1
|
Lindfors S, Schmotz C, Lewandowski D, Hau A, Saikko L, Lehtonen E, Majaniemi V, Karhe M, Naams JB, Nisen H, Tienari J, Saleem MA, Pfeil K, Bugger H, Pietiläinen KH, Mirtti T, Palczewski K, Lehtonen S. Integrin Trafficking, Fibronectin Architecture, and Glomerular Injury upon Adiponectin Receptor 1 Depletion. J Am Soc Nephrol 2025; 36:825-844. [PMID: 39874092 PMCID: PMC12059104 DOI: 10.1681/asn.0000000611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Key Points Glomerular expression of adiponectin receptor 1 (AdipoR1) was lower in people with type 2 diabetes and correlates with podocyte loss. AdipoR1 knockout induced glomerular injury and fibrosis in mice, predominantly in males. AdipoR1 knockdown podocytes showed impaired trafficking of active integrin β 1, fibronectin accumulation, impaired adhesion, and increased apoptosis. Background Deficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling using adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2, but the role of adiponectin receptor–mediated signaling in glomerular injury in type 2 diabetes remains unknown. Methods The expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1 knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting. The functional role of AdipoR1 was studied in AdipoR1-deficient podocytes by performing assays for apoptosis, cytokine secretion, mechanical stress, adhesion, and endocytic trafficking. Results Glomerular AdipoR1 expression was lower in type 2 diabetes and associated kidney disease, correlating with higher body mass index and podocyte loss. Male AdipoR1-KO mice showed typical signs of early diabetic kidney disease, including albuminuria, glomerular structural abnormalities, and lower expression of central podocyte proteins; females were less affected. Podocyte apoptosis increased in female and male AdipoR1-KO mice, and excessive podocyte loss, potentially due to detachment, was detected in males. AdipoR1 deficiency impaired the yes-associated protein–mediated mechanoresponse and induced accumulation of the extracellular matrix (ECM) protein fibronectin in the glomeruli in vivo and podocytes in vitro . Functionally, AdipoR1 deficiency impaired endocytosis of the ECM receptor active integrin β 1, disturbed focal adhesion turnover, and remodulated podocyte-derived ECM, thereby reducing podocyte adhesion. Conclusions AdipoR1 deficiency in mice resulted in the development of kidney injury predominantly in males. Mechanistically, AdipoR1 loss in podocytes impaired endocytosis of active integrin β 1, which plausibly compromised focal adhesion dynamics, disturbed fibronectin matrix turnover, and hindered podocyte adhesion.
Collapse
Affiliation(s)
- Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Constanze Schmotz
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California
| | - Annika Hau
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leena Saikko
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eero Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Ville Majaniemi
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna Karhe
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jette-Britt Naams
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harry Nisen
- Abdominal Center, Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Moin A. Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Katharina Pfeil
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Kirsi H. Pietiläinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Obesity Research Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Healthy Weight Hub, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California
- Department of Chemistry, University of California, Irvine, Irvine, California
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Wang M, Sigel B, Liu L, Huber JH, Ji M, Schoen MW, Sanfilippo KM, Thomas TS, Colditz GA, Wang SY, Chang SH. Quantification of Modifiable Risk Factors in Monoclonal Gammopathy of Undetermined Significance Progression to Multiple Myeloma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.21.25326164. [PMID: 40313270 PMCID: PMC12045440 DOI: 10.1101/2025.04.21.25326164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
PURPOSE Multiple myeloma (MM) is the most common plasma cell dyscrasia in the United States with notably significant health disparities. MM is preceded by an asymptomatic precursor monoclonal gammopathy of undetermined significance (MGUS). Studies have identified several risk factors for the progression of MGUS to MM; however, the relative contributions of these remain unknown. Particularly, understanding the contribution among those modifiable factors may inform MM prevention. METHODS This study quantified these contributions by estimating the adjusted population attributable fractions (aPAF) of modifiable risk factors for MM among the Veteran population with MGUS. RESULTS Among all evaluated risk factors, excess body mass index (BMI ≥25 kg/m 2 ) was the leading factor (Black: aPAF=27.0%, 95% CI 19.3-33.9%; White: 27.1%, 95% CI 20.3-33.4%; All: aPAF=27.1%, 95% CI: 22.0-31.8%). CONCLUSION Our study highlights the potential for weight management as a key strategy in reducing the risk of progression to MM in Black and White patients diagnosed with MGUS.
Collapse
|
3
|
Fawaz S, Martin Alonso A, Qiu Y, Ramnath R, Stowell-Connolly H, Gamez M, May C, Down C, Coward RJ, Butler MJ, Welsh GI, Satchell SC, Foster RR. Adiponectin Reduces Glomerular Endothelial Glycocalyx Disruption and Restores Glomerular Barrier Function in a Mouse Model of Type 2 Diabetes. Diabetes 2024; 73:964-976. [PMID: 38530908 DOI: 10.2337/db23-0455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Sarah Fawaz
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Aldara Martin Alonso
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Raina Ramnath
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Holly Stowell-Connolly
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Monica Gamez
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Carl May
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Colin Down
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Simon C Satchell
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, U.K
| |
Collapse
|
4
|
Barbalho SM, Méndez-Sánchez N, Fornari Laurindo L. AdipoRon and ADP355, adiponectin receptor agonists, in Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH): A systematic review. Biochem Pharmacol 2023; 218:115871. [PMID: 37866803 DOI: 10.1016/j.bcp.2023.115871] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo, Brazil.
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| |
Collapse
|
5
|
Yang J, Wang ZX, Fang L, Li TS, Liu ZH, Pan Y, Kong LD. Atractylodes lancea and Magnolia officinalis combination protects against high fructose-impaired insulin signaling in glomerular podocytes through upregulating Sirt1 to inhibit p53-driven miR-221. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115688. [PMID: 36067838 DOI: 10.1016/j.jep.2022.115688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, a long term of improper diet causes the Dampness and disturbs Zang-Fu's functions including Kidney deficiency. Atractylodes lancea (Atr) and Magnolia officinalis (Mag) as a famous herb pair are commonly used to transform Dampness, with kidney protection. AIM OF THE STUDY To explore how Atr and Mag protected against insulin signaling impairment in glomerular podocytes induced by high dietary fructose feeding, a major contributor for insulin resistance in glomerular podocyte dysfunction. MATERIALS AND METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyze constituents of Atr and Mag. Rat model was induced by 10% fructose drinking water in vivo, and heat-sensitive human podocyte cells (HPCs) were exposed to 5 mM fructose in vitro. Animal or cultured podocyte models were treated with different doses of Atr, Mag or Atr and Mag combination. Western blot, qRT-PCR and immunofluorescence assays as well as other experiments were performed to detect adiponectin receptor protein 1 (AdipoR1), protein kinase B (AKT), Sirt1, p53 and miR-221 levels in rat glomeruli or HPCs, respectively. RESULTS Fifty-five components were identified in Atr and Mag combination. Network pharmacology analysis indicated that Atr and Mag combination might affect insulin signaling pathway. This combination significantly improved systemic insulin resistance and prevented glomerulus morphological damage in high fructose-fed rats. Of note, high fructose decreased IRS1, AKT and AdipoR1 in rat glomeruli and cultured podocytes. Further data from cultured podocytes with Sirt1 inhibitor/agonist, p53 agonist/inhibitor, or miR-221 mimic/inhibitor showed that high fructose downregulated Sirt1 to stimulate p53-driven miR-221, resulting in insulin signaling impairment. Atr and Mag combination effectively increased Sirt1, and decreased p53 and miR-221 in in vivo and in vitro models. CONCLUSIONS Atr and Mag combination improved insulin signaling in high fructose-stimulated glomerular podocytes possibly through upregulating Sirt1 to inhibit p53-driven miR-221. Thus, the regulation of Sirt1/p53/miR-221 by this combination may be a potential therapeutic approach in podocyte insulin signaling impairment.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zi-Xuan Wang
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine & Chemistry and Biomedicine Innovation Center, Medical School, Nanjing University, Nanjing, PR China
| | - Tu-Shuai Li
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Zhi-Hong Liu
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China
| | - Ying Pan
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Ling-Dong Kong
- Institute of Chinese Medicine, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, PR China.
| |
Collapse
|
6
|
Czaja-Stolc S, Potrykus M, Stankiewicz M, Kaska Ł, Małgorzewicz S. Pro-Inflammatory Profile of Adipokines in Obesity Contributes to Pathogenesis, Nutritional Disorders, and Cardiovascular Risk in Chronic Kidney Disease. Nutrients 2022; 14:nu14071457. [PMID: 35406070 PMCID: PMC9002635 DOI: 10.3390/nu14071457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Obesity is a disease which leads to the development of many other disorders. Excessive accumulation of lipids in adipose tissue (AT) leads to metabolic changes, including hypertrophy of adipocytes, macrophage migration, changes in the composition of immune cells, and impaired secretion of adipokines. Adipokines are cytokines produced by AT and greatly influence human health. Obesity and the pro-inflammatory profile of adipokines lead to the development of chronic kidney disease (CKD) through different mechanisms. In obesity and adipokine profile, there are gender differences that characterize the male gender as more susceptible to metabolic disorders accompanying obesity, including impaired renal function. The relationship between impaired adipokine secretion and renal disease is two-sided. In the developed CKD, the concentration of adipokines in the serum is additionally disturbed due to their insufficient excretion by the excretory system caused by renal pathology. Increased levels of adipokines affect the nutritional status and cardiovascular risk (CVR) of patients with CKD. This article aims to systematize the current knowledge on the influence of obesity, AT, and adipokine secretion disorders on the pathogenesis of CKD and their influence on nutritional status and CVR in patients with CKD.
Collapse
Affiliation(s)
- Sylwia Czaja-Stolc
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.S.); (S.M.)
