1
|
Liu J, Zai X, Tian X, Li J, Yan S, Wang T. Practical implementation and impact of the 4R principles in ethnopharmacology: Pursuing a more humane approach to research. Front Pharmacol 2025; 16:1543316. [PMID: 40223937 PMCID: PMC11988206 DOI: 10.3389/fphar.2025.1543316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/18/2025] [Indexed: 04/15/2025] Open
Abstract
Ethnopharmacology, a discipline focused on studying the medicinal use of natural materials by humans, plays a crucial role in addressing challenges in modern drug development. However, the traditional 3R principle-Replacement, Reduction, and Refinement-have limitations in guiding the ethical management of animal experimentation, conducting animal studies, and utilizing animal-derived materials in ethnopharmacological research. To address these gaps, the field has introduced the 4R principles, which expand the original framework by adding "Responsibility." The Responsibility principle highlights the ethical obligation of researchers to consider the welfare of experimental animals during all procedures. It calls for researchers to take accountability for their actions and decisions, ensuring that they actively protect animal welfare and exhibit empathy across species. This principle reinforces the ethical foundation of ethnopharmacological research. To implement the 4R principles effectively, this article explores the dimensions of Reduction, Refinement, Replacement, and Responsibility in detail. For Reduction, strategies include minimizing animal use by developing optimized, efficient experimental designs, creating tissue banks to recycle animal samples, and improving success rates in animal modeling. These efforts collectively aim to enhance ethical standards while advancing scientific outcomes. In terms of Refinement, the goal is to minimize animal distress and pain by improving the experimental environment, refining operational procedures, ensuring strict control of experiments under anesthesia, and prioritizing non-invasive or minimally invasive techniques for data collection. For Replacement, the aim is to reduce the need for experimental animals by exploring alternative solutions. This includes substituting in vitro experiments for in vivo ones, using 3D organoids to replace animal organs, and applying deep learning technologies in ways that decrease animal use. The Responsibility principle focuses on enhancing researchers' ethical obligations toward animal welfare. This can be achieved by improving regulations and policies governing animal experimentation, providing ethical training for technical personnel, and promoting awareness of animal welfare and ethical practices. The introduction and implementation of the 4R principles provide valuable guidance for the ethical conduct of animal experimentation in ethnopharmacological research, offering new insights and methodologies that support the responsible use of animals in scientific studies.
Collapse
Affiliation(s)
- Jimin Liu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang Zai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Xiaqing Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxuan Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shipeng Yan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Taiyi Wang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Innovation and Application Research in Basic Theory of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Wu Y, Chen L, Feng C, Wang T, He S, Zheng D, Lin L. Antitumor effect of toosendanin on oral squamous cell carcinoma via suppression of p-STAT3. BMC Oral Health 2023; 23:846. [PMID: 37946196 PMCID: PMC10634166 DOI: 10.1186/s12903-023-03602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Toosendanin (TSN) exhibits potent antitumor activity against various tumor cell lines. However, its efficacy against oral squamous cell carcinoma (OSCC) remains unknown. Here, we investigated the effects of TSN on OSCC cells in vitro and verified them in vivo using a patient-derived xenograft (PDX) model. METHODS The effect of TSN on OSCC cells was investigated by cytotoxicity assays and flow cytometry. The expression of proteins was detected by western blotting. An OSCC PDX model was constructed to further investigate the role of TSN in regulating the function of OSCC. RESULTS The cell viability of CAL27 and HN6 cells decreased as the concentration of TSN increased within the experimental range. Compared with controls, TSN at lower doses inhibited cell proliferation and induced apoptosis through S-phase cell cycle arrest. TSN inhibited OSCC cell proliferation by downregulating the STAT3 pathway through the inhibition of STAT3 phosphorylation. After successful construction of the OSCC PDX model with high pathological homology to the primary tumor and treatment with an intraperitoneal injection of TSN, we showed that TSN significantly reduced the tumor size of the PDX model mice without obvious toxicity. CONCLUSIONS Both in vitro and in vivo, TSN significantly inhibits the proliferation and promoted apoptosis of OSCC cells. Furthermore, TSN demonstrates potent inhibition of STAT3 phosphorylation, indicating its potential as a promising therapeutic agent for OSCC. Therefore, TSN holds great promise as a viable drug candidate for the treatment of OSCC.
Collapse
Affiliation(s)
- Ye Wu
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingling Chen
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Cheng Feng
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Tao Wang
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shaohai He
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Lisong Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
3
|
Hu M, Xu M, Chen Y, Ye Z, Zhu S, Cai J, Zhang M, Zhang C, Huang R, Ye Q, Ao H. Therapeutic potential of toosendanin: Novel applications of an old ascaris repellent as a drug candidate. Biomed Pharmacother 2023; 167:115541. [PMID: 37738795 DOI: 10.1016/j.biopha.2023.115541] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023] Open
Abstract
Toosendanin (TSN), extracted from Melia. toosendan Sieb.et Zucc. and Melia. azedarach L., has been developed into an ascaris repellent in China. However, with the improvement of public health protection, the incidence of ascariasis has been reduced considerably, resulting in limited medical application of TSN. Therefore, it is questionable whether this old ascaris repellent can develop into a drug candidate. Modern studies have shown that TSN has strong pharmacological activities, including anti-tumor, anti-botulinum, anti-viral and anti-parasitic potentials. It also can regulate fat formation and improve inflammation. These researches indicate that TSN has great potential to be developed into a corresponding medical product. In order to better development and application of TSN, the availability, pharmacodynamics, pharmacokinetics and toxicology of TSN are summarized systematically. In addition, this review discusses shortcomings in the current researches and provides useful suggestions about how TSN developed into a drug candidate. Therefore, this paper illustrates the possibility of developing TSN as a medical product, aimed to provide directions for the clinical application and further research of TSN.
Collapse
Affiliation(s)
- Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhangkai Ye
- Xinjiang Normal University, Urumqi 830017, Xinjiang, China
| | - Shunpeng Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jia Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Mengxue Zhang
- First School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chi Zhang
- School of health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Ruizhen Huang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
4
|
Yang Y, Mei C, Xian H, Zhang X, Li J, Liang ZX, Zhi Y, Ma Y, Wang HJ. Toosendanin-induced apoptosis of CMT-U27 is mediated through the mitochondrial apoptotic pathway. Vet Comp Oncol 2023; 21:315-326. [PMID: 36809669 DOI: 10.1111/vco.12889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Toosendanin (TSN) is an active compound from the fruit of Melia toosendan Sieb et Zucc. TSN has been shown to have broad-spectrum anti-tumour activities in human cancers. However, there are still many gaps in the knowledge of TSN on canine mammary tumours (CMT). CMT-U27 cells were used to select the optimal acting time and best concentration of TSN to initiate apoptosis. Cell proliferation, cell colony formation, cell migration and cell invasion were analysed. The expression of apoptosis-related genes and proteins were also detected to explore the mechanism of action of TSN. A murine tumour model was established to detect the effect of TSN treatments. The results showed that TSN decreased cell viability of migration and invasion, altered CMT-U27 cell morphology, and inhibited DNA synthesis. TSN-induced cell apoptosis by upregulating BAX, cleaved caspase-3, cleaved caspase-9, p53 and cytochrome C (cytosolic) protein expression, and downregulating Bcl-2 and cytochrome C (mitochondrial) expression. In addition, TSN increased the mRNA transcription levels of cytochrome C, p53 and BAX, and decreased the mRNA expression of Bcl-2. Furthermore, TSN inhibited the growth of CMT xenografts by regulating the expression of genes and proteins activated by the mitochondrial apoptotic pathway. In conclusion, TSN effectively inhibited cell proliferation, migration and invasion activity, as well as induced CMT-U27 cell apoptosis. The study provides a molecular basis for the development of clinical drugs and other therapeutic options.
