1
|
Chen Q, Xie L, Wang J, Su X, Ye X, Lin X. Resveratrol inhibits lipopolysaccharide‑induced MUC5AC expression and airway inflammation via MAPK and Nrf2 pathways in human bronchial epithelial cells and an acute inflammatory mouse model. Mol Med Rep 2025; 31:157. [PMID: 40211706 PMCID: PMC12004211 DOI: 10.3892/mmr.2025.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 02/06/2025] [Indexed: 04/16/2025] Open
Abstract
Pathological mucus hypersecretion is an important clinical hallmark of chronic airway inflammatory diseases and yet there is a lack of effective therapeutic medicine. Resveratrol, a dietary polyphenol, has been shown to possess anti‑aging, antioxidation, anti‑inflammation and tumor prevention effects. However, the effect and underlying mechanism of resveratrol in lipopolysaccharide (LPS) induced‑mucus hypersecretion remain to be elucidated. Among more than 20 mucin family members, mucin 5ac (MUC5AC) is a major glycoprotein in airway mucus. The present study investigated the therapeutic effects and mechanisms of resveratrol in LPS‑induced MUC5AC expression in human bronchial epithelial (NCI‑H292) cells and an acute inflammatory murine model. It found that resveratrol markedly attenuated LPS‑induced MUC5AC expression and reactive oxygen species production in NCI‑H292 cells. Moreover, resveratrol increased activation of nuclear factor erythroid‑2‑related factor 2 (Nrf2) and phosphorylation of mitogen‑activated protein kinase (MAPK). Notably, compared with negative control, knockdown of Nrf2 by small interfering RNA and specific inhibitors of ERK/p38 MAPK markedly abrogated the downregulative effect of resveratrol on LPS‑induced MUC5AC expression in NCI‑H292 cells. Additionally, in vivo effects on histopathology and gene expression were assessed in lung tissues collected after intratracheal instillation of LPS with or without resveratrol treatment. Western blotting of lung tissue samples confirmed that administration of resveratrol inhibited MUC5AC expression in LPS‑induced acute inflammatory mice, but increased Nrf2 expression along with phosphorylation of ERK and p38. Periodic acid‑Schiff's staining also showed that resveratrol suppressed mucin production. Compared with the LPS group, administration of resveratrol effectively decreased the numbers of inflammatory cells and neutrophils in bronchoalveolar lavage fluid, as well as markedly alleviating the infiltration of exacerbated inflammatory cells in lung tissue. In conclusion, resveratrol exerted protective effects against LPS‑induced MUC5AC overexpression, inflammation and oxidative stress by activating ERK/p38 MAPK and Nrf2 pathway. Furthermore, the results suggested that resveratrol might be a potential therapeutic agent to inhibit airway mucus hyperproduction.
Collapse
Affiliation(s)
- Qiaojuan Chen
- The Second Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350012, P.R. China
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Liutian Xie
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Graduate School, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Jianming Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
- Department of Intensive Care Unit, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Xiangjia Ye
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoping Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
- Pulmonary Medicine Center of Fujian Province, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
2
|
Zhang Q, Zhou L, Yuan L, Zhang R, Pan S, Wang X, Yi L, Yuan F, Guo X, Gu M, Wang Y, Jia X. scRNA-seq and scATAC-seq analyses highlight the role of TNF signaling pathway in chronic obstructive pulmonary disease model mice. PLoS One 2025; 20:e0322538. [PMID: 40343927 PMCID: PMC12063857 DOI: 10.1371/journal.pone.0322538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/24/2025] [Indexed: 05/11/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent and progressive form of respiratory disease in which patients exhibit persistent respiratory damage affecting the alveoli and/or airway due to exposure to toxic gases or particulate matter. C57BL/6 mice were exposed to cigarette smoke and lipopolysaccharide to establish a COPD model mice, followed by scATAC (Assay for Transposase Accessible Chromatin) sequencing and scRNA sequencing of lung tissue samples. The resultant data revealed consistent findings between scATAC-seq and scRNA-seq regarding cell types, differentially expressed genes, and signaling pathways in COPD model mice. Tumor necrosis factor (TNF) signaling pathway enrichment was evident in the scRNA-seq and scATAC-seq datasets, with similar trends in monocytes/macrophages, dendritic cells, and B cells. In COPD model mice, significant tumor necrosis factor receptor 1 (TNFR1) upregulation and high levels of activity related to cellular communication were observed, and significant increases in Il1b, Csf1, and Bcl3 site accessibility were evident in cells. These findings suggest that the TNF signaling pathway maybe associated with COPD.