- Correspondence: ; Tel.: +48-(58)-349-27-24
| | - Marta Potrykus
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.P.); (Ł.K.)
| | - Marta Stankiewicz
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.S.); (S.M.)
| | - Łukasz Kaska
- Department of General, Endocrine and Transplant Surgery, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.P.); (Ł.K.)
| | - Sylwia Małgorzewicz
- Department of Clinical Nutrition, Medical University of Gdansk, 80-211 Gdańsk, Poland; (M.S.); (S.M.)
| |
Collapse
|
7
|
Afzal S, Sattar MA, Eseyin OA, Attiq A, Johns EJ. Crosstalk relationship between adiponectin receptors, PPAR-γ and α-adrenoceptors in renal vasculature of diabetic WKYs. Eur J Pharmacol 2022; 917:174703. [PMID: 34973951 DOI: 10.1016/j.ejphar.2021.174703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Hypoadiponectinemia is associated with renal dysfunctions. Irbesartan and pioglitazone activate Peroxisome proliferator-activated gamma receptor (PPAR-γ) as partial and full agonists. We investigated a crosstalk interaction and synergistic action between adiponectin receptors, PPAR-γ agonists in attenuating renal hemodynamics to adrenergic agonists in diabetic Wistar Kyoto rats (WKY). Streptozotocin (40 mg/kg) was used to induce diabetes, whereas, pioglitazone (10 mg/kg/day), irbesartan (30 mg/kg/day) administered orally for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Metabolic and plasma samples were analyzed on days 0, 8, 21, and 28. During the acute study (day 29), renal vasoconstrictor actions to adrenergic agonists and angiotensin-II were determined. Diabetic WKYs had lower plasma adiponectin, higher creatinine clearance, urinary and fractional sodium excretion but were normalized to a greater extent in pioglitazone and adiponectin combined treatment. Responses to intra-renal administration of adrenergic agonists including noradrenaline (NA), phenylephrine (PE), methoxamine (ME), and angiotensin-II (ANG-II) were larger in diabetic WKY, but significantly blunted with adiponectin treatment in diabetic WKYs to 35-40%, and further reduced by 65-70% in combination with pioglitazone. Attenuation to ANG-II responses in adiponectin and combination with irbesartan was 30-35% and 75-80%, respectively (P < 0.05). Pharmacodynamically, a crosstalk interaction exists between PPAR-γ, adiponectin receptors (adipo R1 & R2), alpha adrenoceptors, and angiotensin-I (ATI) receptors in the renal vasculature of diabetic WKYs. Exogenously administered adiponectin with full PPAR-γ agonist substantially attenuated renal hemodynamics and improved excretory functions, signifying their renoprotective action. Additionally, a degree of synergism exists between adiponectin and pioglitazone to a large extent compared to combination therapy with irbesartan (partial PPAR-γ agonist) in attenuating the renal vascular receptiveness to adrenergic agonists.
Collapse
Affiliation(s)
- Sheryar Afzal
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Selangor, Malaysia.
| | | | | | - Ali Attiq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, MAHSA University, Selangor, Malaysia.
| | | |
Collapse
|
8
|
Li QY, Liu F, Tang X, Fu H, Mao J. Renoprotective Role of Hypoxia-Inducible Factors and the Mechanism. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:44-56. [PMID: 35224006 PMCID: PMC8820168 DOI: 10.1159/000520141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The kidney requires abundant blood supply, and oxygen is transmitted by diffusion through blood vessels. Most physiological metabolism of the kidney depends on oxygen, so it is very sensitive to oxygen. An increasing pool of evidence suggests that hypoxia is involved in almost all acute and chronic kidney diseases (CKDs). Vascular damage, tubular injury, and fibrosis are the main pathologies associated during hypoxia. Hypoxia-inducible factors (HIFs) are the main mediators during hypoxia, but their functions remain controversial. This article reviewed recent studies and described its mechanisms on renoprotection. SUMMARY HIF is degraded rapidly during under normal oxygen. But under hypoxia, HIFs accumulate and many target genes are regulated by HIFs. Homeostasis during injury is maintained through these genes. Pretreatment of HIF can protect the kidney from acute hypoxia and can improve repair, but HIF's role in CKD and in renal tumor is still controversial. Due to its mechanism in kidney disease, many drugs toward HIFs are widely researched, even some of which have been used in clinical or in clinical research. KEY MESSAGES In this review, we described the known physiological mechanisms, target genes, and renal protective roles of HIFs, and we discussed several drugs that are researched due to such renal protective roles.
Collapse
|
9
|
Zhang Y, Cai Y, Zhang H, Zhang J, Zeng Y, Fan C, Zou S, Wu C, Fang S, Li P, Lin X, Wang L, Guan M. Brown adipose tissue transplantation ameliorates diabetic nephropathy through the miR-30b pathway by targeting Runx1. Metabolism 2021; 125:154916. [PMID: 34666067 DOI: 10.1016/j.metabol.2021.154916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Adipose tissue is a major source of circulating microRNAs (miRNAs) that can regulate target genes in distant organs. However, the role of brown adipose tissue (BAT) in diabetic kidney disease (DKD) is still unknown. We studied the original BAT miR-30b targeting two key fibrotic regulators, Runt-related transcription factor 1 (Runx1) and snail family zinc finger 1 (Snail1), to combat DKD. METHODS First, we transplanted healthy BAT from normal mouse donors into diabetic mice (induced by a high-fat diet and streptozotocin injection). In vitro, we observed extracellular vesicles (EVs) secreted from brown adipocytes. AgomiR-30b was directly administered to the BAT of diabetic mice twice weekly for 4 consecutive weeks. Next, the role of Runx1 in DKD was determined by using siRUNX1 or pCMV-RUNX1 in HK-2 cells and in diabetic mice treated with AAV9-U6-shRunx1 or AAV9-EF1a-Runx1. RESULTS BAT transplantation reactivated endogenous BAT activity in diabetic mice, increased circulating miR-30b levels and significantly ameliorated DKD. In TGFβ1-treated HK-2 cells, miR-30b expression was significantly suppressed. miR-30b overexpression markedly decreased fibronectin and downregulated Runx1 and Snail1 expression, while silencing of miR-30b had the opposite effects. Next, Runx1 knockdown and overexpression mimicked the above phenotype of miR-30b mimics and inhibitors, respectively, both in vitro and in vivo. Moreover, Runx1 promoted TGFβ1-induced fibrosis by upregulating the PI3K pathway. CONCLUSION BAT-derived miRNAs might be a promising target for kidney protection in diabetes mellitus.
Collapse
Affiliation(s)
- Yudan Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yingying Cai
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Birth Control, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Hongbin Zhang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jiajun Zhang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Diagnostic Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, Guangdong 518116, China
| | - Yanmei Zeng
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Cunxia Fan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Endocrinology & Metabolism, Hainan General Hospital, Haikou, Hainan 570311, China
| | - Shaozhou Zou
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Endocrinology & Metabolism, TungWah Hospital, Dongguan, Guangdong 523111, China
| | - Chunyan Wu
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shu Fang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ping Li
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China
| | - Xiaochun Lin
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ling Wang
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Meiping Guan
- Department of Endocrinology & Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
10
|
Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22189985. [PMID: 34576149 PMCID: PMC8465809 DOI: 10.3390/ijms22189985] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic Nephropathy (DN) is a debilitating consequence of both Type 1 and Type 2 diabetes affecting the kidney and renal tubules leading to End Stage Renal Disease (ESRD). As diabetes is a world epidemic and almost half of diabetic patients develop DN in their lifetime, a large group of people is affected. Due to the complex nature of the disease, current diagnosis and treatment are not adequate to halt disease progression or provide an effective cure. DN is now considered a manifestation of inflammation where inflammatory molecules regulate most of the renal physiology. Recent advances in genetics and genomic technology have identified numerous susceptibility genes that are associated with DN, many of which have inflammatory functions. Based on their role in DN, we will discuss the current aspects of developing biomarkers and molecular therapy for advancing precision medicine.
Collapse
|
11
|
Xu X, Huang X, Zhang L, Huang X, Qin Z, Hua F. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-κB/NLRP3 inflammation pathway. BMC Nephrol 2021; 22:218. [PMID: 34107901 PMCID: PMC8191043 DOI: 10.1186/s12882-021-02391-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adiponectin is an adipocytokine that plays a key regulatory role in glucose and lipid metabolism in obesity. The prevalence of obesity has led to an increase in the incidence of obesity-related glomerulopathy (ORG). This study aimed to identify the protective role of adiponectin in ORG. METHODS Small-interfering RNA (siRNA) against the gene encoding adiponectin was transfected into podocytes. The oxidative stress level was determined using a fluorometric assay. Apoptosis was analyzed by flow cytometry. The expressions of podocyte markers and pyrin domain containing protein 3 (NLRP3) inflammasome-related proteins were measured by qRT-PCR, immunohistochemistry, and Western blot. RESULTS Podocytes treated with palmitic acid (PA) showed downregulated expressions of podocyte markers, increased apoptosis, upregulated levels of NLRP3 inflammasome-related proteins, increased production of inflammatory cytokines (IL-18 and IL-1β), and induced activation of NF-κB as compared to the vehicle-treated controls. Decreased adiponectin expression was observed in the serum samples from high fat diet (HFD)-fed mice. Decreased podocin expression and upregulated NLRP3 expression were observed in the kidney samples from high fat diet (HFD)-fed mice. Treatment with adiponectin or the NLRP3 inflammasome inhibitor, MCC950, protected cultured podocytes against podocyte apoptosis and inflammation. Treatment with adiponectin protected mouse kidney tissues against decreased podocin expression and upregulated NLRP3 expression. The knockout of adiponectin gene by siRNA increased ROS production, resulting in the activation of NLRP3 inflammasome and the phosphorylation of NF-κB in podocytes. Pyrrolidine dithiocarbamate, an NF-κB inhibitor, prevented adiponectin from ameliorating FFA-induced podocyte injury and NLRP3 activation. CONCLUSIONS Our study showed that adiponectin ameliorated PA-induced podocyte injury in vitro and HFD-induced injury in vivo via inhibiting the ROS/NF-κB/NLRP3 pathway. These data suggest the potential use of adiponectin for the prevention and treatment of ORG.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
- Department of Nephrology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian City, China
- Department of Nephrology, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian City, China
| | - Xiaolin Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Liexiang Zhang
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian City, China
- Department of Neurosurgery, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian City, China
| | - Xiaoli Huang
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Zihan Qin
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, No.185 Bureau Front Street, 213003, Changzhou City, China.
| |
Collapse
|
12
|
Jaimes EA, Zhou MS, Siddiqui M, Rezonzew G, Tian R, Seshan SV, Muwonge AN, Wong NJ, Azeloglu EU, Fornoni A, Merscher S, Raij L. Nicotine, smoking, podocytes, and diabetic nephropathy. Am J Physiol Renal Physiol 2021; 320:F442-F453. [PMID: 33459165 PMCID: PMC7988804 DOI: 10.1152/ajprenal.00194.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Besides glycemic and blood pressure control, environmental factors such as cigarette smoking (CS) adversely affect the progression of DN. The effects of CS on DN progression have been attributed to combustion-generated molecules without consideration to the role of nicotine (NIC), responsible for the addictive properties of both CS and electronic cigarettes (ECs). Podocytes are essential to preserve the structure and function of the glomerular filtration barrier, and strong evidence indicates that early podocyte loss promotes DN progression. We performed experiments in human podocytes and in a mouse model of diabetes that develops nephropathy resembling human DN. We determined that NIC binding to podocytes in concentrations achieved with CS and ECs activated NADPH oxidase, which sets in motion a dysfunctional molecular network integrated by cyclooxygenase 2, known to induce podocyte injury; downregulation of AMP-activated protein kinase, important for maintaining cellular energy stores and antioxidation; and upregulation of CD36, which increased lipid uptake and promoted apoptosis. In diabetic mice, NIC increased proteinuria, a recognized marker of chronic kidney disease progression, accompanied by reduced glomerular podocyte synaptopodin, a crucial stabilizer of the podocyte cytoskeleton, and increased fibronectin expression. This novel study critically implicates NIC itself as a contributor to DN progression in CS and EC users.NEW & NOTEWORTHY In this study, we demonstrate that nicotine increases the production of reactive oxygen species, increases cyclooxygenase-2 expression, and upregulates Cd36 while inducing downregulation of AMP-activated protein kinase. In vivo nicotine increases proteinuria and fibronectin expression in diabetic mice. This study demonstrates that effects of nicotine on podocytes are responsible, at least in part, for the deleterious effects of smoking in the progression of chronic kidney disease, including diabetic nephropathy.