Collapse
Affiliation(s)
- Yin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Chen Mei
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Hong Xian
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Xue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Jun Li
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Zhi-Xuan Liang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yan Zhi
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| | - Yue Ma
- School of Veterinary Medicine, Southwest University, Rongchang Chongqing, China
| | - Hong-Jun Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Municipal Academy of Agriculture and Forestry, Beijing, China
| |
Collapse
|
5
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
6
|
Wang G, Li L, Li Y, Zhang LH. Toosendanin reduces cisplatin resistance in ovarian cancer through modulating the miR-195/ERK/β-catenin pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154571. [PMID: 36610147 DOI: 10.1016/j.phymed.2022.154571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Cisplatin (DDP) resistance is prevalent in ovarian cancer (OC) patients and contributes to the poor prognosis. Therefore, it is of great significance to develop new agent to intervene and even reverse DDP resistance in OC. Toosendanin (TSN), a triterpenoid extracted from the bark or fruits of Melia toosendan Sieb et Zucc, has been proved to possess significant antitumor activities. However, the efficacy of TSN on DDP resistance in OC has not been reported yet. PURPOSE The aim of this study is to investigate the effects of TSN on DDP resistance in OC and explore the molecular mechanism in vitro and in vivo. METHODS Human OC cell line (SKOV3) and DDP-resistant cell line (SKOV3/DDP) were used. Cell proliferation was measured by CCK-8 and colony formation assay. Annexin V/PI double staining and hoechst 33342 nuclear staining were employed to detect cell apoptosis. Transwell and wound-healing assay were used to determine the invasion and migration potential of cells respectively. Quantitative real-time PCR (qPCR) and western blotting were performed to detect the expression of molecules related to miR-195/ERK/β-catenin pathway. The effects and mechanism of TSN on DDP resistance of OC in vivo was investigated using xenograft model, TUNEL staining assay and immunohistochemistry. RESULTS TSN improved the DDP sensitivity of SKOV3/DDP cells in vitro and in vivo, reflected in promoting inhibition of proliferation, invasion, migration and epithelial mesenchymal transformation (EMT) as well as induction of apoptosis by DDP. TSN could modulate the miR-195/ERK/β-catenin axis by upregulating the miR-195-5p expression and then suppressing ERK/GSK3β/β-catenin pathway which were activated in SKOV3/DDP cells. Moreover, co-treatment of β-catenin pathway activator LiCl or miR-195-5p silencing partially recovered the DDP resistance which was previously repressed by TSN. CONCLUSION Both in vitro and in vivo data demonstrated that TSN could reduce DDP resistance in OC through regulating the miR-195/ERK/β-catenin pathway, highlighting the potential of TSN as an effective agent for favoring overcoming clinical DDP resistance in OC.
Collapse
Affiliation(s)
- Ge Wang
- Department of Traditional Chinese and Western medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Lu Li
- Department of Traditional Chinese and Western medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yan Li
- Department of Traditional Chinese and Western medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Li-Hong Zhang
- Department of Traditional Chinese and Western medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
7
|
An overview of Fructus Meliae Toosendan: Botany, traditional uses, phytochemistry, pharmacology and toxicology. Biomed Pharmacother 2023; 157:113795. [PMID: 36395606 DOI: 10.1016/j.biopha.2022.113795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Fructus Meliae Toosendan (FMT) is the dried and mature fruit of MeLia toosendan Sieb.et Zucc. It contains a variety of chemical constituents and reported to possess a variety of pharmacological activities. This review aims to provide a thorough and organized summary of botany, traditional uses, chemical ingredients, pharmacological actions, toxicity, quality control, and uses. In this review, we have compiled the data regarding FMT from 1994 to 2022 in the databases: Web of Science, PubMed, Google Scholar, CNKI, and Baidu Scholar. The keywords: "Fructus Meliae Toosendan", "botany", "traditional uses","chemical components", "pharmacological activity", "toxicity", "quality control" and "clinical application" have been used to collected the literature published in the online bibliographic databases. Based on the correlation of these documents and FMT, 126 articles were finally selected as references. This paper provides a reasonable summary of the 190 chemical components of FMT and its pharmacological effects and toxicity. Moreover, this paper also compiled the quality control studies and clinical applications. In the future, more experimental studies on FMT are needed to achieve the purpose of toxicity reducing and efficacy enhancing. This comprehensive review of FMT can provide a reference for subsequent relevant studies.
Collapse
|
8
|
Zou MF, Fan RZ, Yin AP, Hu R, Huang D, Li W, Yin S, Pu R, Tang GH. Discovery of 29-O-acyl-toosendanin-based derivatives as potent anti-cancer agents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Fan W, Fan L, Wang Z, Yang L. Limonoids From the Genus Melia (Meliaceae): Phytochemistry, Synthesis, Bioactivities, Pharmacokinetics, and Toxicology. Front Pharmacol 2022; 12:795565. [PMID: 35140606 PMCID: PMC8819599 DOI: 10.3389/fphar.2021.795565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Limonoids, as the vital bioactive chemical compounds in genus Melia plants, have attracted significant attention owing to their exclusive structural characteristics and remarkable biological activity. These compounds can be usually classified into two categories, including the ring-intact group and the ring-C-seco group. Benefiting from the development of separation and analysis technology, more than 200 limonoids have been isolated and identified from this genus. There is growing evidence that limonoids from genus Melia possess diverse pharmacological activities, especially anti-cancer effects, insecticidal activities, and anti-botulism effects. Toosendanin, one of the paramount limonoids, was considered as the pivotal bioactive marker in two medicinal herbs, including Melia toosendan Sieb. et Zucc and Melia azedarach L. In particular, limonoids are found to exhibit non-negligible toxic effects, a finding which needs further research. Besides this, the lack of clinical research data seriously hinders its further development and utilization, and necessary clinical trials should be taken into consideration. In this review, we systematically summarized the phytochemical compounds and their synthesis methods, pharmacological activities, and the structure–activity relationship, pharmacokinetics, and toxicology of genus Melia-derived limonoids. We believe that this up-to-date review could provide scientific evidence for the application of limonoids as agents beneficial to health in future clinical practice.
Collapse
Affiliation(s)
- Wenxiang Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linhong Fan
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhengtao Wang, ; Li Yang,
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Zhengtao Wang, ; Li Yang,
| |
Collapse
|
10
|
Shen C, Pan Z, Wu X, Zhong C, Li Q, Si Y, Liu C, Tu H, Deng Z, Zhu Z, Guo J, Xin X, Liu M. A Sensitive Liquid Chromatography-Mass Spectrometry Method for Determination of Toosendanin in Rat Plasma and its Application to Pharmacokinetic Study. J Chromatogr Sci 2021; 60:478-485. [PMID: 34929736 DOI: 10.1093/chromsci/bmab135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Indexed: 11/13/2022]
Abstract
A simple, rapid and sensitive analytical method was developed for the determination of toosendanin in rat plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS). Andrographolide was selected as the internal standard, and the plasma samples were extracted by liquid-liquid extraction with diethyl ether. Chromatographic separation was performed on a Dikma Spursil C18, 3.5 μm (150 × 2.1 mm i.d) analytical column with 85% methanol:water (v/v) containing 0.025% formic acid (pH = 3.9) as mobile phase. The flow rate was 0.25 mL/min, and the total run time was 3 min. Detection was performed with a triple-quadrupole tandem mass spectrometer using negative ion mode electrospray ionization (ESI) in the multiple reaction monitoring (MRM) mode. The MS/MS ion transitions monitored were m/z 573.1 → 531.1 and 349.0 → 287.0 for toosendanin and andrographolide, respectively. Good linearity was observed over the concentration range of 3.125-500 ng/mL in 100 μL of rat plasma with a correlation coefficient ˃0.9997. Intra- and inter-assay variabilities were ˂8.5% in plasma. The recovery and the matrix effect were in the range 71.8-73.5% and 96.4-103.8%, respectively. The analyte was stable under various conditions (at room temperature, during freeze-thaw settings, in the autosampler, and under deep-freeze conditions). The method was successfully applied to a pharmacokinetic study of toosendanin after its oral administration in rats at a dose of 10 mg/kg.
