1
|
Luo T, Qin W, Wang Y, Sun Y, Kong S, Zou Y, Liang W. Arsenic mobility and microbial community composition in the sediments of coastal wetlands driven by tidal action. J Environ Sci (China) 2025; 153:99-108. [PMID: 39855808 DOI: 10.1016/j.jes.2024.01.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 01/27/2025]
Abstract
Arsenic (As) pollution in coastal wetlands has been receiving growing attention. However, the exact mechanism of As mobility driven by tidal action is still not completely understood. The results reveal that lower total As concentrations in solution were observed in the flood-ebb treatment (FE), with the highest concentration being 7.1 µg/L, and As(V) was the predominant species. However, elevated levels of total As in solution were found in the flooded treatment (FL), with a maximum value of 14.5 µg/L after 30 days, and As(III) was the predominant form. The results of dissolved organic matter (DOM) suggest that in the early to mid-stages of the incubation, fulvic acid-like substances might be utilized by microorganisms as electron donors or shuttle bodies, facilitating the reductive release of As/Fe from sediments. Both flood-ebb and flooded treatments promoted the transformation of crystalline iron hydrous oxides-bound As into residual forms. However, prolonged flooded conditions more readily facilitated the formation of specific adsorption forms of As and the reduction of crystalline iron hydrous oxides-bound As, increasing As mobility. In addition, the flood-ebb tides have been found to increase the diversity of microbial populations. The main microbial genera in the flood-ebb treatment included Salinimicrobium, Erythrobacter, Yangia, Sulfitobacter, and Marinobacter. Bacillus, Psychrobacter, and Yangia showed a significant correlation with As(V). In flooded treatment, Bacillus, Pseudomonas, and Geothermobacter played a major role in the reduction and release of As. This study significantly contributes to the current understanding of how As behaves in diverse natural environments.
Collapse
Affiliation(s)
- Ting Luo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China.
| | - Wei Qin
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Yuzhong Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Yan Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Sheng Kong
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Yang Zou
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| | - Weihao Liang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Ecology and Pollution Control of Coastal Wetlands, Yancheng 224051, China
| |
Collapse
|
2
|
de Aguilar DCB, de Queiroz MM, Pinto CC, Santos CRD, Drumond GP, Moreira VR, Amaral MCS. Co-occurrence of arsenic and sewage pollutants in surface and groundwater and its implications for water treatment using membrane technology. WATER RESEARCH 2025; 273:122994. [PMID: 39731838 DOI: 10.1016/j.watres.2024.122994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/15/2024] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption. Sewage discharge in rich-As water bodies alters environmental conditions, increasing the concentration of organic matter, carbonate and bicarbonate, nitrite, sulfate, and phosphate in water. These changes could enhance As solubilization and release to water. This review investigates the interactions between these contaminants, and their implications for membrane-based water treatment processes. Organic pollutants in surface water promote microbial growth, depleting oxygen and altering redox conditions, which enhances As solubilization and concentration in the water. The interaction between organic pollutants and As primarily occurs through adsorption and complexation, influenced by the pollutants' functional groups and the water's pH. Bicarbonates and pH play critical roles in determining As speciation (As(V) or As(III)), while oxidants like nitrate increase As mobility by promoting its oxidation. When arsenic is primarily present as As(V), membrane-based removal processes tend to be more efficient. Sulfur also affects As dynamics through microbial processes and adsorption onto sulfide minerals. When nitrate and sulfate are present, Donnan exclusion becomes a critical mechanism that affects arsenic removal by NF and RO membranes. Although membrane technologies maintain high As rejection rates (97-99 %), even in the presence of sewage pollutants, this advantage is offset by the challenges of fouling and the generation of highly concentrated waste streams. So, it is urgent to avoid raw or not adequately treated sewage in As-rich environments.
Collapse
Affiliation(s)
- Débora Campos Barreira de Aguilar
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Marina Muniz de Queiroz
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Carolina Cristiane Pinto
- Department of Environmental Engineering, Federal University of Triângulo Mineiro, Avenue Dr. Randolfo Borges Júnior, 1250, Univerdecidade, Uberaba, MG 38064-200, Brazil
| | - Carolina Rodrigues Dos Santos
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Guilherme Pinheiro Drumond
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Victor Rezende Moreira
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil
| | - Míriam Cristina Santos Amaral
- Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Grider A, Saros J, Northington R, Yde JC. Glacially-fed lakes of West Greenland have elevated metal and nutrient concentrations and serve as regional repositories of these materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178744. [PMID: 39946888 DOI: 10.1016/j.scitotenv.2025.178744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
The fate of heavy metals and nutrients melting out of the cryosphere into aquatic systems is not well understood. To address this, we measured heavy metals and nutrients in the water and sediment of four glacially-fed (GF) and four snow and groundwater-fed (SF) lakes near Kangerlussuaq, West Greenland during the summer of 2023. Average nutrient concentrations - total phosphorus (TP), NO3-, and NH4+ - in the water of GF lakes were 86 % higher and average total concentrations of some metals - Cd, Pb, Cr, Co, Ni, Al, Fe, Cu, Zn - were 137 % higher compared to nearby SF lakes. This pattern was also reflected in the sediment, where metal concentrations were generally higher in GF lakes compared to SF lakes. However, a few metals, including Hg, As, Cu, and Pb, were higher in SF compared to GF sediment. Our results suggest metals may be increasing over the past few years to decades in GF lakes, and certain metals have increased in SF lakes, notably Hg has substantially increased (298 %), as well as Pb (52.8 %), in SF lakes over the past century. The increase in Hg and Pb in SF, but not GF lakes, is likely due to the higher organic carbon and longer residence times of SF compared to GF lakes. In one GF lake, we quantified inputs and outputs of metals and nutrients, and we found that loads declined by an average of 71 % for metals and 68 % for nutrients from the lake inlet to outlet, suggesting the lake is a sink for these materials. SF lakes also appear to be reservoirs of some metals, specifically atmospherically deposited metals (Hg, Pb, As, and Cu). Our results highlight that GF lakes in West Greenland are elevated in nutrients and some metals compared to nearby SF lakes, indicating that the source of these materials is likely meltwater from the glacial system. We found that GF lakes can sequester a high percentage of the nutrients and metals flowing into them; however, as meltwater fluxes increase due to climate change, the ability of these lakes to remain sinks is an open question.
Collapse
Affiliation(s)
- Ansley Grider
- University of Maine, Climate Change Institute & Ecology and Environmental Sciences, 13 Sawyer Service Ln, Orono, ME 04473, USA.
| | - Jasmine Saros
- University of Maine, Climate Change Institute & Ecology and Environmental Sciences, 13 Sawyer Service Ln, Orono, ME 04473, USA
| | - Robert Northington
- Elizabethtown College, Biology and Environmental Science Department, Elizabethtown, PA 17022, USA
| | - Jacob Clement Yde
- Western Norway University of Applied Sciences, Department of Civil Engineering and Environmental Sciences, Røyrgata 6, 6856 Sogndal, Norway
| |
Collapse
|
4
|
Jia W, McCreanor C, Carey M, Holland J, Meharg C, Meharg AA. Mobilization of grassland soil arsenic stores due to agronomic management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177702. [PMID: 39577579 DOI: 10.1016/j.scitotenv.2024.177702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The fate of arsenic in mineral soil stores over time is poorly understood. Here we examined arsenic loss over five decades from a managed grassland soil profile through analysing archived material from a long-term slurry (LTS) experiment at Hillsborough, Northern Ireland. A randomized block experiment was established in 1970 where a perennial ryegrass sward was seeded onto the site and subjected to control (no fertilization) and fertilization treatments using conventional (i.e. at farmers recommended application rate) mineral NPK fertilizer, and pig and cow slurry treatments. Soil (0-5, 5-10 and 10-15 cm), slurry applied, and sward off-take was archived each year. A mass-balance calculation found that control soils lost no arsenic down the 15 cm depth soil profile, the NPK treatment had a 10 % loss, while cow slurry caused 25 % loss, and a 35 % loss was observed for pig slurry. For treatments with arsenic loss, removal was linear over the 50 years of study in 2 out of the 3 blocks, with the 3rd block showing little or no change. Principal Component Analysis (PCA) found that arsenic was most positively associated with soil magnesium, manganese and nickel, while negatively associated with pH, organic carbon, phosphorus and silicon. Laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) of soil found that arsenic association with lead mineralogy could potentially explain why there was a gradient in arsenic loss across the experimental plots. Slurry and atmospheric inputs, and sward off-take had little impact on the soil arsenic mass-balance. The findings suggest that leaching loss down the soil profile was the mechanism of loss of arsenic. The applicability of the LTS experimental site arsenic findings to other soils is discussed, as is the implication for the global biogeochemical cycling of those soils.
Collapse
Affiliation(s)
- Wanqi Jia
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| | - Coalain McCreanor
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland; Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, United Kingdom of Great Britain and Northern Ireland
| | - Manus Carey
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| | - Jonathan Holland
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, United Kingdom of Great Britain and Northern Ireland.
| | - Caroline Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland.
| | - Andrew A Meharg
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
5
|
Raza MB, Datta SP, Golui D, Barman M, Ray P, Upadhyay D, Mishra R, Roy A, Dash AK. Enhancing soil arsenic immobilization with organic and inorganic amendments: insights from sorption-desorption study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:76. [PMID: 39702627 DOI: 10.1007/s10661-024-13492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
The retention and mobility of arsenic (As) in soil depend on various physical and chemical factors. The knowledge of the sorption-desorption chemistry of As in soil is necessary for predicting the fate and behavior of As in soil environments. Therefore, this study assessed different organic (sugarcane bagasse and vermicompost) and inorganic amendments (steel slag and fly ash) for their impact on sorption-desorption of As in texturally different contaminated soils (of sandy clay (SC) and sandy clay loam (SCL) texture) to understand the effect of amendments on As retention and mobility. The results showed that the sorption data fitted well with both Langmuir and Freundlich isotherm equations. The As sorption capacity was significantly enhanced with the application of all amendments. At 30 °C, the adsorption maxima (qmax) of SC soils enhanced to a greater extent following the order: steel slag (278 mg kg-1) > sugarcane bagasse (264 mg kg-1) > vermicompost (246 mg kg-1) > fly ash (242 mg kg-1). Whereas, in SCL, the order of qmax was steel slag (145 mg kg-1) > sugarcane bagasse (132 mg kg-1) > fly ash (120 mg kg-1) > vermicompost (118 mg kg-1). Desorption index (DI) was invariably to > 1 at both temperatures with the application of amendments indicating hysteretic desorption of As. The free energy change (ΔG°) was negative in all treatments and soils (indicating a favorable sorption process) with positive entropy change (ΔS°) values. The study recommends steel slag as the most effective amendment for enhancing As (V) retention in contaminated soils, due to its higher sorption capacity compared to other amendments like sugarcane bagasse, vermicompost, and fly ash. The amendments generally improved As sorption in both soils, reducing As mobility and potentially limiting its environmental spread.
Collapse
Affiliation(s)
- Md Basit Raza
- ICAR-Directorate of Floricultural Research, Pune, 411036, Maharashtra, India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Siba Prasad Datta
- ICAR-Indian Institute of Soil Science, Bhopal, 462038, Madhya Pradesh, India.
| | - Debasis Golui
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Mandira Barman
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prasenjit Ray
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Devi Upadhyay
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rahul Mishra
- ICAR-Indian Institute of Soil Science, Bhopal, 462038, Madhya Pradesh, India
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Arkaprava Roy
- ICAR-National Institute of Biotic Stress Management, Raipur, 493225, Chhattisgarh, India
| | - Amit K Dash
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| |
Collapse
|
6
|
Cao X, Hu X, Efrizal E, Hayati I, Yang J, Tan C, Zhang M. Tradeoffs among yield, cadmium bioavailability, nitrous oxide emission and bacterial community stability: Effects of iron-modified woody peat and nitrification inhibitors on soil-vegetable systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123379. [PMID: 39550941 DOI: 10.1016/j.jenvman.2024.123379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/19/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Cadmium (Cd) pollution leads to soil degradation, decreases crop yield and affects human health through the food chain. Iron-modified woody peat (IMP) is an organic passivation material that significantly affects the migration of heavy metals in soil. Nitrification inhibitors are widely used to reduce greenhouse gas emissions. This study investigated the effects of the IMP and nitrification inhibitors dicyandiamide (DCD) and 3, 4-dimethylpyrazole phosphate on Cd content and form, crop yield, nitrous oxide (N2O) emission and bacterial communities in soil-lettuce systems. The simultaneous additions of IMP and DCD substantially reduced the soil available Cd content by 22.6 % and significantly promoted the lettuce yield by 42.9 %. Lettuce yield was significantly and negatively correlated with soil available Cd (correlation coefficient = -0.52). The simultaneous applications of IMP and nitrification inhibitors stimulated N2O emission risk by enhancing the soil NH4+-N contents and the relative abundances of Firmicutes, which could also decrease soil bacterial community stabilities. Therefore, tradeoffs among yield, Cd bioavailability, N2O emission and bacterial community stability should be comprehensively considered when evaluating the combined performances of IMP and nitrification inhibitors.
