1
|
Bian DD, Liu X, Jiang JJ, Sun XL, Shi YX, Zhu XR, Zhang DZ, Liu QN, Tang BP, Zhu BJ. An insight into nitrite-induced reproductive toxicity and the alleviation of injury by selenomethionine through activation of the Keap1/Nrf2 pathway in Procambarus clarkii. Int J Biol Macromol 2025; 306:141616. [PMID: 40044007 DOI: 10.1016/j.ijbiomac.2025.141616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 05/03/2025]
Abstract
Nitrite (NIT) is one of the most common toxic compounds in aquaculture. However, the effects of NIT exposure on the reproductive capabilities of aquatic animals remain largely unknown. This study explored the consequences of NIT exposure on the ovarian tissues of Procambarus clarkii and revealed that it significantly reduced ATP content and gonadosomatic index (GSI), causing metabolic imbalance, reactive oxygen species (ROS) accumulation, increased oxidative stress, and altered antioxidant enzyme activity. Pathological investigation revealed a decrease in the number of oogonia and oocytes, as well as an increase in vacuolated and apoptotic cells in the ovary. Differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA) revealed that genes related to oxidative stress, apoptosis, and autophagy were significantly upregulated, whereas genes involved in ovarian development and energy metabolism were downregulated. These findings suggested that NIT exposure not only caused oxidative stress and abnormal energy metabolism, but also activated autophagy and apoptosis in the ovarian cells. In addition, the Nrf2/Keap1 (nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1) signaling pathway was found to be activated. Nrf2 knockdown inhibited antioxidant, apoptotic, and autophagy activities while increasing the expression of genes related to reproduction and nutrient metabolism. Selenomethionine (Se-Met) treatment alleviated NIT exposure-induced ovarian damage by elevating antioxidant capacity, superoxide dismutase, and catalase activities and reducing the levels of H2O2, malondialdehyde, glutathione, and ROS. In addition, Se-Met improved the anti-inflammatory and antioxidant stress responses by activating the Nrf2/Keap1 pathway and attenuating NIT-induced ovarian toxicity. Overall, this study provides a novel approach for maintaining ovarian homeostasis after NIT exposure.
Collapse
Affiliation(s)
- Dan-Dan Bian
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Xin Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Jun-Jie Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xiao-Li Sun
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Yan-Xia Shi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| | - Bao-Jian Zhu
- Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
2
|
Elshaer SE, Hamad GM, Sobhy SE, Darwish AMG, Baghdadi HH, H Abo Nahas H, El-Demerdash FM, Kabeil SSA, Altamimi AS, Al-Olayan E, Alsunbul M, Docmac OK, Jaremko M, Hafez EE, Saied EM. Supplementation of Saussurea costus root alleviates sodium nitrite-induced hepatorenal toxicity by modulating metabolic profile, inflammation, and apoptosis. Front Pharmacol 2024; 15:1378249. [PMID: 38881874 PMCID: PMC11177093 DOI: 10.3389/fphar.2024.1378249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Sodium nitrite (NaNO2) is a widely used food ingredient, although excessive concentrations can pose potential health risks. In the present study, we evaluated the deterioration effects of NaNO2 additives on hematology, metabolic profile, liver function, and kidney function of male Wistar rats. We further explored the therapeutic potential of supplementation with S. costus root ethanolic extract (SCREE) to improve NaNO2-induced hepatorenal toxicity. In this regard, 65 adult male rats were divided into eight groups; Group 1: control, Groups 2, 3, and 4 received SCREE in 200, 400, and 600 mg/kg body weight, respectively, Group 5: NaNO2 (6.5 mg/kg body weight), Groups 6, 7 and 8 received NaNO2 (6.5 mg/kg body weight) in combination with SCREE (200, 400, and 600 mg/kg body weight), respectively. Our results revealed that the NaNO2-treated group shows a significant change in deterioration in body and organ weights, hematological parameters, lipid profile, and hepatorenal dysfunction, as well as immunohistochemical and histopathological alterations. Furthermore, the NaNO2-treated group demonstrated a considerable increase in the expression of TNF-α cytokine and tumor suppressor gene P53 in the kidney and liver, while a significant reduction was detected in the anti-inflammatory cytokine IL-4 and the apoptosis suppressor gene BCL-2, compared to the control group. Interestingly, SCREE administration demonstrated the ability to significantly alleviate the toxic effects of NaNO2 and improve liver function in a dose-dependent manner, including hematological parameters, lipid profile, and modulation of histopathological architecture. Additionally, SCREE exhibited the ability to modulate the expression levels of inflammatory cytokines and apoptotic genes in the liver and kidney. The phytochemical analysis revealed a wide set of primary metabolites in SCREE, including phenolics, flavonoids, vitamins, alkaloids, saponins and tannins, while the untargeted UPLC/T-TOF-MS/MS analysis identified 183 metabolites in both positive and negative ionization modes. Together, our findings establish the potential of SCREE in mitigating the toxic effects of NaNO2 by modulating metabolic, inflammatory, and apoptosis. Together, this study underscores the promise of SCREE as a potential natural food detoxifying additive to counteract the harmful impacts of sodium nitrite.