Collapse
Affiliation(s)
- Chuangpeng Shen
- Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China.,Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,Department of Chinese Medicine, The First People's Hospital of Kashgar Prefecture, Xinjiang Uygur Autonomous Region, Kashgar 844000, China
| | - Zhisen Pan
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojie Wu
- Central Lab, Binzhou People's Hospital, Binzhou 256600, China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiao Li
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuqi Si
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Changhui Liu
- School of Chinese Material Medical, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Haitao Tu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhijun Deng
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou 510130, China
| | - Zhangzhi Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiewen Guo
- Department of Science and Education, Guangzhou Hospital of Traditional Chinese Medicine, Guangzhou 510130, China
| | - Xiaoyi Xin
- Department of Chinese Medicine, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi 830011, China
| | - Min Liu
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
11
|
Toosendanin relatives, trypanocidal principles from Meliae Cortex. J Nat Med 2020; 74:702-709. [PMID: 32529328 DOI: 10.1007/s11418-020-01422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/07/2020] [Indexed: 12/30/2022]
Abstract
Africa Trypanosomiasis remains a serious health problem, but the approved drugs for this disease are so few that novel trypanocidal compounds are demanded. In search for trypanocidal principles from medicinal plants, we found MeOH extracts of Meliae Cortex with potent activity through the screening from about 300 kinds of methanolic extract. By bioassay-guided fractionation from this extract through the liquid-liquid partition and subsequent chromatographic technique using silica gel and ODS, finally we disclosed toosendanin (1) and its relatives as active principles. These active congeners showed not only potent trypanocidal activity but also little cytotoxicity to display the excellent selective index. Taking the isolated amount as well as trypanocidal activity into consideration, 1 was disclosed to be the responsible active principle in Meliae Cortex. Additionally, the derivatives of 1 were chemically prepared from 1 and bioactivity of them were also evaluated. Through the comparison with their trypanocidal activity among the isolated relatives and the synthesized derivatives of 1, the epoxide moiety was revealed to be essential for their potent trypanocidal activity. Furthermore, 3-O-acetyl group and 7-hydroxyl group were presumed to be important functional groups and introduction of methylpropionyl group into hemiacetal hydroxy moiety was clarified to enhance their typanocidal activity.
Collapse
|
12
|
Wang Q, Wang Z, Hou G, Huang P. Toosendanin Suppresses Glioma Progression Property and Induces Apoptosis by Regulating miR-608/Notch Axis. Cancer Manag Res 2020; 12:3419-3431. [PMID: 32494206 PMCID: PMC7231786 DOI: 10.2147/cmar.s240268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Glioma is one the most common and aggressive primary tumors of adult central nervous system worldwide, which tends to develop dysplasia and metastasis. Recently, toosendanin (TSN) has shown pharmacological effects in several cancers. However, little is known about the underlying mechanism of the effect of TSN on glioma and its relationship between miRNA in glioma. Methods Cell proliferation, cell cycle, cell apoptosis and cell migration were analyzed by CCK-8 cell viability, flow cytometry, wound scratch healing, transwell and Western blotting assays, respectively, in vitro. The regulation relationships between TSN and miR-608 or between miR-608 and Notch1 (Notch2) were examined using qRT-PCR, dual-luciferase and Western blotting assays. The functional effects of TSN through regulating miR-608 and Notch1 (Notch2) were further examined using a xenograft tumor mouse model in vivo. Results After TSN concentration was increased from 50 nM, 100 nM to 150 nM, cell proliferation and cell cycle were gradually reduced, and the cell apoptosis rate was increased in U-138MG or U-251MG cells. Wound-healing and transwell assays results showed that cell migration was significantly inhibited in TSN treatment cells (TSN treatment, 50 nM) compared to control cells. Mechanistic studies revealed that TSN up-regulated the expression of microRNA-608 (miR-608), while down-regulated the expression of miR-608’s target, Notch1 and Notch2. Over-expression of Notch1 and Notch2 partly attenuated TSN-induced tumor suppressive function. Moreover, in vivo experiments revealed that TSN treatment led to a significant inhibition of tumor growth, suggesting that it might be a promising drug for the treatment of glioma. Conclusion In the present study, a novel established functional manner of TSN/miR-608/Notch1 (Notch2) axis was systematically indicated, which might provide prospective intervention ways for glioma therapy.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Pharmacy, Institute of Cancer and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, People's Republic of China
| | - Zeng Wang
- Department of Pharmacy, Institute of Cancer and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, People's Republic of China
| | - Guilan Hou
- Department of Pharmacy, Institute of Cancer and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, People's Republic of China
| | - Ping Huang
- Department of Pharmacy, Institute of Cancer and Basic Medical Sciences of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou City, Zhejiang Province 310022, People's Republic of China.,The Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou City, Zhejiang Province 310022, People's Republic of China
| |
Collapse
|
13
|
Wang H, Wen C, Chen S, Wang F, He L, Li W, Zhou Q, Yu WK, Huang L, Chen J, Liu R, Li W, Yang X, Liu H. Toosendanin-induced apoptosis in colorectal cancer cells is associated with the κ-opioid receptor/β-catenin signaling axis. Biochem Pharmacol 2020; 177:114014. [PMID: 32387457 DOI: 10.1016/j.bcp.2020.114014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
Developing new drugs for killing colorectal cancer (CRC) cells is urgently needed. Here, we explored the antitumor effects of toosendanin (TSN) in CRC, as well as explored its antitumor mechanisms and direct targets. Cell proliferation and apoptosis were analyzed by CCK8, colony formation, real-time cell impedance and flow cytometry. The signaling pathway and Wnt activity were analyzed by Wnt luciferase activity assay, quantitative real-time PCR and western blot. The interaction between TSN and the κ-opioid receptor was analyzed by a molecular docking simulation. BALB/c nude mice were used to detect the effects of TSN on tumor growth in vivo. We found that TSN inhibited proliferation, induced G1 phase arrest and caused caspase-dependent apoptosis in both 5-FU-sensitive and 5-FU-resistant CRC cells. Moreover, TSN effectively inhibited CRC growth in vivo. In terms of the mechanism, TSN inhibited Wnt/β-catenin signaling in CRC cells, and the molecular docking results showed that TSN could bind to κ-opioid receptors directly. Additionally, TSN-induced apoptosis and β-catenin decline were both reversed by the selective κ-opioid receptor agonist U50,488H. Our data demonstrate that TSN-induced apoptosis in CRC cells is associated with the κ-opioid receptor/β-catenin signaling axis, and TSN has promising potential as an antitumor agent for CRC treatment.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuangyu Wen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Obstetrics and Gynecology, Dongguan Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Siyu Chen
- Guangdong Laboratory, Animals Monitoring Institute, Guangdong Key Laboratory Animal Lab, Guangzhou, Guangdong, China
| | - Fang Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lu He
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weiqian Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wai Kin Yu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lanlan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junxiong Chen
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruixian Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wende Li
- Guangdong Laboratory, Animals Monitoring Institute, Guangdong Key Laboratory Animal Lab, Guangzhou, Guangdong, China
| | - Xiangling Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Jin YH, Kwon S, Choi JG, Cho WK, Lee B, Ma JY. Toosendanin From Melia Fructus Suppresses Influenza A Virus Infection by Altering Nuclear Localization of Viral Polymerase PA Protein. Front Pharmacol 2019; 10:1025. [PMID: 31607903 PMCID: PMC6757512 DOI: 10.3389/fphar.2019.01025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/12/2019] [Indexed: 01/22/2023] Open
Abstract
Toosendanin (TSN) is a major bioactive component of Melia Fructus (MF) with anti-inflammatory, anti-botulinum, anti-microbial, and analgesic efficacy. Our previous study demonstrated that MF has anti-influenza A virus activity; however, the contribution of TSN is still unclear. In this study, we found that TSN suppressed influenza A virus infection when administered before or concurrent with the virus, but not after infection. TSN pretreatment inhibited viral hemagglutinin (HA), nucleoprotein (NP), polymerase acidic (PA) protein, and matrix protein 2 (M2) mRNA synthesis as well as NP, PA, M2, and nonstructural protein 1 (NS1) expression but had no effect on HA or neuraminidase (NA) activity. In addition, TSN induced cytoplasmic location of PA protein disrupting nuclear translocation. Docking simulation suggested that the binding affinity of TSN to PA protein may be stronger than that of a known PA protein inhibitor. Pretreatment with TSN also suppressed the infection-induced phospho-AKT expression but not the host immune response. Oral pretreatment with TSN enhanced the survival of infected mice. These results suggest that TSN inhibits influenza A virus infection at an early stage by altering PA protein nuclear localization. Thus, TSN may be a promising candidate for anti-influenza agent targeting the PA protein of the influenza A virus RNA polymerase complex.