Collapse
Affiliation(s)
- Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, China
| | - Xinyue Hu
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China
| | - Efrizal Efrizal
- Department of Agroeco-Technology Faculty of Agriculture, Jambi University, 36657, Indonesia; Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - IsIah Hayati
- Department of Agroeco-Technology Faculty of Agriculture, Jambi University, 36657, Indonesia
| | - Jia Yang
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Manyun Zhang
- Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China; Centre for Planetary Health and Food Security, Griffith University, Nathan, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
7
|
Zhang X, Zhang P, Wei X, Peng H, Hu L, Zhu X. Migration, transformation of arsenic, and pollution controlling strategies in paddy soil-rice system: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175500. [PMID: 39151637 DOI: 10.1016/j.scitotenv.2024.175500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Arsenic pollution in paddy fields has become a public concern by seriously threatening rice growth, food security and human health. In this review, we delve into the biogeochemical behaviors of arsenic in paddy soil-rice system, systemically revealing the complexity of its migration and transformation processes, including the release of arsenic from soil to porewater, uptake and translocation of arsenic by rice plants, as well as transformation of arsenic species mediated by microorganism. Especially, microbial processes like reduction, oxidation and methylation of arsenic, and the coupling of arsenic with carbon, iron, sulfur, nitrogen cycling through microbes and related mechanisms were highlighted. Environmental factors like pH, redox potential, organic matter, minerals, nutrient elements, microorganisms and periphyton significantly influence these processes through different pathways, which are discussed in this review. Furthermore, the current progress in remediation strategies, including agricultural interventions, passivation, phytoremediation and microbial remediation is explored, and their potential and limitations are analyzed to address the gaps. This review offers comprehensive perspectives on the complicated behaviors of arsenic and influence factors in paddy soil-rice system, and provides a scientific basis for developing effective arsenic pollution control strategies.
Collapse
Affiliation(s)
- Xing Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Panli Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Xin Wei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoli Zhu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
8
|
Song Y, Zhang F, Li H, Gao Y, Liu Y, Zhang Z, Fang Y, Liu X, Yang Z. Dominant role of soil iron and organic matters in arsenic transfer from soil to plant in a mine area in Hunan Province, Central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55410-55421. [PMID: 39230812 DOI: 10.1007/s11356-024-34675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
The transfer of arsenic (As) from soil to plant could be significantly influenced by soil parameters through regulating soil As bioavailability. To distinguish the bioavailable As provided by soil and the As uptaken by plants, herein two different soil bioavailable were defined, namely potential soil bioavailable As (evaluated through the bioavailable fraction of As) and actual soil bioavailable As (assessed through plant bioaccumulation factor, BF, and BFavailable). To identify the dominant soil parameters for the two soil bioavailable As forms, soil and plant samples were collected from a former As mine site. The results showed that the potential bioavailable As only accounted for 1.77 to 11.43% in the sampled soils, while the BF and BFavailable in the sampled vegetables ranged from 0.00 to 1.01 and 0.01 to 17.87, respectively. Despite a similar proportion of As in the residual fraction, soil with higher pH and organic matter (OM) content and lower iron (Fe) content showed a higher potential soil bioavailable As. Correlation analysis indicated a relationship between the soil pH and potential soil bioavailable As (r = 0.543, p < 0.01) and between the soil Fe and actual soil bioavailable As (r = - 0.644, p < 0.05, r = - 0.594, p < 0.05). Stepwise multiple linear regression (SMLR) analysis was employed to identify the dominant soil parameters and showed that soil pH and phosphorus (P) content could be used to predict the potential soil bioavailable As (R2 = 0.69, p < 0.001). On the other hand, soil Fe and OM could be used to predict the actual soil bioavailable As (R2 = 0.18-0.86, p < 0.001-0.015, in different vegetables). These results suggest that different soil parameters affect potential and actual soil bioavailable As. Hence, soil Fe and OM are the most important parameters controlling As transfer from soil to plant in the investigated area.
Collapse
Affiliation(s)
- Yang Song
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Fenglin Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China.
| | - Ya Gao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Yang Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Ying Fang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Xinghao Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, China
| |
Collapse
|
9
|
Preziosi E, Frollini E, Ghergo S, Parrone D, Ruggiero L, Sciarra A, Ciotoli G. A comprehensive monitoring approach for a naturally anoxic aquifer beneath a controlled landfill. CHEMOSPHERE 2024; 362:142657. [PMID: 38901701 DOI: 10.1016/j.chemosphere.2024.142657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The processes leading to high levels of arsenic (As), iron (Fe), and manganese (Mn) in groundwater, in a naturally reducing aquifer at a controlled municipal landfill site, are investigated. The challenge is to distinguish the natural water-rock interaction processes, that allow these substances to dissolve in groundwater, from direct pollution or enhanced dissolution of hydroxides as undesired consequences of the anthropic activities above. Ordinary groundwater monitoring of physical-chemical parameters and inorganic compounds (major and trace elements) was complemented by environmental isotopes of groundwater (tritium, deuterium, oxygen-18 and carbon-13) and dissolved gases (carbon-13 of methane and carbon dioxide and carbon-14 of methane). Pearson/Spearman correlation indices, as well as Principal Component Analysis (PCA), were used to determine the main correlations among variables. The concurrent presence of As, Fe and CH4, as reported in similar anoxic environments, suggests that anaerobic oxidation of methane could drive the reductive dissolution of As-rich Fe(III)(hydro)oxides. Manganese is more sensitive to carbon dioxide, possibly due to a decrease in pH which accelerates the dissolution of Mn-oxides. Finally, we found that tritium and deuterium, which have been used for decades as leachate tracer in groundwater, may be subject to false positives due to the reuse of water recovered from leachate treatment (which has the same isotopic signature of leachate) within the plants, to comply with the requirements of the circular economy. The integration of the environmental isotope analysis into the traditional monitoring approach can effectively support the comprehension of processes. However, this strategy needs to be complemented by a good conceptual hydrogeological model and expert evaluation to avoid misinterpretations.
Collapse
Affiliation(s)
- E Preziosi
- CNR-IRSA - National Research Council - Water Research Institute, Montelibretti, Italy.
| | - E Frollini
- CNR-IRSA - National Research Council - Water Research Institute, Montelibretti, Italy
| | - S Ghergo
- CNR-IRSA - National Research Council - Water Research Institute, Montelibretti, Italy
| | - D Parrone
- CNR-IRSA - National Research Council - Water Research Institute, Montelibretti, Italy
| | - L Ruggiero
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Rome, Italy
| | - A Sciarra
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Rome, Italy
| | - G Ciotoli
- INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Roma1, Rome, Italy; CNR-IGAG - National Research Council, Institute of Environmental Geology and Geoengineering, Montelibretti, Italy
| |
Collapse
|
10
|
Filter J, Schröder C, El-Athman F, Dippon-Deissler U, Houben GJ, Mahringer D. Nitrate-induced mobilization of trace elements in reduced groundwater environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171961. [PMID: 38537820 DOI: 10.1016/j.scitotenv.2024.171961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/08/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Groundwater is an essential source for drinking water production. Nitrate infiltration into groundwater due to over-fertilization can cause a potential risk for groundwater quality. Pyrite and other geogenic minerals can be oxidized and trace metals consequently released into water, e.g., nickel and uranium. To achieve a better understanding of the nitrate-induced mobilization of metals, this study investigated the release of antimony, arsenic, chromium, cobalt, molybdenum, uranium, and vanadium from three different reduced sediments after nitrate addition. The experiments were conducted as batch and soil column tests under oxygen-free conditions. In addition to the ORP, the pH value was a relevant driver for the metal mobilization due to pH dependent adsorption and ion exchange processes. Uranium concentrations in the water increased with increasing redox potential. Also, antimony and, to a lesser extent, molybdenum showed higher mobilization at higher ORP as well as at higher pH values. On the contrary, arsenic and cobalt was immobilized with increasing redox potential. Pourbaix diagrams demonstrated very complex species distributions even in synthetic water. The mobilization of trace metals is expected to be also influenced by the type of surrounding rocks and water quality parameters such as dissolved organic carbon.
Collapse
Affiliation(s)
| | | | - Fatima El-Athman
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | | | - Georg J Houben
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | | |
Collapse
|
11
|
Mondal R, Majumdar A, Sarkar S, Goswami C, Joardar M, Das A, Mukhopadhyay PK, Roychowdhury T. An extensive review of arsenic dynamics and its distribution in soil-aqueous-rice plant systems in south and Southeast Asia with bibliographic and meta-data analysis. CHEMOSPHERE 2024; 352:141460. [PMID: 38364927 DOI: 10.1016/j.chemosphere.2024.141460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Millions of people worldwide are affected by arsenic (As) contamination, particularly in South and Southeast Asian countries, where large-scale dependence on the usage of As-contaminated groundwater in drinking and irrigation is a familiar practice. Rice (Oryza sativa) cultivation is commonly done in South and Southeast Asian countries as a preferable crop which takes up more As than any other cereals. The present article has performed a scientific meta-data analysis and extensive bibliometric analysis to demonstrate the research trend in global rice As contamination scenario in the timeframe of 1980-2023. This study identified that China contributes most with the maximum number of publications followed by India, USA, UK and Bangladesh. The two words 'arsenic' and 'rice' have been identified as the most dominant keywords used by the authors, found through co-occurrence cluster analysis with author keyword association study. The comprehensive perceptive attained about the factors affecting As load in plant tissue and the nature of the micro-environment augment the contamination of rice cultivars in the region. This extensive review analyses soil parameters through meta-data regression assessment that influence and control As dynamics in soil with its further loading into rice grains and presents that As content and OM are inversely related and slightly correlated to the pH increment of the soil. Additionally, irrigation and water management practices have been found as a potential modulator of soil As concentration and bioavailability, presented through a linear fit with 95% confidence interval method.
Collapse
Affiliation(s)
- Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Sukamal Sarkar
- Divison of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Chandrima Goswami
- Department of Environmental Studies, Rabindra Bharati University, Kolkata, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | | |
Collapse
|
12
|
Liao YJ, Cao YR, Lee DY. Assessment of health risks associated with prediction of vegetable inorganic arsenic concentrations given different soil properties. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:71. [PMID: 38366045 DOI: 10.1007/s10653-023-01843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Inorganic arsenic (iAs) is a carcinogen. Vegetables such as water spinach (Ipomoea aquatica Forssk.) and amaranth (Amaranthus mangostanus L.) are recognized as high-risk sources of iAs exposure because they can accumulate significant amounts of iAs and are widely consumed. To ensure safe cultivation conditions, this study aimed to establish prediction models for iAs concentration in the edible parts of water spinach and amaranth based on soil properties. Subsequently, health risk assessments associated with iAs exposure through the consumption of these vegetables were conducted using prediction models. Soil samples were collected from agricultural fields in Taiwan and used in the pot experiments. Pearson correlation and partial correlation analyses were used to explore the relationship between soil properties, including total As, clay, organic matter, iron oxides and available phosphates, and iAs concentration in edible parts of water spinach and amaranth. Prediction models based on soil properties were developed by stepwise multiple linear regression. Health risk assessments were conducted using the Monte Carlo algorithm. The results indicate that total As and organic matter contents in soil were major predictors of iAs concentration in water spinach, whereas those in amaranth were total As and clay contents. Therefore, higher health risks for consuming water spinach and amaranth are associated with higher levels of organic matter and clay contents in soil, respectively, and these are crucial factors to consider to ensure food safety. This study suggested that As-elevated soils enriched with organic matter and clay contents should be avoided when growing water spinach and amaranth, respectively.
Collapse
Affiliation(s)
- Yi-Jie Liao
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Yu-Rong Cao
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Dar-Yuan Lee
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan.
| |
Collapse
|
13
|
Hassan Z, Westerhoff HV. Arsenic Contamination of Groundwater Is Determined by Complex Interactions between Various Chemical and Biological Processes. TOXICS 2024; 12:89. [PMID: 38276724 PMCID: PMC11154318 DOI: 10.3390/toxics12010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
At a great many locations worldwide, the safety of drinking water is not assured due to pollution with arsenic. Arsenic toxicity is a matter of both systems chemistry and systems biology: it is determined by complex and intertwined networks of chemical reactions in the inanimate environment, in microbes in that environment, and in the human body. We here review what is known about these networks and their interconnections. We then discuss how consideration of the systems aspects of arsenic levels in groundwater may open up new avenues towards the realization of safer drinking water. Along such avenues, both geochemical and microbiological conditions can optimize groundwater microbial ecology vis-à-vis reduced arsenic toxicity.
