FST = 0.28 ± 0.10), in line with the low dispersal potential identified by the larval dispersal models. The North Atlantic reef emerged as a distinct population and this was linked to high local larval retention and the effect of the North Atlantic Current on dispersal. CONCLUSIONS As an isolated population, with limited potential for natural genetic or demographic augmentation from other reefs, the North Atlantic site warrants conservation attention in order to preserve not only this species, but above all the crucial functional ecological roles that are associated with their bioconstructions. Our study highlights the utility of using seascape genomics to identify populations of conservation concern.
Collapse
Affiliation(s)
- Anna P Muir
- Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK.
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France.
| | - Stanislas F Dubois
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Rebecca E Ross
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
- Institute of Marine Research, 1870 Nordnes, 5817, Bergen, Norway
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Antony M Knights
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Fernando P Lima
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Rui Seabra
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Flavia L D Nunes
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| |
Collapse
|
50
|
Ochoa A, Broe M, Moriarty Lemmon E, Lemmon AR, Rokyta DR, Gibbs HL. Drift, selection and adaptive variation in small populations of a threatened rattlesnake. Mol Ecol 2020; 29:2612-2625. [PMID: 32557885 DOI: 10.1111/mec.15517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 01/22/2023]
Abstract
An important goal of conservation genetics is to determine if the viability of small populations is reduced by a loss of adaptive variation due to genetic drift. Here, we assessed the impact of drift and selection on direct measures of adaptive variation (toxin loci encoding venom proteins) in the eastern massasauga rattlesnake (Sistrurus catenatus), a threatened reptile that exists in small isolated populations. We estimated levels of individual polymorphism in 46 toxin loci and 1,467 control loci across 12 populations of this species, and compared the results with patterns of selection on the same loci following speciation of S. catenatus and its closest relative, the western massasauga (S. tergeminus). Multiple lines of evidence suggest that both drift and selection have had observable impacts on standing adaptive variation. In support of drift effects, we found little evidence for selection on toxin variation within populations and a significant positive relationship between current levels of adaptive variation and long- and short-term estimates of effective population size. However, we also observed levels of directional selection on toxin loci among populations that are broadly similar to patterns predicted from interspecific selection analyses that pre-date the effects of recent drift, and that functional variation in these loci persists despite small short-term effective sizes. This suggests that much of the adaptive variation present in populations may represent an example of "drift debt," a nonequilibrium state where present-day levels of variation overestimate the amount of functional genetic diversity present in future populations.
Collapse
Affiliation(s)
- Alexander Ochoa
- Ohio Biodiversity Conservation Partnership and Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Michael Broe
- Ohio Biodiversity Conservation Partnership and Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | | | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - H Lisle Gibbs
- Ohio Biodiversity Conservation Partnership and Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| |
Collapse
|