Collapse
Affiliation(s)
- Young-Hee Jin
- KM Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea.,Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea.,Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Sunoh Kwon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea.,Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jang-Gi Choi
- KM Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Won-Kyung Cho
- KM Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Bonggi Lee
- KM Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| |
Collapse
|
15
|
Gao T, Xie A, Liu X, Zhan H, Zeng J, Dai M, Zhang B. Toosendanin induces the apoptosis of human Ewing's sarcoma cells via the mitochondrial apoptotic pathway. Mol Med Rep 2019; 20:135-140. [PMID: 31115517 PMCID: PMC6579966 DOI: 10.3892/mmr.2019.10224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
Toosendanin, a triterpenoid extracted from the root bark of Melia toosendan, has its origin from traditional Chinese medicine and has been used as a non‑polluting and pesticide‑free plant insecticide in China for fruit and vegetable production. In recent years, toosendanin has been found to inhibit tumor cell proliferation and promote tumor cell apoptosis. Ewing's sarcoma (ES) is the second most common primary malignant bone and soft tissue tumor in children and adolescents. Although the overall prognosis of ES has improved, the 5‑year survival rate has not significantly increased. To analyze the role of toosendanin on ES progression, CCK‑8 viability assay, flow cytometry, Hoechst 33258 staining and western blotting were performed. The present results suggested that toosendanin suppressed cell viability and induced apoptosis in human SK‑ES‑1 cells compared with DMSO treatment. In addition, in the present study, toosendanin was found to upregulate the expression of Bax and downregulate the expression of Bcl‑2, altering the Bax/Bcl‑2 ratio. Additionally, toosendanin promoted the release of cytochrome c, resulting in the activation of the mitochondrial apoptotic pathway, thus inducing the activation of caspase‑9 and caspase‑3, and the cleavage of PARP. Our results demonstrated that toosendanin inhibited the growth of ES cells in a dose‑dependent manner and triggered mitochondrial apoptotic pathway to induce apoptosis. Therefore, toosendanin can potentially be utilized as an anticancer botanical drug for the treatment of ES.
Collapse
Affiliation(s)
- Tian Gao
- Department of Orthopedics, Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - An Xie
- Department of Orthopedics, Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuqiang Liu
- Department of Orthopedics, Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Haibo Zhan
- Department of Orthopedics, Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jin Zeng
- Department of Orthopedics, Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Min Dai
- Department of Orthopedics, Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bin Zhang
- Department of Orthopedics, Multidisciplinary Therapy Center of Musculoskeletal Tumor, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
16
|
Yang F, Li L, Yang R, Wei M, Sheng Y, Ji L. Identification of serum microRNAs as potential toxicological biomarkers for toosendanin-induced liver injury in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152867. [PMID: 30844585 DOI: 10.1016/j.phymed.2019.152867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/26/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Toosendan Fructus is traditionally used as an insecticide or digestive tract parasiticide for treating digestive parasites in China. It is recorded to have little toxicity in Chinese Pharmacopoeia and has been found to cause severe liver injury during clinical practice. PURPOSE This study aims to identify candidate serum microRNAs (miRNAs) as potential toxicological biomarkers for reflecting the hepatotoxicity induced by toosendanin (TSN), which is the main toxic compound isolated from Toosendan Fructus METHODS: Alanine/aspartate aminotransferase (ALT/AST) activities detection and liver histological observation were performed to evaluate the liver injury induced by TSN or other hepatotoxicants in mice. miRNAs chip analysis and Real-time PCR assay were conducted to identify the altered miRNAs in serum from TSN-treated mice RESULTS: The results of serum ALT/AST and liver histological evaluation showed that TSN (10 mg/kg) induced hepatotoxicity in mice. The results of miRNAs chip showed that the expression of 81 serum miRNAs was obviously altered in mice treated with TSN for 12 h, and 22 of them have passed the further validation in serum from mice treated with TSN for both 6 h and 12 h. These 22 miRNAs were supposed to be the candidate toxicological biomarkers for TSN-induced hepatotoxicity with more sensitivity as compared to the alteration of AST or ALT activity. Moreover, the expression of miRNA-122-3p and mcmv-miRNA-m01-4-3p was not only increased in TSN-treated mice, but also increased in mice treated with other hepatotoxicants including acetaminophen (APAP), monocrotaline (MCT) and diosbuibin B (DB). Only the expression of serum miRNA-367-3p was increased in TSN-treated mice but not changed in the liver injury induced by APAP, MCT or DB CONCLUSION: miR-122-3p and mcmv-miRNA-m01-4-3p may be two commonly sensitive biomarkers for reflecting the hepatotoxicity induced by exogenous hepatotoxicants, and miR-367-3p may be a specific biomarker for reflecting the liver injury induced by TSN.
Collapse
Affiliation(s)
- Fan Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Li Li
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Rui Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Zhang S, Cao L, Wang ZR, Li Z, Ma J. Anti-cancer effect of toosendanin and its underlying mechanisms. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:270-283. [PMID: 29629572 DOI: 10.1080/10286020.2018.1451516] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Toosendanin (TSN) is a triterpenoid purified from the medicinal herb Melia toosendan Sieb. et Zucc and has been used as an insecticide for decades. Recent studies have attracted increasing interest of TSN due to its novel anti-cancer effect in diverse cancer models. The broad spectrum anti-cancer activity suggests that TSN inhibits multiple pathways/targets that are critical for cancer cell survival and proliferation. Our recent study indicated that TSN has anti-cancer effect in glioblastoma through induction of estrogen receptor β (ERβ) and p53. This review highlights the anti-cancer efficacy of TSN and provides proof-of-principle insight into the underlying mechanisms.
Collapse
Affiliation(s)
- Sha Zhang
- a Department of Basic Medicine , Shaanxi University of Chinese Medicine , Xianyang 712046 , China
| | - Liang Cao
- b Department of Traditional Chinese Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Zong-Ren Wang
- b Department of Traditional Chinese Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| | - Zhe Li
- c Second Clinical Medical College , Shaanxi University of Chinese Medicine , Xianyang 712046 , China
| | - Jing Ma
- b Department of Traditional Chinese Medicine, Xijing Hospital , Fourth Military Medical University , Xi'an 710032 , China
| |
Collapse
|
18
|
Quercetin attenuates toosendanin-induced hepatotoxicity through inducing the Nrf2/GCL/GSH antioxidant signaling pathway. Acta Pharmacol Sin 2019; 40:75-85. [PMID: 29921882 DOI: 10.1038/s41401-018-0024-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/28/2018] [Indexed: 12/23/2022]
Abstract
Toosendanin (TSN) is the main active compound in Toosendan Fructus and Meliae Cortex, two commonly used traditional Chinese medicines. TSN has been reported to induce hepatotoxicity, but its mechanism remains unclear. In this study, we demonstrated the critical role of nuclear factor erythroid 2-related factor 2 (Nrf2) in protecting against TSN-induced hepatotoxicity in mice and human normal liver L-02 cells. In mice, administration of TSN (10 mg/kg)-induced acute liver injury evidenced by increased serum alanine/aspartate aminotransferase (ALT/AST) and alkaline phosphatase (ALP) activities, and total bilirubin (TBiL) content as well as the histological changes. Furthermore, TSN markedly increased liver reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and decreased liver glutathione (GSH) content and Nrf2 expression. In L-02 cells, TSN (2 μM) time-dependently reduced glutamate-cysteine ligase (GCL) activity and cellular expression of the catalytic/modify subunit of GCL (GCLC/GCLM). Moreover, TSN reduced cellular GSH content and the increased ROS formation, and time-dependently decreased Nrf2 expression and increased the expression of the Nrf2 inhibitor protein kelch-like ECH-associated protein-1 (Keap1). Pre-administration of quercetin (40, 80 mg/kg) effectively inhibited TSN-induced liver oxidative injury and reversed the decreased expression of Nrf2 and GCLC/GCLM in vivo and in vitro. In addition, the quercetin-provided protection against TSN-induced hepatotoxicity was diminished in Nrf2 knock-out mice. In conclusion, TSN decreases cellular GSH content by reducing Nrf2-mediated GCLC/GCLM expression via decreasing Nrf2 expression. Quercetin attenuates TSN-induced hepatotoxicity by inducing the Nrf2/GCL/GSH antioxidant signaling pathway. This study implies that inducing Nrf2 activation may be an effective strategy to prevent TSN-induced hepatotoxicity.