Collapse
Affiliation(s)
- Zahid Hassan
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka 1100, Bangladesh
| | - Hans V. Westerhoff
- Department of Molecular Cell Biology, A-Life, Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Stellenbosch Institute of Advanced Studies (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
14
|
Zhao Y, Zhang X, Jian Z, Gong Y, Meng X. Effect of landfill leachate on arsenic migration and transformation in shallow groundwater systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5032-5042. [PMID: 38148459 DOI: 10.1007/s11356-023-31629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Arsenic contamination of groundwater has affected human health and environmental safety worldwide. Hundreds of millions of people in more than 100 countries around the world are directly or indirectly troubled by arsenic-contaminated groundwater. In addition, arsenic contamination of groundwater caused by leakage of leachate from municipal solid waste landfills has occurred in some countries and regions, which has attracted widespread attention. Understanding how domestic waste landfill leachate affects the arsenic's migration and transformation in shallow groundwater is crucial for accurate assessment of the distribution and ecological hazards of arsenic in groundwater. Based on literature review, this study systematically summarized and discussed the basic characteristics of landfill leachate, the mechanism of arsenic pollution in groundwater, and the effect of landfill leachate on the migration and transformation of arsenic in groundwater. Combined with relevant research findings and practical experience, countermeasures and suggestions to limit the impact of landfill leachate on the migration and transformation of arsenic in groundwater are put forward.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhiqiang Jian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yaping Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Meng
- Center for Environmental Systems, Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
15
|
Darma A, Feng Y, He C, Han H, Zandi P, Bloem E, Yang J. Maize straw application reduced cadmium and increased arsenic uptake in wheat and enhanced the rhizospheric bacterial communities in alkaline-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119138. [PMID: 37783079 DOI: 10.1016/j.jenvman.2023.119138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 10/04/2023]
Abstract
Many fields where wheat is grown in northern China are co-polluted by arsenic (As) and cadmium (Cd). Thus, remediation of As and Cd-contaminated alkaline soils is crucial for safe wheat production. In this study, a pot experiment was carried out to investigate the impact of 1% and 2% maize straw (MS) incorporation on As and Cd bioavailability, binding forms, uptake by winter wheat (Triticum aestivum L.), and bacterial communities in smelter (SS) and irrigation (IS) alkaline contaminated soils. The results indicated that 2% MS incorporation significantly (p < 0.05) increased bioavailable-As by 37% (SS) and 39% (IS) with no significant change in the bioavailable-Cd in SS2% (31.95%) from 31.95% (SSCK) and IS2% (33.33%) from 32.82% (ISCK). Incorporation of 2% MS increased the grain As concentration from 0.22 mg kg-1 (SSCK) to 0.51 mg kg-1 (SS2%) and from 0.59 mg kg-1 (ISCK) to 0.84 mg kg-1 (IS2%) which is above the acceptable standard of 0.5 mg kg-1 (GB2726-2017). In contrast, the Cd content in grains was maintained at 0.09 (SS1%), 0.04 (SS2%) and 0.03 (IS1%), 0.02 (IS2%) below the acceptable standard of 0.10 mg kg-1 (GB2762-2017). The amendment through dissolved organic carbon mediated As desorption enhanced As transfer to wheat grain, decreasing DTPA-Cd in the soils and its consequent translocation to wheat leaves and grain. The 2% MS incorporation increased the active As fractions, reduced mobile Cd into immobile fractions, and promoted the abundance of Actinobacteria, Bacteroidetes, and Firmicutes in the two soils. These attributes of MS in decreasing the accumulation of Cd in wheat leaves and grains signified its potential as a suitable ingredient for Cd sequestration and food safety in Cd-contaminated soils.
Collapse
Affiliation(s)
- Aminu Darma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing, 100081, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hui Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, China.
| | - Elke Bloem
- Institute for Crop and Soil Science Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Bundesallee 69, 38116, Braunschweig, Germany.
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
16
|
El Rasafi T, Haouas A, Tallou A, Chakouri M, Aallam Y, El Moukhtari A, Hamamouch N, Hamdali H, Oukarroum A, Farissi M, Haddioui A. Recent progress on emerging technologies for trace elements-contaminated soil remediation. CHEMOSPHERE 2023; 341:140121. [PMID: 37690564 DOI: 10.1016/j.chemosphere.2023.140121] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Abiotic stresses from potentially toxic elements (PTEs) have devastating impacts on health and survival of all living organisms, including humans, animals, plants, and microorganisms. Moreover, because of the rapid growing industrial activities together with the natural processes, soil contamination with PTEs has pronounced, which required an emergent intervention. In fact, several chemical and physical techniques have been employed to overcome the negative impacts of PTEs. However, these techniques have numerous drawback and their acceptance are usually poor as they are high cost, usually ineffectiveness and take longer time. In this context, bioremediation has emerged as a promising approach for reclaiming PTEs-contaminated soils through biological process using bacteria, fungus and plants solely or in combination. Here, we comprehensively reviews and critically discusses the processes by which microorganisms and hyperaccumulator plants extract, volatilize, stabilize or detoxify PTEs in soils. We also established a multi-technology repair strategy through the combination of different strategies, such as the application of biochar, compost, animal minure and stabilized digestate for stimulation of PTE remediation by hyperaccumulators plants species. The possible use of remote sensing of soil in conjunction with geographic information system (GIS) integration for improving soil bio-remediation of PTEs was discussed. By synergistically combining these innovative strategies, the present review will open very novel way for cleaning up PTEs-contaminated soils.
Collapse
Affiliation(s)
- Taoufik El Rasafi
- Health and Environment Laboratory, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, B.P 5366, Maarif, Casablanca, Morocco.
| | - Ayoub Haouas
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Anas Tallou
- Department of Soil, Plant and Food Sciences - University of Bari "Aldo Moro", Italy
| | - Mohcine Chakouri
- Team of Remote Sensing and GIS Applied to Geosciences and Environment, Department of Earth Sciences, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Yassine Aallam
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco; Mohammed VI Polytechnic (UM6P) University, Ben Guerir, Morocco
| | - Ahmed El Moukhtari
- Ecology and Environment Laboratory, Faculty of Sciences Ben Msik, Hassan II University, PO 7955, Sidi Othmane, Casablanca, Morocco
| | - Noureddine Hamamouch
- Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fes, Morocco
| | - Hanane Hamdali
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| | | | - Mohamed Farissi
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, USMS, Beni Mellal, Morocco
| | - Abdelmajid Haddioui
- Laboratory of Agro-Industrial and Medical Biotechnologies, Faculty of Science and Techniques, University of Sultan Moulay Slimane, Beni Mellal, Morocco
| |
Collapse
|
17
|
Dalai S, Sivan M, Husain MA, Alam N, Landrot G, Biswas A. Mechanistic Insight into the Abiotic Interactions of Selenate and Selenite with Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16595-16605. [PMID: 37855829 DOI: 10.1021/acs.est.3c06276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Natural organic matter (NOM) decreases the selenium (Se) mobility in soil and sediment. Biotic dissimilatory reduction of selenate and selenite and assimilation of the reduced Se species into biomolecules are thought to be primarily responsible for this decreased Se mobility. However, the possibility of Se immobilization due to the abiotic interaction of Se species with NOM is still poorly understood. Equilibrating selenate and selenite with a model NOM (Pahokee peat soil), followed by X-ray absorption spectroscopic analysis, this study shows that the NOM can abiotically reduce highly mobile selenate into relatively less mobile selenite. NOM can sorb Se species, especially selenite, considerably. Preloading of the NOM with Fe(III) increases the sorption of selenite and selenate by several orders of magnitude. Modeling of the Se and Fe K-edge EXAFS data revealed that Se species are sorbed to NOM due to indirect complexation with the organically complexed Fe(O,OH)6 octahedra through the corner- (2C) and edge-sharing (1E) and direct complexation with the oxygen-containing functional groups of the NOM. This study concludes that the abiotic reduction and complexation of the Se species with NOM can be the additional or alternative route of Se immobilization in the NOM-rich soil and sediment.
Collapse
Affiliation(s)
- Subhashree Dalai
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Malavika Sivan
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Mohd Amir Husain
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Naved Alam
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| | - Gautier Landrot
- SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin, BP 48, Gif-sur-Yvette Cedex 91192, France
| | - Ashis Biswas
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri 462066, Madhya Pradesh, India
| |
Collapse
|
18
|
Nguyen TK, Li X, Ren L, Huang Y, Zhou JL. Polystyrene and low-density polyethylene pellets are less effective in arsenic adsorption than uncontaminated river sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95810-95827. [PMID: 37558920 PMCID: PMC10482778 DOI: 10.1007/s11356-023-29218-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
The adsorption process of inorganic arsenic (As) plays an important role in its mobility, bioavailability, and toxicity in the river environment. In this work, the adsorption of dissolved arsenite (As(III)) and arsenate (As(V)) by microplastics (MPs) pellets (polystyrene (PS) and low-density polyethylene (LDPE)), river sediment, and their mixture were investigated to assess the adsorption affinities and mechanism. The adsorption kinetics showed slow and mild rising zones from the natural behavior of the chemical adsorption. The results indicated that both MP characteristics and water properties played a significant role in the adsorption behavior of inorganic As species. The As adsorption equilibrium was modeled well by both Langmuir and Freundlich isotherms and partly fitted with the Sips model suggesting that both mono-layer and multi-layer adsorption occurred during adsorption The spontaneous adsorption process for both As(III) and As(V) was evidenced by the adsorption thermodynamics. The maximum adsorption capacities of As(III) and As(V) reached 143.3 mg/kg and 109.8 mg/kg on PS in deionized water, which were higher than those on sediment-PS mixture (119.3 mg/kg, 99.2 mg/kg), which were all lower than on sediment alone (263.3 mg/kg, 398.7 mg/kg). The Fourier transform infrared spectroscopy analysis identified that As(III) and As(V) interaction with sediment surface functional groups was the main adsorption mechanism from surface complexation and coordination. Two functional groups of polystyrene (-NH2, -OH) were mainly involved in the adsorption of inorganic As species on PS, while -COO- and -OH functional groups contributed to the adsorption mechanism of inorganic As species on LDPE. The findings provide valuable insight on the adsorption behavior and mechanisms of As(III) and As(V) in river systems in the presence of MPs particles. Both PS and LDPE were shown to be less effective than river sediment in the adsorption of As species from water, which provides a different perspective in understanding the scale of MPs impact in pollutant transport in the aquatic environment.
Collapse
Affiliation(s)
- Thanh Kien Nguyen
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW, 2007, Australia
- Water Resources Division, Department of Environment, Parks and Water Security, Darwin, NT, Australia
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Ministry of Education, Organic Compound Pollution Control Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yuhan Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW, 2007, Australia
| | - John L Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
19
|
Moharem ML, Hamadeen HM, Mesalem MO, Elkhatib EA. Potential use of nanoparticles produced from byproducts of drinking water industry in stabilizing arsenic in alkaline-contaminated soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6727-6743. [PMID: 37380922 PMCID: PMC10403416 DOI: 10.1007/s10653-023-01663-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The stabilization of heavy metals in soils is considered a cost-effective and environmentally sustainable remediation approach. In the current study, the applicability of water treatment residual nanoparticles (nWTRs) with the particle size ranged from 45 to 96 nm was evaluated for its efficacy in reducing arsenic mobility in clayey and sandy contaminated alkaline soils. Sorption isotherms, kinetics, speciation and fractionation studies were performed. Sorption equilibrium and kinetics studies revealed that As sorption by nWTRs-amended soils followed Langmuir and second-order/power function models. The maximum As sorption capacity (qmax) of Langmuir increased up to 21- and 15-folds in clayey and sandy soils, respectively, as a result of nWTRs application at 0.3% rate. A drastic reduction in non-residual (NORS) As fraction from 80.2 and 51.49% to 11.25 and 14.42% for clayey and sandy soils, respectively, at 0.3% nWTRs application rate was observed, whereas residual (RS) As fraction in both studied soils strongly increased following nWTRs application. The decline in percentage of As mobile form (arsenious acid) in both soils after nWTRs application indicated the strong effect of nWTRs on As immobilization in contaminated soils. Furthermore, Fourier transmission infrared spectroscopy analysis suggested reaction mechanisms between As and the surfaces of amorphous Fe and Al oxides of nWTRs through OH groups. This study highlights the effective management approach of using nWTRs as soil amendment to stabilize As in contaminated alkaline soils.
