1
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
2
|
Günay B, Matthews E, Morgan J, Tryfonidou MA, Saldova R, Pandit A. An insight on the N-glycome of notochordal cell-rich porcine nucleus pulposus during maturation. FASEB Bioadv 2023; 5:321-335. [PMID: 37554546 PMCID: PMC10405234 DOI: 10.1096/fba.2023-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 08/10/2023] Open
Abstract
Degeneration of the intervertebral disc is an age-related condition. It also accompanies the disappearance of the notochordal cells, which are remnants of the developmental stages of the nucleus pulposus (NP). Molecular changes such as extracellular matrix catabolism, cellular phenotype, and glycosaminoglycan loss in the NP have been extensively studied. However, as one of the most significant co- and posttranslational modifications, glycosylation has been overlooked in cells in degeneration. Here, we aim to characterize the N-glycome of young and mature NP and identify patterns related to aging. Accordingly, we isolated N-glycans from notochordal cell-rich NP from porcine discs, characterized them using a combined approach of exoglycosidase digestions and analysis with hydrophilic interaction ultra-performance liquid chromatography and mass spectrometry. We have assigned over 300 individual N-glycans for each age group. Moreover, we observed a notable abundance of antennary structures, galactosylation, fucosylation, and sialylation in both age groups. In addition, as indicated from our results, increasing outer arm fucosylation and decreasing α(2,3)-linked sialylation with aging suggest that these traits are age-dependent. Lastly, we have focused on an extensive characterization of the N-glycome of the notochordal cell-rich NP in aging without inferred degeneration, describing glycosylation changes specific for aging only. Our findings in combination with those of other studies, suggest that the degeneration of the NP does not involve identical processes as aging.
Collapse
Affiliation(s)
- Büşra Günay
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Elizabeth Matthews
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
| | - Jack Morgan
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
| | - Marianna A. Tryfonidou
- Faculty of Veterinary Medicine, Department of Clinical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Radka Saldova
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
- School of Medicine, College of Health and Agricultural ScienceUniversity College DublinDublinIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| |
Collapse
|
3
|
Chen Y, Li HW, Cong F, Lian YX. Metabolomics profiling for identification of potential biomarkers in chickens infected with avian leukosis virus subgroup J (ALV-J). Res Vet Sci 2021; 139:166-171. [PMID: 34332419 DOI: 10.1016/j.rvsc.2021.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/16/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
There are currently no vaccines or effective drugs to prevent the disorders caused by avian leukosis virus subgroup J (ALV-J). Hence, it is critical to identify potential biomarkers in ALV-J-infected chickens to prevent ALV-J-induced disorders. We hypothesized that ALV-J infection alters metabolic profile in chickens. In the present study, a nontargeted metabolomics approach based on liquid chromatography coupled with mass spectrometry (LC-MS) was used to find differential metabolites in plasma samples from ALV-J-infected chickens and healthy controls. The parametric statistical test (Student's t-test) and fold change analysis were used for univariate analysis. Multivariate statistical analyses included principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The levels of methyl bromide, pyraclonil, hexaflumuron, lythidathion, 3-phosphoglycerol-glutathione, bis-4-nitrophenyl phosphate, 4-ketocyclophosphamide, oxidized photinus luciferin, phenyl sulfate, and aryl sulfate significantly decreased, whereas the levels of 2-methylthiobenzothiazole, irinotecan, methadone, 3-o-ethyl-l-ascorbic acid, and o-acetylneuraminic acid markedly increased in ALV-J-infected chickens as compared to those in healthy controls. These data provide metabolic evidence and potential biomarkers for ALV-J-induced alterations in plasma metabolism.
Collapse
Affiliation(s)
- Yuan Chen
- School of Life Science, Huizhou University, Huizhou 516007, China
| | - Hong-Wei Li
- School of Life Science, Huizhou University, Huizhou 516007, China.
| | - Feng Cong
- Guangdong Laboratory Animal Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou 510633, China
| | - Yue-Xiao Lian
- Guangdong Laboratory Animal Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou 510633, China
| |
Collapse
|
4
|
Su H, Wang M, Pang X, Guan F, Li X, Cheng Y. When Glycosylation Meets Blood Cells: A Glance of the Aberrant Glycosylation in Hematological Malignancies. Rev Physiol Biochem Pharmacol 2021; 180:85-117. [PMID: 34031738 DOI: 10.1007/112_2021_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of hematological malignancy progression. Alterations in glycosylation appear to not only directly impact cell growth and survival, but also alter the adhesion of tumor cells and their interactions with the microenvironment, facilitating cancer-induced immunomodulation and eventual metastasis. Changes in glycosylation arise from altered expression of glycosyltransferases, enzymes that catalyze the transfer of saccharide moieties to a wide range of acceptor substrates, such as proteins, lipids, and other saccharides in the endoplasmic reticulum (ER) and Golgi apparatus. Novel glycan structures in hematological malignancies represent new targets for the diagnosis and treatment of blood diseases. This review summarizes studies of the aberrant expression of glycans commonly found in hematological malignancies and their potential mechanisms and defines the specific roles of glycans as drivers or passengers in the development of hematological malignancies.