Collapse
Affiliation(s)
- Samy E Elshaer
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Gamal M Hamad
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Sherien E Sobhy
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Amira M Galal Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
- Food Industry Technology Program, Faculty of Industrial and Energy Technology, Borg Al Arab Technological University (BATU), Alexandria, Egypt
| | - Hoda H Baghdadi
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Fatma M El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sanaa S A Kabeil
- Department of Protein Research, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Alsunbul
- Department of Pharmaceutical Sciences., College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Omaima Kamel Docmac
- Anatomy and Embryology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Elsayed E Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Essa M Saied
- Chemistry Department (Biochemistry Division), Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021; 10:cells10071603. [PMID: 34206739 PMCID: PMC8306609 DOI: 10.3390/cells10071603] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are chronic and life-threatening conditions negatively affecting the quality of patients’ lives. They often have a genetic background, but oxidative stress and mitochondrial damage seem to be at least partly responsible for their development. Recent reports indicate that the activation of the kynurenine pathway (KP), caused by an activation of proinflammatory factors accompanying neurodegenerative processes, leads to the accumulation of its neuroactive and pro-oxidative metabolites. This leads to an increase in the oxidative stress level, which increases mitochondrial damage, and disrupts the cellular energy metabolism. This significantly reduces viability and impairs the proper functioning of central nervous system cells and may aggravate symptoms of many psychiatric and neurodegenerative disorders. This suggests that the modulation of KP activity could be effective in alleviating these symptoms. Numerous reports indicate that tryptophan supplementation, inhibition of KP enzymes, and administration or analogs of KP metabolites show promising results in the management of neurodegenerative disorders in animal models. This review gathers and systematizes the knowledge concerning the role of metabolites and enzymes of the KP in the development of oxidative damage within brain cells during neurodegenerative disorders and potential strategies that could reduce the severity of this process.
Collapse
|
4
|
Bera A, Chadha NK, Dasgupta S, Chakravarty S, Sawant PB. Hypoxia-mediated inhibition of cholesterol synthesis leads to disruption of nocturnal sex steroidogenesis in the gonad of koi carp, Cyprinus carpio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2421-2435. [PMID: 33034795 DOI: 10.1007/s10695-020-00887-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Reproductively mature koi carps (Cyprinus carpio) showed a prominent diurnal variation of sex steroids with sustained nocturnal rise. Exposure to chronic hypoxia (DO < 0.8 mg/l) disrupted nocturnal sex steroid production in koi carp gonads. Inhibition of sex steroidogenesis is linked to the down-regulation of HMG-Co A reductase (p < 0.05), which acts as a rate-limiting enzyme in the mevalonate pathway for cholesterol production. HMG-CoA reductase inhibition was obvious in the gonads and liver of both sexes during 18.00 h and 21.00 h resulting in hypocholesterolemia (p < 0.05). The levels of sex steroids, such as estradiol, testosterone, and 11-keto-testosterone in gonads were depleted below the optimum levels owing to disruption of de novo cholesterol synthesis along with attenuation of HDL-cholesterol level in serum. Inhibition of melatonin under hypoxic conditions indicates disruption of melatonin effects on the hypothalamus-pituitary-gonadal (HPG) axis of koi carp. Under severe hypoxic stress, koi carp promoted energy conservation by switching over to the triglyceride (TGA) pathway instead of the mevalonate pathway to suppress cholesterol production. Chronic hypoxia inhibited cholesterol synthesis, a prerequisite for gonadal maturation. It promoted TGA production, as an alternative energy source, suggesting a probable mitigation strategy adopted by hypoxia-tolerant fish to deal with low dissolved oxygen frequently occurring in aquatic bodies.