Collapse
Affiliation(s)
- Mohamed L Moharem
- Regional Center for Food and Feed, Agricultural Research Center, Alexandria, Egypt
| | - Hala M Hamadeen
- Departments of Soil and Water Sciences, College of Agriculture (Elshatby), Alexandria University, Alexandria, 21545, Egypt.
| | - Mohamed O Mesalem
- Departments of Soil and Water Sciences, College of Agriculture (Elshatby), Alexandria University, Alexandria, 21545, Egypt
| | - Elsayed A Elkhatib
- Departments of Soil and Water Sciences, College of Agriculture (Elshatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
20
|
Tang X, Wen J, Mu L, Gao Z, Weng J, Li X, Hu X. Regulation of arsenite toxicity in lettuce by pyrite and glutamic acid and the related mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162928. [PMID: 36934948 DOI: 10.1016/j.scitotenv.2023.162928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
Compared with the effect of a single substance on arsenic plant toxicity, the effect of coexisting pyrite and natural organic matter can better reflect actual environmental conditions. In this study, the interaction between pyrite and glutamic acid in arsenite solution was explored, the influence of pyrite and glutamic acid on arsenite plant toxicity was evaluated, and the metabolic regulation mechanism of pyrite and glutamic acid on the arsenite phytotoxic effect was clarified by metabolomics analysis. Combined pyrite and glutamic acid treatment fixed more arsenic by forming chemical bonds such as AsS, AsO, and As-O-OH in culture solution and reduced inorganic arsenic levels in plants. Compared with glutamic acid alone and pyrite alone, the combined treatment reduced the inorganic arsenic concentration in plants by 4.7 % and 40.0 %, respectively. The combined treatment limited plant ROS accumulation and maintained the leaf chlorophyll content by increasing SOD synthesis. Compared with the effect of As(III) alone, the chlorophyll content increased by 15.1-21.0 % on average under the combined treatment. The combined treatment promoted the absorption of Ca, Cu, Fe, Mo and Zn in lettuce, enhanced plant adaptation to As(III) and significantly improved plant nutritional quality. Compared with glutamic acid alone, the combined treatment increased the VC, fiber and protein contents by 128.9 %, 202.8 % and 36.7 %, respectively. Metabolomics analysis indicated that in the combined treatment group, the upregulation of tyrosine, pyruvate and N metabolism increased the plant chlorophyll content. The upregulation of S metabolism increases VC synthesis in plants and inhibits ROS accumulation, thus maintaining normal plant growth and development. The upregulation of glutathione and glycine metabolism enhances plant stress resistance. This study will provide a new way to scientifically and rationally evaluate the ecological risk of arsenic and regulate its toxicity.
Collapse
Affiliation(s)
- Xin Tang
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Jingyu Wen
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China.
| | - Ziwei Gao
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Jingxian Weng
- Tianjin Key Laboratory of Agro-Environment and Safe-Product, Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 300350 Tianjin, China
| |
Collapse
|
21
|
Tran THH, Kim SH, Lee H, Jo HY, Chung J, Lee S. Variable effects of soil organic matter on arsenic behavior in the vadose zone under different bulk densities. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130826. [PMID: 36682247 DOI: 10.1016/j.jhazmat.2023.130826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The nonstationary nature of water and oxygen content in the vadose zone determines various biogeochemical reactions regarding arsenic (As) therein, which affects the groundwater vulnerability to As contamination at a site. In the present study, we evaluated the effect of soil organic matter (OM) on the behavior of As using specifically designed soil columns that simulated the vadose zone. Three wet-dry cycles were applied to each of the four columns with different OM contents and bulk densities. OM was found to exhibit variable effects, either inhibiting or accelerating the mobilization of As, depending on bulk density. At a moderate bulk density (< 1.27 g/cm3), OM slightly lowered the pH of pore water, which enhanced the sorption of As onto the iron (Fe) oxides, promoting the retention of As in soil. In the soil column with a relatively higher bulk density (1.36 g/cm3), however, the dissimilatory reduction of iron oxides was triggered by rich OM under oxygen-limited conditions. X-ray absorption spectroscopy analysis revealed that alternate wetting and drying transformed the Fe oxides in the soil by reductive dissolution and subsequent re-precipitation. Consequently, As was not stably retained in the soil, and its mobilization downwards was further accelerated.
Collapse
Affiliation(s)
- Tho Huu Huynh Tran
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sang Hyun Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hosub Lee
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Young Jo
- Department of Earth and Environmental Science, Korea University, Seoul 02841, Republic of Korea
| | - Jaeshik Chung
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Seunghak Lee
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
22
|
Akbari Alavijeh M, Schindler M, Wirth MG, Qafoku O, Kovarik L, Perea DE. Nanoscale characterization of the sequestration and transformation of silver and arsenic in soil organic matter using atom probe tomography and transmission electron microscopy. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:577-593. [PMID: 36727412 DOI: 10.1039/d2em00332e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study investigates the sequestration and transformation of silver (Ag) and arsenic (As) ions in soil organic matter (OM) at the nanoscale using the combination of atom probe tomography (APT), transmission electron microscopy (TEM), focused ion beam (FIB), ion mill thinning and scanning electron microscopy (SEM). Silver-arsenic contaminated organic-rich soils were collected along the shore of Cobalt Lake, a former mining and milling site of the famous Ag deposits at Cobalt, Ontario, Canada. SEM examinations show that particulate organic matter (OM grains) contains mineral inclusions composed of mainly Fe, S, and Si with minor As and traces of Ag. Four OM grains with detectable concentrations of Ag (by SEM-EDS) were further characterized with either a combination of TEM and APT or TEM alone. These examinations show that As is predominantly sequestered by OM through either co-precipitation with Fe-(hydr)oxide inclusions or adsorption on Fe-(hydr)oxides and their subsequent transformation into scorodite (FeAsO4·2H2O)/amorphous Fe-arsenate (AFA). Silver nanoparticles (NPs) with diameters in the range of ∼5-20 nm occur in the organic matrix as well as on the surface of Fe-rich inclusions (Fe-hydroxides, Fe-arsenates, Fe-sulfides), whereas Ag sulfide NPs were only observed on the surfaces of the Fe-rich inclusions. Rims of Ag-sulfides on Ag NPs (TEM data), accumulation of S atoms within and around Ag NPs (APT data), and the occurrence of dendritic as well as euhedral acanthite NPs with diameters in the range of ∼100-400 nm (TEM data) indicate that the sulfidation of the Ag NPs occurred via a mineral-replacement reaction (rims) or a complete dissolution of the Ag NPs, the subsequent precipitation of acanthite NPs and their aggregation (dendrites) and Ostwald ripening (euhedral crystals). These results show the importance of OM and, specifically the mineral inclusions in the sequestration of Ag and As to less bioavailable forms such as acanthite and scorodite, respectively.
Collapse
Affiliation(s)
| | - Michael Schindler
- Department of Earth Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Mark G Wirth
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Odeta Qafoku
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Libor Kovarik
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Daniel E Perea
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
23
|
Zandi P, Yang J, Darma A, Bloem E, Xia X, Wang Y, Li Q, Schnug E. Iron plaque formation, characteristics, and its role as a barrier and/or facilitator to heavy metal uptake in hydrophyte rice (Oryza sativa L.). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:525-559. [PMID: 35288837 DOI: 10.1007/s10653-022-01246-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The persistent bioavailability of toxic metal(oids) (TM) is undeniably the leading source of serious environmental problems. Through the transfer of these contaminants into food networks, sediments and the aquatic environmental pollution by TM serve as key routes for potential risks to soil and human health. The formation of iron oxyhydroxide plaque (IP) on the root surface of hydrophytes, particularly rice, has been linked to the impact of various abiotic and biotic factors. Radial oxygen loss has been identified as a key driver for the oxidation of rhizosphere ferrous iron (Fe2+) and its subsequent precipitation as low-to-high crystalline and/or amorphous Fe minerals on root surfaces as IP. Considering that each plant species has its unique capability of creating an oxidised rhizosphere under anaerobic conditions, the abundance of rhizosphere Fe2+, functional groups from organic matter decomposition and variations in binding capacities of Fe oxides, thus, impacting the mobility and interaction of several contaminants as well as toxic/non-toxic metals on the specific surface areas of the IP. More insight from wet extraction and advanced synchrotron-based analytical techniques has provided further evidence on how IP formation could significantly affect the fate of plant physiology and biomass production, particularly in contaminated settings. Collectively, this information sets the stage for the possible implementation of IP and related analytical protocols as a strategic framework for the management of rice and other hydrophytes, particularly in contaminated sceneries. Other confounding variables involved in IP formation, as well as operational issues related to some advanced analytical processes, should be considered.
Collapse
Affiliation(s)
- Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, People's Republic of China
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- Department of Biological Sciences, Bayero University, Kano, Nigeria
| | - Elke Bloem
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Bundesallee 69, 38116, Braunschweig, Germany
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Yaosheng Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qian Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ewald Schnug
- Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
24
|
Lashari AA, Kazi TG, Baig JA, Afridi HI, Junejo SH. Chemical association of copper and selenium in coals of Sindh by time saving single step strategy and their impact on groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38650-38662. [PMID: 36585586 DOI: 10.1007/s11356-022-25039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The aim of the present study is to estimate the different chemical fractionations of copper (Cu) and selenium (Se) in coal samples of different coal mining areas. The Cu and Se bound to various chemical fractions of coal collected from two mining fields of Sindh, Pakistan, have been determined by BCR sequential extraction scheme (BCR-SES). The long duration of the BCR sequential scheme (51 h) was reduced by a time-saving shaking device (ultrasonic bath) termed as ultrasonic-assisted extraction (USE) depending on the same operating conditions and extracting solutions used for BCR sequential extraction scheme. The both trace elements were determined in aquifer water, sampled from different depth of both coal mining fields. In addition, the groundwater of dug well in the vicinity of coal mining areas were also analyzed for Cu and Se using reported extraction methodologies. The partitioning of Cu and Se bound with different chemical fractions of coal was successfully made by proposed USE, within 2 h as compared to long duration of BCR-SES (51 h). The Cu and Se concentrations in acid-soluble fractions of coal samples were > 10%, enhanced by USE extraction procedure than those values gained via BCR-SES (p < 0.01). About 67 to 69% of Cu were found in the first three fractions, whereas their remaining amount corresponding to 31 to 33%, respectively bound with crystalline/residual fraction, while up to 66.1 to 71.1% of total Se contents extracted in three extractable phases, followed up to 28.9 to 33.8% of it was bound with residual phase. The concentrations of Cu and Se in groundwater of different aquifers were found in decreasing order as AQ1 > AQII > AQIII; the same trend was observed for two aquifers of Lakhra coal mining, whereas the groundwater samples have two to three folds higher levels of Se than WHO limit. The Cu levels in water samples were significantly lower than the recommended limit of WHO for drinking water (p < 0.01).
Collapse
Affiliation(s)
- Ayaz Ali Lashari
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Tasneem Gul Kazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Jameel Ahmed Baig
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Hassan Imran Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Sadam Hussain Junejo
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| |
Collapse
|
25
|
Zhu Z, Kong Y, Yang H, Tian Y, Zhou X, Zhu Y, Fang Z, Zhang L, Tang S, Fan Y. Effects of Pretreatment and Polarization Shielding on EK-PRB of Fe/Mn/C-LDH for Remediation of Arsenic Contaminated Soils. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:325. [PMID: 36678078 PMCID: PMC9860780 DOI: 10.3390/nano13020325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this study, coupling electrokinetic (EK) with the permeable reactive barriers (PRB) of Fe/Mn/C-LDH composite was applied for the remediation of arsenic-contaminated soils. By using self-made Fe/Mn/C-LDH materials as PRB filler, the effects of pretreatment and polarization shielding on EK-PRB of Fe/Mn/C-LDH for remediation of arsenic contaminated soils were investigated. For the pretreatment, phosphoric acid, phosphoric acid and water washing, and phosphate were adopted to reduce the influence of iron in soil. The addition of phosphate could effectively reduce the soil leaching toxicity concentration. The removal rate of the soil pretreated with phosphoric acid or phosphoric acid and water washing was better than with phosphate pretreatment. For the polarization shielding, circulating electrolyte, electrolyte type, anion and cation membranes, and the exchange of cathode and anode were investigated. The electrolyte circulates from the cathode chamber to the anode chamber through the peristaltic pump to control the pH value of the electrolyte, and the highest arsenic toxicity removal rate in the soil reaches 97.36%. The variation of total arsenic residue in soil using anion and cation membranes is the most regular. The total arsenic residue gradually decreases from cathode to anode. Electrode exchange can neutralize H+ and OH- produced by electrolyte, reduce the accumulation of soil cathode area, shield the reduction of repair efficiency caused by resistance polarization, enhance current, and improve the removal rate of arsenic in soil.