Collapse
Affiliation(s)
- Edgar A Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Mohammed Siddiqui
- Renal Division, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gabriel Rezonzew
- Renal Division, University of Alabama at Birmingham, Birmingham, Alabama
| | - Runxia Tian
- Nephrology Section, Miami Veterans Affairs Medical Center, Miami, Florida
| | - Surya V Seshan
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn Mount Sinai School of Medicine, New York, New York
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| | - Leopoldo Raij
- Katz Family Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
13
|
Li KX, Ji MJ, Sun HJ. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene 2021; 780:145532. [PMID: 33631244 DOI: 10.1016/j.gene.2021.145532] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
As one of the most common complications of diabetes, nephropathy develops in approximately 40% of diabetic individuals. Although end stage kidney disease is known as one of the most consequences of diabetic nephropathy, the majority of diabetic individuals might die from cardiovascular diseases and infections before renal replacement treatment. Moreover, the routine medical treatments for diabetes hold undesirable side effects. The explosive prevalence of diabetes urges clinicians and scientists to investigate the complementary or alternative therapies. Phytochemicals are emerging as alternatives with a wide range of therapeutic effects on various pathologies, including diabetic kidney disease. Of those phytochemicals, resveratrol, a natural polyphenolic stilbene, has been found to exert a broad spectrum of health benefits via various signaling molecules. In particular, resveratrol has gained a great deal of attention because of its anti-oxidative, anti-inflammatory, anti-diabetic, anti-obesity, cardiovascular-protective, and anti-tumor properties. In the renal system, emerging evidence shows that resveratrol has already been used to ameliorate chronic or acute kidney injury. This review critically summarizes the current findings and molecular mechanisms of resveratrol in diabetic renal damage. In addition, we will discuss the adverse and inconsistent effects of resveratrol in diabetic nephropathy. Although there is increasing evidence that resveratrol affords great potential in diabetic nephropathy therapy, these results should be treated with caution before its clinical translation. In addition, the unfavorable pharmacokinetics and/or pharmacodynamics profiles, such as poor bioavailability, may limit its extensive clinical applications. It is clear that further research is needed to unravel these limitations and improve its efficacy against diabetic nephropathy. Increasing investigation of resveratrol in diabetic kidney disease will not only help us better understand its pharmacological actions, but also provide novel potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ke-Xue Li
- Department of Physiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Miao-Jin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, School of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
14
|
Nobiletin ameliorates high-fat diet-induced vascular and renal changes by reducing inflammation with modulating AdipoR1 and TGF-β1 expression in rats. Life Sci 2020; 260:118398. [PMID: 32920004 DOI: 10.1016/j.lfs.2020.118398] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
AIMS We investigate the effect of nobiletin on vascular and renal alterations and possible mechanisms involved in high-fat diet (HFD)-fed rats. MAIN METHODS Male Sprague-Dawley rats were fed a HFD with fructose 15% in drinking water for 16 weeks. HFD-fed rats were treated with nobiletin (20 or 40 mg/kg/day) or vehicle for the last 4 weeks. KEY FINDINGS HFD-fed rats treated with nobiletin was significantly reduced obesity, hypertension, dyslipidemia and hyperinsulinemia. Nobiletin improved vascular endothelial function, restored creatinine clearance, and reduced plasma urea and creatinine levels, as well as urinary protein excretion. Nobiletin markedly alleviated vascular medial cross-sectional area (CSA) and collagen deposition, glomerular extracellular matrix (ECM) accumulation, and renal fibrosis. Nobiletin significantly elevated plasma adiponectin levels, together with upregulated adiponectin receptor 1 (AdipoR1) and suppressed transforming growth factor-β1 (TGF-β1) expression in kidney. In addition, an increase of plasma tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was significantly attenuated after nobiletin treatment. SIGNIFICANCE Our results suggest that nobiletin attenuates HFD-induced vascular and renal alterations in rats, which is possibly related to the modulation of AdipoR1 and TGF-β1expression, and suppression of inflammation.
Collapse
|
15
|
Gowd V, Kang Q, Wang Q, Wang Q, Chen F, Cheng KW. Resveratrol: Evidence for Its Nephroprotective Effect in Diabetic Nephropathy. Adv Nutr 2020; 11:1555-1568. [PMID: 32577714 PMCID: PMC7666903 DOI: 10.1093/advances/nmaa075] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Dietary habits play a major role in determining the onset and progression of DM-related disorders and a proper diet (rich in fruits and vegetables) can delay or prevent the process of DM pathogenesis. Thus, increasing attention has been paid to polyphenols and polyphenol-rich foods since their increased intake has been associated with a reduced incidence of DM and its associated complications. Resveratrol is a polyphenolic phytoalexin that is mainly found in grapevines and berries. It is available in various pharmaceutical dosages and is widely recommended as a dietary supplement due to its beneficial effects. Remarkably, resveratrol's capability to effectively lower blood glucose levels without any side effects has been amply demonstrated in many in vitro and in vivo studies. Herein, we comprehensively review and discuss the nephroprotective effect of resveratrol during DN and its associated mechanisms. Resveratrol exerts its nephroprotective effects via various mechanisms including reducing oxidative stress and advanced glycation end-product (AGE) production, stimulating autophagy, inhibiting endoplasmic reticulum (ER) stress and inflammation, ameliorating lipotoxicity, activating the AMP kinase (AMPK) pathway, and modulating angiogenesis. Moreover, the use of resveratrol as an adjuvant to conventional antidiabetic therapies could be an effective approach to manage DN in humans. However, evidence is scarce to support whether resveratrol has beneficial effects in humans during DN. Therefore, clinical studies are warranted to elucidate resveratrol's role against DN.
Collapse
Affiliation(s)
- Vemana Gowd
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qingzheng Kang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Qi Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China,Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, Beijing, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China,Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | | |
Collapse
|
16
|
Sestrin‑2 regulates podocyte mitochondrial dysfunction and apoptosis under high‑glucose conditions via AMPK. Int J Mol Med 2020; 45:1361-1372. [PMID: 32323727 PMCID: PMC7138269 DOI: 10.3892/ijmm.2020.4508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe form of microangiopathy among diabetic patients, of which podocyte injury is one of the more predominant features. There is increasing evidence to suggest that mitochondrial dysfunction is associated with podocyte injury, thus contributing to the progression of DKD. Initially identified as a p53 target protein, the endogenous antioxidant protein, sestrin‑2 (sesn2), has recently attracted attention due to its potential function in various inflammatory diseases. However, the association between sesn2 and podocytes in DKD remains unclear. In the present study, to elucidate the role of sesn2 in podocyte mitochondrial dysfunction, the effects of sesn2 on the regulation of AMP‑activated protein kinase (AMPK) were examined in vitro and in vivo. Abnormal mitochondria were found in rats with streptozotocin‑induced diabetes, and hyperglycemia downregulated the expression of sesn2. The upregulation of sesn2 increased the level of AMPK phosphorylation, and thus ameliorated mitochondrial dysfunction under high glucose conditions (HG). On the whole, these results suggest that sesn2 is associated with mitochondrial dysfunction in podocytes under HG conditions. In addition, the decreased expression of sesn2 may be a therapeutic target for DKD.
Collapse
|
17
|
Jing H, Tang S, Lin S, Liao M, Chen H, Fan Y, Zhou J. Adiponectin in renal fibrosis. Aging (Albany NY) 2020; 12:4660-4672. [PMID: 32065783 PMCID: PMC7093169 DOI: 10.18632/aging.102811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/25/2020] [Indexed: 04/11/2023]
Abstract
Renal fibrosis is an inevitable consequence of parenchymal scarring and is the common final pathway that mediates almost all progressive renal diseases. Adiponectin, a hormone produced by adipose tissue, possesses potent anti-insulin, anti-inflammatory, and anti-fibrotic properties. Reportedly, adiponectin serves as an important messenger that facilitates complex interactions between adipose tissue and other metabolically related organs. In recent years, a growing body of evidence supports adiponectin involvement in renal fibrosis. These studies provide a deeper understanding of the molecular mechanism of action of adiponectin in renal fibrosis and also offer a potential preventive and therapeutic target for renal fibrosis. In this review, the physiological role of adiponectin is briefly introduced, and then the mechanism of adiponectin-mediated renal fibrosis and the related signaling pathways are described. Finally, we summarize the findings regarding the clinical value of adiponectin in renal fibrotic diseases and prospected its application potential.
Collapse
Affiliation(s)
- Huan Jing
- The Third Affiliated Hospital of Southern Medical University, Zunyi Medical University, Guangzhou, Guangdong Province, China
| | - Simin Tang
- The Third Affiliated Hospital of Southern Medical University, Zunyi Medical University, Guangzhou, Guangdong Province, China
| | - Sen Lin
- The First People’s Hospital of Foshan, Foshan, Guangdong Province, China
| | - Meijuan Liao
- The First People’s Hospital of Foshan, Foshan, Guangdong Province, China
| | - Hongtao Chen
- Guangzhou Eighth People's Hospital, Guangzhou, Guangdong Province, China
| | - Youling Fan
- Panyu Central Hospital, Panyu, Guangzhou, Guangdong Province, China
| | - Jun Zhou
- The Third Affiliated Hospital of Southern Medical University, Zunyi Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Shati AA. Salidroside ameliorates diabetic nephropathy in rats by activating renal AMPK/SIRT1 signaling pathway. J Food Biochem 2020; 44:e13158. [PMID: 32030786 DOI: 10.1111/jfbc.13158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/02/2023]
Abstract
This study investigated if the nephroprotective effect of Salidroside T1DM rats involves activation of AMPK/SIRT1. Rats were divided into control or T1DM and treated with vehicle or Salidroside (100 mg/kg) for 56 days. Mesangial cells were cultured in LG or HG media with or without Salidroside (100 µM/L) for 24 hr. Also, HG + Salidroside-treated cells were pre-incubated with EX-527 or compound C (CC) for 1 hr. With reducing glucose levels, Salidroside improved kidney structure/function in the T1DM rat. It also increased GSH and Bcl-2 levels in control and T1DM rats and inhibited ROS, increased activation of AMPK and nuclear SIRT1, and lowered acetylation of P53 and FOXO-1 in control and T1DM rats and in LG and HG-treated cells. These effects were abolished by EX-527 and CC. Also, CC decreased the nuclear levels of SIRT1. In conclusion, Salidroside attenuates DN in T1DM rats by activation of AMPK and subsequently, SIRT1. PRACTICAL APPLICATIONS: This animal and pre-clinical study shows that Salidroside is able to ameliorate DN in T1DM-induced rats and showed that it mainly acts by a hypoglycemic effect and activation of renal AMPK/SIRT1 axis. Given the wide tissue stimulatory effect of AMPK on peripheral glucose utilization, lipogenesis, and other cell signaling pathways, these data are encouraging to investigate the anti-diabetic effect of glycoside in more clinical trials.