Collapse
Affiliation(s)
- Aritra Bera
- ICAR- Central Institute of Brackishwater Aquaculture , Chennai, Tamil Nadu, 600028, India
| | - Narinder Kumar Chadha
- ICAR-Central Institute of Fisheries Education , Versova, Mumbai, Maharashtra, 400061, India
| | - Subrata Dasgupta
- ICAR-Central Institute of Fisheries Education, Kolkata Centre, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India
| | - Srijit Chakravarty
- ICAR-Central Institute of Fisheries Education , Versova, Mumbai, Maharashtra, 400061, India
| | | |
Collapse
|
5
|
Benvenga S, Ferrari SM, Elia G, Ragusa F, Patrizio A, Paparo SR, Camastra S, Bonofiglio D, Antonelli A, Fallahi P. Nutraceuticals in Thyroidology: A Review of in Vitro, and in Vivo Animal Studies. Nutrients 2020; 12:nu12051337. [PMID: 32397091 PMCID: PMC7285044 DOI: 10.3390/nu12051337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Nutraceuticals are defined as a food, or parts of a food, that provide medical or health benefits, including the prevention of different pathological conditions, and thyroid diseases, or the treatment of them. Nutraceuticals have a place in complementary medicines, being positioned in an area among food, food supplements, and pharmaceuticals. The market of certain nutraceuticals such as thyroid supplements has been growing in the last years. In addition, iodine is a fundamental micronutrient for thyroid function, but also other dietary components can have a key role in clinical thyroidology. Here, we have summarized the in vitro, and in vivo animal studies present in literature, focusing on the commonest nutraceuticals generally encountered in the clinical practice (such as carnitine, flavonoids, melatonin, omega-3, resveratrol, selenium, vitamins, zinc, and inositol), highlighting conflicting results. These experimental studies are expected to improve clinicians’ knowledge about the main supplements being used, in order to clarify the potential risks or side effects and support patients in their use.
Collapse
Affiliation(s)
- Salvatore Benvenga
- Master Program on Childhood, Adolescent and Women’s Endocrine Health, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina;
- Interdepartmental Program of Molecular & Clinical Endocrinology, and Women’s Endocrine Health, University Hospital, Policlinico Universitario G. Martino, 98125 Messina, Italy
| | - Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Sabrina Rosaria Paparo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy;
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.M.F.); (G.E.); (F.R.); (A.P.); (S.R.P.); (S.C.)
- Correspondence: ; Tel.: +39-050-992318
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
6
|
Lin W, Guo H, Li Y, Wang L, Zhang D, Hou J, Wu X, Li L, Li D, Zhang X. Single and combined exposure of microcystin-LR and nitrite results in reproductive endocrine disruption via hypothalamic-pituitary-gonadal-liver axis. CHEMOSPHERE 2018; 211:1137-1146. [PMID: 30223329 DOI: 10.1016/j.chemosphere.2018.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 05/25/2023]
Abstract
Microcystin-LR (MC-LR) released by Microcystis blooms degradation usually co-exists with a chemical called nitrite, posing a serious harm to aquatic organisms. To assess the single and combined effects of MC-LR and nitrite on the reproductive endocrine system, a fully factorial experiment was designed and adult male zebrafish (Danio rerio) were exposed to 9 treatment combinations of MC-LR (0, 3, 30 μg/L) and nitrite (0, 2, 20 mg/L) for 30 d. The results showed that both MC-LR and nitrite caused concentration-dependent effects including the growth inhibition, decreased gonad index as well as testicular injuries with widen intercellular spaces and seminiferous epithelium deteriorations. And testicular pathological changes in the co-exposure groups of MC-LR and nitrite were similar but more serious than those in single-factor exposure groups. Concurrently, exposure to MC-LR or nitrite alone could significantly decrease T levels by downregulating gene expressions (gnrh2, lhβ, ar, lhr) in the hypothalamic-pituitary-gonadal-liver-axis (HPGL-axis), and there were significant interactions between MC-LR and nitrite on them. In contrast, E2 levels as well as transcriptional levels of cyp19a1b, cyp19a1a and vtg1 showed significant inductions with increasing MC-LR concentrations, indicating an estrogen-like effect of MC-LR. Our findings illustrated that co-exposure of MC-LR and nitrite synergistically cause reproductive dysfunction by interfering with the HPGL axis in male fish, which prompt us to focus more on the potential risks in fish reproduction and even population dynamics due to the wide occurrence of toxic cyanobacterial blooms.