Collapse
Affiliation(s)
- Zongqiang Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530022, China
| | - Yusong Kong
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Hongqu Yang
- Chongqing Hechuan Ecology and Environment Monitoring Station, Chongqing 401519, China
| | - Yan Tian
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Xiaobin Zhou
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Yinian Zhu
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Zhanqiang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou 510006, China
| | - Lihao Zhang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Shen Tang
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yinming Fan
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
- Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanning 530022, China
| |
Collapse
|
26
|
Asare MO, Száková J, Tlustoš P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11378-11398. [PMID: 36529801 PMCID: PMC9760545 DOI: 10.1007/s11356-022-24776-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/11/2022] [Indexed: 04/12/2023]
Abstract
The study used scattered literature to summarize the effects of excess Cd, As, and Pb from contaminated soils on plant secondary metabolites/bioactive compounds (non-nutrient organic substances). Hence, we provided a systematic overview involving the sources and forms of Cd, As, and Pb in soils, plant uptake, mechanisms governing the interaction of these risk elements during the formation of secondary metabolites, and subsequent effects. The biogeochemical characteristics of soils are directly responsible for the mobility and bioavailability of risk elements, which include pH, redox potential, dissolved organic carbon, clay content, Fe/Mn/Al oxides, and microbial transformations. The radial risk element flow in plant systems is restricted by the apoplastic barrier (e.g., Casparian strip) and chelation (phytochelatins and vacuole sequestration) in roots. However, bioaccumulation is primarily a function of risk element concentration and plant genotype. The translocation of risk elements to the shoot via the xylem and phloem is well-mediated by transporter proteins. Besides the dysfunction of growth, photosynthesis, and respiration, excess Cd, As, and Pb in plants trigger the production of secondary metabolites with antioxidant properties to counteract the toxic effects. Eventually, this affects the quantity and quality of secondary metabolites (including phenolics, flavonoids, and terpenes) and adversely influences their antioxidant, antiinflammatory, antidiabetic, anticoagulant, and lipid-lowering properties. The mechanisms governing the translocation of Cd, As, and Pb are vital for regulating risk element accumulation in plants and subsequent effects on secondary metabolites.
Collapse
Affiliation(s)
- Michael O Asare
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic.
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| |
Collapse
|
27
|
Pastor-Jáuregui R, Paniagua-López M, Aguilar-Garrido A, Martínez-Garzón FJ, Romero-Freire A, Sierra-Aragón M. Ecotoxicological risk assessment in soils contaminated by Pb and As 20 years after a mining spill. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 251:104100. [PMID: 36347658 DOI: 10.1016/j.jconhyd.2022.104100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
This study evaluates the potential toxicity of the soils of the Guadiamar Green Corridor (GGC) affected by the Aznalcóllar mine spill (Andalusia, Spain), one of the most important mining accidents in Europe in recent decades. Twenty years after the accident, although the area is considered to be recovered, residual contamination in soils persists, and the bioavailability of some contaminants, such as As, is showing trends of increasing. Therefore, the potential residual toxicity in 84 soil samples was evaluated by bioassays with lettuce (Latuca sativa L.), earthworms (Eisenia andrei) and determining the microbial activity by basal respiration and metabolic quotient. The selected soils sampled along the GGC were divided into 4 types according to their physicochemical properties. In the closest part of the mine two soil types appear (SS1 and SS2), originally decarbonated and loamy, with a reduction in lettuce root elongation of 57% and 34% compared to the control, as well as a the highest metabolic quotient (23.9 and 18.1 ng CcO2 μg Cmicrob-1 h-1, respectively) with the highest risk of Pb and As toxicity. While, located in the middle and final part of the affected area of the spill (SS3 and SS4), soils presented alkaline pH, finer textures and the lowest metabolic quotient (<9.5 ng CcO2 μg Cmicrob-1 h-1). In addition, due to Pb and As exceeded the Guideline values established in the studied area, the human toxicity risk was determined according to US-EPA methodology. Although the total contents were higher than the Guidelines established, the obtained hazard quotients for both contaminants were less than one, so the risk for human health was discarded. However, monitoring over time of the toxicity risks of the GGC soils would be advisable, especially due to the existence of areas where residual contamination persist, and soil hazard quotient obtained for As in children was higher and close to unity.
Collapse
Affiliation(s)
- R Pastor-Jáuregui
- Dpto. Acad. de Recursos Hídricos, Faculty of Agricultural Engineering, University Nacional Agraria La Molina, Peru
| | - M Paniagua-López
- Dpto. Edafología y Química Agrícola, Faculty of Science, University of Granada, Spain; Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Spain
| | - A Aguilar-Garrido
- Dpto. Edafología y Química Agrícola, Faculty of Science, University of Granada, Spain
| | - F J Martínez-Garzón
- Dpto. Edafología y Química Agrícola, Faculty of Science, University of Granada, Spain
| | - A Romero-Freire
- Dpto. Edafología y Química Agrícola, Faculty of Science, University of Granada, Spain.
| | - M Sierra-Aragón
- Dpto. Edafología y Química Agrícola, Faculty of Science, University of Granada, Spain
| |
Collapse
|
28
|
Varner TS, Kulkarni HV, Nguyen W, Kwak K, Cardenas MB, Knappett PSK, Ojeda AS, Malina N, Bhuiyan MU, Ahmed KM, Datta S. Contribution of sedimentary organic matter to arsenic mobilization along a potential natural reactive barrier (NRB) near a river: The Meghna river, Bangladesh. CHEMOSPHERE 2022; 308:136289. [PMID: 36058378 DOI: 10.1016/j.chemosphere.2022.136289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Elevated dissolved arsenic (As) concentrations in the shallow aquifers of Bangladesh are primarily caused by microbially-mediated reduction of As-bearing iron (Fe) (oxy)hydroxides in organic matter (OM) rich, reducing environments. Along the Meghna River in Bangladesh, interactions between the river and groundwater within the hyporheic zone cause fluctuating redox conditions responsible for the formation of a Fe-rich natural reactive barrier (NRB) capable of sequestering As. To understand the NRB's impact on As mobility, the geochemistry of riverbank sediment (<3 m depth) and the underlying aquifer sediment (up to 37 m depth) was analyzed. A 24-hr sediment-water extraction experiment was performed to simulate interactions of these sediments with oxic river water. The sediment and the sediment-water extracts were analyzed for inorganic and organic chemical parameters. Results revealed no differences between the elemental composition of riverbank and aquifer sediments, which contained 40 ± 12 g/kg of Fe and 7 ± 2 mg/kg of As, respectively. Yet the amounts of inorganic and organic constituents extracted were substantially different between riverbank and aquifer sediments. The water extracted 6.4 ± 16.1 mg/kg of Fe and 0.03 ± 0.02 mg/kg of As from riverbank sediments, compared to 154.0 ± 98.1 mg/kg of Fe and 0.55 ± 0.40 mg/kg of As from aquifer sediments. The riverbank and aquifer sands contained similar amounts of sedimentary organic matter (SOM) (17,705.2 ± 5157.6 mg/kg). However, the water-extractable fraction of SOM varied substantially, i.e., 67.4 ± 72.3 mg/kg in riverbank sands, and 1330.3 ± 226.6 mg/kg in aquifer sands. Detailed characterization showed that the riverbank SOM was protein-like, fresh, low molecular weight, and labile, whereas SOM in aquifer sands was humic-like, older, high molecular weight, and recalcitrant. During the dry season, oxic conditions in the riverbank may promote aerobic metabolisms, limiting As mobility within the NRB.
Collapse
Affiliation(s)
- Thomas S Varner
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - Harshad V Kulkarni
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| | - William Nguyen
- Department of Geological Sciences, The University of Texas at Austin, TX, 78712, USA
| | - Kyungwon Kwak
- Department of Geology and Geophysics, Texas A&M University, College Station, TX, 77843, USA
| | - M Bayani Cardenas
- Department of Geological Sciences, The University of Texas at Austin, TX, 78712, USA
| | - Peter S K Knappett
- Department of Geology and Geophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Ann S Ojeda
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | - Natalia Malina
- Department of Geosciences, Auburn University, Auburn, AL, 36849, USA
| | | | - Kazi M Ahmed
- Department Geology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saugata Datta
- Department of Earth and Planetary Sciences, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
29
|
Peel HR, Balogun FO, Bowers CA, Miller CT, Obeidy CS, Polizzotto ML, Tashnia SU, Vinson DS, Duckworth OW. Towards Understanding Factors Affecting Arsenic, Chromium, and Vanadium Mobility in the Subsurface. WATER 2022; 14:3687. [PMID: 36420182 PMCID: PMC9681123 DOI: 10.3390/w14223687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Arsenic (As), chromium (Cr), and vanadium (V) are naturally occurring, redox-active elements that can become human health hazards when they are released from aquifer substrates into groundwater that may be used as domestic or irrigation source. As such, there is a need to develop incisive conceptual and quantitative models of the geochemistry and transport of potentially hazardous elements to assess risk and facilitate interventions. However, understanding the complexity and heterogeneous subsurface environment requires knowledge of solid-phase minerals, hydrologic movement, aerobic and anaerobic environments, microbial interactions, and complicated chemical kinetics. Here, we examine the relevant geochemical and hydrological information about the release and transport of potentially hazardous geogenic contaminants, specifically As, Cr, and V, as well as the potential challenges in developing a robust understanding of their behavior in the subsurface. We explore the development of geochemical models, illustrate how they can be utilized, and describe the gaps in knowledge that exist in translating subsurface conditions into numerical models, as well as provide an outlook on future research needs and developments.
Collapse
Affiliation(s)
- Hannah R. Peel
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Fatai O. Balogun
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | - Christopher A. Bowers
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cass T. Miller
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chelsea S. Obeidy
- Department of Earth Sciences, University of Oregon, Eugene, OR 97403, USA
| | | | - Sadeya U. Tashnia
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - David S. Vinson
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Owen W. Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
30
|
Application of Humic and Fulvic Acids as an Alternative Method of Cleaning Water from Plant Protection Product Residues. SEPARATIONS 2022. [DOI: 10.3390/separations9100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Humic acids (HAs) and fulvic acids (FAs) are naturally occurring compounds that influence the fate and transportation of various compounds in the soil. Although HAs and FAs have multiple uses, the reports about their sorbent potential for environmental pollutants are scanty and sparse. In this study, HA and FA, isolated from lignite samples from two mines in Greece, were studied as sorbent materials for three active compounds of plant protection products, namely glyphosate (herbicide), cypermethrin (pyrethroid insecticide), and azoxystrobin (fungicide). According to the results, both HA and FA are promising sorbent materials for these active compounds, with HA achieving better sorption for cypermethrin and azoxystrobin, while FA was found to be more efficient for glyphosate. Moreover, their performance was not compromised by other components commonly found in commercially available herbicides/insecticides/fungicides. In addition, no significant leaching of the sorbed compounds was recorded. Finally, the two materials achieved similar sorption efficiency of the compounds from lake water.
Collapse
|
31
|
Caplette JN, Gfeller L, Lei D, Liao J, Xia J, Zhang H, Feng X, Mestrot A. Antimony release and volatilization from rice paddy soils: Field and microcosm study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156631. [PMID: 35691353 DOI: 10.1016/j.scitotenv.2022.156631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The fate of antimony (Sb) in submerged soils and the impact of common agricultural practices (e.g., manuring) on Sb release and volatilization is understudied. We investigated porewater Sb release and volatilization in the field and laboratory for three rice paddy soils. In the field study, the porewater Sb concentration (up to 107.1 μg L-1) was associated with iron (Fe) at two sites, and with pH, Fe, manganese (Mn), and sulfate (SO42-) at one site. The surface water Sb concentrations (up to 495.3 ± 113.7 μg L-1) were up to 99 times higher than the regulatory values indicating a potential risk to aquaculture and rice agriculture. For the first time, volatile Sb was detected in rice paddy fields using a validated quantitative method (18.1 ± 5.2 to 217.9 ± 160.7 mg ha-1 y-1). We also investigated the influence of two common rice agriculture practices (flooding and manuring) on Sb release and volatilization in a 56-day microcosm experiment using the same soils from the field campaign. Flooding induced an immediate, but temporary, Sb release into the porewater that declined with SO42-, indicating that SO42- reduction may reduce porewater Sb concentrations. A secondary Sb release, corresponding to Fe reduction in the porewater, was observed in some of the microcosms. Our results suggest flooding-induced Sb release into rice paddy porewaters is temporary but relevant. Manuring the soils did not impact the porewater Sb concentration but did enhance Sb volatilization. Volatile Sb (159.6 ± 108.4 to 2237.5 ± 679.7 ng kg-1 y-1) was detected in most of the treatments and was correlated with the surface water Sb concentration. Our study indicates that Sb volatilization could be occurring at the soil-water interface or directly in the surface water and highlights that future works should investigate this potentially relevant mechanism.