Collapse
Affiliation(s)
- Ali A Shati
- Department of Biology, Science College, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Abstract
Adiponectin is the most important adipokine secreted by the adipose tissue. It carries out an important role in setting up the metabolism and improving the function of various organs. Adiponectin in the kidneys prevents degradation of the renal arteries, reduces protein excretion, and improves filtration. This role is accomplished by regulating anabolic pathways and reducing oxidative stress in the renal tissue. This hormone in the liver prevents the accumulation of fat and free radicals that cause damage to liver cells and tissue. This adipokine, by preventing inflammatory processes, oxidative stress, obesity and insulin resistance, improves vascular function and prevents the development of atherosclerosis. It seems that adiponectin can also be a therapeutic target for many metabolic diseases. This study aims to clarify the adipose tissue discharge. Here, the diverse physiological actions of adiponectin were reviewed to provide an overview of its therapeutic potential in different metabolic disorders.
Collapse
Affiliation(s)
- S Esmaili
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - M Hemmati
- Cardiovascular Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - M Karamian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
20
|
Sugahara M, Tanaka S, Tanaka T, Saito H, Ishimoto Y, Wakashima T, Ueda M, Fukui K, Shimizu A, Inagi R, Yamauchi T, Kadowaki T, Nangaku M. Prolyl Hydroxylase Domain Inhibitor Protects against Metabolic Disorders and Associated Kidney Disease in Obese Type 2 Diabetic Mice. J Am Soc Nephrol 2020; 31:560-577. [PMID: 31996409 DOI: 10.1681/asn.2019060582] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prolyl hydroxylase domain (PHD) inhibitors, which stimulate erythropoietin production through the activation of hypoxia-inducible factor (HIF), are novel therapeutic agents used for treating renal anemia. Several PHD inhibitors, including enarodustat, are currently undergoing phase 2 or phase 3 clinical trials. Because HIF regulates a broad spectrum of genes, PHD inhibitors are expected to have other effects in addition to erythropoiesis, such as protection against metabolic disorders. However, whether such beneficial effects would extend to metabolic disorder-related kidney disease is largely unknown. METHODS We administered enarodustat or vehicle without enarodustat in feed to diabetic black and tan brachyury (BTBR) ob/ob mice from 4 to 22 weeks of age. To elucidate molecular changes induced by enarodustat, we performed transcriptome analysis of isolated glomeruli and in vitro experiments using murine mesangial cells. RESULTS Compared with BTBR ob/ob mice that received only vehicle, BTBR ob/ob mice treated with enarodustat displayed lower body weight, reduced blood glucose levels with improved insulin sensitivity, lower total cholesterol levels, higher adiponectin levels, and less adipose tissue, as well as a tendency for lower macrophage infiltration. Enarodustat-treated mice also exhibited reduced albuminuria and amelioration of glomerular epithelial and endothelial damage. Transcriptome analysis of isolated glomeruli revealed reduced expression of C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) in enarodustat-treated mice compared with the vehicle-only group, accompanied by reduced glomerular macrophage infiltration. In vitro experiments demonstrated that both local HIF-1 activation and restoration of adiponectin by enarodustat contributed to CCL2/MCP-1 reduction in mesangial cells. CONCLUSIONS These results indicate that the PHD inhibitor enarodustat has potential renoprotective effects in addition to its potential to protect against metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Takeshi Wakashima
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan; and
| | - Masatoshi Ueda
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan; and
| | - Kenji Fukui
- Biological and Pharmacological Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., Osaka, Japan; and
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, and
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
21
|
Wang Y, Lian H, Wang X, Zheng T, Yu X, Chen R, Huang Z, Lv Y, Zhao A, Gao J. Characterization of the Active Components of the Multimerized sTNFRIIAdiponectin Fusion Protein Showing Both TNFα-Antagonizing and Glucose Uptake-Promoting Activities. Endocr Metab Immune Disord Drug Targets 2020; 20:1081-1089. [PMID: 31965947 DOI: 10.2174/1871530320666200121100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The sTNFRII-adiponectin fusion protein previously showed strong TNFα antagonistic activity. However, the fusion protein exists as mixture of different multimers. The aim of the present study was to characterize its active components. METHODS In this study, the fusion protein was isolated and purified by Ni-NTA affinity and gel exclusion chromatography, and further identified by Coomassie staining and western blotting. The TNFα antagonistic and glucose uptake-promoting activities were determined in vitro. The glucose detection kit and 2- NBDG (2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose) were used to measure their effects on glucose metabolism (including glucose consumption and glucose uptake in HepG2 and H9C2 cells). The effect of the fusion protein on glucose uptake was also examined in free fatty acid (FFA)- induced insulin resistance cell model. RESULTS The sTNFRII-adiponectin fusion protein was found to exist in three forms: 250 kDa (hexamer), 130 kDa (trimer), and 60 kDa (monomer), with the final purity of 90.2%, 60.1%, and 81.6%, respectively. The fusion protein could effectively antagonize the killing effect of TNFα in L929 cells, and the multimer was found to be superior to the monomer. In addition, the fusion protein could increase glucose consumption without impacting the number of cells (HepG2, H9C2 cells) in a dosedependent manner. Mechanistically, glucose uptake was found to be enhanced by the translocation of GLUT4. However, it could not improve glucose uptake in the cell model of insulin resistance. CONCLUSION In summary, the active components of the fusion protein are hexamers and trimers. The hexamer and trimer of sTNFRII-adiponectin fusion protein had both TNFα-antagonizing and glucose uptake-promoting activities, although neither of them could improve glucose uptake in the cell model of insulin resistance.
Collapse
Affiliation(s)
- Yao Wang
- Zhejiang Provincial Key Laboratory of Technology & Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Lian
- Zhejiang Provincial Key Laboratory of Technology & Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xitong Wang
- Zhejiang Provincial Key Laboratory of Technology & Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tianyu Zheng
- Zhejiang Provincial Key Laboratory of Technology & Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoxiao Yu
- Zhejiang Provincial Key Laboratory of Technology & Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruzhang Chen
- Zhejiang Provincial Key Laboratory of Technology & Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiyong Huang
- Department of Thoracic Surgery Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yinxiang Lv
- Zhejiang Provincial Key Laboratory of Technology & Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ai Zhao
- Department of Hematology Shunde Hospital, Southern Medical University, Foshan, China; 4Zhejiang Qixin Biotech, Wenzhou, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory of Technology & Application of Model Organisms, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Cai Y, Zhang H, Fan C, Zeng Y, Zou S, Wu C, Wang L, Fang S, Li P, Xue Y, Guan M. Renoprotective effects of brown adipose tissue activation in diabetic mice. J Diabetes 2019; 11:958-970. [PMID: 31020790 PMCID: PMC6899899 DOI: 10.1111/1753-0407.12938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/20/2019] [Accepted: 04/21/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has been regarded as a potential target organ to combat obesity and related metabolic disorders. However, the effect of BAT activation on the development of diabetic kidney disease (DKD) remains unclear. METHODS Diabetic mice were induced by streptozotocin (STZ) combined with a high-fat diet. To activate BAT, mice were administered 1 mg/kg per day, i.p., CL316,243, a β3 -adrenergic receptor agonist, for 4 weeks. Blood glucose, serum lipids, adipokines, 24-hour urinary albumin, 8-hydroxydeoxyguanosine (8-OHdG), and circulating microRNA (miRNA) levels were analyzed, in addition to renal pathology. Histological changes (fibrosis, inflammation) were evaluated in the kidneys, as was the expression of oxidative stress-related genes. Renal signaling pathways (fibroblast growth factor [Fgf]21/β-klotho/FGF receptor 1c and AMP-activated protein kinase[AMPK]/sirtuin 1 [Sirt1]/peroxisome proliferator-activated receptor-γ coactivator-1α [Pgc1α]) were also evaluated. RESULTS Compared with untreated STZ-diabetic mice, CL316,243 treatment reduced blood glucose, albeit not significantly (20.58 ± 3.55 vs 23.60 ± 3.90 mM), and significantly decreased triglycerides and low-density lipoprotein cholesterol and increased high-density lipoprotein cholesterol. Simultaneously, BAT activation significantly decreased 24-hour urinary albumin (34.21 ± 6.28 vs 70.46 ± 15.81 μg/24 h; P < 0.05) and 8-OHdG, improved renal fibrosis, inflammation, and oxidative stress, and ameliorated renal morphological abnormalities. In addition to enhancing BAT activity, CL316,243 significantly increased serum adiponectin concentrations and renal Fgf21 sensitivity, and reactivated the renal AMPK/Sirt1/Pgc1α signaling pathway. Furthermore, CL316,243 treatment increased levels of some circulating miRNAs and downregulated expression of their target genes in the kidney. CONCLUSIONS Activating BAT could improve kidney injury in diabetic mice via metabolic improvements and renal AMPK activation by beneficial adipokines and miRNAs.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Adipokines/blood
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Circulating MicroRNA/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/drug therapy
- Diabetic Nephropathies/blood
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/prevention & control
- Diet, High-Fat
- Dioxoles/pharmacology
- Hypoglycemic Agents/pharmacology
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Lipids/blood
- Male
- Mice, Inbred C57BL
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Signal Transduction
- Sirtuin 1/metabolism
- Streptozocin
Collapse
Affiliation(s)
- Ying‐Ying Cai
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Birth Control, Women and Children's Hospital, School of Medicine, Xiamen UniversityXiamenChina
| | - Hong‐Bin Zhang
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Cun‐Xia Fan
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Endocrinology and MetabolismHainan General HospitalHaikouChina
| | - Yan‐Mei Zeng
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shao‐Zhou Zou
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Chun‐Yan Wu
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shu Fang
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ping Li
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yao‐Ming Xue
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Mei‐Ping Guan
- Department of Endocrinology and Metabolism, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
23
|
Adu-Gyamfi EA, Fondjo LA, Owiredu WKBA, Czika A, Nelson W, Lamptey J, Wang YX, Ding YB. The role of adiponectin in placentation and preeclampsia. Cell Biochem Funct 2019; 38:106-117. [PMID: 31746004 DOI: 10.1002/cbf.3458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022]
Abstract
Preeclampsia is not fully understood; and few biomarkers, therapeutic targets, and therapeutic agents for its management have been identified. Original investigative findings suggest that abnormal placentation triggers preeclampsia and leads to hypertension, proteinuria, endothelial dysfunction, and inflammation, which are characteristics of the disease. Because of the regulatory roles that it plays in several metabolic processes, adiponectin has become a cytokine of interest in metabolic medicine. In this review, we have discussed the role of adiponectin in trophoblast proliferation, trophoblast differentiation, trophoblast invasion of the decidua, and decidual angiogenesis, which are the major phases of placentation. Also, we have highlighted the physiological profile of adiponectin in the course of normal pregnancy. Moreover, we have discussed the involvement of adiponectin in hypertension, endothelial dysfunction, inflammation, and proteinuria. Furthermore, we have summarized the reported relationship between the maternal serum adiponectin level and preeclampsia. The available evidence indicates that adiponectin level physiologically falls as pregnancy advances, regulates placentation, and exhibits protective effects against the symptoms of preeclampsia and that while hyperadiponectinemia is evident in normal-weight preeclamptic women, hypoadiponectinemia is evident in overweight and obese preeclamptic women. Therefore, the clinical use of adiponectin as a biomarker, therapeutic target, or therapeutic agent against the disease looks promising and should be considered.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Linda Ahenkorah Fondjo
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - William K B A Owiredu
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - Armin Czika
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - William Nelson
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jones Lamptey
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
24
|
Szrejder M, Piwkowska A. AMPK signalling: Implications for podocyte biology in diabetic nephropathy. Biol Cell 2019; 111:109-120. [DOI: 10.1111/boc.201800077] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Maria Szrejder