Collapse
|
19
|
Sun YP, Jin WF, Wang YY, Wang G, Morris-Natschke SL, Liu JS, Wang GK, Lee KH. Chemical Structures and Biological Activities of Limonoids from the Genus Swietenia (Meliaceae). Molecules 2018; 23:E1588. [PMID: 29966275 PMCID: PMC6099683 DOI: 10.3390/molecules23071588] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 11/17/2022] Open
Abstract
Swietenia is a genus in the plant family Meliaceae. This genus contains seven to eight known species, found in the tropical and subtropical regions of the Americas and West Africa. Thus far, more than 160 limonoids have been isolated from four species of the genus Swietenia. Limonoids are rich in structure type and biological activity, and these compounds are the main active components in the Swietenia species. This paper will give a comprehensive overview of the recent phytochemical and pharmacological research on the terpenes from Swietenia plants and encourage further drug discovery research.
Collapse
Affiliation(s)
- Yun-Peng Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Wen-Fang Jin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Yong-Yue Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Gang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.
| | - Jin-Song Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
| | - Guo-Kai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China.
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7568, USA.
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan.
| |
Collapse
|
20
|
Luo W, Liu X, Sun W, Lu JJ, Wang Y, Chen X. Toosendanin, a natural product, inhibited TGF-β1-induced epithelial-mesenchymal transition through ERK/Snail pathway. Phytother Res 2018; 32:2009-2020. [PMID: 29952428 DOI: 10.1002/ptr.6132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 11/05/2022]
Abstract
Epithelial-mesenchymal transition (EMT) plays important roles in the metastasis of solid tumors. In this study, the effect of toosendanin (TSN), a natural insecticide extracted from Melia toosendan Sieb et Zucc, on transforming growth factor-β1 (TGF-β1)-induced EMT was investigated. EMT was induced by TGF-β1 in A549 and H1975 lung cancer cells. The morphological alterations were observed with a microscopy. The protein expression and localization of EMT biomarkers were determined by Western blotting and immunofluorescence. The migration, invasion, and adhesion were determined by wound-healing, transwell, and adhesion assays. TGF-β1 treatment induced spindle-shaped alterations of cells, upregulation of N-cadherin, Vimentin, p-ERK1/2, and downregulation of E-cadherin. The abilities of migration, invasion, and adhesion were also enhanced. These effects were significantly reversed by TSN at very low concentration (<10 nM). Furthermore, silence Snail significantly reversed TGF-β1-induced EMT biomarkers. In addition, TGF-β1-induced phosphorylation of ERK1/2 without affecting p38 mitogen-activated protein kinases and Jun N-terminal kinase. PD98059 and U0126, inhibitors of ERK1/2, showed similar inhibitory effect to that of TSN. In summary, TSN significantly inhibited TGF-β1-induced EMT and migration, invasion, and adhesion through ERK/Snail pathway in lung cancer cells. This study provides novel anticancer effects and molecular mechanisms for TSN.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
21
|
Vengoji R, Macha MA, Batra SK, Shonka NA. Natural products: a hope for glioblastoma patients. Oncotarget 2018; 9:22194-22219. [PMID: 29774132 PMCID: PMC5955138 DOI: 10.18632/oncotarget.25175] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive malignant tumors with an overall dismal survival averaging one year despite multimodality therapeutic interventions including surgery, radiotherapy and concomitant and adjuvant chemotherapy. Few drugs are FDA approved for GBM, and the addition of temozolomide (TMZ) to standard therapy increases the median survival by only 2.5 months. Targeted therapy appeared promising in in vitro monolayer cultures, but disappointed in preclinical and clinical trials, partly due to the poor penetration of drugs through the blood brain barrier (BBB). Cancer stem cells (CSCs) have intrinsic resistance to initial chemoradiation therapy (CRT) and acquire further resistance via deregulation of many signaling pathways. Due to the failure of classical chemotherapies and targeted drugs, research efforts focusing on the use of less toxic agents have increased. Interestingly, multiple natural compounds have shown antitumor and apoptotic effects in TMZ resistant and p53 mutant GBM cell lines and also displayed synergistic effects with TMZ. In this review, we have summarized the current literature on natural products or product analogs used to modulate the BBB permeability, induce cell death, eradicate CSCs and sensitize GBM to CRT.
Collapse
Affiliation(s)
- Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Muzafar A. Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Nicole A. Shonka
- Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
22
|
Toosendanin mediates cisplatin sensitization through targeting Annexin A4/ATP7A in non-small cell lung cancer cells. J Nat Med 2018; 72:724-733. [DOI: 10.1007/s11418-018-1211-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/30/2018] [Indexed: 11/27/2022]
|
23
|
Toosendanin inhibits adipogenesis by activating Wnt/β-catenin signaling. Sci Rep 2018; 8:4626. [PMID: 29545541 PMCID: PMC5854628 DOI: 10.1038/s41598-018-22873-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/02/2018] [Indexed: 12/15/2022] Open
Abstract
Toosendanin (TSN), a triterpenoid extracted from Melia toosendan, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities. However, its anti-adipogenic effect remains unknown. Here, we found that TSN dose-dependently attenuated lipid accumulation in preadipocytes 3T3-L1 as evidenced by Oil Red O staining. TSN also significantly downregulated mRNA and protein levels of adipocytokines (adiponectin and leptin), CCAAT/enhancer binding proteins α (C/EBP-α), peroxisome proliferator-activated receptor γ (PPAR-γ), fatty acid synthase, and acetyl-CoA carboxylase in adipocytes. To understand the mechanism, we observed that TSN effectively activated Wnt/β-catenin pathway, in which TSN increased low density lipoprotein receptor related protein 6, disheveled 2, β-catenin, and cyclin D1 expression levels, while it inactivated glycogen synthase kinase 3β by enhancing its phosphorylation. Moreover, TSN reduced weight of gonadal white fat and serum triacylglycerol (TAG) content in high-fat diet (HFD)-fed mice. Interestingly, the in vivo studies also demonstrated that TSN promoted the expression of β-catenin, but accordingly repressed C/EBP-α and PPAR-γ expression in HFD-induced mice. Overall, TSN is capable of inhibiting the lipogenesis of adipocytes by activating the Wnt/β-catenin pathway, suggesting potential application of TSN as a natural anti-obesity agent.
Collapse
|
24
|
Wang G, Huang YX, Zhang R, Hou LD, Liu H, Chen XY, Zhu JS, Zhang J. Toosendanin suppresses oncogenic phenotypes of human gastric carcinoma SGC-7901 cells partly via miR-200a-mediated downregulation of β-catenin pathway. Int J Oncol 2017; 51:1563-1573. [DOI: 10.3892/ijo.2017.4139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/28/2017] [Indexed: 11/06/2022] Open
|
25
|
Cao L, Qu D, Wang H, Zhang S, Jia C, Shi Z, Wang Z, Zhang J, Ma J. Toosendanin Exerts an Anti-Cancer Effect in Glioblastoma by Inducing Estrogen Receptor β- and p53-Mediated Apoptosis. Int J Mol Sci 2016; 17:ijms17111928. [PMID: 27869737 PMCID: PMC5133924 DOI: 10.3390/ijms17111928] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with median survival of approximately one year. This dismal poor prognosis is due to resistance to currently available chemotherapeutics; therefore, new cytotoxic agents are urgently needed. In the present study, we reported the cytotoxicity of toosendanin (TSN) in the GBM U87 and C6 cell lines in vitro and in vivo. By using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, flow cytometry analysis, and Western blot, we found that TSN inhibited U87 and C6 cell proliferation and induced apoptosis at a concentration as low as 10 nM. Administration of TSN also reduced tumor burden in a xenograft model of athymic nude mice. Pharmacological and molecular studies suggested that estrogen receptor β (ERβ) and p53 were prominent targets for TSN. GBM cell apoptosis induced by TSN was a stepwise biological event involving the upregulation of ERβ and contextual activation of functional p53. Collectively, our study indicates, for the first time, that TSN is a candidate of novel anti-cancer drugs for GBM. Furthermore, ERβ and p53 could act as predictive biomarkers for the sensitivity of cancer to TSN.