Collapse
MESH Headings
- Animals
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Signal Transduction
- Mice
- Disease Models, Animal
- Mice, Inbred C57BL
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Male
- Lung/metabolism
- Lung/pathology
- Lipopolysaccharides
- RNA-Seq
- Sequence Analysis, RNA
- Single-Cell Gene Expression Analysis
Collapse
Affiliation(s)
- Qiang Zhang
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Li Zhou
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Beijing Easyresearch Technology Limited, Beijing, China
| | - Lindong Yuan
- Department of Respiratory and Critical Care Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Ruihua Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Xizi Wang
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Lili Yi
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xianchao Guo
- Harbin Inji Technology Co., Ltd., Harbin, Heilongjiang, China
- GenVista Technology Co., Ltd, Harbin, Heilongjiang, China
| | - Mingliang Gu
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, P.R.China
| |
Collapse
|
3
|
Zhang Y, Wang L, Zeng J, Shen W. Research advances in polyphenols from Chinese herbal medicine for the prevention and treatment of chronic obstructive pulmonary disease: a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03945-y. [PMID: 40035820 DOI: 10.1007/s00210-025-03945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is a global health problem due to its high death and morbidity worldwide, which is characterized by an incompletely reversible limitation in airflow that is not fully reversible. Unfortunately, Western medical treatments are unable to reverse the progressive decline in lung function. Importantly, polyphenolic compounds isolated from Chinese herbal medicine exhibited therapeutic/interventional effects on COPD in preclinical studies. This review systematically analyzed the pathogenesis of COPD, such as inflammation, oxidative stress, protease/antiprotease imbalance, aging, cell death, and dysbiosis of gut microbiota. Moreover, this review summarized the regulatory mechanisms of natural polyphenolic compounds for the treatment of COPD. Several studies have demonstrated that natural polyphenolic compounds have therapeutic effects on COPD by regulating various biological processes, such as anti-inflammatory, reduction of oxidative damage, anti-cell death, and inhibition of airway hyperglycemia. Mechanistically, this review found that the promising effects of natural polyphenolic compounds on COPD were mainly achieved through modulating the NF-κB and MAPK inflammatory pathways, the Nrf2 oxidative stress pathway, and the SIRT1/PGC-1α lung injury pathway. Furthermore, this review analyzed the efficacy and safety of natural polyphenolic compounds for the treatment of COPD in clinical trials, and discussed their challenges and future development directions. In conclusion, this review combined the latest literature to illustrate the various pathogenesis and interrelationships of COPD in the form of graphs, texts, and tables, and sorted out the functional role and mechanisms of natural polyphenols in treating COPD, with a view to providing new ideas and plans for the in-depth research on COPD and the systemic treatment of COPD with Chinese herbal medicine.
Collapse
Affiliation(s)
- Yang Zhang
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Lijuan Wang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Jinyi Zeng
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China
| | - Wen Shen
- Department of General Practice Medicine, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dianmian Avenue, Wuhua District, Kunming, 650101, China.
| |
Collapse
|
4
|
Liao W, Tran QTN, Peh HY, Chan CCMY, Fred Wong WS. Natural Products for the Management of Asthma and COPD. Handb Exp Pharmacol 2025; 287:175-205. [PMID: 38418669 DOI: 10.1007/164_2024_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Chronic airway inflammatory diseases like asthma, chronic obstructive pulmonary disease (COPD), and their associated exacerbations cause significant socioeconomic burden. There are still major obstacles to effective therapy for controlling severe asthma and COPD progression. Advances in understanding the pathogenesis of the two diseases at the cellular and molecular levels are essential for the development of novel therapies. In recent years, significant efforts have been made to identify natural products as potential drug leads for treatment of human diseases and to investigate their efficacy, safety, and underlying mechanisms of action. Many major active components from various natural products have been extracted, isolated, and evaluated for their pharmacological efficacy and safety. For the treatment of asthma and COPD, many promising natural products have been discovered and extensively investigated. In this chapter, we will review a range of natural compounds from different chemical classes, including terpenes, polyphenols, alkaloids, fatty acids, polyketides, and vitamin E, that have been demonstrated effective against asthma and/or COPD and their exacerbations in preclinical models and clinical trials. We will also elaborate in detail their underlying mechanisms of action unraveled by these studies and discuss new opportunities and potential challenges for these natural products in managing asthma and COPD.