- Mossakowski Medical Research Centre Polish Academy of SciencesLaboratory of Molecular and Cellular Nephrology Gdańsk Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Centre Polish Academy of SciencesLaboratory of Molecular and Cellular Nephrology Gdańsk Poland
| |
Collapse
|
25
|
Yang Q, Fu C, Zhang X, Zhang Z, Zou J, Xiao J, Ye Z. Adiponectin protects against uric acid‑induced renal tubular epithelial inflammatory responses via the AdipoR1/AMPK signaling pathway. Int J Mol Med 2019; 43:1542-1552. [PMID: 30664190 DOI: 10.3892/ijmm.2019.4072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/16/2019] [Indexed: 11/06/2022] Open
Abstract
Adiponectin (APN) exerts anti‑inflammatory effects in various cells. Uric acid (UA) induces inflammation in proximal renal tubular epithelial cells (PTECs). It remains unknown whether APN protects against UA‑induced inflammation. In the present study, human PTECs were incubated with 100 µg/ml soluble (S) UA in the presence or absence of globular (g) APN, APN receptor 1 (AdipoR1)‑short hairpin RNA lentivirus or compound C. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) assays were performed to assess APN mRNA expression. Immunoblotting was used to assess the protein expression of APN, AdipoR1, NACHT, leucine rich repeat and pyrin domain‑containing protein 3 (NLRP3) and the activation of tumor necrosis factor (TNF) α and adenosine monophosphate‑activated protein kinase (AMPK). ELISA analyses were performed to assess supernatant levels of interleukin (IL)‑1β and TNFα. It was observed that SUA significantly enhanced APN mRNA and protein expression (both P<0.05) and increased NLRP3 (P<0.001) and TNFα (P<0.05) protein levels, as well as supernatant levels of IL‑1β (P<0.01) and TNFα (P<0.001) compared with untreated cells. gAPN administration significantly limited TNFα synthesis and secretion (both P<0.001), significantly decreased IL‑1β release (P<0.01), impacted NLRP3 protein expression and augmented AdipoR1 protein (P<0.01) and AMPK phosphorylation (P<0.05) levels compared with SUA‑treated cells. AdipoR1 knockdown significantly promoted the synthesis (P<0.05) and release of TNFα (P<0.001), significantly increased IL‑1β supernatant levels (P<0.01) and exhibited little influence on NLRP3 production (P>0.05) compared with the SUA‑treated cells. Secreted TNFα levels were significantly increased upon the inhibition of AMPK (P<0.05) and protein levels of IL‑1β, NLRP3 and TNFα in cell lysates were not significantly affected (P>0.05). In summary, the data demonstrated that SUA promoted APN expression in PTECs and that gAPN attenuated SUA‑induced inflammation through the AdipoR1/AMPK signaling pathway. AdipoR1 knockdown and AMPK inactivation increased SUA‑induced inflammatory damage in PTECs. These findings may help to further understand and regulate UA‑associated inflammation in proximal renal tubules.
Collapse
Affiliation(s)
- Qingmei Yang
- Department of Nephrology, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Xiaoli Zhang
- Department of Nephrology, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Zhenxing Zhang
- Department of Nephrology, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Jianan Zou
- Department of Nephrology, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital Affiliated with Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
26
|
Kobayashi H, Otsuka H, Yanai M, Hara M, Hishiki M, Soma M, Abe M. Adiponectin Receptor gene Polymorphisms are Associated with Kidney Function in Elderly Japanese Populations. J Atheroscler Thromb 2018; 26:328-339. [PMID: 30135333 PMCID: PMC6456456 DOI: 10.5551/jat.45609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Adiponectin exhibits its biological effects through adiponectin receptors (AdipoR1 and AdipoR2), which are distributed in the kidneys, and activation of those receptors could prevent or ameliorate diabetic nephropathy. This study aimed to evaluate the associations between AdipoR single nucleotide polymorphisms (SNPs) and kidney function in an elderly Japanese population. Methods: A total of 271 elderly Japanese volunteers underwent anthropometric and laboratory tests (cystatin C-based eGFR and total and high molecular weight adiponectin levels at baseline and a follow-up visit). Genotype data were obtained for the selected 7 and 5 AdipoR1 and AdipoR2 SNPs, respectively. Results: In a cross-sectional analysis at baseline, we found a significant association between the AdipoR2 SNP rs12230440 and kidney function; eGFRcys tended to increase as the number of carriers of T alleles increased after adjustment for covariates and Bonferroni correction, although the association of the SNP and annual eGFR decline could not be identified in the longitudinal data. Regarding the variants rs16850797, rs11061925, and rs10773983, each of the allele G, allele C, and allele G showed nominally significant associations with higher eGFRcys. However, this failed to reach significance after Bonferroni correction. Conclusion: Here, an AdipoR2 SNP was associated with kidney function, suggesting that the effects of this polymorphism on adiponectin receptor may affect kidney function in the elderly Japanese population.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine
| | - Hiromasa Otsuka
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine
| | - Mitsuru Yanai
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine
| | - Motohiko Hara
- Department of Nursing, School of Health and Social Services, Saitama Prefectural University
| | - Mikano Hishiki
- Department of Diabetes and Endocrinology, Tokyo Metropolitan Hiroo Hospital
| | - Masayoshi Soma
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine
| |
Collapse
|
27
|
Li G, Zhang Q, Hong J, Ritter JK, Li PL. Inhibition of pannexin-1 channel activity by adiponectin in podocytes: Role of acid ceramidase activation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1246-1256. [PMID: 30077007 DOI: 10.1016/j.bbalip.2018.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 12/19/2022]
Abstract
The pannexin-1 (Panx1) channel has been reported to mediate the release of ATP that is involved in local tissue inflammation, obesity, and many chronic degenerative diseases. It remains unknown whether Panx1 is present in podocytes and whether this channel in podocytes mediates ATP release leading to glomerular inflammation or fibrosis. To answer these questions, we first characterized the expression of Panx channels in podocytes. Among the three known pannexins, Panx1 was the most enriched in podocytes, either cultured or native in mouse glomeruli. Using a Port-a-Patch planar patch-clamp system, we recorded a large voltage-gated outward current through podocyte membrane under the Cs+in/Na+out gradient. Substitution of gluconate or aspartate for chloride in the bath solution blocked voltage-gated outward currents and shifted the reversal potential of Panx1 currents to the right, indicating the anion permeability of this channel. Pharmacologically, the recorded voltage-gated outward currents were substantially attenuated by specific Panx1 channel inhibitors. Given the anti-inflammatory and intracellular ATP restorative effects of adiponectin, we tested whether this adipokine inhibits Panx1 channel activity to block ATP release. Adiponectin blocked Panx1 channel activity in podocytes. Mechanistically, inhibition of acid ceramidase (AC) remarkably enhanced Panx1 channel activity under control conditions and prevented the inhibition of Panx1 channel by adiponectin. Correspondingly, intracellular addition of AC products, sphingosine or sphingosine-1-phosphate (S1P), blocked Panx1 channel activity, while elevation of intracellular ceramide had no effect on Panx1 channel activity. These results suggest that adiponectin inhibits Panx1 channel activity in podocytes through activation of AC and associated elevation of intracellular S1P.
Collapse
Affiliation(s)
- Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Qinghua Zhang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Jinni Hong
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, United States of America.
| |
Collapse
|
28
|
|
29
|
Amin SN, Hussein UK, Yassa HD, Hassan SS, Rashed LA. Synergistic actions of vitamin D and metformin on skeletal muscles and insulin resistance of type 2 diabetic rats. J Cell Physiol 2018; 233:5768-5779. [DOI: 10.1002/jcp.26300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Shaimaa N. Amin
- Faculty of Medicine, Department of Medical PhysiologyCairo UniversityCairoEgypt
| | - Usama K. Hussein
- Department of ZoologyFaculty of ScienceBeni‐Suef UniversityBeni SuefEgypt
- Department of PathologyChonbuk National University Medical SchoolResearch Institute of ClinicalMedicine of Chonbuk National University‐Biomedical Research Institute of Chonbuk National UniversityHospital and Research Institute for Endocrine SciencesJeonjuKorea
| | - Hanan D. Yassa
- Faculty of Medicine, Department of Anatomy and EmbryologyBeni‐Suef UniversityBeni SuefEgypt
| | - Sherif S. Hassan
- Department of Medical EducationCalifornia University of Sciences and MedicineColton, California
- Faculty of MedicineAnatomy DepartmentCairo UniversityCairoEgypt
| | - Laila A. Rashed
- Faculty of MedicineDepartment of BiochemistryCairo UniversityCairoEgypt
| |
Collapse
|
30
|
Raij L, Tian R, Wong JS, He JC, Campbell KN. Podocyte injury: the role of proteinuria, urinary plasminogen, and oxidative stress. Am J Physiol Renal Physiol 2016; 311:F1308-F1317. [PMID: 27335373 DOI: 10.1152/ajprenal.00162.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
Podocytes are the key target for injury in proteinuric glomerular diseases that result in podocyte loss, progressive focal segmental glomerular sclerosis (FSGS), and renal failure. Current evidence suggests that the initiation of podocyte injury and associated proteinuria can be separated from factors that drive and maintain these pathogenic processes leading to FSGS. In nephrotic urine aberrant glomerular filtration of plasminogen (Plg) is activated to the biologically active serine protease plasmin by urokinase-type plasminogen activator (uPA). In vivo inhibition of uPA mitigates Plg activation and development of FSGS in several proteinuric models of renal disease including 5/6 nephrectomy. Here, we show that Plg is markedly increased in the urine in two murine models of proteinuric kidney disease associated with podocyte injury: Tg26 HIV-associated nephropathy and the Cd2ap-/- model of FSGS. We show that human podocytes express uPA and three Plg receptors: uPAR, tPA, and Plg-RKT. We demonstrate that Plg treatment of podocytes specifically upregulates NADPH oxidase isoforms NOX2/NOX4 and increases production of mitochondrial-dependent superoxide anion (O2-) that promotes endothelin-1 synthesis. Plg via O2- also promotes expression of the B scavenger receptor CD36 and subsequent increased intracellular cholesterol uptake resulting in podocyte apoptosis. Taken together, our findings suggest that following disruption of the glomerular filtration barrier at the onset of proteinuric disease, podocytes are exposed to Plg resulting in further injury mediated by oxidative stress. We suggest that chronic exposure to Plg could serve as a "second hit" in glomerular disease and that Plg is potentially an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Leopoldo Raij
- Renal and Hypertension Division, University of Miami Miller School of Medicine, Miami, Florida; .,Nephrology and Hypertension Section Miami Veterans Affairs Medical Center (111C1), Miami, Florida; and
| | - Runxia Tian
- Nephrology and Hypertension Section Miami Veterans Affairs Medical Center (111C1), Miami, Florida; and
| | - Jenny S Wong
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John C He
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kirk N Campbell
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
31
|
Park HS, Lim JH, Kim MY, Kim Y, Hong YA, Choi SR, Chung S, Kim HW, Choi BS, Kim YS, Chang YS, Park CW. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy. J Transl Med 2016; 14:176. [PMID: 27286657 PMCID: PMC4902973 DOI: 10.1186/s12967-016-0922-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/30/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Adiponectin has multiple functions including insulin sensitization, anti-inflammation and antiatherogenesis in various organs. Adiponectin activates 5'-adenosine monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR)α via the adiponectin receptor (AdipoR) 1 and 2, which are critical for regulating lipids and glucose homeostasis and for controlling oxidative stress. We investigated whether resveratrol can inhibit renal damage in type 2 diabetic db/db mice and the underlying mechanisms of its effects. METHODS Four groups of male C57 BLKS/J db/m and db/db mice and human glomerular endothelial cells (HGECs) were used. Resveratrol was administered to diabetic and nondiabetic mice by oral gavage for 12 weeks starting at 8 weeks of age. RESULTS In db/db mice, resveratrol increased serum adiponectin levels and decreased albuminuria, glomerular matrix expansion, inflammation and apoptosis in the glomerulus. Resveratrol increased the phosphorylation of AMPK and silent information regulator T1 (SIRT1), and decreased phosphorylation of downstream effectors class O forkhead box (FoxO)1 and FoxO3a via increasing AdipoR1 and AdipoR2 in the renal cortex. Furthermore, resveratrol increased expression of PPARγ coactivator (PGC)-1α, estrogen-related receptor-1α, and phosphorylated acetyl-CoA carboxylase and decreased sterol regulatory element-binding protein 1. This effect lowered the content of nonesterified fatty acid and triacylglycerol in the kidneys, decreasing apoptosis, oxidative stress and activating endothelial nitric oxide synthase. Resveratrol prevented cultured HGECs from undergoing high-glucose-induced oxidative stress and apoptosis by activating the AMPK-SIRT1-PGC-1α axis and PPARα through increases in AdipoR1 and AdipoR2 expression. CONCLUSIONS These results suggest that resveratrol prevents diabetic nephropathy by ameliorating lipotoxicity, oxidative stress, apoptosis and endothelial dysfunction via increasing AdipoR1 and AdipoR2 expression.