Collapse
Affiliation(s)
- Huining Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mimi Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xingchen Pang
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Science, Northwest University, Xi'an, China.
| | - Ying Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Sialic acid and biology of life: An introduction. SIALIC ACIDS AND SIALOGLYCOCONJUGATES IN THE BIOLOGY OF LIFE, HEALTH AND DISEASE 2020. [PMCID: PMC7153325 DOI: 10.1016/b978-0-12-816126-5.00001-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sialic acids are important molecule with high structural diversity. They are known to occur in higher animals such as Echinoderms, Hemichordata, Cephalochorda, and Vertebrata and also in other animals such as Platyhelminthes, Cephalopoda, and Crustaceae. Plants are known to lack sialic acid. But they are reported to occur in viruses, bacteria, protozoa, and fungi. Deaminated neuraminic acid although occurs in vertebrates and bacteria, is reported to occur in abundance in the lower vertebrates. Sialic acids are mostly located in terminal ends of glycoproteins and glycolipids, capsular and tissue polysialic acids, bacterial lipooligosaccharides/polysaccharides, and in different forms that dictate their role in biology. Sialic acid play important roles in human physiology of cell-cell interaction, communication, cell-cell signaling, carbohydrate-protein interactions, cellular aggregation, development processes, immune reactions, reproduction, and in neurobiology and human diseases in enabling the infection process by bacteria and virus, tumor growth and metastasis, microbiome biology, and pathology. It enables molecular mimicry in pathogens that allows them to escape host immune responses. Recently sialic acid has found role in therapeutics. In this chapter we have highlighted the (i) diversity of sialic acid, (ii) their occurrence in the diverse life forms, (iii) sialylation and disease, and (iv) sialic acid and therapeutics.
Collapse
|
6
|
A Glycomic Approach Towards Identification of Signature Molecules in CD34 + Haematopoietic Stem Cells from Umbilical Cord Blood. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1112:309-318. [PMID: 30637706 DOI: 10.1007/978-981-13-3065-0_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Umbilical cord blood (UCB) is a powerful storehouse for normal CD34+ haematopoietic stem cells (HSCs), often used for allogeneic bone marrow (BM) transplantation in malignant and non-malignant diseases. The glycomic especially the sialoglycomic aspect of these HSCs has been unravelled in this study. Cell surface expression of the glycans with the related enzymatic activities has been compared with the BM of childhood acute lymphoblastic leukaemia, a common BM-associated malignancy. An enhanced cell surface expression of α2,3-linked sialic acid, P- and E-selectins, and intercellular adhesion molecule along with reduced expression of L-selectin distinguishes CD34+ HSCs of UCB from leukaemic samples. More importantly, high expression of O-acetylated sialoglycoproteins, a hallmark of lymphoblasts, is drastically reduced in the CD34+ HSCs of UCB and is substantiated by the low activity of sialylate-O-acetyltransferase and high sialidase activity. In contrast, a significant variation is evident in the expression of sialic acid, α2,6-linked sialic acids, and the sialyltransferase activity. Taken together, these studies indicate a few signature molecules, forming a unique glycomic template, which may be a potential indicator, reassuring the normal profile of these stem cells, to be used for future transplantation.
Collapse
|
7
|
Zhang Q, Wang Y, Zheng Q, Li J. Analysis of O-Acetylated Sialic Acids in Dried Blood Spots. Anal Chem 2019; 91:2744-2751. [DOI: 10.1021/acs.analchem.8b04420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research,
Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research,
Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjun Li
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada K1A 0R6
| |
Collapse
|
8
|
Ghosh S. Sialylation and sialyltransferase in insects. Glycoconj J 2018; 35:433-441. [PMID: 30058043 DOI: 10.1007/s10719-018-9835-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
Sialic acids are negatively charged nine carbon monosaccharides located terminally on glycoproteins and glycolipids that control cellular physiological processes. Sialylation is a post translational modification (ptm) regulated by enzymes and has been studied in prokaryotes including bacteria, dueterostomes including vertebrates, Cephalochordates, Ascidians, Echinoderms and protostomes including Molluscs and Arthropods and Plant. Although diverse structures of sialylated molecules have been reported in different organisms, unravelling sialylation in insect biology is a completely new domain. Within protostomes, the study of sialylation in members of Phylum Arthropoda and Class Insecta finds importance. Reports on sialylation in some insects exist. Genetically engineered components of sialylation pathway in Spodoptera frugiperda (Sf9) cell lines have enabled our understanding of sialylation and expression of mammalian proteins in insects. In this study we have summarised the finding on (i) sialylated molecules (ii) processes and enzymes involved (iii) function of sialylation (iv) genetic engineering approaches and generation of mammalian protein expression systems (v) a comparison of sialylation machinery in insects with that of mammals (vi) genes and transcriptional regulation in insects. At present no information on structural studies of insect sialyltransferase (STs) exist. We report minor differences in ST structure in insects on complete protein sequences recorded in Genbank through in silico approaches. An indepth study of all the components of the sialylation pathway in different insect species across different families and their evolutionary significance finds importance as the future scope of this review.
Collapse
Affiliation(s)
- Shyamasree Ghosh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
9
|
Ereño-Orbea J, Sicard T, Cui H, Mazhab-Jafari MT, Benlekbir S, Guarné A, Rubinstein JL, Julien JP. Molecular basis of human CD22 function and therapeutic targeting. Nat Commun 2017; 8:764. [PMID: 28970495 PMCID: PMC5624926 DOI: 10.1038/s41467-017-00836-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022] Open
Abstract
CD22 maintains a baseline level of B-cell inhibition to keep humoral immunity in check. As a B-cell-restricted antigen, CD22 is targeted in therapies against dysregulated B cells that cause autoimmune diseases and blood cancers. Here we report the crystal structure of human CD22 at 2.1 Å resolution, which reveals that specificity for α2-6 sialic acid ligands is dictated by a pre-formed β-hairpin as a unique mode of recognition across sialic acid-binding immunoglobulin-type lectins. The CD22 ectodomain adopts an extended conformation that facilitates concomitant CD22 nanocluster formation on B cells and binding to trans ligands to avert autoimmunity in mammals. We structurally delineate the CD22 site targeted by the therapeutic antibody epratuzumab at 3.1 Å resolution and determine a critical role for CD22 N-linked glycosylation in antibody engagement. Our studies provide molecular insights into mechanisms governing B-cell inhibition and valuable clues for the design of immune modulators in B-cell dysfunction.The B-cell-specific co-receptor CD22 is a therapeutic target for depleting dysregulated B cells. Here the authors structurally characterize the ectodomain of CD22 and present its crystal structure with the bound therapeutic antibody epratuzumab, which gives insights into the mechanism of inhibition of B-cell activation.