Collapse
Affiliation(s)
- Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore
| | - Quy T N Tran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christabel Clare M Y Chan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, Singapore.
- Drug Discovery and Optimization Platform (DDOP), Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore.
| |
Collapse
|
5
|
Xu TT, Deng YY, Yu XY, Li M, Fu YY. Natural autophagy modulators in non-communicable diseases: from autophagy mechanisms to therapeutic potential. Acta Pharmacol Sin 2025; 46:8-32. [PMID: 39090393 PMCID: PMC11697321 DOI: 10.1038/s41401-024-01356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
Non-communicable diseases (NCDs) are defined as a kind of diseases closely related to bad behaviors and lifestyles, e.g., cardiovascular diseases, cancer, and diabetes. Driven by population growth and aging, NCDs have become the biggest disease burden in the world, and it is urgent to prevent and control these chronic diseases. Autophagy is an evolutionarily conserved process that degrade cellular senescent or malfunctioning organelles in lysosomes. Mounting evidence has demonstrated a major role of autophagy in the pathogenesis of cardiovascular diseases, cancer, and other major human diseases, suggesting that autophagy could be a candidate therapeutic target for NCDs. Natural products/phytochemicals are important resources for drugs against a wide variety of diseases. Recently, compounds from natural plants, such as resveratrol, curcumin, and ursolic acid, have been recognized as promising autophagy modulators. In this review, we address recent advances and the current status of the development of natural autophagy modulators in NCDs and provide an update of the latest in vitro and in vivo experiments that pave the way to clinical studies. Specifically, we focus on the relationship between natural autophagy modulators and NCDs, with an intent to identify natural autophagy modulators with therapeutic potential.
Collapse
Affiliation(s)
- Ting-Ting Xu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Yi Deng
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuan-Yuan Fu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
6
|
Guo B, Shi X, Jiang Q, Pan Y, Yang Y, Liu Y, Chen S, Zhu W, Ren L, Liang R, Chen X, Xu H, Wei L, Lin Y, Wang J, Qiu C, Zhou H, Rao L, Wang L, Chen R, Chen S. Targeting Immunoproteasome in Polarized Macrophages Ameliorates Experimental Emphysema Via Activating NRF1/2-P62 Axis and Suppressing IRF4 Transcription. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405318. [PMID: 39356034 PMCID: PMC11600198 DOI: 10.1002/advs.202405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/22/2024] [Indexed: 10/03/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) stands as the prevailing chronic airway ailment, characterized by chronic bronchitis and emphysema. Current medications fall short in treatment of these diseases, underscoring the urgent need for effective therapy. Prior research indicated immunoproteasome inhibition alleviated various inflammatory diseases by modulating immune cell functions. However, its therapeutic potential in COPD remains largely unexplored. Here, an elevated expression of immunoproteasome subunits LMP2 and LMP7 in the macrophages isolated from mouse with LPS/Elastase-induced emphysema and polarized macrophages in vitro is observed. Subsequently, intranasal administration of the immunoproteasome-specific inhibitor ONX-0914 significantly mitigated COPD-associated airway inflammation and improved lung function in mice by suppressing macrophage polarization. Additionally, ONX-0914 capsulated in PLGA nanoparticles exhibited more pronounced therapeutic effect on COPD than naked ONX-0914 by targeting immunoproteasome in polarized macrophages. Mechanistically, ONX-0914 activated autophagy and endoplasmic reticulum (ER) stress are not attribute to the ONX-0914 mediated suppression of macrophage polarization. Intriguingly, ONX-0914 inhibited M1 polarization through the nuclear factor erythroid 2-related factor-1 (NRF1) and NRF2-P62 axis, while the suppression of M2 polarization is regulated by inhibiting the transcription of interferon regulatory factor 4 (IRF4). In summary, the findings suggest that targeting immunoproteasome in macrophages holds promise as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Bingxin Guo
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Xing Shi
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Qiong Jiang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yuanwei Pan
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yuqiong Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory DiseaseFirst Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510150China
| | - Yuanyuan Liu
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Shuyu Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Wenjiao Zhu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laibin Ren