Collapse
Affiliation(s)
- Hoon Suk Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - You Ah Hong
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Ryoung Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyung Wook Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Soo Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Sik Chang
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, #505, Banpo-Dong, Seocho-Ku, Seoul, 137-040, Republic of Korea.
| |
Collapse
|
32
|
Kim Y, Park CW. Adenosine monophosphate-activated protein kinase in diabetic nephropathy. Kidney Res Clin Pract 2016; 35:69-77. [PMID: 27366660 PMCID: PMC4919564 DOI: 10.1016/j.krcp.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/18/2016] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and its pathogenesis is complex and has not yet been fully elucidated. Abnormal glucose and lipid metabolism is key to understanding the pathogenesis of DN, which can develop in both type 1 and type 2 diabetes. A hallmark of this disease is the accumulation of glucose and lipids in renal cells, resulting in oxidative and endoplasmic reticulum stress, intracellular hypoxia, and inflammation, eventually leading to glomerulosclerosis and interstitial fibrosis. There is a growing body of evidence demonstrating that dysregulation of 5′ adenosine monophosphate–activated protein kinase (AMPK), an enzyme that plays a principal role in cell growth and cellular energy homeostasis, in relevant tissues is a key component of the development of metabolic syndrome and type 2 diabetes mellitus; thus, targeting this enzyme may ameliorate some pathologic features of this disease. AMPK regulates the coordination of anabolic processes, with its activation proven to improve glucose and lipid homeostasis in insulin-resistant animal models, as well as demonstrating mitochondrial biogenesis and antitumor activity. In this review, we discuss new findings regarding the role of AMPK in the pathogenesis of DN and offer suggestions for feasible clinical use and future studies of the role of AMPK activators in this disorder.
Collapse
Affiliation(s)
- Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
Yoon CY, Kim YL, Han SH, Yoo TH, Sung SA, Chung WK, Chae DW, Kim YS, Ahn C, Choi KH. Hypoadiponectinemia and the presence of metabolic syndrome in patients with chronic kidney disease: results from the KNOW-CKD study. Diabetol Metab Syndr 2016; 8:75. [PMID: 27895721 PMCID: PMC5109641 DOI: 10.1186/s13098-016-0191-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In patients with chronic kidney disease, metabolic syndrome has been demonstrated to be the culprit behind diverse complications. Adiponectin is known to have anti-atherogenic and cardio-protective effects. Meanwhile, the relationship between adiponectin and metabolic syndrome in patients with chronic kidney disease has not been clarified. The aim of this study was to elucidate the relationship between adiponectin level and metabolic syndrome in patients with chronic kidney disease. METHODS The KoreaN Cohort Study for Outcome in Patients with Chronic Kidney Disease is a cohort study that enrolled subjects with chronic kidney disease throughout South Korea. From February 2011 to July 2014, data were collected from 1332 patients with chronic kidney disease. RESULTS The mean age of the patients was 53.5 years and 803 patients (60.7%) were men. The median adiponectin level was 10.7 μg/mL and 585 (44.3%) patients had metabolic syndrome. In multiple linear regression analysis, log adiponectin was positively associated with high-density lipoprotein cholesterol levels (β = 0.006), whereas it was negatively associated with serum albumin (β = -0.284), triglyceride (log β = -0.288), high sensitivity C-reactive protein (log β = -0.058) levels and estimated glomerular filtration rate (β = -0.005). Multiple logistic regression analysis indicated that low adiponectin level was independently associated with a higher risk of metabolic syndrome (per 1 μg/mL increase; odds ratio = 0.953, 95% confidence interval = 0.898-0.970, P < 0.001) after adjustment for multiple confounding factors. CONCLUSIONS Hypoadiponectinemia is independently associated with the presence of metabolic syndrome in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Chang-Yun Yoon
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Yung Ly Kim
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| | - Su-Ah Sung
- Department of Internal Medicine, Eulji General Hospital, Seoul, Republic of Korea
| | - Woo-kyung Chung
- Department of Internal Medicine, Gachon University School of Medicine, Incheon, Republic of Korea
| | - Dong-Wan Chae
- Department of Internal Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Seongnam, Republic of Korea
| | - Yong-Soo Kim
- Department of Internal Medicine, Seoul St. Mary Hospital, Catholic University of Korea, Seoul, Republic of Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyu Hun Choi
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752 Republic of Korea
| |
Collapse
|
34
|
Sethna CB, Boone V, Kwok J, Jun D, Trachtman H. Adiponectin in children and young adults with focal segmental glomerulosclerosis. Pediatr Nephrol 2015; 30:1977-85. [PMID: 26115618 DOI: 10.1007/s00467-015-3146-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adiponectin is an adipokine that is elevated in kidney disease. Evidence suggests that adiponectin exerts a direct effect on the podocyte and may play a role in the pathogenesis of proteinuria. The objectives of this study were to characterize serum and urine adiponectin levels over time in patients with focal segmental glomerulosclerosis (FSGS) and to evaluate the role of baseline levels of adiponectin as a predictor of clinical remission. METHODS This was a study of 60 individuals, ages 3-38 years, with steroid-resistant FSGS enrolled in the FSGS clinical trial. Serial measurements of serum and urine adiponectin were obtained at baseline and 26 and 52 weeks. RESULTS Participants were of mean age 19.4 ± 10.2 years (50% male, 33% black). Serum adiponectin (baseline mean 14.3 ± 6.6 μg/ml) and urine adiponectin:creatinine (Uadp/cr) (baseline mean 126.8 ± 178.9 μg/ml) directly correlated with proteinuria at all time points (r = 0.37-0.81; all p < 0.05). Proteinuria, hypoalbuminemia, and hyperlipidemia were significant independent predictors of greater serum adiponectin and Uadp/cr in multivariate analysis. Lower tertiles of baseline serum adiponectin were associated with greater response to treatment at 52 weeks when adjusted for age, sex, body mass index (BMI) z score, and estimated glomerular filtration rate (eGFR) [odds ratio (OR) 0.48; 95% confidence interval (CI) 0.26-0.91, p = 0.023). For log Uadp/cr, the OR for remission was 0.43 (95% CI 0.21-0.89, p = 0.02) at 52 weeks. However, when baseline urine protein:creatinine was added to the models, the relationships were no longer significant. CONCLUSIONS Serum and urine adiponectin levels were directly associated with proteinuria and paralleled changes in proteinuria over time in children and young adults with FSGS. Although baseline adiponectin was lower in responders, response to treatment in patients with FSGS was not associated with serum and urine adiponectin levels but, rather, was related to proteinuria.
Collapse
Affiliation(s)
- Christine B Sethna
- Department of Pediatrics, Division of Pediatric Nephrology, Cohen Children's Medical Center of New York, New Hyde Park, NY, USA.
| | - Valerie Boone
- Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Jonas Kwok
- Department of Pediatrics, Division of Pediatric Nephrology, Cohen Children's Medical Center of New York, New Hyde Park, NY, USA
| | - Daniel Jun
- Department of Pediatrics, Division of Pediatric Nephrology, Cohen Children's Medical Center of New York, New Hyde Park, NY, USA
| | - Howard Trachtman
- Department of Pediatrics, Division of Pediatric Nephrology, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
35
|
Ha KH, Kim DJ. Urinary adiponectin and progression of diabetic nephropathy in type 1 diabetes. J Diabetes Investig 2015; 7:470-1. [PMID: 27182041 PMCID: PMC4931195 DOI: 10.1111/jdi.12427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/26/2022] Open
Abstract
The complex role of adiponectin in diabetic nephropathy.