Collapse
Affiliation(s)
- June Ereño-Orbea
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
| | - Taylor Sicard
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8
| | - Hong Cui
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
| | - Mohammad T Mazhab-Jafari
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
| | - Samir Benlekbir
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
| | - Alba Guarné
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, ON, Canada, L8S 4L8
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada, M5G 1L7
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada, M5G 0A4.
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A8.
- Department of Immunology, University of Toronto, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|
10
|
Wu Y, Yue B, Liu J. Lipopolysaccharide-induced cytokine expression pattern in peripheral blood mononuclear cells in childhood obesity. Mol Med Rep 2016; 14:5281-5287. [DOI: 10.3892/mmr.2016.5866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/01/2016] [Indexed: 11/06/2022] Open
|
11
|
Characterization of a sialate-O-acetylesterase (NanS) from the oral pathogen Tannerella forsythia that enhances sialic acid release by NanH, its cognate sialidase. Biochem J 2015; 472:157-67. [DOI: 10.1042/bj20150388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
We characterize a novel bacterial sialate-O-acetylesterase potentially important for the nutrition of oral pathogens causing periodontal disease by enhancing their ability to harvest sialic acid sugar. Its high activity and stability indicate that it can also be used in glycan pharmacoanalytics.
Collapse
|
12
|
Stöckmann H, Duke RM, Millán Martín S, Rudd PM. Ultrahigh throughput, ultrafiltration-based n-glycomics platform for ultraperformance liquid chromatography (ULTRA(3)). Anal Chem 2015; 87:8316-22. [PMID: 26183862 DOI: 10.1021/acs.analchem.5b01463] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accurate, reproducible, and fast quantification of N-glycans is crucial not only for the development and quality control of modern glycosylated biopharmaceuticals, but also in clinical biomarker discovery. Several methods exist for fluorescent labeling of N-glycans and subsequent chromatographic separation and quantification. However, the methods can be complex, lengthy, and expensive. Here we report an automated ultrafiltration-based N-glycoanalytical workflow combined with a glycan labeling strategy that is based on the reaction of glycosylamines with fluorescent carbamate. The entire protocol is quick, simple, and cost-effective and requires less than 1 μg of protein per sample. As many as 768 affinity purified IgG glycoprotein samples can be prepared in a single run with a liquid handling platform.
Collapse
Affiliation(s)
- Henning Stöckmann
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Rebecca M Duke
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Silvia Millán Martín
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland
| |
Collapse
|
13
|
Langereis MA, Bakkers MJG, Deng L, Padler-Karavani V, Vervoort SJ, Hulswit RJG, van Vliet ALW, Gerwig GJ, de Poot SAH, Boot W, van Ederen AM, Heesters BA, van der Loos CM, van Kuppeveld FJM, Yu H, Huizinga EG, Chen X, Varki A, Kamerling JP, de Groot RJ. Complexity and Diversity of the Mammalian Sialome Revealed by Nidovirus Virolectins. Cell Rep 2015; 11:1966-78. [PMID: 26095364 PMCID: PMC5292239 DOI: 10.1016/j.celrep.2015.05.044] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/01/2015] [Accepted: 05/22/2015] [Indexed: 12/23/2022] Open
Abstract
Sialic acids (Sias), 9-carbon-backbone sugars, are among the most complex and versatile molecules of life. As terminal residues of glycans on proteins and lipids, Sias are key elements of glycotopes of both cellular and microbial lectins and thus act as important molecular tags in cell recognition and signaling events. Their functions in such interactions can be regulated by post-synthetic modifications, the most common of which is differential Sia-O-acetylation (O-Ac-Sias). The biology of O-Ac-Sias remains mostly unexplored, largely because of limitations associated with their specific in situ detection. Here, we show that dual-function hemagglutinin-esterase envelope proteins of nidoviruses distinguish between a variety of closely related O-Ac-Sias. By using soluble forms of hemagglutinin-esterases as lectins and sialate-O-acetylesterases, we demonstrate differential expression of distinct O-Ac-sialoglycan populations in an organ-, tissue- and cell-specific fashion. Our findings indicate that programmed Sia-O-acetylation/de-O-acetylation may be critical to key aspects of cell development, homeostasis, and/or function. Virolectins detect and distinguish between closely related O-Ac-Sias in situ O-Ac-sialoglycans occur in nature in a diversity not appreciated so far O-Ac-Sias are differentially expressed in a species-, tissue-, and cell-specific fashion There is extensive cell-to-cell variability in O-Ac-Sia expression in vivo and in vitro
Collapse
Affiliation(s)
- Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Mark J G Bakkers
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Lingquan Deng
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Vered Padler-Karavani
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Stephin J Vervoort
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Ruben J G Hulswit
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Arno L W van Vliet
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Gerrit J Gerwig
- Bio-Organic Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Stefanie A H de Poot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Willemijn Boot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Anne Marie van Ederen
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Balthasar A Heesters
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Chris M van der Loos
- Department of Cardiovascular Pathology, Free University Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Eric G Huizinga
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Johannis P Kamerling
- Bio-Organic Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands.