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Ruifang Liang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Post‐doctoral Scientific Research Station of Basic Medicine, The Second Clinical Medical CollegeJinan UniversityGuangzhou510632China
| | - Xue Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haizhao Xu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Laiyou Wei
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Yongjian Lin
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Jinyong Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Chen Qiu
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Haibo Zhou
- College of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Lang Rao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Lingwei Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Rongchang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| | - Shanze Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory DiseasesThe First Affiliated Hospital (Shenzhen People's Hospital) and School of Medicine, Southern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
7
|
Qin T, Song X, Shao Q, Zhang J, Sui H. Resveratrol ameliorates pathological fibrosis of the myodural bridge by regulating the SIRT3/TGF-β1/Smad pathway. Heliyon 2024; 10:e34974. [PMID: 39145011 PMCID: PMC11320322 DOI: 10.1016/j.heliyon.2024.e34974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Purpose Pathological fibrosis of the myodural bridge (MDB) affects cerebrospinal fluid circulation. However, no optimal drug treatments are available. We aimed to explore the antifibrotic effect of resveratrol on bleomycin-induced pathological fibrosis of the MDB and its underlying mechanisms. Methods Genes common to the potential targets of resveratrol were determined using network pharmacology, genes related to muscle and tendon fibrosis were acquired from the GeneCards database, and genes related to MDB development were determined using Venny. These genes were considered potential resveratrol treatment targets in bleomycin-induced pathological fibrosis of the MDB and were annotated using bioinformatics methods. We validated the intersected genes using quantitative real-time polymerase chain reaction (qRT-PCR) and performed molecular docking analysis to calculate the binding activity between the target gene and resveratrol. Hematoxylin and eosin and Masson staining were used to detect the morphological changes in bleomycin-induced fibrosis of the MDB following resveratrol treatment. We used qRT-PCR and immunohistochemistry to evaluate the expression of the sirtuin 3 (SIRT3)/transforming growth factor-β1 (TGF-β1)/Smad pathway and the profibrotic markers α-smooth muscle actin (α-SMA) and Collagen Ⅰ. Results Through network pharmacology and bioinformatics analyses, we identified four core intersected genes, and SIRT3 expression was validated using qRT-PCR. Molecular docking analysis revealed that resveratrol had good binding affinity for SIRT3. Resveratrol ameliorated morphological abnormalities in bleomycin-induced pathological fibrosis of the MDB by inhibiting fibroblast activation and excessive collagen fiber deposition. Resveratrol exerted its antifibrotic effect by regulating the SIRT3/TGF-β1/Smad pathway. Conclusion Resveratrol has an antifibrotic effect in bleomycin-induced pathological fibrosis of the MDB in vivo and may be considered a novel therapeutic strategy.
Collapse
Affiliation(s)
- Tao Qin
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Xue Song
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Qing Shao
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Graduate School, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Jianfei Zhang
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
| | - Hongjin Sui
- Department of Anatomy, Dalian Medical University, 9 West Section, Lushun South Road, Dalian, Liaoning Province, 116044, China
- Dalian Hoffen Preservation Technique Institution, No.36, Guangyuan Street, Lushunkou Economic Development Zone, Dalian, 116052, China
| |
Collapse
|
8
|
Liu N, Fan X, Shao Y, Chen S, Wang T, Yao T, Chen X. Resveratrol attenuates inflammation and fibrosis in rheumatoid arthritis-associated interstitial lung disease via the AKT/TMEM175 pathway. J Transl Med 2024; 22:457. [PMID: 38745204 PMCID: PMC11095009 DOI: 10.1186/s12967-024-05228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-β1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1β in combination with TGF-β1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-β1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xuefei Fan
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yubao Shao
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Suhuan Chen
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Taorong Wang
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Yao
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, No. 390 Huaihe Road, Hefei, 230061, Anhui, China.