Collapse
Affiliation(s)
- Kyoung Hwa Ha
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea.,Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea.,Cardiovascular and Metabolic Disease Etiology Research Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
36
|
Kim HY, Bae EH, Ma SK, Chae DW, Choi KH, Kim YS, Hwang YH, Ahn C, Kim SW. Association of serum adiponectin level with albuminuria in chronic kidney disease patients. Clin Exp Nephrol 2015; 20:443-9. [PMID: 26445954 DOI: 10.1007/s10157-015-1173-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/23/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Adiponectin, a peptide hormone secreted from adipocytes, exerts anti-diabetic, anti-atherogenic, and anti-inflammatory properties. We aimed to determine the relationship between serum adiponectin levels and albuminuria, and evaluate determinant factors for serum adiponectin in patients with chronic kidney disease (CKD). METHODS In total, 1442 CKD patients were included and divided into three groups according to their albumin-to-creatinine ratios: patients with normoalbuminuria (N = 228), microalbuminuria (N = 444), and macroalbuminuria (N = 761). Serum adiponectin was specifically assayed with a commercially available enzyme-linked immunosorbent assay kit. RESULTS Serum adiponectin was significantly higher in patients with macroalbuminuria than in those without macroalbuminuria (9.7 ± 6.0, 12.4 ± 9.0, and 14.9 ± 11.0 μg/mL in patients with normoalbuminuria, microalbuminuria, and macroalbuminuria, respectively). Univariate linear regression analysis showed that the serum adiponectin concentrations were correlated with age, the albumin-to-creatinine ratio, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol, whereas they were negatively correlated with body mass index, the estimated glomerular filtration rate, and serum albumin and triglyceride levels. The stepwise regression multiple analysis showed that sex; the estimated glomerular filtration rate; body mass index; total cholesterol, high-density lipoprotein cholesterol, and triglyceride levels; and logarithm of the albumin-to-creatinine ratio were independently associated with the logarithm of serum adiponectin levels (r = 0.55, p < 0.001). CONCLUSION Serum adiponectin concentrations are higher in patients with increasing albuminuria, and these levels are associated with renal insufficiency and lipid profiles.
Collapse
Affiliation(s)
- Ha Yeon Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea
| | - Dong Wan Chae
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Kyu Hun Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University, Seoul, Korea
| | - Yong-Soo Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Young-Hwan Hwang
- Department of Internal Medicine, Eulji General Hospital, Eulji University, Seoul, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebongro, Gwangju, 501-757, Korea.
| |
Collapse
|
37
|
Thakur S, Viswanadhapalli S, Kopp JB, Shi Q, Barnes JL, Block K, Gorin Y, Abboud HE. Activation of AMP-activated protein kinase prevents TGF-β1-induced epithelial-mesenchymal transition and myofibroblast activation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2168-80. [PMID: 26071397 DOI: 10.1016/j.ajpath.2015.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 12/26/2022]
Abstract
Transforming growth factor (TGF)-β contributes to tubulointerstitial fibrosis. We investigated the mechanism by which TGF-β exerts its profibrotic effects and specifically the role of AMP-activated protein kinase (AMPK) in kidney tubular epithelial cells and interstitial fibroblasts. In proximal tubular epithelial cells, TGF-β1 treatment causes a decrease in AMPK phosphorylation and activation together with increased fibronectin and α-smooth muscle actin expression and decreased in E-cadherin. TGF-β1 causes similar changes in interstitial fibroblasts. Activation of AMPK with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside, metformin, or overexpression of constitutively active AMPK markedly attenuated TGF-β1 functions. Conversely, inhibition of AMPK with adenine 9-β-d-arabinofuranoside or siRNA-mediated knockdown of AMPK (official name PRKAA1) mimicked the effect of TGF-β1 and enhanced basal and TGF-β1-induced phenotypic changes. Importantly, we found that tuberin contributed to the protective effects of AMPK and that TGF-β1 promoted cell injury by blocking AMPK-mediated tuberin phosphorylation and activation. In the kidney cortex of TGF-β transgenic mice, the significant decrease in AMPK phosphorylation and tuberin phosphorylation on its AMPK-dependent activating site was associated with an increase in mesenchymal markers and a decrease in E-cadherin. Collectively, the data indicate that TGF-β exerts its profibrotic action in vitro and in vivo via inactivation of AMPK. AMPK and tuberin activation prevent tubulointerstitial injury induced by TGF-β. Activators of AMPK provide potential therapeutic strategy to prevent kidney fibrosis and progressive kidney disease.
Collapse
Affiliation(s)
- Sachin Thakur
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | | | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Qian Shi
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Jeffrey L Barnes
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Karen Block
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Healthcare System, San Antonio, Texas
| | - Yves Gorin
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Hanna E Abboud
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas; Audie L. Murphy Memorial Hospital Division, South Texas Veterans Healthcare System, San Antonio, Texas
| |
Collapse
|
38
|
Tan M, Tang G, Rui H. Adiponectin attenuates Ang Ⅱ-induced TGFβ1 production in human mesangial cells via an AMPK-dependent pathway. Biotechnol Appl Biochem 2015; 62:848-54. [PMID: 25471552 DOI: 10.1002/bab.1323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 11/22/2014] [Indexed: 01/22/2023]
Abstract
Glomerulosclerosis is a key element in end-stage renal failure. Angiotensin II (Ang II) plays an important role in modulating cell growth and extracellular matrix (ECM) synthesis and degradation. Adiponectin, a protein derived from adipocytes, is primarily involved in regulating glucose levels and fatty acid break down. It has recently been shown to have antiatherosclerotic and anti-inflammatory properties. However, the role of adiponectin as a renoprotective agent has not been fully explored. We herein examine the effect of adiponectin on Ang II-induced TGFβ1 and ECM production in human renal mesangial cells (HRMCs) and explore the signaling pathway involved. In this study, we found that both adiponectin receptor 1 and adiponectin receptor 2 are expressed in HRMCs. Adiponectin (10 μg/mL) attenuated the stimulatory effect of Ang II on TGF-β1 and fibronectin. Furthermore, adiponectin activated the AMP-activated protein kinase (AMPK), and the AMPK-specific inhibitor (compound C) blocked AMPK activation. We also determined that compound C blocked the inhibitory effect of adiponectin on Ang II-stimulated TGFβ1 and fibronectin production. In summary, these results demonstrate that adiponectin suppresses Ang II-induced synthesis of ECM in mesangial cells via activation of the AMPK pathway. Based on our data, we suggest that this mechanism could delay the progression of kidney disease.
Collapse
Affiliation(s)
- Min Tan
- Department of Nephrology, China-Japan Friendship Hospital, Health Ministry of China, Beijing, People's Republic of China
| | - Gongyao Tang
- Department of Nephrology, China-Japan Friendship Hospital, Health Ministry of China, Beijing, People's Republic of China
| | - Hongliang Rui
- Center Of Kidney Disease, An Zhen Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
39
|
Role of nutrient-sensing signals in the pathogenesis of diabetic nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:315494. [PMID: 25126552 PMCID: PMC4122096 DOI: 10.1155/2014/315494] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy is the leading cause of end-stage renal disease worldwide. The multipronged drug approach still fails to fully prevent the onset and progression of diabetic nephropathy. Therefore, a new therapeutic target to improve the prognosis of diabetic nephropathy is urgently required. Nutrient-sensing signals and their related intracellular machinery have evolved to combat prolonged periods of starvation in mammals; and these systems are conserved in the kidney. Recent studies have suggested that the activity of three nutrient-sensing signals, mTORC1, AMPK, and Sirt1, is altered in the diabetic kidney. Furthermore, autophagy activity, which is regulated by the above-mentioned nutrient-sensing signals, is also altered in both podocytes and proximal tubular cells under diabetic conditions. Under diabetic conditions, an altered nutritional state owing to nutrient excess may disturb cellular homeostasis regulated by nutrient-responsible systems, leading to exacerbation of organelle dysfunction and diabetic nephropathy. In this review, we discuss new findings showing relationships between nutrient-sensing signals, autophagy, and diabetic nephropathy and suggest the therapeutic potential of nutrient-sensing signals in diabetic nephropathy.
Collapse
|
40
|
Abstract
Adiponectin is secreted by the adipose tissue and is downregulated in states of obesity and insulin resistance. There is a growing body of evidence indicating that adiponectin has renoprotective effects and protects against the development of albuminuria in rodent experiments. Adiponectin crossing the glomerular filtration barrier possibly inhibits inflammation, fibrosis and oxidative stress in kidneys through activation of AMP-activated protein kinase. Moreover, microalbuminuria is a well established early sign of progressive cardiovascular and renal disease, even in subjects with preserved glomerular filtration rate. Studies investigating the relationship between serum adiponectin levels and urinary albumin excretion rate (UAE) have yielded conflicting data and the mechanisms underlying the interplay between adiponectin and albuminuria remain to be elucidated. This article constitutes a critical review attempting to clarify any remaining confusion about this matter. Furthermore, this article examines the clinical significance of adiponectin-albuminuria interplay, suggesting that adiponectin is possibly involved in the development of albuminuria that is associated with obesity, diabetes and cardiovascular disease and may mediate, at least in part, the actions of medical treatments that influence UAE, such as angiotensin-converting-enzyme inhibitors, angiotensin II receptor blockers, thiazolidinediones, fenofibrate and diet. Further studies to investigate more thoroughly the renoprotective role of adiponectin in the human setting should be carefully planned, focusing on causality and the possible influence of adiponectin on the development of albuminuria in specific clinical settings.
Collapse
Affiliation(s)
- Georgios A Christou
- Laboratory of Physiology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | |
Collapse
|
41
|
Ha TS, Park HY, Nam JA, Han GD. Diabetic conditions modulate the adenosine monophosphate-activated protein kinase of podocytes. Kidney Res Clin Pract 2014; 33:26-32. [PMID: 26877947 PMCID: PMC4714163 DOI: 10.1016/j.krcp.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 02/06/2014] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Adenosine monophosphate-activated protein kinases (AMPKs), as a sensor of cellular energy status, have been known to play an important role in the pathophysiology of diabetes and its complications. Because AMPKs are known to be expressed in podocytes, it is possible that podocyte AMPKs could be an important contributing factor in the development of diabetic proteinuria. We investigated the roles of AMPKs in the pathological changes in podocytes induced by high-glucose (HG) and advanced glycosylation end products (AGEs) in diabetic proteinuria. METHODS We prepared streptozotocin-induced diabetic renal tissues and cultured rat and mouse podocytes under diabetic conditions with AMPK-modulating agents. The changes in AMPKα were analyzed with confocal imaging and Western blotting under the following conditions: (1) normal glucose (5mM, =control); (2) HG (30mM); (3) AGE-added; or (4) HG plus AGE-added. RESULTS The density of glomerularphospho-AMPKα in experimental diabetic nephropathy decreased as a function of the diabetic duration. Diabetic conditions including HG and AGE changed the localization of phospho-AMPKα from peripheral cytoplasm to internal cytoplasm and peri- and intranuclear areas in podocytes. HG reduced the AMPKα (Thr172) phosphorylation of rat podocytes, and similarly, AGEs reduced the AMPKα (Thr172) phosphorylation of mouse podocytes. The distributional and quantitative changes in phospho-AMPKα caused by diabetic conditions were preventable using AMPK activators, metformin, and 5-aminoimidazole-4-carboxamide-1β-riboside. CONCLUSION We suggest that diabetic conditions induce the relocation and suppression of podocyte AMPKα, which would be a suggestive mechanism in diabetic podocyte injury.