Collapse
Affiliation(s)
| | - L Gfeller
- Institute of Geography, University of Bern, Switzerland
| | - D Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - J Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - H Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China
| | - X Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, PR China.
| | - A Mestrot
- Institute of Geography, University of Bern, Switzerland.
| |
Collapse
|
32
|
Yao Y, Han X, Chen Y, Li D. The variations of labile arsenic diffusion driven by algal bloom decomposition in eutrophic lake ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156703. [PMID: 35710011 DOI: 10.1016/j.scitotenv.2022.156703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The vertical labile arsenic (As) concentration and diffusion pattern variations in eutrophic lakes were investigated using in situ techniques of diffusive gradients in thin films (DGT) and high-resolution dialysis (HR-Peeper) in the typical eutrophic system of Lake Taihu in China. In addition, simulation experiments were used to reveal labile As distributions in sediment profiles under the influence of algae blooms and wind fluctuations. Our results indicated that eutrophication could lead to the migration and transformation of As fractions, including increased As bioavailability, as well as varied diffusion patterns. The sulfate released from algae decomposition reduced to H2S and formed FeS, which weak adsorbability contributed to the increased mobility of the As fractions. Meanwhile, further decomposition released a large quantity of algae-derived organic matter which competed with the adsorbed As, leading to more endogenous As migrating to the overlying water. Accordingly, the H2S production presented a likely explanation for the changed distribution of labile As and contributed to labile As concentrations in the sediment profiles significantly increasing at depths of -20 mm to -60 mm in the early stages of the simulation experiment. Moreover, the areas of enhanced diffusion patterns with high concentrations of As obviously expanded. However, following the complete decomposition of the algae, the organic matter component significantly changed, suggesting an explanation for the variations in distribution of labile As. All the diffusion pattern variations showed similar trends. Consequently, variation of labile As diffusion patterns could indicate the decomposition and eutrophication levels of freshwater ecosystems.
Collapse
Affiliation(s)
- Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiaoxiang Han
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Ying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Dujun Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
33
|
Barral MT, Rodríguez-Iglesias D, Martiñá-Prieto D, Paradelo R. Assessment of the Chronic Toxicity and Interactions between Arsenic and Riverbed Biofilms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12689. [PMID: 36231992 PMCID: PMC9564892 DOI: 10.3390/ijerph191912689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The toxic effect of exposure to arsenic, As(V), at concentrations of 0 to 30 mg L-1, for 49 days, on epipsammic biofilms, was evaluated in a microcosm experiment. The growth and composition of biofilms developed on sediments containing As concentrations of 31 mg kg-1 and 85 mg kg-1 were compared, using photosynthetic parameters and Live/Dead stains as end points. A toxic effect of arsenic could not be demonstrated; however, biofilm growth was higher over the sediment with higher arsenic concentrations, suggesting the development of pollution-induced community induced tolerance (PICT). Nevertheless, PICT was not observed after exposure to high arsenic concentration in the laboratory, as there were no differences in algal growth between the previous 0 and 30 mg L-1 systems exposed to new 30 mg As L-1 dissolution over 29 days. The algal composition was affected by the added arsenic, and brown algae were the most tolerant compared to green algae and cyanophyceae, as their percentage increased from 25 and 33% in the control samples to 57 and 47% in the samples with the highest added As concentration. In turn, the biofilm development influenced arsenic redistribution and speciation. Arsenic concentration in water decreased with time during the incubation experiment, retained by the sediment particles and the biofilm. In the biofilm, extracellular As was significantly higher (up to 11 times) than intracellular arsenic. As(V) was the predominant species in water and in the biofilm, but products of biotic transformation, namely As(III), DMA(V) and MMA(V), were also found in the solution and in the biofilm in some systems, demonstrating reduction and methylation by the organisms. As a conclusion, a toxic effect was not detected for the concentrations evaluated. Biofilms naturally exposed in the river system to high As concentrations acquire pollution-induced tolerance; however, tolerance was not acquired by exposure to 30 mg L-1 for 29 days in the laboratory.
Collapse
Affiliation(s)
- María Teresa Barral
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Rodríguez-Iglesias
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Martiñá-Prieto
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Remigio Paradelo
- Department of Soil Science and Agricultural Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Cross-Research in Environmental Technologies (CRETUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
34
|
Li Y, Yan L, Rong Q, Luo J, Zhang H, Jones KC. Assessing the Impact of Atrazine on the Availability of Arsenic in Soils Using DGT Technique. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:616-622. [PMID: 35218373 DOI: 10.1007/s00128-022-03482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) has been observed to co-exist with atrazine (ATR) in soils worldwide. ATR, as an organic chemical, may affect the availability of As and further influence its uptake by organisms. Here we used a novel passive sampling technique, DGT (diffusive gradients in thin-films), to compare with other two conventional sampling approaches (soil solution extraction and 'Olsen As' measurement) to investigate the influence of ATR addition (normal recommended level and contaminated level) on the availability of As in soils, to further interpret the potential risk of As in soil environment. The effect of adding ATR on the behaviour of As in soils was limited. When the concentration of ATR was much higher, the availability of As in soils was supressed, the labile pool size was also affected, but the R value did not change much. The properties of the soils also played an important role by affecting the states of the compounds.
Collapse
Affiliation(s)
- Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
35
|
Ontiveros-Cuadras JF, Ruiz-Fernández AC, Pérez-Bernal LH, Santiago-Pérez S, González Y González S, Ávila E, Cardoso-Mohedano JG, Sanchez-Cabeza JA. Accumulation and fluxes of potentially toxic elements in a large coastal lagoon (southern Gulf of Mexico) from 210Pb sediment chronologies. MARINE POLLUTION BULLETIN 2022; 181:113839. [PMID: 35843162 DOI: 10.1016/j.marpolbul.2022.113839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Three 210Pb-dated sediment cores were used to evaluate the contamination degree and flux ratios of potentially toxic elements (PTEs; As, Cd, Cr, Cu, Ni, Pb, V, and Zn) in seagrass meadows from the northern margin of Términos Lagoon (TL), southern Gulf of Mexico. The sediments displayed minor Cd, Ni, V, and Zn enrichments but moderate to strong enrichment by As. Results from a chemometric analysis revealed that: 1) salinization and grain size, along with 2) the terrigenous inputs are the major factors influencing the PTEs accumulation. The historical trends of PTEs flux ratios nearly follow the large-scale land-use changes around TL, linked to the growth of the Mexican oil industry in the area since the 1970s. Our findings showed the critical role of seagrass meadows as PTEs sinks. This information is useful for decision-makers to develop restoration projects for a vulnerable site within the largest coastal lagoon ecosystem in Mexico.
Collapse
Affiliation(s)
- Jorge Feliciano Ontiveros-Cuadras
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Procesos Oceánicos y Costeros, Ciudad Universitaria, 04510 México City, Mexico.
| | - Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| | - Libia Hascibe Pérez-Bernal
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| | - Susana Santiago-Pérez
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Procesos Oceánicos y Costeros, Ciudad Universitaria, 04510 México City, Mexico.
| | - Saraí González Y González
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Ciencias de la Tierra, Ciudad Universitaria, 04510 México City, Mexico.
| | - Enrique Ávila
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Carr. Carmen-Puerto Real km. 9.5, 24157 Ciudad del Carmen, Mexico.
| | - José Gilberto Cardoso-Mohedano
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Carr. Carmen-Puerto Real km. 9.5, 24157 Ciudad del Carmen, Mexico.
| | - Joan-Albert Sanchez-Cabeza
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| |
Collapse
|
36
|
Parrone D, Ghergo S, Preziosi E, Casentini B. Water-Rock Interaction Processes: A Local Scale Study on Arsenic Sources and Release Mechanisms from a Volcanic Rock Matrix. TOXICS 2022; 10:288. [PMID: 35736897 PMCID: PMC9230518 DOI: 10.3390/toxics10060288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023]
Abstract
Arsenic is a potentially toxic element (PTE) that is widely present in groundwater, with concentrations often exceeding the WHO drinking water guideline value (10.0 μg/L), entailing a prominent risk to human health due to long-term exposure. We investigated its origin in groundwater in a study area located north of Rome (Italy) in a volcanic-sedimentary aquifer. Some possible mineralogical sources and main mechanisms governing As mobilization from a representative volcanic tuff have been investigated via laboratory experiments, such as selective sequential extraction and dissolution tests mimicking different release conditions. Arsenic in groundwater ranges from 0.2 to 50.6 μg/L. It does not exhibit a defined spatial distribution, and it shows positive correlations with other PTEs typical of a volcanic environment, such as F, U, and V. Various potential As-bearing phases, such as zeolites, iron oxyhydroxides, calcite, and pyrite are present in the tuff samples. Arsenic in the rocks shows concentrations in the range of 17-41 mg/kg and is mostly associated with a minor fraction of the rock constituted by FeOOH, in particular, low crystalline, containing up to 70% of total As. Secondary fractions include specifically adsorbed As, As-coprecipitated or bound to calcite and linked to sulfides. Results show that As in groundwater mainly originates from water-rock interaction processes. The release of As into groundwater most likely occurs through desorption phenomena in the presence of specific exchangers and, although locally, via the reductive dissolution of Fe oxy-hydroxides.
Collapse
Affiliation(s)
- Daniele Parrone
- Water Research Institute—National Research Council, IRSA-CNR, Via Salaria km 29.300, PB 10, 00015 Rome, Italy; (S.G.); (E.P.); (B.C.)
| | | | | | | |
Collapse
|
37
|
Chang C, Li F, Wang Q, Hu M, Du Y, Zhang X, Zhang X, Chen C, Yu HY. Bioavailability of antimony and arsenic in a flowering cabbage-soil system: Controlling factors and interactive effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152920. [PMID: 35007579 DOI: 10.1016/j.scitotenv.2022.152920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with antimony (Sb) and arsenic (As) has become a well-recognized environmental and human health issue. Consumption of vegetables, especially leafy vegetables, is one of the most important sources of Sb and As exposure in humans. Accordingly, it is necessary to understand the behaviors of Sb and As in the vegetable-soil system. Moreover, although Sb and As are often assumed to have similar biogeochemical behavior, identified differences in the controlling factors affecting mobility and bioavailability of Sb and As in soils need further investigation. In this study, 112 pairs of soil and flowering cabbage samples were collected from typical farmland protection areas and vegetable-producing regions across the Pearl River Delta (PRD), South China. The contamination levels of Sb and As in soils and harvested cabbages across the PRD were investigated. The main factors affecting the mobility and bioavailability of Sb and As in the cabbage-soil system were disentangled using a random forest model. The contamination levels of Sb in the cabbages and soils of the PRD were generally low, but the soils were moderately polluted by As. Increased concentrations of Fe oxides could decrease Sb accumulation in cabbages but increased the mobilization of As in soils to some extent. In contrast, Al oxides contributed strongly to the mobilization of Sb and the immobilization of As. Moreover, an increased sand content promoted the mobility of Sb and As, whereas increased silt and clay contents showed inhibitory effects. The interactions of As and Sb with Fe oxides decreased the mobility of Sb but moderately increased the mobility of As in soils. Overall, the behaviors of Sb and As in the cabbage-soil system under the effect of several important environmental factors showed some differences indicating that these differences should be considered in the remediation of co-contaminated soils.
Collapse
Affiliation(s)
- Chunying Chang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong Key Laboratory of Contaminated Sited Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Min Hu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanhong Du
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoqing Zhang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, Hubei Province 430081, China
| | - Xiaolu Zhang
- Guangdong Key Laboratory of Contaminated Sited Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Chunyi Chen
- Monitoring Center of Eco-Environment of Guangdong Province, China
| | - Huan-Yun Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
38
|
Kurajica L, Ujević Bošnjak M, Kinsela AS, Bieroza M, Štiglić J, Waite TD, Capak K, Romić Ž. Mixing of arsenic-rich groundwater and surface water in drinking water distribution systems: Implications for contaminants, disinfection byproducts and organic components. CHEMOSPHERE 2022; 292:133406. [PMID: 34958791 DOI: 10.1016/j.chemosphere.2021.133406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The utilization of groundwaters containing high levels of arsenic (As) for drinking water purposes presents major health and economic challenges for water utilities. One low-cost approach is to mix arsenic-rich groundwater (GW) with arsenic-free surface waters (SW) to achieve acceptable As levels. In this study we investigated the effect of different mixing ratios on water quality in an eastern Croatian water distribution system (WDS). To investigate the effects of mixing on drinking water quality, we measured the organic matter (OM) composition, disinfection byproduct (DBP) and metal concentrations in differently mixed ratios of GW and SW within the WDS. Fluorescence analysis revealed that the GW and SW had similar OM composition, with an almost equal ratio of humic- and protein-like OM throughout the WDS despite fluorescence indices revealing slightly different OM sources between the two water types. The tyrosine-like OM component was more variable, increasing during warmer months and towards the end of the WDS, most likely due to enhanced biofilm formation. Arsenic concentrations decreased to below 10 μg/L in the second half of the sampling campaign. Acceptable water quality was achieved after a period of destabilization and solubilization of loose deposits within the WDS resulting in their mobilization caused by water quality changes. Principal component and classification analysis, regression models and Spearman correlation coefficients revealed an association between As, OM and DBP concentrations with these correlations suggestive of their role in As mobilization in the WDS. Changing source waters, with different OM content and characteristics, corresponded to variable As release within the WDS.