Collapse
Affiliation(s)
- Liang Cao
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Dingding Qu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Huan Wang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Sha Zhang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Chenming Jia
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zixuan Shi
- Department of Acupuncture, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an 710032, China.
| | - Zongren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jian Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Ma
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
26
|
Lu X, Ji C, Tong W, Lian X, Wu Y, Fan X, Gao Y. Integrated analysis of microRNA and mRNA expression profiles highlights the complex and dynamic behavior of toosendanin-induced liver injury in mice. Sci Rep 2016; 6:34225. [PMID: 27703232 PMCID: PMC5050432 DOI: 10.1038/srep34225] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/01/2016] [Indexed: 01/04/2023] Open
Abstract
Triterpenoid Toosendanin (TSN) exhibits a plenty of pharmacological effects in human and great values in agriculture. However, the hepatotoxicity caused by TSN or Melia-family plants containing TSN used in traditional Chinese medicine has been reported, and the mechanisms of TSN-induced liver injury (TILI) still remain largely unknown. In this study, the dose- and time-dependent effects of TSN on mice liver were investigated by an integrated microRNA-mRNA approach as well as the general toxicological assessments. As the results, the dose- and time-dependent liver injury and alterations in global microRNA and mRNA expressions were detected. Particularly, 9-days 80 mg/kg TSN exposure caused most serious liver injury in mice, and the hepatic adaptation to TILI was unexpectedly observed after 21-days 80 mg/kg TSN administration. Based on the pathway analysis of the intersections between predicted targets of differentially expressed microRNAs and differentially expressed mRNAs at three time points, it revealed that TILI may be caused by glutathione depletion, mitochondrial dysfunction and lipid dysmetabolism, ultimately leading to hepatocytes necrosis in liver, while liver regeneration may play an important role in the hepatic adaptation to TILI. Our results demonstrated that the integrated microRNA-mRNA approach could provide new insight into the complex and dynamic behavior of TILI.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Ji
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Tong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueping Lian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Wu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
27
|
Zhang C, Sun X, Zhao Y, Zhang J, Ma F, Long Z, Liang L, Wang Y, Ma B. Quantitative Analysis of Toosendanin in the Fruit of Melia toosendan Sieb. Et Zucc (Meliaceae) by High-Performance Liquid Chromatography Coupled with Charged Aerosol Detection. Chromatographia 2016. [DOI: 10.1007/s10337-016-3143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Liu XL, Wang H, Zhang L, Wang YL, Wang J, Wang P, He X, He YJ. Anticancer effects of crude extract from Melia toosendan Sieb. et Zucc on hepatocellular carcinoma in vitro and in vivo. Chin J Integr Med 2015; 22:362-9. [PMID: 26383159 DOI: 10.1007/s11655-015-2084-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the anti-cancer effects of crude extract from Melia toosendan Sieb. et Zucc and its possible molecular mechanisms in vitro and in vivo. METHODS Transonic alcohol-chloroform extraction method was used to extract toosendanin from the bark of Melia toosendan Sieb. et Zucc, and the content of toosendanin in the crude extract was measured by high performance liquid chromatography (HPLC). Anti-cancer effects of crude extract from Melia toosendan Sieb. et Zucc were investigated in in vivo and in vitro studies. In the in vitro experiment, human hepatocellular carcinoma cell lines SMMC-7721 and Hep3B were co-incubated with toosendanin crude extract of different concentrations, respectively. In the in vivo experiment, BALB/c mice were subcutaneously inoculated with mouse hepatocellular carcinoma H22 cells and treated with crude extract. RESULTS HPLC revealed the content of toosendanin was about 15%. Crude extract from Melia toosendan Sieb. et Zucc inhibited cancer cells growth in a dose- and time-dependent manner. The 50% inhibitory concentration (IC50, 72 h) was 0.6 mg/L for SMMC-7721 cells and 0.8 mg/L for Hep3B cells. Both high-dose [0.69 mg/(kg d)] and low-dose [0.138 mg/(kg d)] crude extract could markedly suppress cancer growth, and the inhibition rate was greater than 50%. Hematoxylin and eosin staining showed necrotic area in cancers and transmission electron microscopy displayed necrotic and apoptotic cancer cells with apoptotic bodies. Immunohistochemistry showed that the expression of Bax and Fas increased and the expression of Bcl-2 reduced. CONCLUSIONS Toosendanin extract has potent anti-cancer effects via suppressing proliferation and inducing apoptosis of cancer cells in vivo and in vitro. The mechanism of apoptosis involves in mitochondrial pathway and death receptor pathway.
Collapse
Affiliation(s)
- Xiao-Ling Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ling Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - You-Liang Wang
- Department of Laboratory Medicine, People's Hospital, Pengzhou, Sichuan Province, 611930, China
| | - Jin Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Peng Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Xiao He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Juan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
29
|
WANG GE, FENG CHENGCHENG, CHU SHAOJUN, ZHANG RUI, LU YUNMIN, ZHU JINSHUI, ZHANG JING. Toosendanin inhibits growth and induces apoptosis in colorectal cancer cells through suppression of AKT/GSK-3β/β-catenin pathway. Int J Oncol 2015; 47:1767-74. [DOI: 10.3892/ijo.2015.3157] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/08/2015] [Indexed: 11/05/2022] Open
|
30
|
Ji C, Zheng J, Tong W, Lu X, Fan X, Gao Y. Revealing the mechanism of Fructus meliae toosendan-induced liver injury in mice by integrating microRNA and mRNA-based toxicogenomics data. RSC Adv 2015. [DOI: 10.1039/c5ra10112c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fructus meliae toosendan-induced liver injury in mice was investigated by integrating the data from miroRNA and mRNA expression profiles combined with the general toxicological assessments method.
Collapse
Affiliation(s)
- Cai Ji
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Jie Zheng
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Wei Tong
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Yue Gao
- Department of Pharmacology and Toxicology
- Beijing Institute of Radiation Medicine
- Beijing 100850
- China
| |
Collapse
|
31
|
Metabolite analysis of toosendanin by an ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry technique. Molecules 2013; 18:12144-53. [PMID: 24084018 PMCID: PMC6270517 DOI: 10.3390/molecules181012144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
Toosendanin is the major bioactive component of Melia toosendan Sieb. et Zucc., which is traditionally used for treatment of abdominal pain and as an insecticide. Previous studies reported that toosendanin possesses hepatotoxicity, but the mechanism remains unknown. Its bioavailability in rats is low, which indicates the hepatotoxicity might be induced by its metabolites. In this connection, in the current study, we examined the metabolites obtained by incubating toosendanin with human live microsomes, and then six of these metabolites (M1-M6) were identified for the first time by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UHPLC-Q-TOF/MS). Further analysis on the MS spectra showed M1, M2, and M3 are oxidative products and M6 is a dehydrogenation product, while M4 and M5 are oxidative and dehydrogenation products of toosendanin. Moreover, their possible structures were deduced from the MS/MS spectral features. Quantitative analysis demonstrated that M1-M5 levels rapidly increased and reached a plateau at 30 min, while M6 rapidly reached a maximal level at 20 min and then decreased slowly afterwards. These findings have provided valuable data not only for understanding the metabolic fate of toosendanin in liver microsomes, but also for elucidating the possible molecular mechanism of its hepatotoxicity.
Collapse
|
32
|
Novel NGF-potentiating limonoids from the fruits of Melia toosendan. Fitoterapia 2013; 90:192-8. [PMID: 23916581 DOI: 10.1016/j.fitote.2013.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 11/21/2022]
Abstract
Four new limonoids (1-4), together with five known limonoids (5-9), were isolated from the fruits of Melia toosendan. Their structures were elucidated based on extensive spectroscopic analyses (1D- and 2D-NMR, HRESIMS, IR, [α](D)). The isolated compounds were evaluated for their neurite outgrowth-promoting activities. Compounds 2 and 6 significantly enhanced NGF-mediated neurite outgrowth in PC12 cells at concentrations ranging from 0.1 to 50.0 μM.