Collapse
Affiliation(s)
- Tae-Sun Ha
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hye-Young Park
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Ja-Ae Nam
- Department of Pediatrics, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Gi-Dong Han
- Department of Food Science and Technology, College of Natural Resources, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
42
|
Abstract
Adiponectin is a 30-kDa polypeptide secreted primarily by adipose tissue and plays a key role in kidney disease. In obesity, reduced adiponectin levels are associated with insulin resistance, cardiovascular disease and obesity related kidney disease. The latter includes microalbuminuria, glomerulomegaly, overt proteinuria and focal segmental glomerulosclerosis. Adiponectin levels in type 2 diabetics also negatively correlate with early features of nephropathy. However, in patients with established chronic kidney disease, adiponectin levels are elevated and positively predict progression of disease. The mechanism of action of adiponectin in the kidney appears to be related to AMPK activation and NADPH oxidase. Further studies are needed to elucidate this pathway and investigate the role of potential targets of adiponectin-AMPK-Nox pathway for CKD as obesity-related CKD is increasing worldwide.
Collapse
Affiliation(s)
- Natalie Sweiss
- Center for Renal Translational Medicine, Institute of Metabolomic Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego and VA Medical Center La Jolla, 9500 Gilman Drive, MC 0711, La Jolla, CA 92093, USA.
| | - Kumar Sharma
- Center for Renal Translational Medicine, Institute of Metabolomic Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego and VA Medical Center La Jolla, 9500 Gilman Drive, MC 0711, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Kopf S, Oikonomou D, von Eynatten M, Kieser M, Zdunek D, Hess G, Morcos M, Forsblom C, Bierhaus A, Groop PH, Nawroth PP, Humpert PM. Urinary excretion of high molecular weight adiponectin is an independent predictor of decline of renal function in type 2 diabetes. Acta Diabetol 2014; 51:479-89. [PMID: 24366425 DOI: 10.1007/s00592-013-0542-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022]
Abstract
Adiponectin and urinary adiponectin excretions have been ascribed a function in glomerular physiology and seem to indicate vascular disease in diabetes. The aim of this study was to compare the urinary excretion of albumin and adiponectin as predictors for decline of renal function in patients with type 2 diabetes and early kidney disease. Over 141 patients were screened for renal function (estimated GFR, ml/min*1.73 m(2)), albumin excretion rate (AER, mg/24 h), total as well as high molecular weight (HMW) urinary adiponectin excretion (ng/mol u-creatinine). AER and adiponectin excretion were studied as predictors of renal function after 1 year. After 1 year, 36 patients were in the upper quartile of eGFR decline and defined as progressors (delta eGFR = - 12.3 ± 6.3) while the remaining 105 patients were defined as non-progressors (delta eGFR = 1.4 ± 6.0). At baseline, HMW-adiponectin excretion was positively correlated with HbA1c (p < 0.001) and negatively with eGFR (p < 0.001), but not with AER (p = 0.14). Progressors showed increased urinary HMW-adiponectin at baseline (158[IQR41/479] vs. 65[24/168] ng/mol; p < 0.01), while total adiponectin (182[101/1534] vs. 345[118/1361] ng/mol) and AER (48[23/109] vs. 46[25/108] mg/24 h) excretion showed no differences between the groups. Multivariate logistic regression showed that HMW-adiponectin excretion was an independent predictor of renal progression in all patients (OR 1.86 [95 % CI 1.34-2.59]; p < 0.01), especially in those (n = 45) with normal AER at baseline (OR 2.16 [95 % CI 1.1-4.56]; p < 0.05). Urinary HMW-adiponectin but not AER improved the prediction of progressors in ROC analysis (AUC 0.72 [95 % CI 0.63-0.81] vs. 0.80 [95 % CI 0.71-0.90], p < 0.05). In conclusion, urinary HMW-adiponectin excretion may identify diabetes patients at increased risk for progression of kidney disease.
Collapse
Affiliation(s)
- Stefan Kopf
- Department of Medicine 1 and Clinical Chemistry, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yu Y, Bao BJ, Fan YP, Shi L, Li SQ. Changes of adiponectin and its receptors in rats following chronic renal failure. Ren Fail 2013; 36:92-7. [PMID: 24028144 DOI: 10.3109/0886022x.2013.830975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate changes of adiponectin and its receptors (Adipo R) in rats following chronic renal failure. METHODS Male SD rats were randomly divided into two groups: control group and chronic renal failure (CRF) group. The CRF group were gavaged with adenine (300 mg/kg/d) for 4 weeks and the control group with drinking water. All rats were anesthetized at 2nd or 4th week and blood and urine samples were collected for detection of renal function, 24 h urine protein and adiponectin concentration. Renal tissues were also collected for HE staining, immunohistochemistry and RT-PCR screening. RESULTS Compared with control group, the serum concentrations of urea and creatinine, 24 h urine protein excretion in the CRF group were significantly higher at 2nd week and further increased at 4th week (p < 0.05). The adiponectin levels in serum and urine in the CRF group were significantly higher than those of control group (p < 0.01). The renal expressions of Adipo R1 and Adipo R2 in CRF group were also significantly increased compared to control group (p < 0.01). The increased expressions of Adipo R1 and Adipo R2 were positively related to the adiponectin levels in serum, urine, and 24 h urine protein. CONCLUSION The significant changes in expression of adiponectin and its receptors in rat CRF model could be an adaptive response that may provide the basis to understand pathological changes in chronic kidney disease.
Collapse
Affiliation(s)
- Yan Yu
- Department of Nephrology, Affiliated Hospital of Nantong University , Nantong, Jiangsu , China and
| | | | | | | | | |
Collapse
|
45
|
Jia T, Carrero JJ, Lindholm B, Stenvinkel P. The complex role of adiponectin in chronic kidney disease. Biochimie 2012; 94:2150-6. [DOI: 10.1016/j.biochi.2012.02.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/17/2012] [Indexed: 12/25/2022]
|
46
|
Angiotensin II suppresses adenosine monophosphate-activated protein kinase of podocytes via angiotensin II type 1 receptor and mitogen-activated protein kinase signaling. Clin Exp Nephrol 2012; 17:16-23. [PMID: 22714800 DOI: 10.1007/s10157-012-0649-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 05/22/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Adenosine monophosphate (AMP)-activated protein kinase (AMPK), as a sensor of cellular energy status, has been known to play an important role in the pathophysiology of diabetes and its complications. As AMPK is also expressed in podocytes, it is possible that podocyte AMPK would be an important contributing factor in the development of diabetic proteinuria. We investigated the roles of AMPK in the pathological changes of podocytes induced by angiotensin II (Ang II), a major injury inducer in diabetic proteinuria. METHODS Mouse podocytes were incubated in media containing various concentrations of Ang II and AMPK-modulating agents. The changes of AMPKα were analyzed by confocal imaging and Western blotting in response to Ang II. RESULTS Ang II changed the localization of AMPKα from peripheral cytoplasm into internal cytoplasm and peri- and intranuclear areas in podocytes. Ang II also reduced AMPKα (Thr172) phosphorylation in time- and dose-sensitive manners. In particular, 10(-7 )M Ang II reduced phospho-AMPKα significantly and continuously at 6, 24, and 48 h. AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1β-riboside, restored the suppressed AMPKα (Thr172) phosphorylation. Losartan, an Ang II type 1 receptor antagonist, also recovered the suppression and the mal-localization of AMPKα, which were induced by Ang II. PD98059, a mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor, also restored the AMPKα (Thr172) phosphorylation suppressed by Ang II. CONCLUSION We suggest that Ang II induces the relocation and suppression of podocyte AMPKα via Ang II type 1 receptor and MAPK signaling pathway, which would be an important mechanism in Ang II-induced podocyte injury.
Collapse
|
47
|
PPARγ as a therapeutic target in diabetic nephropathy and other renal diseases. Curr Opin Nephrol Hypertens 2012; 21:97-105. [PMID: 22143250 DOI: 10.1097/mnh.0b013e32834de526] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear transcription factor that regulates many important physiological processes including glucose and lipid metabolism, energy homeostasis, cell proliferation, inflammation, immunity and reproduction. The current review aims to summarize and discuss recent findings evaluating the protective effects of PPARγ against kidney diseases with a focus on diabetic nephropathy. We will also delineate the potential underlying mechanisms. RECENT FINDINGS PPARγ plays important roles in renal physiology and pathophysiology. Agonists of PPARγ exert protective effects against various kidney diseases including diabetic nephropathy, ischemic renal injury, IgA nephropathy, chemotherapy-associated kidney damage, polycystic kidney diseases and age-related kidney diseases via both systemic and renal actions. SUMMARY PPARγ agonists are effective in delaying and even preventing the progression of many renal diseases, especially diabetic nephropathy. PPARγ may represent a promising target for the treatment of renal diseases.
Collapse
|
48
|
Lv ZM, Liu Y, Zhang PJ, Xu J, Jia ZH, Wang R, Wan Q. The Role of AMPKαin High-Glucose-Induced Dysfunction of Cultured Rat Mesangial Cells. Ren Fail 2012; 34:616-21. [DOI: 10.3109/0886022x.2012.668491] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
49
|
Inoue T, Sugiyama H, Kitagawa M, Takiue K, Morinaga H, Ogawa A, Kikumoto Y, Kitamura S, Maeshima Y, Makino H. Suppression of adiponectin by aberrantly glycosylated IgA1 in glomerular mesangial cells in vitro and in vivo. PLoS One 2012; 7:e33965. [PMID: 22457806 PMCID: PMC3311555 DOI: 10.1371/journal.pone.0033965] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/20/2012] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of IgA nephropathy (IgAN) may be associated with the mesangial deposition of aberrantly glycosylated IgA1. To identify mediators affected by aberrantly glycosylated IgA1 in cultured human mesangial cells (HMCs), we generated enzymatically modified desialylated and degalactosylated (deSial/deGal) IgA1. The state of deglycosylated IgA1 was confirmed by lectin binding to Helix aspersa (HAA) and Sambucus nigra (SNA). In the cytokine array analysis, 52 proteins were upregulated and 34 were downregulated in HMCs after stimulation with deSial/deGal IgA1. Among them, the secretion of adiponectin was suppressed in HMCs after stimulation with deSial/deGal IgA1. HMCs expressed mRNAs for adiponectin and its type 1 receptor, but not the type 2 receptor. Moreover, we revealed a downregulation of adiponectin expression in the glomeruli of renal biopsy specimens from patients with IgAN compared to those with lupus nephritis. We also demonstrated that aberrantly glycosylated IgA1 was deposited in the mesangium of patients with IgAN by dual staining of HAA and IgA. Moreover, the urinary HAA/SNA ratio of lectin binding was significantly higher in IgAN compared to other kidney diseases. Since adiponectin has anti-inflammatory effects, including the inhibition of adhesion molecules and cytokines, these data suggest that the local suppression of this adipokine by aberrantly glycosylated IgA1 could be involved in the regulation of glomerular inflammation and sclerosis in IgAN.
Collapse
Affiliation(s)
- Tatsuyuki Inoue
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hitoshi Sugiyama
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Center for Chronic Kidney Disease and Peritoneal Dialysis, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masashi Kitagawa
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Keiichi Takiue
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morinaga
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ayu Ogawa
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yoko Kikumoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kitamura
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yohei Maeshima
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
50
|
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | - Daisuke Koya
- Division of Diabetes and Endocrinology, Kanazawa Medical University, Kahoku-Gun, Ishikawa, Japan
- Corresponding author: Daisuke Koya,
| |
Collapse
|