Collapse
Affiliation(s)
- Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yufen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lingkai Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dandan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xueyang Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, 430070, PR China.
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; National Demonstration Center for Experimental Aquaculture Education (Huazhong Agricultural University), Wuhan, 430070, PR China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China
| |
Collapse
|
7
|
Bjerregaard P, Kinnberg KL, Mose MP, Holbech H. Investigation of the potential endocrine effect of nitrate in zebrafish Danio rerio and brown trout Salmo trutta. Comp Biochem Physiol C Toxicol Pharmacol 2018; 211:32-40. [PMID: 29777853 DOI: 10.1016/j.cbpc.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 05/08/2018] [Indexed: 11/25/2022]
Abstract
Nitrate has the potential to affect steroid production. Nitrate concentrations in streams in agricultural areas may exceed concentrations showing effects in laboratory studies. The effects of nitrate and/or nitrite on endocrine relevant endpoints were tested in zebrafish and brown trout. Zebrafish were exposed in two experiments to nitrate (8.8 to 89 mg NO3-/L) and nitrite (3.6 to 19 mg NO2-/L) during the period of sexual differentiation and sex ratios were determined. Vitellogenin concentrations were determined in the second experiment. The sex ratio was unaffected by the exposure to nitrate and nitrite. Vitellogenin concentrations were slightly elevated in males (but not females) in all of the groups exposed to nitrate. Juvenile brown trout were exposed to 5.7, 14, and 31 mg NO3-/L for 8 days and vitellogenin levels in liver were determined. Vitellogenin concentrations in the females were not affected by exposure, but in the males, there was an overall statistically significant effect of exposure to nitrate with the group exposed to 5.7 mg NO3-/L showing a trend of higher vitellogenin concentrations than the control group; levels in the males of the groups exposed to 14 and 31 mg NO3-/L were not statistically different from those of the control group. In conclusion, some marginal effect of nitrate in male fish on endocrine activity was observed but the present results for zebrafish, using environmentally relevant concentrations, do not define nitrate and nitrite as endocrine disrupting chemicals according to the generally accepted WHO/IPCS definition because no adverse effects (altered sex ratios) were demonstrated.
Collapse
Affiliation(s)
- Poul Bjerregaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark.
| | - Karin Lund Kinnberg
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Maria Pedersen Mose
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230, Denmark
| |
Collapse
|
8
|
Poulsen R, Cedergreen N, Hayes T, Hansen M. Nitrate: An Environmental Endocrine Disruptor? A Review of Evidence and Research Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3869-3887. [PMID: 29494771 DOI: 10.1021/acs.est.7b06419] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitrate is heavily used as an agricultural fertilizer and is today a ubiquitous environmental pollutant. Environmental endocrine effects caused by nitrate have received increasing attention over the last 15 years. Nitrate is hypothesized to interfere with thyroid and steroid hormone homeostasis and developmental and reproductive end points. The current review focuses on aquatic ecotoxicology with emphasis on field and laboratory controlled in vitro and in vivo studies. Furthermore, nitrate is just one of several forms of nitrogen that is present in the environment and many of these are quickly interconvertible. Therefore, the focus is additionally confined to the oxidized nitrogen species (nitrate, nitrite and nitric oxide). We reviewed 26 environmental toxicology studies and our main findings are (1) nitrate has endocrine disrupting properties and hypotheses for mechanisms exist, which warrants for further investigations; (2) there are issues determining actual nitrate-speciation and abundance is not quantified in a number of studies, making links to speciation-specific effects difficult; and (3) more advanced analytical chemistry methodologies are needed both for exposure assessment and in the determination of endocrine biomarkers.