Collapse
|
33
|
Akihisa T, Pan X, Nakamura Y, Kikuchi T, Takahashi N, Matsumoto M, Ogihara E, Fukatsu M, Koike K, Tokuda H. Limonoids from the fruits of Melia azedarach and their cytotoxic activities. PHYTOCHEMISTRY 2013; 89:59-70. [PMID: 23465718 DOI: 10.1016/j.phytochem.2013.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 01/04/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
Thirty-one limonoids and one tirucallane-type triterpenoid were isolated from the fruits of Melia azedarach (Meliaceae). The structures of 14 of these isolated compounds were elucidated on the basis of spectroscopic analyses and comparison with literature. All of these compounds were evaluated for their cytotoxic activities against HL60, A549, AZ521, and SK-BR-3 human cancer cell lines. Meliarachin C (IC50 0.65 μM) and 3-O-deacetyl-4'-demethyl-28-oxosalannin (IC50 2.8 μM) exhibited potent cytotoxic activity against HL60 cells, and this was demonstrated mainly due to the induction of apoptosis by flow cytometry. Western blot analysis suggested that both compounds induced apoptosis via both the mitochondrial and death receptor-mediated pathways. In addition, 25 compounds were evaluated for their inhibitory effects against the Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells.
Collapse
Affiliation(s)
- Toshihiro Akihisa
- College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Tokyo 101-8308, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ju J, Qi Z, Cai X, Cao P, Liu N, Wang S, Chen Y. Toosendanin induces apoptosis through suppression of JNK signaling pathway in HL-60 cells. Toxicol In Vitro 2013; 27:232-238. [PMID: 23111283 DOI: 10.1016/j.tiv.2012.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/05/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022]
Abstract
Toosendanin (TSN), a triterpenoid isolated from Melia toosendan Sieb. et Zucc., has been found to suppress proliferation and induce apoptosis in a variety of human cancer cells. However, the mechanism how TSN induces apoptosis remains poorly understood. In this study, we examined the effects of TSN on the growth, cell cycle arrest, induction of apoptosis and the involved signaling pathway in human promyelocytic leukemia HL-60 cells. Proliferation of HL-60 cells was inhibited in a dose-dependent manner with the IC(50 (48 h)) of 28 ng/mL. The growth inhibition was due primarily to the S phase arrest and cell apoptosis. Cell apoptosis induced by TSN was confirmed by Annexin V-FITC/propidium iodide staining. The increase of the pro-apoptotic protein Bax, cleaved PARP and caspase-3, and the decrease of anti-apoptotic protein Bcl-2 were observed. Western blot analysis indicated that TSN inhibits the CDC42/MEKK1/JNK pathway. Taken together, our study suggested, for the first time, that the pro-apoptotic effects of TSN on HL-60 cells were mediated through JNK signaling pathway.
Collapse
Affiliation(s)
- Jianming Ju
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Ju J, Qi Z, Cai X, Cao P, Huang Y, Wang S, Liu N, Chen Y. The apoptotic effects of toosendanin are partially mediated by activation of deoxycytidine kinase in HL-60 cells. PLoS One 2012; 7:e52536. [PMID: 23300702 PMCID: PMC3531419 DOI: 10.1371/journal.pone.0052536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/15/2012] [Indexed: 12/17/2022] Open
Abstract
Triterpenoid toosendanin (TSN) exhibits potent cytotoxic activity through inducing apoptosis in a variety of cancer cell lines. However, the target and mechanism of the apoptotic effects by TSN remain unknown. In this study, we captured a specific binding protein of TSN in HL-60 cells by serial affinity chromatography and further identified it as deoxycytidine kinase (dCK). Combination of direct activation of dCK and inhibition of TSN-induced apoptosis by a dCK inhibitor confirmed that dCK is a target for TSN partially responsible for the apoptosis in HL-60 cells. Moreover, the activation of dCK by TSN was a result of conformational change, rather than auto-phosphorylation. Our results further imply that, in addition to the dATP increase by dCK activation in tumor cells, dCK may also involve in the apoptotic regulation.
Collapse
Affiliation(s)
- Jianming Ju
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhichao Qi
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Xueting Cai
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Peng Cao
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yan Huang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
36
|
Wang X, Wang C, Wang Z. Determination of toosendanin in rat plasma by ultra-performance liquid chromatography-electrospray ionization-mass spectrometry and its application in a pharmacokinetic study. Biomed Chromatogr 2012; 27:222-7. [DOI: 10.1002/bmc.2779] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/17/2012] [Indexed: 11/05/2022]
|
37
|
Man S, Gao W, Wei C, Liu C. Anticancer drugs from traditional toxic Chinese medicines. Phytother Res 2012; 26:1449-65. [PMID: 22389143 DOI: 10.1002/ptr.4609] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 02/06/2023]
Abstract
Many anticancer drugs are obtained from natural sources. Nature produces a variety of toxic compounds, which are often used as anticancer drugs. Up to now, there are at least 120 species of poisonous botanicals, animals and minerals, of which more than half have been found to possess significant anticancer properties. In spite of their clinical toxicity, they exhibit pharmacological effects and have been used as important traditional Chinese medicines for the different stages of cancer. The article reviews many structures such as alkaloids of Camptotheca acuminata, Catharanthus roseus and Cephalotaxus fortunei, lignans of Dysosma versipellis and Podophyllum emodi, ketones of Garcinia hanburyi, terpenoids of Mylabris and Ginkgo biloba, diterpenoids of Tripterygium wilfordii, Euphorbia fischeriana, Euphorbia lathyris, Euphorbia kansui, Daphne genkwa, Pseudolarix kaempferi and Brucea javanica, triterpenoids of Melia toosendan, steroids of Periploca sepium, Paris polyphylla and Venenum Bufonis, and arsenic compounds including Arsenicum and Realgar. By comparing their related phytochemistry, toxic effects and the recent advances in understanding the mechanisms of action, this review puts forward some ideals and examples about how to increase antitumour activity and/or reduce the side effects experienced with Chinese medicine.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Fermentation Microbiology, (Tianjin University of Science and Technology), Ministry of Education, Tianjin, 300457, PR China
| | | | | | | |
Collapse
|
38
|
Zhang Y, Tang CP, Ke CQ, Li XQ, Xie H, Ye Y. Limonoids from the fruits of Melia toosendan. PHYTOCHEMISTRY 2012; 73:106-113. [PMID: 22041666 DOI: 10.1016/j.phytochem.2011.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 09/21/2011] [Accepted: 10/04/2011] [Indexed: 05/31/2023]
Abstract
Fifteen limonoids, meliatoosenins E-S (1-15), and 10 known compounds were isolated from the fruits of Melia toosendan. Their structures were elucidated on the basis of extensive spectroscopic methods including DEPT, HSQC, HMBC, (1)H-(1)H COSY, and ROESY experiments. All the compounds were evaluated for antiproliferative activity using A-549 and HL-60 cell lines.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Natural Products Chemistry and Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China
| | | | | | | | | | | |
Collapse
|
39
|
Caboni P, Ntalli NG, Bueno CE, Alchè LE. Isolation and Chemical Characterization of Components with Biological Activity Extracted from Azadirachta indicaand Melia azedarach. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1093.ch004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- P. Caboni
- Dipartimento di Tossicologia, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 4to. Piso, Ciudad Universitaria, Buenos Aires, Argentina
| | - N. G. Ntalli
- Dipartimento di Tossicologia, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 4to. Piso, Ciudad Universitaria, Buenos Aires, Argentina
| | - C. E. Bueno
- Dipartimento di Tossicologia, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 4to. Piso, Ciudad Universitaria, Buenos Aires, Argentina
| | - L. E. Alchè
- Dipartimento di Tossicologia, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
- Pesticide Science Laboratory, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 4to. Piso, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
40
|
Deng Z, Yuan T, Cui S, Liu S, Xie Y, Yao Q. Development and validation of an LC-MS-MS method for determination of methyl kulonate in rat plasma. Biomed Chromatogr 2011; 26:857-62. [DOI: 10.1002/bmc.1741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhipeng Deng