Collapse
Affiliation(s)
- L Kurajica
- Croatian Institute of Public Health, Rockefeller Street 7, 10000, Zagreb, Croatia
| | - M Ujević Bošnjak
- Croatian Institute of Public Health, Rockefeller Street 7, 10000, Zagreb, Croatia.
| | - A S Kinsela
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - M Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - J Štiglić
- Croatian Institute of Public Health, Rockefeller Street 7, 10000, Zagreb, Croatia
| | - T D Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - K Capak
- Croatian Institute of Public Health, Rockefeller Street 7, 10000, Zagreb, Croatia
| | - Ž Romić
- Osijek Water Supply Company, Poljski Put 1, Osijek, Croatia
| |
Collapse
|
39
|
Darma A, Yang J, Zandi P, Liu J, Możdżeń K, Xia X, Sani A, Wang Y, Schnug E. Significance of Shewanella Species for the Phytoavailability and Toxicity of Arsenic-A Review. BIOLOGY 2022; 11:biology11030472. [PMID: 35336844 PMCID: PMC8944983 DOI: 10.3390/biology11030472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary The availability of some toxic heavy metals, such as arsenic (As), is related to increased human and natural activities. This type of metal availability in the environment is associated with various health and environmental issues. Such problems may arise due to direct contact with or consumption of plant products containing this metal in some of their parts. A microbial approach that employs a group of bacteria (Shewanella species) is proposed to reduce the negative consequences of the availability of this metal (As) in the environment. This innovative strategy can reduce As mobility, its spread, and uptake by plants in the environment. The benefits of this approach include its low cost and the possibility of not exposing other components of the environment to unfavourable consequences. Abstract The distribution of arsenic continues due to natural and anthropogenic activities, with varying degrees of impact on plants, animals, and the entire ecosystem. Interactions between iron (Fe) oxides, bacteria, and arsenic are significantly linked to changes in the mobility, toxicity, and availability of arsenic species in aquatic and terrestrial habitats. As a result of these changes, toxic As species become available, posing a range of threats to the entire ecosystem. This review elaborates on arsenic toxicity, the mechanisms of its bioavailability, and selected remediation strategies. The article further describes how the detoxification and methylation mechanisms used by Shewanella species could serve as a potential tool for decreasing phytoavailable As and lessening its contamination in the environment. If taken into account, this approach will provide a globally sustainable and cost-effective strategy for As remediation and more information to the literature on the unique role of this bacterial species in As remediation as opposed to conventional perception of its role as a mobiliser of As.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano 700006, Nigeria;
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
- Correspondence: (J.Y.); (E.S.); Tel.: +86-010-82105996 (J.Y.)
| | - Peiman Zandi
- International Faculty of Applied Technology, Yibin University, Yibin 644600, China;
| | - Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China;
| | - Katarzyna Możdżeń
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St., 30-084 Krakow, Poland;
| | - Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
| | - Ali Sani
- Department of Biological Sciences, Faculty of Life Science, Bayero University, Kano 700006, Nigeria;
| | - Yihao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.D.); (X.X.); (Y.W.)
| | - Ewald Schnug
- Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany
- Correspondence: (J.Y.); (E.S.); Tel.: +86-010-82105996 (J.Y.)
| |
Collapse
|
40
|
Zhang T, Chen X, Wang Y, Li L, Sun Y, Wang Y, Zeng X. The stability of poorly crystalline arsenical ferrihydrite after long-term soil suspension incubation. CHEMOSPHERE 2022; 291:132844. [PMID: 34767854 DOI: 10.1016/j.chemosphere.2021.132844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
2- Line ferrihydrite (Fh) is widely used as a robust amendment for rapid arsenic removal or remediation in water or soil. However, the poorly crystalline phase of Fh is unstable and leads to arsenic leaching after long-term submergence in reductive aquatic and soil environments. In this study, the synthesized As(V)-bound Fh was characterized by various spectral approaches to investigate the factors that may affect the variation in As(V)-Fh in long-term continuously submerged soil suspensions. The X-ray diffraction (XRD) results showed that hematite was the main product and that goethite was the byproduct after 360 d of incubation. Approximately 12-17% and 4-5% Fh were transformed at As/Fe mole ratios of 0.005 and 0.05, respectively. After 360 d of incubation, the hematite morphology was clearly observed by scanning electron microscopy (SEM), and the As(V)-Fh surface areas were also decreased by 17.3-27.6% and 11.9-16.6% for As/Fe mole ratios of 0.005 and 0.05, respectively. In a comparison of the two tested soils (soils sampled in Sichuan Province (SC) and Hunan Province (HN)), As(V)-Fh transformed faster in HN soil suspensions, and more hematite and goethite were formed. Furthermore, during the incubation period, As(V) was transformed to As(III), and both species were released into the suspension from the As(V)-Fh surface. It was suggested that soil pH and Fe(II) concentration were key factors controlling the As(V)-Fh transformation process, and the differences between the two soils were due to the different soil pH values and contents of available Fe. Arsenic release was mainly caused by Fh transformation and ligand competition with soil organic matter (SOM).
Collapse
Affiliation(s)
- Tuo Zhang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China; College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Xinyi Chen
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Yu Wang
- College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan, 637009, China
| | - Lijuan Li
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Yuanyuan Sun
- Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Guiyang, Guizhou, 550025, China
| | - Yanan Wang
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China
| | - Xibai Zeng
- Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
41
|
An W, Wu C, Xue S, Liu Z, Liu M, Li W. Effects of biochar/AQDS on As(III)-adsorbed ferrihydrite reduction and arsenic (As) and iron (Fe) transformation: Abiotic and biological conditions. CHEMOSPHERE 2022; 291:133126. [PMID: 34861266 DOI: 10.1016/j.chemosphere.2021.133126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Microbe induced iron (Fe) reduction play an important role in arsenic (As) transformation and the related secondary mineral formation. Meanwhile biochar could react as electron shuttle for this process. Impact of biochar and model electron shuttle anthraquinone-2,6-disulfonate (AQDS) on the chemical/biological iron reduction of As(III)-adsorbed ferrihydrite and the solid-liquid redistribution of As in M1 buffer were studied. Fe reduction results in the release of As adsorbed on ferrihydrite into the solution. Under abiogenic conditions, both biochar and AQDS promoted ferrous production, the chemical oxidation of As(III) and As release. Inoculate with Shewanella oneidensis MR-1, AQDS has greater electronic shuttle function than biochar (with the maximum Fe(II) contents: 154 mg/L > 76.6 mg/L respectively). However, only 12.8 mg/L As was released in the presence of AQDS, which was much lower than that in the presence of biochar (21.6 mg/L), and may be associated with the transformation of As speciation and the formation of secondary minerals. XRD and EDX-SEM confirmed that the As could be fixed by the generated secondary mineral vivianite. The relative contents of vivianite in biological control and AQDS addition were 2.7% and 18.4%, respectively. This study provides information on the transformation and migration of As and Fe with the addition of biochar under anaerobic conditions, which is potential to understand the mechanism of As(III)-contaminated soil remediation.
Collapse
Affiliation(s)
- Wenhui An
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Chuan Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, China.
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Ziyu Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Min Liu
- College of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
| | - Waichin Li
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong Special Administrative Region, China
| |
Collapse
|
42
|
Wang M, Song X, Guo S, Li P, Xu Z, Xu H, Ding A, Ahmed RI, Zhou G, O’Neill M, Yang D, Kong Y. Using CRISPR-Cas9 Technology to Eliminate Xyloglucan in Tobacco Cell Walls and Change the Uptake and Translocation of Inorganic Arsenic. FRONTIERS IN PLANT SCIENCE 2022; 13:827453. [PMID: 35251097 PMCID: PMC8888522 DOI: 10.3389/fpls.2022.827453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Xyloglucan is a quantitatively major polysaccharide in the primary cell walls of flowering plants and has been reported to affect plants' ability to tolerate toxic elements. However, it is not known if altering the amounts of xyloglucan in the wall influences the uptake and translocation of inorganic arsenic (As). Here, we identified two Nicotiana tabacum genes that encode xyloglucan-specific xylosyltransferases (XXT), which we named NtXXT1 and NtXXT2. We used CRISPR-Cas9 technology to generate ntxxt1, ntxxt2, and ntxxt1/2 mutant tobacco plants to determine if preventing xyloglucan synthesis affects plant growth and their ability to accumulate As. We show that NtXXT1 and NtXXT2 are required for xyloglucan biosynthesis because no discernible amounts of xyloglucan were present in the cell walls of the ntxxt1/2 double mutant. The tobacco double mutant (ntxxt1/2) and the corresponding Arabidopsis mutant (atxxt1/2) do not have severe growth defects but do have a short root hair phenotype and a slow growth rate. This phenotype is rescued by overexpressing NtXXT1 or NtXXT2 in atxxt1/2. Growing ntxxt mutants in the presence of AsIII or AsV showed that the absence of cell wall xyloglucan affects the accumulation and translocation of As. Most notably, root retention of As increased substantially and the amounts of As translocated to the shoots decreased in ntxxt1/2. Our results suggest that xyloglucan-deficient plants provide a strategy for the phytoremediation of As contaminated soils.
Collapse
Affiliation(s)
- Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xinxin Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Shuaiqiang Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Peiyao Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zongchang Xu
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hua Xu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Anming Ding
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Rana Imtiaz Ahmed
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Gongke Zhou
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, China
| | - Malcom O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Dahai Yang
- China Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
43
|
Bertin PN, Crognale S, Plewniak F, Battaglia-Brunet F, Rossetti S, Mench M. Water and soil contaminated by arsenic: the use of microorganisms and plants in bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9462-9489. [PMID: 34859349 PMCID: PMC8783877 DOI: 10.1007/s11356-021-17817-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/23/2021] [Indexed: 04/16/2023]
Abstract
Owing to their roles in the arsenic (As) biogeochemical cycle, microorganisms and plants offer significant potential for developing innovative biotechnological applications able to remediate As pollutions. This possible use in bioremediation processes and phytomanagement is based on their ability to catalyse various biotransformation reactions leading to, e.g. the precipitation, dissolution, and sequestration of As, stabilisation in the root zone and shoot As removal. On the one hand, genomic studies of microorganisms and their communities are useful in understanding their metabolic activities and their interaction with As. On the other hand, our knowledge of molecular mechanisms and fate of As in plants has been improved by laboratory and field experiments. Such studies pave new avenues for developing environmentally friendly bioprocessing options targeting As, which worldwide represents a major risk to many ecosystems and human health.
Collapse
Affiliation(s)
- Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France.
| | - Simona Crognale
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS - Université de Strasbourg, Strasbourg, France
| | | | - Simona Rossetti
- Water Research Institute, National Research Council of Italy (IRSA - CNR), Rome, Italy
| | - Michel Mench
- Univ. Bordeaux, INRAE, BIOGECO, F-33615, Pessac, France
| |
Collapse
|
44
|
Miller CB, Parsons MB, Jamieson HE, Ardakani OH, Patterson RT, Galloway JM. Mediation of arsenic mobility by organic matter in mining-impacted sediment from sub-Arctic lakes: implications for environmental monitoring in a warming climate. ENVIRONMENTAL EARTH SCIENCES 2022; 81:137. [PMID: 35222729 PMCID: PMC8850223 DOI: 10.1007/s12665-022-10213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/06/2022] [Indexed: 05/13/2023]
Abstract
UNLABELLED Arsenic (As) is commonly sequestered at the sediment-water interface (SWI) in mining-impacted lakes through adsorption and/or co-precipitation with authigenic iron (Fe)-(oxy)hydroxides or sulfides. The results of this study demonstrate that the accumulation of organic matter (OM) in near-surface sediments also influences the mobility and fate of As in sub-Arctic lakes. Sediment gravity cores, sediment grab samples, and porewaters were collected from three lakes downstream of the former Tundra gold mine, Northwest Territories, Canada. Analysis of sediment using combined micro-X-ray fluorescence/diffraction, K-edge X-ray Absorption Near-Edge Structure (XANES), and organic petrography shows that As is associated with both aquatic (benthic and planktonic alginate) and terrestrially derived OM (e.g., cutinite, funginite). Most As is hosted by fine-grained Fe-(oxy)hydroxides or sulfide minerals (e.g., goethite, orpiment, lepidocrocite, and mackinawite); however, grain-scale synchrotron-based analysis shows that As is also associated with amorphous OM. Mixed As oxidation states in porewater (median = 62% As (V), 18% As (III); n = 20) and sediment (median = 80% As (-I) and (III), 20% As (V); n = 9) indicate the presence of variable redox conditions in the near-surface sediment and suggest that post-depositional remobilization of As has occurred. Detailed characterization of As-bearing OM at and below the SWI suggests that OM plays an important role in stabilizing redox-sensitive authigenic minerals and associated As. Based on these findings, it is expected that increased concentrations of labile OM will drive post-depositional surface enrichment of As in mining-impacted lakes and may increase or decrease As flux from sediments to overlying surface waters. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12665-022-10213-2.