| |
Collapse
|
14
|
Sialic acids: biomarkers in endocrinal cancers. Glycoconj J 2015; 32:79-85. [PMID: 25777812 DOI: 10.1007/s10719-015-9577-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/11/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Sialylations are post translational modification of proteins and lipids that play important role in recognition, signaling, immunological response and cell-cell interaction. Improper sialylations due to altered sialyl transferases, sialidases, gene structure and expression, sialic acid metabolism however lead to diseases and thus sialic acids form an important biomarker in disease. In the endocrinal biology such improper sialylations including altered expression of sialylated moieties have been shown to be associated with disorders. Cancer still remains to be the major cause of global death and the cancer of the endocrine organs suffer from the dearth of appropriate markers for disease prediction at the early stage and monitoring. This review is aimed at evaluating the role of sialic acids as markers in endocrinal disorders with special reference to cancer of the endocrine organs. The current study is summarized under the following headings of altered sialylations in endocrinal cancer of the (i) ovary (ii) pancreas (iii) thyroid (iv) adrenal and (v) pituitary gland. Studies in expression of sialic acid in testis cancer are limited. The future scope of this review remains in the targeting of endocrinal cancer by targeting altered sialylation which is a common expression associated with endocrinal cancer.
Collapse
|
15
|
Chowdhury S, Chandra S, Mandal C. 9-O-acetylated sialic acids differentiating normal haematopoietic precursors from leukemic stem cells with high aldehyde dehydrogenase activity in children with acute lymphoblastic leukaemia. Glycoconj J 2014; 31:523-35. [PMID: 25283637 DOI: 10.1007/s10719-014-9550-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Childhood acute lymphoblastic leukaemia (ALL) originates from mutations in haematopoietic progenitor cells (HPCs). For high-risk patients, treated with intensified post-remission chemotherapy, haematopoietic stem cell (HSC) transplantation is considered. Autologous HSC transplantation needs improvisation till date. Previous studies established enhanced disease-associated expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2-GPs) on lymphoblasts of these patients at diagnosis, followed by its decrease with clinical remission and reappearance with relapse. Based on this differential expression of Neu5,9Ac2-GPs, identification of a normal HPC population was targeted from patients at diagnosis. This study identifies two distinct haematopoietic progenitor populations from bone marrow of diagnostic ALL patients, exploring the differential expression of Neu5,9Ac2-GPs with stem cell (CD34, CD90, CD117, CD133), haematopoietic (CD45), lineage-commitment (CD38) antigens and cytosolic aldehyde dehydrogenase (ALDH). Normal haematopoietic progenitor cells (ALDH(+)SSC(lo)CD45(hi)Neu5,9Ac2 -GPs(lo)CD34(+)CD38(-)CD90(+)CD117(+)CD133(+)) differentiated into morphologically different, lineage-specific colonies, being crucial for autologous HSC transplantation while leukemic stem cells (ALDH(+)SSC(lo)CD45(lo)Neu5,9Ac2 -GPs(hi)CD34(+)CD38(+)CD90(-)CD117(-)CD133(-)) lacking this ability can be potential targets for minimal residual disease detection and drug-targeted immunotherapy.
Collapse
Affiliation(s)
- Suchandra Chowdhury
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700 032, India
| | | | | |
Collapse
|
16
|
Abstract
5-N-acetylneuraminic acid, commonly known as sialic acid (Sia), constitutes a family of N- and O-substituted 9-carbon monosaccharides. Frequent modification of O-acetylations at positions C-7, C-8, or C-9 of Sias generates a family of O-acetylated sialic acid (O-AcSia) and plays crucial roles in many cellular events like cell-cell adhesion, proliferation, migration, etc. Therefore, identification and analysis of O-acetylated sialoglycoproteins (O-AcSGPs) are important. In this chapter, we describe several approaches for successful identification of O-AcSGPs. We broadly divide them into two categories, i.e., invasive and noninvasive methods. Several O-AcSias-binding probes are used for this purpose. Detailed methodologies for step-by-step identification using these probes have been discussed. We have also included a few invasive analytical methods for identification and quantitation of O-AcSias. Several indirect methods are also elaborated for such purpose, in which O-acetyl group from sialic acids is initially removed followed by detection of Sias by several approaches. For molecular identification, we have described methods for affinity purification of O-AcSGPs using an O-AcSias-binding lectin as an affinity matrix followed by sequencing using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF-TOF) mass spectroscopy (MS). In spite of special attention, loss of O-acetyl groups due to its sensitivity towards alkaline pH and high temperature along with migration of labile O-acetyl groups from C7-C8-C9 during sample preparation is difficult to avoid. Therefore there is always a risk for underestimation of O-AcSias.