Collapse
Affiliation(s)
- Rikke Poulsen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
| | - Tyrone Hayes
- Laboratory for Integrative Studies in Amphibian Biology, Molecular Toxicology, Group in Endocrinology, Energy and Resources Group, Museum of Vertebrate Zoology, and Department of Integrative Biology , University of California , Berkeley , California 94720 , United States
| | - Martin Hansen
- Department of Plant and Environmental Sciences , University of Copenhagen , Thorvaldsensvej 40 , 1871 Frederiksberg , Denmark
- Laboratory for Integrative Studies in Amphibian Biology, Molecular Toxicology, Group in Endocrinology, Energy and Resources Group, Museum of Vertebrate Zoology, and Department of Integrative Biology , University of California , Berkeley , California 94720 , United States
- Department of Environmental and Civil Engineering , University of California , Berkeley , California 94720 , United States
- Department of Environmental Science , Aarhus University , 4000 Roskilde , Denmark
| |
Collapse
|
9
|
Ghasemi A, Jeddi S. Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide 2017; 70:9-24. [PMID: 28804022 DOI: 10.1016/j.niox.2017.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/02/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023]
Abstract
Prevalence of obesity is increasing worldwide and type 2 diabetes to date is the most devastating complication of obesity. Decreased nitric oxide bioavailability is a feature of obesity and diabetes that links these two pathologies. Nitric oxide is synthesized both by nitric oxide synthase enzymes from l-arginine and nitric oxide synthase-independent from nitrate/nitrite. Nitric oxide production from nitrate/nitrite could potentially be used for nutrition-based therapy in obesity and diabetes. Nitric oxide deficiency also contributes to pathogeneses of cardiovascular disease and hypertension, which are associated with obesity and diabetes. This review summarizes pathways for nitric oxide production and focuses on the anti-diabetic and anti-obesity effects of the nitrate-nitrite-nitric oxide pathway. In addition to increasing nitric oxide production, nitrate and nitrite reduce oxidative stress, increase adipose tissue browning, have favorable effects on nitric oxide synthase expression, and increase insulin secretion, all effects that are potentially promising for management of obesity and diabetes. Based on current data, it could be suggested that amplifying the nitrate-nitrite-nitric oxide pathway is a diet-based strategy for increasing nitric oxide bioavailability and the management of these two interlinked conditions. Adding nitrate/nitrite to drugs that are currently used for managing diabetes (e.g. metformin) and possibly anti-obesity drugs may also enhance their efficacy.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Xu K, Liu H, Bai M, Gao J, Wu X, Yin Y. Redox Properties of Tryptophan Metabolism and the Concept of Tryptophan Use in Pregnancy. Int J Mol Sci 2017; 18:E1595. [PMID: 28737706 PMCID: PMC5536082 DOI: 10.3390/ijms18071595] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
During pregnancy, tryptophan (Trp) is required for several purposes, and Trp metabolism varies over time in the mother and fetus. Increased oxidative stress (OS) with high metabolic, energy and oxygen demands during normal pregnancy or in pregnancy-associated disorders has been reported. Taking the antioxidant properties of Trp and its metabolites into consideration, we made four hypotheses. First, the use of Trp and its metabolites is optional based on their antioxidant properties during pregnancy. Second, dynamic Trp metabolism is an accommodation mechanism in response to OS. Third, regulation of Trp metabolism could be used to control/attenuate OS according to variations in Trp metabolism during pregnancy. Fourth, OS-mediated injury could be alleviated by regulation of Trp metabolism in pregnancy-associated disorders. Future studies in normal/abnormal pregnancies and in associated disorders should include measurements of free Trp, total Trp, Trp metabolites, and activities of Trp-degrading enzymes in plasma. Abnormal pregnancies and some associated disorders may be associated with disordered Trp metabolism related to OS. Mounting evidence suggests that the investigation of the use of Trp and its metabolites in pregnancy will be meanful.