| | - Xiaoyu Chen
- Department of Histology and Embryology, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
9
|
Duan R, Huang K, Yu T, Chang C, Chu X, Huang Y, Zheng Z, Ma L, Li B, Yang T. Interleukin-2/anti-interleukin-2 complex attenuates inflammation in a mouse COPD model by expanding CD4 + CD25 + Foxp3 + regulatory T cells. Int Immunopharmacol 2024; 131:111849. [PMID: 38503017 DOI: 10.1016/j.intimp.2024.111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND PURPOSE Chronic, nonspecific inflammation of the alveoli and airways is an important pathological feature of chronic obstructive pulmonary disease (COPD), while sustained inflammatory reactions can cause alveolar damage. Regulatory T cells (Tregs) inhibit inflammation, whereas the interleukin-2/anti-interleukin-2 complex (IL-2C) increases the number of Tregs; however, whether the IL-2C has a therapeutic role in COPD remains unknown. Therefore, this study investigated whether IL-2C alleviates lung inflammation in COPD by increasing the number of Tregs. EXPERIMENTAL APPROACH A mouse COPD model was created by exposing mice to lipopolysaccharides (LPS) and cigarette smoke (CS), and the effects of IL-2C treatment on COPD were evaluated. The number of Tregs in the spleen and lung, pulmonary pathological changes, and inflammatory damage were examined through flow cytometry, histopathology, and immunofluorescence, respectively. KEY RESULTS IL-2C increased the number of Treg cells in the spleen and lungs after exposure to CS and LPS, reduced the number of T helper 17 (Th17) cells in lung tissue, and improved the Th17/Treg balance. IL-2C decreased the number of inflammatory cells and reduced the levels of pro-inflammatory cytokines IL-6, TNF-α, IL-1β, CCL5, KC, and MCP-1 in bronchoalveolar lavage fluid and serum. IL-2C significantly reduced the pathological scores for lung inflammation, as well as decreased airway mucus secretion and infiltration of neutrophils and macrophages in the lungs. The depletion of Tregs using anti-CD25 antibodies eliminated the beneficial effects of IL-2C. CONCLUSIONS AND IMPLICATIONS IL-2C is a potential therapeutic agent for alleviating excessive inflammation in the lungs of patients with COPD.
Collapse
Affiliation(s)
- Ruirui Duan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Tao Yu
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenli Chang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Chu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China
| | - Yuhang Huang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhoude Zheng
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Linxi Ma
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Baicun Li
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China; National Center for Respiratory Medicine, Beijing, China; State Key Laboratory of Respiratory Health and Multimorbidity, China.
| |
Collapse
|
10
|
Jin F, Fan P, Wu Y, Yang Q, Li J, Liu H. Efficacy and Mechanisms of Natural Products as Therapeutic Interventions for Chronic Respiratory Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:57-88. [PMID: 38353634 DOI: 10.1142/s0192415x24500034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chronic respiratory diseases are long-term conditions affecting the airways and other lung components that are characterized by a high prevalence, disability rate, and mortality rate. Further optimization of their treatment is required. Natural products, primarily extracted from organisms, possess specific molecular and structural formulas as well as distinct chemical and physical properties. These characteristics grant them the advantages of safety, gentleness, accessibility, and minimal side effects. The numerous advances in the use of natural products for treating chronic respiratory diseases have provided a steady source of motivation for new drug research and development. In this paper, we introduced the pathogenesis of chronic respiratory diseases and natural products. Furthermore, we classified natural products according to their mechanism for treating chronic respiratory diseases and describe the ways in which these products can alleviate the pathological symptoms. Simultaneously, we elaborate on the signal transduction pathways and biological impacts of natural products' targeting. Additionally, we present future prospects for natural products, considering their combination treatment approaches and administration methods. The significance of this review extends to both the research on preventing and treating chronic respiratory diseases, as well as the advancement of novel drug development in this field.
Collapse
Affiliation(s)
- Fanli Jin
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Pengbei Fan
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Yuanyuan Wu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology, Xi'an Jiaotong University Xi'an, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC) Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| | - Han Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, P. R. China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases, Co-Constructed by Henan Province and Education Ministry of China Zhengzhou, P. R. China
| |
Collapse
|
11
|
Yao J, Cheng M, Yang F. Calycosin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Mice through the miR-375-3p/ROCK2 Axis. J INVEST SURG 2023; 36:2211166. [PMID: 37400250 DOI: 10.1080/08941939.2023.2211166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/15/2023] [Accepted: 04/28/2023] [Indexed: 07/05/2023]
Abstract
Objective: Septic patients are especially vulnerable to acute lung injury (ALI). Calycosin (CAL) has various promising pharmacological activities. This paper aims to expound on the role of CAL in mice with sepsis-induced ALI and the associated mechanisms.Methods: Mouse models of sepsis-induced ALI were established using lipopolysaccharide (LPS). Pulmonary histopathological changes were observed by HE staining. Cell apoptosis was assessed by TUNEL staining. Pulmonary edema was evaluated by measuring wet/dry weight. Bronchoalveolar lavage fluid (BALF) was collected to count inflammatory cells. In vitro LPS models were established using MLE-12 cells. miR-375-3p expression was determined by RT-qPCR. Cell viability and apoptosis were assessed by MTT assay and flow cytometry. Levels of inflammatory cytokines were determined by ELISA. The target relationship between miR-375-3p and ROCK2 was analyzed by the dual-luciferase assay. ROCK2 protein level was determined by Western blot.Results: miR-375-3p was weakly-expressed in mice with sepsis-induced ALI, and CAL treatment elevated miR-375-3p expression. CAL treatment mitigated pulmonary tissue damage and edema, decreased apoptosis and inflammatory cells, downregulated levels of pro-inflammatory cytokines, and upregulated levels of anti-inflammatory cytokines in mice with sepsis-induced ALI. CAL treatment increased MLE-12 cell viability and decreased apoptosis and inflammation in MLE-12 cells. Inhibition of miR-375-3p partially abrogated CAL-mediated protective action on MLE-12 cells. miR-375-3p attenuated LPS-induced MLE-12 cell injury by targeting ROCK2.Conclusion: CAL upregulates miR-375-3p to target ROCK2, thus protecting against sepsis-induced ALI in mice.