Collapse
|
17
|
Samanta S, Ghoshal A, Bhattacharya K, Saha B, Walden P, Mandal C. Sialoglycosylation of RBC in visceral leishmaniasis leads to enhanced oxidative stress, calpain-induced fragmentation of spectrin and hemolysis. PLoS One 2012; 7:e42361. [PMID: 22860118 DOI: 10.1371/journal.pone.0042361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by the intracellular parasite Leishmania donovani accounts for an estimated 12 million cases of human infection. It is almost always associated with anemia, which severely complicates the disease course. However, the pathological processes leading to anemia in VL have thus far not been adequately characterized to date. In studying the glycosylation patterns of peripheral blood cells we found that the red blood cells (RBC) of VL patients (RBC(VL)) express eight 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) that are not detected in the RBC of healthy individuals (RBC(N)). At the same time, the patients had high titers of anti-9-O-AcSGP IgG antibodies in their sera. These two conditions appear to be linked and related to the anemic state of the patients, as exposure of RBC(VL) but not RBC(N) to anti-9-O-AcSGPs antibodies purified from patient sera triggered a series of responses. These included calcium influx via the P/Q-type but not L-type channels, activation of calpain I, proteolysis of spectrin, enhanced oxidative stress, lipid peroxidation, externalization of phosphatidyl serine with enhanced erythrophagocytosis, enhanced membrane fragility and, finally, hemolysis. Taken together, this study suggests that the enhanced hemolysis is linked to an impairment of membrane integrity in RBC(VL) which is mediated by ligand-specific interaction of surface 9-O-AcSGPs. This affords a potential explanation for the structural and functional features of RBC(VL) which are involved in the hemolysis related to the anemia which develops in VL patients.
Collapse
Affiliation(s)
- Sajal Samanta
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | |
Collapse
|
18
|
Histochemical demonstration of sialic acids and antimicrobial substances in the porcine anal glands. Acta Histochem 2012; 114:327-33. [PMID: 21802714 DOI: 10.1016/j.acthis.2011.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 01/29/2023]
Abstract
The distribution of sialic acids and antimicrobial products (lysozyme, β-defensin-1, lactoferrin, IgA) in the anal glands of miniature pig was studied by glycoconjugate histochemistry and immunohistochemistry. The glandular acini of these glands exhibited considerable amounts of sialoglycoconjugates that terminated in Siaα2-6Gal/GalNAc or Siaα2-3Gal1-4GlcNAc, including O-acetylated sialic acids. Additionally, all antimicrobial products examined could be demonstrated in the anal glands, especially in the serous cells. The results obtained are discussed with regard to the functional significance of the anal glands. Our observations corroborated the view that sialic acids closely interact with defense cells and antimicrobial substances in the innate immune response. Therefore, the anal glandular secretions may function as protective agents in order to preserve the integrity of the anal region.
Collapse
|
19
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
20
|
Samanta S, Dutta D, Ghoshal A, Mukhopadhyay S, Saha B, Sundar S, Jarmalavicius S, Forgber M, Mandal C, Walden P, Mandal C. Glycosylation of erythrocyte spectrin and its modification in visceral leishmaniasis. PLoS One 2011; 6:e28169. [PMID: 22164239 PMCID: PMC3229537 DOI: 10.1371/journal.pone.0028169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/02/2011] [Indexed: 12/21/2022] Open
Abstract
Using a lectin, Achatinin-H, having preferential specificity for glycoproteins with terminal 9-O-acetyl sialic acid derivatives linked in α2-6 linkages to subterminal N-acetylgalactosamine, eight distinct disease-associated 9-O-acetylated sialoglycoproteins was purified from erythrocytes of visceral leishmaniaisis (VL) patients (RBC(VL)). Analyses of tryptic fragments by mass spectrometry led to the identification of two high-molecular weight 9-O-acetylated sialoglycoproteins as human erythrocytic α- and β-spectrin. Total spectrin purified from erythrocytes of VL patients (spectrin(VL)) was reactive with Achatinin-H. Interestingly, along with two high molecular weight bands corresponding to α- and β-spectrin another low molecular weight 60 kDa band was observed. Total spectrin was also purified from normal human erythrocytes (spectrin(N)) and insignificant binding with Achatinin-H was demonstrated. Additionally, this 60 kDa fragment was totally absent in spectrin(N). Although the presence of both N- and O-glycosylations was found both in spectrin(N) and spectrin(VL), enhanced sialylation was predominantly induced in spectrin(VL). Sialic acids accounted for approximately 1.25 kDa mass of the 60 kDa polypeptide. The demonstration of a few identified sialylated tryptic fragments of α- and β-spectrin(VL) confirmed the presence of terminal sialic acids. Molecular modelling studies of spectrin suggest that a sugar moiety can fit into the potential glycosylation sites. Interestingly, highly sialylated spectrin(VL) showed decreased binding with spectrin-depleted inside-out membrane vesicles of normal erythrocytes compared to spectrin(N) suggesting functional abnormality. Taken together this is the first report of glycosylated eythrocytic spectrin in normal erythrocytes and its enhanced sialylation in RBC(VL). The enhanced sialylation of this cytoskeleton protein is possibly related to the fragmentation of spectrin(VL) as evidenced by the presence of an additional 60 kDa fragment, absent in spectrin(N) which possibly affects the biology of RBC(VL) linked to both severe distortion of erythrocyte development and impairment of erythrocyte membrane integrity and may provide an explanation for their sensitivity to hemolysis and anemia in VL patients.