Collapse
Affiliation(s)
- Kang Xu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Hongnan Liu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Miaomiao Bai
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Jing Gao
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Xin Wu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Yulong Yin
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| |
Collapse
|
11
|
Pottinger TG. Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:550-558. [PMID: 28318786 DOI: 10.1016/j.envpol.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/24/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Disruption of non-reproductive endocrine systems in wildlife by chemicals has received little attention but represents a potentially significant problem. Nitrate is a major anthropogenic contaminant in the freshwater aquatic environment and has been identified as a potential disrupter of endocrine function in aquatic animals. This study was conducted to investigate the relationship between the function of the neuroendocrine stress axis in fish and inorganic N loading along reaches of rivers receiving cumulative point source and diffuse chemical inputs. To accomplish this, the responsiveness of the stress axis, quantified as the rate of release of cortisol to water across the gills during exposure to a standardised stressor, was measured in three-spined sticklebacks (Gasterosteus aculeatus L.) resident at three sites on each of four rivers in north-west England. The magnitude of the stress response in fish captured at the sites furthest downstream on all rivers was more than twice that of fish captured at upstream sites. Site-specific variation in stress axis reactivity was better explained by between-site variation in concentrations of dissolved nitrate, nitrite, and ammonia than by the concentration of wastewater treatment works effluent. An increase in the magnitude of the stress response was seen among sticklebacks at sites where long-term averaged concentrations of NH3-N, NO3-N and NO2-N exceeded 0.6, 4.0 and 0.1 mg/L respectively. These data suggest that either (i) inorganic N is a better surrogate than wastewater effluent concentration for an unknown factor or factors affecting stress axis function in fish, or (ii) dissolved inorganic N directly exerts a disruptive influence on the function of the neuroendocrine stress axis in fish, supporting concerns that nitrate is an endocrine-modulating chemical.
Collapse
Affiliation(s)
- Tom G Pottinger
- Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK.
| |
Collapse
|
12
|
Poulsen R, Cedergreen N, Hansen M. Is nitrate an endocrine disruptor? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:210-212. [PMID: 27982532 DOI: 10.1002/ieam.1850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Affiliation(s)
| | | | - Martin Hansen
- University of Copenhagen, Frederiksberg, Denmark
- University of California, Berkeley, California, USA
| |
Collapse
|
13
|
McCoy KA, Roark AM, Boggs ASP, Bowden JA, Cruze L, Edwards TM, Hamlin HJ, Cantu TM, McCoy JA, McNabb NA, Wenzel AG, Williams CE, Kohno S. Integrative and comparative reproductive biology: From alligators to xenobiotics. Gen Comp Endocrinol 2016; 238:23-31. [PMID: 27013381 PMCID: PMC5497304 DOI: 10.1016/j.ygcen.2016.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 12/24/2022]
Abstract
Dr. Louis J. Guillette Jr. thought of himself as a reproductive biologist. However, his interest in reproductive biology transcended organ systems, life history stages, species, and environmental contexts. His integrative and collaborative nature led to diverse and fascinating research projects conducted all over the world. He doesn't leave us with a single legacy. Instead, he entrusts us with several. The purpose of this review is to highlight those legacies, in both breadth and diversity, and to illustrate Dr. Guillette's grand contributions to the field of reproductive biology. He has challenged the field to reconsider how we think about our data, championed development of novel and innovative techniques to measure endocrine function, helped define the field of endocrine disruption, and lead projects to characterize new endocrine disrupting chemicals. He significantly influenced our understanding of evolution, and took bold and important steps to translate all that he has learned into advances in human reproductive health. We hope that after reading this manuscript our audience will appreciate and continue Dr. Guillette's practice of open-minded and passionate collaboration to understand the basic mechanisms driving reproductive physiology and to ultimately apply those findings to protect and improve wildlife and human health.