- Institute of Materia Medica; Shandong Academy of Medical Sciences; Jinan; 250062; People's Republic of China
| | - Tao Yuan
- Bioactive Botanical Research Laboratory; Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy; University of Rhode Island; RI 02881; USA
| | - Shuxiang Cui
- Institute of Materia Medica; Shandong Academy of Medical Sciences; Jinan; 250062; People's Republic of China
| | - Shaochao Liu
- Institute of Materia Medica; Shandong Academy of Medical Sciences; Jinan; 250062; People's Republic of China
| | - Yanying Xie
- Institute of Materia Medica; Shandong Academy of Medical Sciences; Jinan; 250062; People's Republic of China
| | - Qingqiang Yao
- Institute of Materia Medica; Shandong Academy of Medical Sciences; Jinan; 250062; People's Republic of China
| |
Collapse
|
41
|
Yang Y, Xiao Y, Liu B, Fang X, Yang W, Xu J. Comparison of headspace solid-phase microextraction with conventional extraction for the analysis of the volatile components in Melia azedarach. Talanta 2011; 86:356-61. [DOI: 10.1016/j.talanta.2011.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/15/2011] [Accepted: 09/18/2011] [Indexed: 10/17/2022]
|
42
|
Affiliation(s)
- Qin-Gang Tan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, P.R.China
- Guilin Medical University, Guilin, 541004, P.R.China
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, P.R.China
| |
Collapse
|
43
|
Inhibitory effect of a triterpenoid compound, with or without alpha interferon, on hepatitis C virus infection. Antimicrob Agents Chemother 2011; 55:2537-45. [PMID: 21444704 DOI: 10.1128/aac.01780-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A lack of patient response to alpha interferon (α-IFN) plus ribavirin (RBV) treatment is a major problem in eliminating hepatitis C virus (HCV). We screened chemical libraries for compounds that enhanced cellular responses to α-IFN and identified a triterpenoid, toosendanin (TSN). Here, we studied the effects and mechanisms of action of TSN on HCV replication and its effect on α-IFN signaling. We treated HCV genotype 1b replicon-expressing cells and HCV-J6/JFH-infected cells with TSN, with or without α-IFN, and the level of HCV replication was quantified. To study the effects of TSN on α-IFN signaling, we detected components of the interferon-stimulated gene factor 3 (ISGF3), phosphorylated signal transducer and activator of transcription 1 (STAT1), and STAT2 by Western blotting analysis; expression levels of mRNA of interferon regulatory factor 9 using real-time reverse transcription-PCR (RT-PCR); and interferon-stimulated response element reporter activity and measured the expression levels of interferon-inducible genes for 2',5'-oligoadenylate synthetase, MxA, protein kinase R, and p56 using real-time RT-PCR. TSN alone specifically inhibited expression of the HCV replicon (50% effective concentration = 20.6 nM, 50% cytotoxic concentration > 3 μM, selectivity index > 146). Pretreatment with TSN prior to α-IFN treatment was more effective in suppressing HCV replication than treatment with either drug alone. Although TSN alone did not activate the α-IFN pathway, it significantly enhanced the α-IFN-induced increase of phosphorylated STATs, interferon-stimulated response element activation, and interferon-stimulated gene expression. TSN significantly increased baseline expression of interferon regulatory factor 9, a component of interferon-stimulated gene factor 3. Antiviral effects of treatment with α-IFN can be enhanced by pretreatment with TSN. Its mechanisms of action could potentially be important to identify novel molecular targets to treat HCV infection.
Collapse
|
44
|
Cytotoxic tirucallane triterpenoids from Melia azedarach fruits. Molecules 2010; 15:5866-77. [PMID: 20802401 PMCID: PMC6257693 DOI: 10.3390/molecules15095866] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 11/18/2022] Open
Abstract
The phytochemical investigation of the dichloromethane-soluble part of the methanol extract obtained from the fruits of Melia azedarach afforded one new tirucallane-type triterpene, 3-α-tigloylmelianol (1) and three known tirucallanes, melianone (2), 21-β-acetoxy-melianone (3), and methyl kulonate (4). The structure of the isolated compounds was mainly determined by 1D and 2D NMR experiments as well as HPLC-Q-TOF mass spectrometry. The cytotoxicity of the isolated compounds toward the human lung adenocarcinoma epithelial cell line A549 was determined, while no activity was observed against the phytonematode Meloidogyne incognita.
Collapse
|
45
|
Zhao L, Huo CH, Shen LR, Yang Y, Zhang Q, Shi QW. Chemical constituents of plants from the genus Melia. Chem Biodivers 2010; 7:839-59. [PMID: 20397220 DOI: 10.1002/cbdv.200900043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lei Zhao
- Department of Natural Product Chemistry, School of Pharmaceutical Sciences, Hebei Medical University, 361 Zhongshan East Road, 050017 Shijiazhuang, Hebei Province, P. R. China
| | | | | | | | | | | |
Collapse
|
46
|
Zhang Y, Tang CP, Ke CQ, Yao S, Ye Y. Limonoids and triterpenoids from the stem bark of Melia toosendan. JOURNAL OF NATURAL PRODUCTS 2010; 73:664-668. [PMID: 20337487 DOI: 10.1021/np900835k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Four new limonoids (1, 3, 4, 6), named meliatoosenins A-D, eight new euphane- and tirucallane-type triterpenoids (8-15), named meliasenins A-H, and 13 known compounds have been isolated from the stem bark of Melia toosendan. The structures of new compounds were established on the basis of 1D and 2D NMR experiments ((1)H-(1)H COSY, HSQC, HMBC, and ROESY).
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Drug Research & Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Zhang JL, Shi WY, Zhong W, Ma AT, Wang XD, Zhao YT, Wang M, Zhong XH. Effects of toosendanin on pregnancy and uterine immunity alterations in mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 38:319-28. [PMID: 20387228 DOI: 10.1142/s0192415x10007877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was conducted to explore the abortifacient effect and the mechanisms of the Chinese herbal medicine component toosendanin, and to elucidate the significance of the Th1 cytokines IFN-gamma and TNF-alpha, CD4+ and CD8+ T lymphocytes in the occurrence of abortion. Graded doses of toosendanin were given by intraperitoneal injection (i.p.) to mice at day 5, 6, 7 of gestation. The levels of Th1 cytokines (IFN-gamma, TNF-alpha) in serum and uterine tissues from mice sacrificed at day 8 were analyzed by enzyme linked immunosorbent assay (ELISA). Presence of T lymphocytes in endometrium was detected by immunohistochemistry. The results revealed that injection of toosendanin could produce a dose-dependent toxicity. The IFN-gamma, TNF-alpha content in serum and uterine tissues were increased significantly. The CD4+ and CD8+ T lymphocytes were also increased in the endometrium of toosendanin treated groups. In conclusion, toosendanin is pregnancy-toxic to animals and it is relevant to the increased contents of IFN-gamma, TNF-alpha and CD4+, CD8+ T lymphocytes.
Collapse
Affiliation(s)
- Jian-Lou Zhang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Dingzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Sang YS, Zhou CY, Lu AJ, Yin XJ, Min ZD, Tan RX. Protolimonoids from Melia toosendan. JOURNAL OF NATURAL PRODUCTS 2009; 72:917-920. [PMID: 19341288 DOI: 10.1021/np800669c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Toosendanone A (1), a new euphane (tirucallane)-type triterpene bearing a five-membered ring in the side chain and the first cyclopentanyl protolimonoid, was isolated from the bark of Melia toosendan, along with two new tirucallanes, toosendanic acids A (2) and B (3). The structure and absolute configuration of compound 1 was elucidated by spectroscopic data interpretation and X-ray diffraction analysis. Compounds 1-3 were evaluated for cytotoxicity against a small panel of cancer cell lines.
Collapse
Affiliation(s)
- Yi Shu Sang
- Laboratory of Natural Products, Jiangsu Simcere Pharmaceutical R&D Company, Ltd, 699-18 Xuanwu Road, Xuanwu District, Nanjing 210042, People's Republic of China
| | | | | | | | | | | |
Collapse
|
49
|
Zhang J, Feng G, Luo L, Yu XY, Ma ZQ, Feng JT, Liu XJ, Zhang X. Development of an enzyme-linked immunosorbent assay for toosendanin. Anal Chim Acta 2008; 622:182-8. [DOI: 10.1016/j.aca.2008.05.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 11/27/2022]
|
50
|
Tetraploids Isatis indigotica are more responsive and adaptable to stresses than the diploid progenitor based on changes in expression patterns of a cold inducible Ii CPK1. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0094-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|