Collapse
Affiliation(s)
- Clare B. Miller
- Centre for Ore Deposits and Earth Sciences (CODES), Department of Earth Science, University of Tasmania, Hobart, TAS 7001 Australia
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6 Canada
| | - Michael B. Parsons
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6 Canada
- Geological Survey of Canada/Commission Géologique du Canada, Natural Resources Canada/Ressources Naturelles Canada, 1 Challenger Drive, Dartmouth, NS B2Y 4A2 Canada
| | - Heather E. Jamieson
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON K7L 3N6 Canada
| | - Omid H. Ardakani
- Geological Survey of Canada/Commission Géologique du Canada, Natural Resources Canada/Ressources Naturelles Canada, 3303 - 33 Street N.W., Calgary, AB T2L 2A7 Canada
| | - R. Timothy Patterson
- Ottawa‐Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, ON KIS 5B6 Canada
| | - Jennifer M. Galloway
- Geological Survey of Canada/Commission Géologique du Canada, Natural Resources Canada/Ressources Naturelles Canada, 3303 - 33 Street N.W., Calgary, AB T2L 2A7 Canada
- Ottawa‐Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, ON KIS 5B6 Canada
| |
Collapse
|
45
|
Qian G, Xu L, Li N, Wang K, Qu Y, Xu Y. Enhanced arsenic migration in tailings soil with the addition of humic acid, fulvic acid and thiol-modified humic acid. CHEMOSPHERE 2022; 286:131784. [PMID: 34371358 DOI: 10.1016/j.chemosphere.2021.131784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Humus is an important parameter to affect the environmental fate of arsenic (As) in tailing soil. According to the batch and column experiment, the effects of humus (HS) including humic acid (HA), fulvic acid (FA) on the As release and basic properties of soil were studied in the soil from a mining region. In addition, HA was modified by 3-mercaptopropyltrimethoxysilane (3-MPTS) with different sulfur content (S%) to improve the release capacity of As. The results indicated that HS could destroy the binding of As with Fe, Mn, Al and Ca without affecting the basic properties of tailings soil, thus achieving the co-release of As and associated metals. Besides, the As release capacity of FA (25.47 %) was slightly higher than that of HA (21.90 %). The ability of thiol-modified HAs to release As from tailings soil after being modified with different S% of 3-MPTS was significantly improved, of which 2 % had the best treatment. The thiol groups (-SH) reached 45.00 % of total S. With the increase of S%, the surface thoil content, aromatization degree and total reduction capacity (TRC) of HA increased. The study demonstrated that HS and thiol-modified HA could promote the migration of As and could advance the treatment of heavy metal contaminated tailing soil.
Collapse
Affiliation(s)
- Guangren Qian
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Lu Xu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Nuo Li
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Kaili Wang
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China; Shanghai Municipal Engineering Design Institute (Group) CO., LTD., Shanghai, 200092, PR China
| | - Yangwei Qu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China
| | - Yunfeng Xu
- SHU Center of Green Urban Mining & Industry Ecology, School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai, 200444, PR China.
| |
Collapse
|
46
|
Darma A, Yang J, Bloem E, Możdżen K, Zandi P. Arsenic biotransformation and mobilization: the role of bacterial strains and other environmental variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1763-1787. [PMID: 34713399 DOI: 10.1007/s11356-021-17117-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Over several decades, arsenic (As) toxicity in the biosphere has affected different flora, fauna, and other environmental components. The majority of these problems are linked with As mobilization due to bacterial dissolution of As-bearing minerals and its transformation in other reservoirs such as soil, sediments, and ground water. Understanding the process, mechanism, and various bacterial species involved in these processes under the influence of some ecological variables greatly contributes to a better understanding of the fate and implications of As mobilization into the environments. This article summarizes the process, role, and various types of bacterial species involved in the transformation and mobilization of As. Furthermore, insight into how Fe(II) oxidation and resistance mechanisms such as methylation and detoxification against the toxic effect of As(III) was highlighted as a potential immobilization and remediation strategy in As-contaminated sites. Furthermore, the significance and comparative advantages of some useful analytical tools used in the evaluation, speciation, and analysis of As are discussed and how their in situ and ex situ applications support assessing As contamination in both laboratory and field settings. Nevertheless, additional research involving advanced molecular techniques is required to elaborate on the contribution of these bacterial consortia as a potential agronomic tool for reducing As availability, particularly in natural circumstances. Graphical abstract. Courtesy of conceptual model: Aminu Darma.
Collapse
Affiliation(s)
- Aminu Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Elke Bloem
- Institute for Crop and Soil Science Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Bundesallee 69, 38116, Braunschweig, Germany
| | - Katarzyna Możdżen
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2 St, 30-084, Kraków, Poland
| | - Peiman Zandi
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
- International Faculty of Applied Technology, Yibin University, Yibin, 644000, People's Republic of China
| |
Collapse
|
47
|
An Assessment of the Phytoremediation Potential of Planted and Spontaneously Colonized Woody Plant Species on Chronosequence Fly Ash Disposal Sites in Serbia—Case Study. PLANTS 2021; 11:plants11010110. [PMID: 35009113 PMCID: PMC8747270 DOI: 10.3390/plants11010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022]
Abstract
In this study, the potential of planted (Tamarix tetrandra Pall. ex M.Bieb. and Robinia pseudoacacia L.) and spontaneously colonized (Amorpha fruticosa L. and Populus alba L.) woody species for the phytoremediation of potentially toxic trace elements (TEs) such as As, B, Cr, Cu, Mn, Ni, Se, and Zn, from the chronosequence fly ash (FA) deposit lagoons (L1 and L2) at the ‘Nikola Tesla A’ Thermal Power Plant (TENT-A) in Serbia were analyzed. The differences in the pseodototal and bioavailable (DTPA-extractable) concentrations and mobility (AR index) of TEs in FA at the examined lagoons are a result of the time-conditioned influence of weathering (3 and 11 years respectively) and vegetation development on changing the basic physical and chemical properties of FA (texture, pH, EC, CEC, C, N, and bioavailable P and K) and its toxicity. This resulted in differences in the concentration of TEs in the roots and leaves of the examined plants at L1 and L2. All examined species accumulated Cr the most in the root (BAF > 1 and TF < 1), which suggests that they are good stabilizers of this element. Biological indices for As (BAF > 1 and TF < 1) identified T. tetrandra and A. fruticose as good stabilizers of As. P. alba stood out as accumulating the highest levels of B, Ni, and Zn, T. tetrandra the highest levels of Cu, Mn, and Se, and R. pseudoacacia the highest levels of As and B in leaves (BAF > 1; TF > 1), which makes them good extractors of these elements from the FA at TENT-A. However, due to toxic concentrations of As, B, Se, and Zn in their leaves, they are not recommended for the phytoremediation of the investigated lagoons through the process of phytostabilization. Under conditions of elevated total Cu and Ni concentration in FA, the content of these elements in the leaves of A. fruticosa at both lagoons were within the normal range. This, in addition to a good supply of essential Zn, the stabilization of As and Cr in the roots, an increase in BAF, and a decrease in TF for B with a decrease in its mobility in ash over time, singles this invasive species out as the best candidate for the phytostabilization of TEs in FA at the TENT-A ash deposit site.
Collapse
|
48
|
Strus O, Fedorovska M, Holota S, Polovko N. Development and validation of standardization methods of aqueous sapropel extract. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e71783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methodological bases and uniform standardization criteria of humic compounds as substances for drug products have not been developed yet. This is due to the structural complexity of humic compounds, the variety of ways to extract them from natural objects, the impossibility of using many classical methods of analytical chemistry to identify and quantify humic substances (HS), the lack of standard samples. The identification of humic acids (HA) in the aqueous sapropel extract (ASE) is identified after extracting from ASE by alkaline hydrolysis by the quantification method. After further precipitation with a concentrated sulfuric acid solution characteristic dark brown color is appeared. It was carried out the HA extraction from the sample of ASE, the precipitation of HA, the oxidation of HA and Mohr’s salt titration in accordance with the methodology developed on the basis of SSTU 7083:2009. It was determined that the total mass fraction of HA in the ASE sample was 83.8 mg/g± 0.12%. The methods of identification and quantification of the total mass of HA in ASE have been developed and validated. The ASE has been standardized.
Collapse
|
49
|
Li S, Lu F, Lv H, Zhou Y, Gomez MA, Yao S, Shi Z, Jia Y. Complexation of arsenate to humic acid with different molecular weight fractions in aqueous solution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1428-1434. [PMID: 34870539 DOI: 10.1080/10934529.2021.2006544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Natural organic matter (NOM) has been considered a critical substance in the transport and transformation of arsenic. NOM is a complex mixture of multifunctional organic components with a wide molecular weight (MW) distribution, and it is necessary to understand the complexation of arsenic with MW-dependent NOM fractions. In this study, humic acid (HA) was chosen as the representative fraction of NOM to investigate the complexation mechanism with arsenic. The bulk HA sample was fractionated to five fractions by ultrafiltration technology, and the complexing property of HA fractions with arsenic was analyzed by the dialysis method. We observed that the acidic and neutral conditions favor the complexation of HA fractions with arsenate (As(V)). The HA fractions with molecular weight > 100 kDa, 1-10 kDa, and <1 kDa have the stronger complexing capacity of As(V) than the other HA fractions. The bound As(V) percentage was positively associated with carboxyl content, phenolic content, and especially total acidity. A two-site ligand-binding model can describe the complexing capacity of arsenic onto HA fractions. The results can provide some fundamental information about the complexation of arsenic with MW-dependent HA fractions quantitatively.
Collapse
Affiliation(s)
- Shifeng Li
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Feng Lu
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Hongtao Lv
- Affairs Service Center of Ecological Environment of Liaoning Province, Shenyang, China
| | - Yang Zhou
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Mario A Gomez
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Shuhua Yao
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Zhongliang Shi
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
| | - Yongfeng Jia
- Liaoning Engineering Research Center for Treatment and Recycling of Industrially Discharged Heavy Metals, Shenyang University of Chemical Technology, Shenyang, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
50
|
Rivera-Hernández JR, Alvarado-Zambrano D, Gonzalez LA, Green-Ruiz CR. Subtotal content and geochemical fractionation of potential toxic elements in agricultural soils from Mocorito River basin in NW Mexico: environmental and health implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:915-931. [PMID: 31868528 DOI: 10.1080/09603123.2019.1700939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Agricultural soils were collected from Mocorito river basin, to determine potentially toxic elements (PTEs) subtotal concentrations and geochemical fractionation, and evaluate their environmental and health risks. All sites showed low As and Cr concentrations. Subtotal concentrations (mg/kg) ranged between 6.8 and 25.6 for As, 1.9 and 2.5 for Cd and 22.5 and 55.1 for Cr. These values were classified as moderately contaminated for As, while a considerable contamination was presented for Cd and Cr. Geochemical partitioning revealed that PTEs are strongly linked with residual phase. Arsenic was associated with amorphous Fe-oxyhydroxides. Ecotoxicological indices showed from low (As and Cr) to considerable (Cd) potential ecological risk factors; potential non-carcinogenic risks by As, Cd and Cr, and potential carcinogenic risks by As and Cr. Lithogenic and anthropogenic sources were identified. Arsenic and Cr showed lithogenic influence, while Cd increased, caused by nearby activities, representing an environmental and health risk.
Collapse
Affiliation(s)
- José R Rivera-Hernández
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, México
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Mazatlán, México
| | | | - Luis A Gonzalez
- Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico del Mazatlán, Mazatlán, México
| | - Carlos R Green-Ruiz
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, México
| |
Collapse
|