Collapse
Affiliation(s)
- Sajal Samanta
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Devawati Dutta
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Angana Ghoshal
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Sumi Mukhopadhyay
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Bibhuti Saha
- Department of Tropical Medicine, School of Tropical Medicine, Kolkata, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Saulius Jarmalavicius
- Department of Dermatology, Charité-Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Michael Forgber
- Department of Dermatology, Charité-Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Chhabinath Mandal
- National Institute of Pharmaceutical Education and Research, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
| | - Peter Walden
- Department of Dermatology, Charité-Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Chitra Mandal
- Cancer and Cell Biology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
21
|
Mandal C, Mandal C, Chandra S, Schauer R, Mandal C. Regulation of O-acetylation of sialic acids by sialate-O-acetyltransferase and sialate-O-acetylesterase activities in childhood acute lymphoblastic leukemia. Glycobiology 2011; 22:70-83. [DOI: 10.1093/glycob/cwr106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
22
|
Ghoshal A, Mandal C. A perspective on the emergence of sialic acids as potent determinants affecting leishmania biology. Mol Biol Int 2011; 2011:532106. [PMID: 22091406 PMCID: PMC3200265 DOI: 10.4061/2011/532106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/19/2011] [Accepted: 05/12/2011] [Indexed: 01/03/2023] Open
Abstract
Leishmaniasis caused by Leishmania sp. has a wide range of manifestations from cutaneous to the deadly visceral form. They shuttle between the invertebrate and vertebrate hosts as promastigotes and amastigotes having adaptations for subverting host immune responses. Parasite-specific glycoconjugates have served as important determinants influencing parasite recognition, internalization, differentiation, multiplication, and virulence. Despite the steady progress in the field of parasite glycobiology, sialobiology has been a less traversed domain of research in leishmaniasis. The present paper focuses on identification, characterization, and differential distribution of sialoglycotope having the linkage-specific 9-O-acetylated sialic acid in promastigotes of different Leishmania sp. causing different clinical ramifications emphasizing possible role of these sialoglycotopes in infectivity, virulence, nitric oxide resistance, and host modulation in Leishmania spp. asserting them to be important molecules influencing parasite biology.
Collapse
Affiliation(s)
- Angana Ghoshal
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, India
| | | |
Collapse
|
23
|
Mandal C, Tringali C, Mondal S, Anastasia L, Chandra S, Venerando B, Mandal C. Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells. Int J Cancer 2010; 126:337-49. [PMID: 19588508 DOI: 10.1002/ijc.24733] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (-30 to 40%) and enzymatic activity toward ganglioside GD1a (-25.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (+66%) and to a parallel decrease of lactosylceramide (-55%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/Bax ratio, the accumulation of Neu3 transfected cells in the sub G0-G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3. Therefore, the reduced expression of Neu3 in ALL could help lymphoblasts to survive, maintaining the cellular content of ceramide below a critical level. Interestingly, we found that Neu3 activity varied in relation to disease progression, increasing in clinical remission after chemotherapy, and decreasing again in patients that relapsed. In addition, a negative correlation was observed between Neu3 expression and the percentage of the ALL marker 9-OAcGD3 positive cells. Consequently, Neu3 could represent a new potent biomarker in childhood ALL, to assess the efficacy of therapeutic protocols and to rapidly identify an eventual relapse.
Collapse
|
24
|
Liu X, Afonso L. Is permethylation strategy always applicable to protein N-glycosylation study?: A case study on the O-acetylation of sialic acid in fish serum glycans. Methods Mol Biol 2010; 600:259-268. [PMID: 19882134 DOI: 10.1007/978-1-60761-454-8_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
O-Acetylation is one of the major modifications of sialic acids that significantly alters biological properties of the parent molecule. These O-acetylated forms are components of the cellular membrane and can affect physiological and pathological responses. Understanding the role of N-glycans in physiology is of increasing relevance to cellular biologists in various disciplines who study glycoproteomics yet lack information regarding the function of the attached glycans. However, permethylation, the most common mass spectrometric analytical means, leads to the loss of O-linked acetyl groups in sialic acids. In this chapter, we demonstrated that O-acetylation of sialic acid in Atlantic salmon serum N-glycan can be well investigated by capillary electrophoresis-mass spectrometry.
Collapse
Affiliation(s)
- Xin Liu
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
25
|
Elevated mRNA level of hST6Gal I and hST3Gal V positively correlates with the high risk of pediatric acute leukemia. Leuk Res 2009; 34:463-70. [PMID: 19709745 DOI: 10.1016/j.leukres.2009.07.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 07/25/2009] [Accepted: 07/27/2009] [Indexed: 11/22/2022]
Abstract
Altered sialylation occurs in essentially all types of human and experimental cancers. Although, aberrant sialylation is believed to mainly due to altered sialyltransferase (ST) level, so far, expression pattern of different STs in acute lymphoblastic leukemia has never been investigated. Accordingly, the aim of our study was to monitor the changes in mRNA expression of ST6Gal I, ST3Gal V and ST8Sia I in patients by real-time PCR, which may provide prognostic information useful in defining appropriate therapeutic options. Our data demonstrated that ST6Gal I and ST3Gal V mRNA were up-regulated in lymphoblasts whereas its presence was negligible in non-malignant donors. In contrast, ST8SiaI was downregulated in patients. The extents of linkage-specific sialylation of glycoconjugates were found to be associated with disease establishment. Additionally, ST6Gal I and ST3Gal V were positively correlated with the high risk of the disease (P=0.0032 and 0.0016). This differential ST level can be used as biomarker with the molecular method of quantitative PCR and may be useful to discriminate normal and cancer patients.