Collapse
Affiliation(s)
- Jie Yao
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| | - Mingfeng Cheng
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| | - Fan Yang
- Department of Intensive Care Unit, The People's Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Niu L, Lu YJ, Zu XW, Yang W, Shen FK, Xu YY, Jiang M, Xie Y, Li SY, Gao J, Bai G. Magnolol alleviates pulmonary fibrosis inchronic obstructive pulmonary disease by targeting transient receptor potential vanilloid 4-ankyrin repeat domain. Phytother Res 2023; 37:4282-4297. [PMID: 37282760 DOI: 10.1002/ptr.7907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) plays a role in regulating pulmonary fibrosis (PF). While several TRPV4 antagonists including magnolol (MAG), have been discovered, the mechanism of action is not fully understood. This study aimed to investigate the effect of MAG on alleviating fibrosis in chronic obstructive pulmonary disease (COPD) based on TRPV4, and to further analyze its mechanism of action on TRPV4. COPD was induced using cigarette smoke and LPS. The therapeutic effect of MAG on COPD-induced fibrosis was evaluated. TRPV4 was identified as the main target protein of MAG using target protein capture with MAG probe and drug affinity response target stability assay. The binding sites of MAG at TRPV4 were analyzed using molecular docking and small molecule interaction with TRPV4-ankyrin repeat domain (ARD). The effects of MAG on TRPV4 membrane distribution and channel activity were analyzed by co-immunoprecipitation, fluorescence co-localization, and living cell assay of calcium levels. By targeting TRPV4-ARD, MAG disrupted the binding between phosphatidylinositol 3 kinase γ and TRPV4, leading to hampered membrane distribution on fibroblasts. Additionally, MAG competitively impaired ATP binding to TRPV4-ARD, inhibiting TRPV4 channel opening activity. MAG effectively blocked the fibrotic process caused by mechanical or inflammatory signals, thus alleviating PF in COPD. Targeting TRPV4-ARD presents a novel treatment strategy for PF in COPD.
Collapse
Affiliation(s)
- Lin Niu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu-Jie Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xing-Wang Zu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Fu-Kui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yan-Yan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yang Xie
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province and Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Su-Yun Li
- The Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan Province and Education Ministry of China, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Nisar A, Jagtap S, Vyavahare S, Deshpande M, Harsulkar A, Ranjekar P, Prakash O. Phytochemicals in the treatment of inflammation-associated diseases: the journey from preclinical trials to clinical practice. Front Pharmacol 2023; 14:1177050. [PMID: 37229273 PMCID: PMC10203425 DOI: 10.3389/fphar.2023.1177050] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Advances in biomedical research have demonstrated that inflammation and its related diseases are the greatest threat to public health. Inflammatory action is the pathological response of the body towards the external stimuli such as infections, environmental factors, and autoimmune conditions to reduce tissue damage and improve patient comfort. However, when detrimental signal-transduction pathways are activated and inflammatory mediators are released over an extended period of time, the inflammatory process continues and a mild but persistent pro-inflammatory state may develop. Numerous degenerative disorders and chronic health issues including arthritis, diabetes, obesity, cancer, and cardiovascular diseases, among others, are associated with the emergence of a low-grade inflammatory state. Though, anti-inflammatory steroidal, as well as non-steroidal drugs, are extensively used against different inflammatory conditions, they show undesirable side effects upon long-term exposure, at times, leading to life-threatening consequences. Thus, drugs targeting chronic inflammation need to be developed to achieve better therapeutic management without or with a fewer side effects. Plants have been well known for their medicinal use for thousands of years due to their pharmacologically active phytochemicals belonging to diverse chemical classes with a number of these demonstrating potent anti-inflammatory activity. Some typical examples include colchicine (alkaloid), escin (triterpenoid saponin), capsaicin (methoxy phenol), bicyclol (lignan), borneol (monoterpene), and quercetin (flavonoid). These phytochemicals often act via regulating molecular mechanisms that synergize the anti-inflammatory pathways such as increased production of anti-inflammatory cytokines or interfere with the inflammatory pathways such as to reduce the production of pro-inflammatory cytokines and other modulators to improve the underlying pathological condition. This review describes the anti-inflammatory properties of a number of biologically active compounds derived from medicinal plants, and their mechanisms of pharmacological intervention to alleviate inflammation-associated diseases. The emphasis is given to information on anti-inflammatory phytochemicals that have been evaluated at the preclinical and clinical levels. Recent trends and gaps in the development of phytochemical-based anti-inflammatory drugs have also been included.