Collapse
Affiliation(s)
- Krista A McCoy
- Department of Biology, East Carolina University, Greenville, NC 278585, USA
| | - Alison M Roark
- Department of Biology, Furman University, Greenville, SC 29613, USA
| | - Ashley S P Boggs
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA
| | - John A Bowden
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC 29303, USA
| | - Thea M Edwards
- Department of Biology, University of the South, Sewanee, TN 37383, USA
| | - Heather J Hamlin
- School of Marine Sciences, Aquaculture Research Institute, University of Maine, Orono, ME 04469, USA
| | - Theresa M Cantu
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Jessica A McCoy
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Nicole A McNabb
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA; Graduate Program in Marine Biology, University of Charleston at College of Charleston, Charleston, SC 29412, USA
| | - Abby G Wenzel
- Environmental Chemical Sciences, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, SC 29412, USA; Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA
| | - Cameron E Williams
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA; Graduate Program in Marine Biology, University of Charleston at College of Charleston, Charleston, SC 29412, USA
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, SC 29412, USA.
| |
Collapse
|
14
|
Bahadoran Z, Mirmiran P, Ghasemi A, Kabir A, Azizi F, Hadaegh F. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis. Nitric Oxide 2015; 47:65-76. [PMID: 25889269 DOI: 10.1016/j.niox.2015.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
The potential effects of inorganic nitrate/nitrite on global health are a much debated issue. In addition to possible methemoglobinemia and carcinogenic properties, anti-thyroid effects of nitrate/nitrite have been suggested. Considering the growing significance of nitrate/nitrite and since there is no comprehensive review in data available, clarifying the effect of nitrate/nitrite on thyroid disorder outcomes is essential. Therefore, we conducted this systematic review of experimental and clinical studies, and a meta-analysis of relevant cohort and cross-sectional studies investigating the association of nitrate/nitrite exposure and thyroid function. Most animal studies show that high exposure (~10-600 times of acceptable daily intake) to nitrate/nitrite induces anti-thyroid effects, including decreased serum level of thyroid hormones and histomorphological changes in thyroid gland; however no similar observations have been documented in humans. Based on our meta-analysis, no significant association was observed between nitrate exposure and the risk of thyroid cancer, hyper- and hypothyroidism; findings from three cohort studies however showed a significant association between higher exposure to nitrite and the risk of thyroid cancer (risk = 1.48, 95% confidence interval = 1.09-2.02, P = 0.012). Additional research is needed to clarify the association between nitrate/nitrite exposures and both thyroid function and cancer.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Nutrition and Endocrine Research Center, Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Kabir
- Minimally Invasive Surgery Research Center; Iran University of Medical Sciences, Tehran, Iran; Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Reyes Ocampo J, Lugo Huitrón R, González-Esquivel D, Ugalde-Muñiz P, Jiménez-Anguiano A, Pineda B, Pedraza-Chaverri J, Ríos C, Pérez de la Cruz V. Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:646909. [PMID: 24693337 PMCID: PMC3945746 DOI: 10.1155/2014/646909] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/12/2013] [Accepted: 12/15/2013] [Indexed: 11/18/2022]
Abstract
The kynurenine pathway (KP) is the main route of tryptophan degradation whose final product is NAD(+). The metabolism of tryptophan can be altered in ageing and with neurodegenerative process, leading to decreased biosynthesis of nicotinamide. This fact is very relevant considering that tryptophan is the major source of body stores of the nicotinamide-containing NAD(+) coenzymes, which is involved in almost all the bioenergetic and biosynthetic metabolism. Recently, it has been proposed that endogenous tryptophan and its metabolites can interact and/or produce reactive oxygen species in tissues and cells. This subject is of great importance due to the fact that oxidative stress, alterations in KP metabolites, energetic deficit, cell death, and inflammatory events may converge each other to enter into a feedback cycle where each one depends on the other to exert synergistic actions among them. It is worth mentioning that all these factors have been described in aging and in neurodegenerative processes; however, has so far no one established any direct link between alterations in KP and these factors. In this review, we describe each kynurenine remarking their redox properties, their effects in experimental models, their alterations in the aging process.
Collapse
Affiliation(s)
- Jazmin Reyes Ocampo
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Rafael Lugo Huitrón
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Dinora González-Esquivel
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Perla Ugalde-Muñiz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Anabel Jiménez-Anguiano
- Área de Neurociencias, Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., 14269 México, DF, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| | - Verónica Pérez de la Cruz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S.A., Insurgentes Sur 3877, 14269 México, DF, Mexico
| |
Collapse
|