Collapse
|
26
|
Chowdhury S, Mandal C. O-acetylated sialic acids: multifaceted role in childhood acute lymphoblastic leukaemia. Biotechnol J 2009; 4:361-74. [PMID: 19296441 DOI: 10.1002/biot.200800253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Childhood acute lymphoblastic leukaemia (ALL), a malignant transformation of the lymphoblasts, is highly responsive to chemotherapy. However, due to certain inadequacy in detection of minimal residual disease (MRD), relapse is a common phenomenon. To address this question, the present review deals with the induction of an unique O-acetyl derivative of sialic acid on a few disease-associated glycoproteins and glycolipids at the onset of childhood ALL, a finding of our group in the last decade. This information has been successfully utilized for diagnosis and prognosis of the disease. Existing literature is included for comparison. Additionally, cell surface overexpression of 9-O-acetylated sialoglycoproteins and antibodies against them present in patients' sera aid the survival of the malignant lymphoblasts and suggest a multifaceted role played by these molecules. Taken together, monitoring these molecules helps not only in unravelling the biology of this paediatric malignancy but also in personalizing the treatment strategies for the betterment of the patient population.
Collapse
Affiliation(s)
- Suchandra Chowdhury
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
27
|
Ghoshal A, Mukhopadhyay S, Saha B, Mandal C. 9-O-acetylated sialoglycoproteins are important immunomodulators in Indian visceral leishmaniasis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:889-98. [PMID: 19403782 PMCID: PMC2691061 DOI: 10.1128/cvi.00453-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/15/2009] [Accepted: 04/22/2009] [Indexed: 11/20/2022]
Abstract
Overexpression of disease-associated 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) on peripheral blood mononuclear cells (PBMC) of visceral leishmaniasis (VL) patients (PBMC(VL)) compared to their levels of expression in healthy individuals has been demonstrated using a lectin, achatinin-H, with specificity toward 9-O-acetylated sialic acid derivatives alpha2-6 linkage with subterminal N-acetylgalactosamine (9-O-AcSAalpha2-6GalNAc). The decreased presence of disease-associated 9-O-AcSGPs on different immune cells of parasitologically cured individuals after successful treatment relative to the levels in patients with active VL prior to treatment was demonstrated. However, their contributory role as immunomodulatory determinants on PBMC(VL) remained unexplored. Accordingly, 9-O-AcSGPs on PBMC(VL) were sensitized with achatinin-H, leading to their enhanced proliferation compared to that observed with different known mitogens or parasite antigen. This lymphoproliferative response was characterized by evaluation of the TH1/TH2 response by intracellular staining and enzyme-linked immunosorbent assay for secreted cytokines, and the results were corroborated by their genetic expression. Sensitized PBMC(VL) evidenced a mixed TH1/TH2 cellular response with a predominance of the TH1 response, indicating the ability of 9-O-AcSGPs to modulate the host cell toward a favorable response. Interestingly, the humoral and cellular responses showed a good correlation. Further, high levels of anti-9-O-AcSGP antibodies with an order of distribution of immunoglobulin M (IgM) > IgG1 = IgG3 > IgG4 > IgG2 > IgE could be explained by a mixed TH1/TH2 response. A good correlation of enhanced 9-O-AcSGPs with both the cell-mediated (r = 0.98) and humoral (r = 0.99) response was observed. In summary, it may be concluded that sensitization of 9-O-AcSGPs on PBMC(VL) may provide a basis for the modulation of the host's immune response by their controlled expression, leading to a beneficial immune response and influencing the disease pathology.
Collapse
Affiliation(s)
- Angana Ghoshal
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | | | | | | |
Collapse
|
28
|
Mukherjee K, Chava AK, Bandyopadhyay S, Mallick A, Chandra S, Mandal C. Co-expression of 9-O-acetylated sialoglycoproteins and their binding proteins on lymphoblasts of childhood acute lymphoblastic leukemia: an anti-apoptotic role. Biol Chem 2009; 390:325-35. [DOI: 10.1515/bc.2009.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractEnhanced levels of 9-O-acetylated sialoglycoproteins (Neu5,9Ac2GPs) as disease-associated molecules was reported to act as signaling molecules for promoting survival of lymphoblasts in childhood acute lymphoblastic leukemia (ALL). Here, we searched for potential physiological ligands for Neu5,9Ac2GPs that could be involved in modulating the survival of lymphoblasts. Accordingly, we examined the presence of binding proteins for Neu5,9Ac2GPs on cell lines and primary cells of patients with B- and T-ALL, at presentation of the disease. Peripheral blood mononuclear cells from normal healthy donors and cells from myeloid leukemia patients were used for comparison. Neu5,9Ac2GPs-binding proteins (BPs) were specifically detected on the surface of both T- and B-ALL-lymphoblasts and ALL-cell lines along with the consistent presence of Neu5,9Ac2GPs. The Neu5,9Ac2GPs and BPs also co-localized on the cell surface and interacted specificallyin vitro. Apoptosis of lymphoblasts, induced by serum starvation, was reversed in the presence of purified Neu5,9Ac2GPs due to possible engagement of BPs, and the anti-apoptotic role of this interaction was established. This is the first report of the presence of potential physiological ligands for disease-associated molecules like Neu5,9Ac2GPs, the interaction of which is able to trigger an anti-apoptotic signal conferring a survival advantage to leukemic cells in childhood ALL.