Collapse
Affiliation(s)
- Akib Nisar
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Jagtap
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Suresh Vyavahare
- Shatayu Ayurved and Research Centre, Solapur, Maharashtra, India
| | - Manasi Deshpande
- Department of Dravyagun Vigyan, College of Ayurved, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | - Abhay Harsulkar
- Herbal Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
- Pharmaceutical Biotechnology, Poona College of Pharmacy, Bharati Vidyapeeth Deemed to be University, Pune, Maharashtra, India
| | | | - Om Prakash
- Department of Microbiology, Immunology and Parasitology, University Health Sciences Center, New Orleans, LA, United States
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
14
|
Wei L, Hongping H, Chufang L, Cuomu M, Jintao L, Kaiyin C, Lvyi C, Weiwu C, Zuguang Y, Nanshan Z. Effects of Shiwei Longdanhua formula on LPS induced airway mucus hypersecretion, cough hypersensitivity, oxidative stress and pulmonary inflammation. Biomed Pharmacother 2023; 163:114793. [PMID: 37121151 DOI: 10.1016/j.biopha.2023.114793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Shiwei Longdanhua Granule (SWLDH) is a classic Tibetan medicine (TM) ranking in the top 20 Chinese patent medicines in prescription rate to treat respiratory diseases like pneumonia, acute and chronic tracheobronchitis, acute exacerbation of COPD and bronchial asthma in solution of inflammation, cough and phlegm obstruction in clinical practice. However, its systematic pharmacological mechanisms have not been elucidated yet. Here, we studied the therapeutic efficacy of SWLDH in treatment of acute respiratory diseases in BALB/c mice by comprehensive analysis of airway inflammation, oxidative stress, mucus hypersecretion, cough hypersensitivities and indicators associated with the development of chronic diseases. Our results show that SWLDH might exhibit its inhibitory effects on pulmonary inflammation by interference with arachidonic acid (AA) metabolism pathways. Oxidative stress that highly related to the degree of tissue injury could be alleviated by enhancing the reductive activities of glutathione redox system, thioredoxin system and the catalytic activities of catalase and superoxide dismutase (SOD) after SWLDH treatment. In addition, SWLDH could significantly abrogate the mucus hypersecretion induced bronchiole obstruction by inactivate the globlet cells and decrease the secretion of gel-forming mucins (MUC5AC and MUC5B) under pathological condition, demonstrating its mucoactive potency. SWLDH also showed reversed effects on the release of neuropeptides that are responsible for airway sensory hypersensitivity. Simultaneously observed inhibition of calcium influx, reduction in in vivo biosynthesis of acetylcholine and the recovery of the content of cyclic adenosine monophosphate (cAMP) might collaboratively contribute to cause airway smooth muscle cells (ASMCs) relexation. These findings indicated that SWLDH might exhibited antitussive potency via suppression of the urge to cough and ASMCs contraction. Moreover, SWLDH might affect airway remodeling. We found SWLDH could retard the elevation of TGF-β1 and α-SMA, which are important indicators for hyperplasia and contraction during the progression of the chronic airway inflammatory diseases like COPD and asthma.