Collapse
|
29
|
Ghoshal A, Mukhopadhyay S, Demine R, Forgber M, Jarmalavicius S, Saha B, Sundar S, Walden P, Mandal C, Mandal C. Detection and characterization of a sialoglycosylated bacterial ABC-type phosphate transporter protein from patients with visceral leishmaniasis. Glycoconj J 2009; 26:675-89. [PMID: 19184417 DOI: 10.1007/s10719-008-9223-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 09/23/2008] [Accepted: 12/15/2008] [Indexed: 11/25/2022]
Abstract
We report the discovery and characterization of a glycosylated bacterial ABC-type phosphate transporter isolated from the peripheral blood mononuclear cell (PBMC) fraction of patients with visceral leishmaniasis (VL). Three disease-associated 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) of 19, 56 and 65 kDa, respectively, had been identified and their purity, apparent mass and pI established by SDS-PAGE and isoelectric focusing. Western blot analyses showed that the 9-O-acetylated sialic acid is linked via alpha2-->6 linkage to a subterminal N-acetylgalactosamine. For the 56 kDa protein, N- as well as O-glycosylations were demonstrated by specific glycosidase treatment and found to account for more than 9 kDa of the protein mass. The presence of sialic acids was further confirmed through thin layer chromatography, fluorimetric HPLC and electrospray ionization-mass spectrometry. The protein was identified by mass spectrometry and de novo sequencing of five tryptic fragments as a periplasmic ABC-type phosphate transporter of Pseudomonas aeruginosa. The amino acid sequences of the assigned peptides had 83-100% identity with the NCBI entry for a Pseudomonas transporter protein. Based on the recently reported X-ray structure of a human phosphate-binding protein, we predicted a 3D structural model for the 56 kDa protein using homology and threading methods. The most probable N- and O-glycosylation sites were identified by combinations of sequence motif-searching bioinformatics tools, solvent accessibility calculations, structural environment analyses and mass spectrometric data. This is the first reported glycosylation as well as sialylation of the periplasmic component of an ABC-type phosphate transporter protein and of one of few identified bacterial glycoproteins.
Collapse
Affiliation(s)
- Angana Ghoshal
- Department of Infectious Disease and Immunology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mandal C, Dutta A, Mallick A, Chandra S, Misra L, Sangwan RS, Mandal C. Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 2008; 13:1450-64. [PMID: 18987975 DOI: 10.1007/s10495-008-0271-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Withaferin A (WA) is present abundantly in Withania somnifera, a well-known Indian medicinal plant. Here we demonstrate how WA exhibits a strong growth-inhibitory effect on several human leukemic cell lines and on primary cells from patients with lymphoblastic and myeloid leukemia in a dose-dependent manner, showing no toxicity on normal human lymphocytes and primitive hematopoietic progenitor cells. WA-mediated decrease in cell viability was observed through apoptosis as demonstrated by externalization of phosphatidylserine, a time-dependent increase in Bax/Bcl-2 ratio; loss of mitochondrial transmembrane potential, cytochrome c release, caspases 9 and 3 activation; and accumulation of cells in sub-G0 region based on DNA fragmentation. A search for the downstream pathway further reveals that WA-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2 and HSP27 in leukemic cells. The RNA interference of p38MAPK protected these cells from WA-induced apoptosis. The RNAi knockdown of p38MAPK inhibited active phosphorylation of p38MAPK, Bax expression, activation of caspase 3 and increase in Annexin V positivity. Altogether, these findings suggest that p38MAPK in leukemic cells promotes WA-induced apoptosis. WA caused increased levels of Bax in response to MAPK signaling, which resulted in the initiation of mitochondrial death cascade, and therefore it holds promise as a new, alternative, inexpensive chemotherapeutic agent for the treatment of patients with leukemia of both lymphoid and myeloid origin.
Collapse
Affiliation(s)
- Chandan Mandal
- Department of Infectious diseases and Immunology, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700 032, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Mandal C, Srinivasan GV, Chowdhury S, Chandra S, Mandal C, Schauer R, Mandal C. High level of sialate-O-acetyltransferase activity in lymphoblasts of childhood acute lymphoblastic leukaemia (ALL): enzyme characterization and correlation with disease status. Glycoconj J 2008; 26:57-73. [PMID: 18677580 DOI: 10.1007/s10719-008-9163-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/27/2022]
Abstract
Previous studies had established an over-expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) on lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). Here, we report the discovery and characterization of sialate-O-acetyltransferase enzyme in ALL-cell lines and lymphoblasts from bone marrow of children diagnosed with B- and T-ALL. We observed a positive correlation between the enhanced sialate-O-acetyltransferase activity and the enhanced expression of Neu5,9Ac(2)-GPs in these lymphoblasts. Sialate-O-acetyltransferase activity in cell lysates or microsomal fractions of lymphoblasts of patients was always higher than that in healthy donors reaching up to 22-fold in microsomes. Additionally, the V (max) of this enzymatic reaction with AcCoA was over threefold higher in microsomal fractions of lymphoblasts. The enzyme bound to the microsomal fractions showed high activity with CMP-N-acetylneuraminic acid, ganglioside GD3 and endogenous sialic acid as substrates. N-acetyl-7-O-acetylneuraminic acid was the main reaction product, as detected by radio-thin-layer chromatography and fluorimetrically coupled radio-high-performance liquid chromatography. CMP and coenzyme A inhibited the microsomal enzyme. Sialate-O-acetyltransferase activity increased at the diagnosis of leukaemia, decreased with clinical remission and sharply increased again in relapsed patients as determined by radiometric-assay. A newly-developed non-radioactive ELISA can quickly detect sialate-O-acetyltransferase, and thus, may become a suitable tool for ALL-monitoring in larger scale. This is the first report on sialate-O-acetyltransferase in ALL being one of the few descriptions of an enzyme of this type in human.
Collapse
Affiliation(s)
- Chandan Mandal
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu X, Afonso L, Altman E, Johnson S, Brown L, Li J. O-acetylation of sialic acids in N-glycans of Atlantic salmon (Salmo salar) serum is altered by handling stress. Proteomics 2008; 8:2849-57. [DOI: 10.1002/pmic.200701093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|