Collapse
Affiliation(s)
- Liu Wei
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hou Hongping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Mingji Cuomu
- The University of Tibetan Medicine, Lhasa, China
| | - Li Jintao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Cai Kaiyin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Chen Lvyi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Weiwu
- Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Ye Zuguang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhong Nanshan
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Song Y, Fu W, Zhang Y, Huang D, Wu J, Tong S, Zhong M, Cao H, Wang B. Azithromycin ameliorated cigarette smoke-induced airway epithelial barrier dysfunction by activating Nrf2/GCL/GSH signaling pathway. Respir Res 2023; 24:69. [PMID: 36879222 PMCID: PMC9990325 DOI: 10.1186/s12931-023-02375-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Airway epithelium is the first barrier against environmental insults, and epithelial barrier dysfunction caused by cigarette smoke (CS) is particularly relevant to chronic obstructive pulmonary disease (COPD) progression. Our study was to determine whether Azithromycin (AZI) ameliorates CS-induced airway epithelial barrier dysfunction and the underlying mechanisms. METHODS Primary bronchial epithelial cells (PBECs), human bronchial epithelial cells (HBECs), Sprague Dawley rats and nuclear factor erythroid 2-related factor 2 (Nrf2)-/- mice were pretreated with AZI and subsequently exposed to CS. Transepithelial electronic resistance (TEER), junction proteins as well as pro-inflammatory cytokines and apoptosis markers were examined to assess epithelial barrier dysfunction. Metabolomics study was applied to explore the underlying mechanism of AZI. RESULTS CS-induced TEER decline and intercellular junction destruction, accompanied with inflammatory response and cell apoptosis in PBECs were restored by AZI dose-dependently, which were also observed in CS-exposed rats. Mechanistically, GSH metabolism pathway was identified as the top differentially impacted pathway and AZI treatment upregulated the activities of glutamate cysteine ligase (GCL) and the contents of metabolites in GSH metabolic pathway. Furthermore, AZI apparently reversed CS-induced Nrf2 suppression, and similar effects on airway epithelial barrier dysfunction were also found for Nrf2 agonist tert-butylhydroquinone and vitamin C. Finally, deletion of Nrf2 in both HBECs and C57BL/6N mice aggravated CS-induced GSH metabolism imbalance to disrupt airway epithelial barrier and partially deprived the effects of AZI. CONCLUSION These findings suggest that the clinical benefits of AZI for COPD management are related with the protection of CS-induced airway epithelial barrier dysfunction via activating Nrf2/GCL/GSH pathway, providing potential therapeutic strategies for COPD.
Collapse
Affiliation(s)
- Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenhuan Fu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Youzhi Zhang
- Department of Respiration, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Doudou Huang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shuangmei Tong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Huifang Cao
- Department of Respiratory and Critical Medicine, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'an Branch), Shanghai, 200040, China.
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
16
|
Esfahani M, Rahbar AH, Asl SS, Bashirian S, Mir Moeini ES, Mehri F. The Effects of Resveratrol on Silica-Induced Lung Oxidative Stress and Inflammation in Rat. Saf Health Work 2023; 14:118-123. [PMID: 36941929 PMCID: PMC10024237 DOI: 10.1016/j.shaw.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Chronic exposure to silica is related with the provocation of an inflammatory response and oxidative stress mechanism. Vitamin D has multiple benefits in biological activities particularly respiratory system disease. METHOD In this research, 20 male Wistar rats were randomly allocated into four groups (5 rats /group) as follow: Group1 received saline as (negative control) group. The group 2 received a single IT instillation of silica (positive control) group; the group 3 was co-administrated with single IT silica and Vitamin D (20 mg/kg/day) daily for a period of 90 days. The rats of group 4 received Vitamin D daily for a period of 90 days. RESULTS Silica significantly increased serum and lung total Oxidant Status (TOS). Meanwhile, silica reduced serum and lung total antioxidant capacity (TAC), GSH and tumor necrosis factor-α (TNF-a). Vitamin D treatment meaningfully reversed oxidative stress, antioxidants status and inflammatory response. Also, Vitamin D improved histopathological changes caused by silica. CONCLUSION These findings indicate that Vitamin D exerts protective effects against silica-induced lung injury. It seems that Vitamin D has potential use as a therapeutic object for silica induced lung injure.
Collapse
Affiliation(s)
- Maryam Esfahani
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Hossein Rahbar
- Ayatollah Bahari Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomical Sciences, School of Medicine Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saed Bashirian
- Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Effat Sadat Mir Moeini
- Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Center of Excellence for Occupational Health, Research Center for Health Sciences, School of Public Health, Hamadan University of Medical Sciences. Hamadan, Iran
| |
Collapse
|
17
|
Baek EB, Kim YJ, Rho JH, Hong EJ, Lee MY, Kwun HJ. Anti-inflammatory effect of Gyeji-tang in a chronic obstructive pulmonary disease mouse model induced by cigarette smoke and lipopolysaccharide. PHARMACEUTICAL BIOLOGY 2022; 60:2040-2048. [PMID: 36267048 PMCID: PMC9590434 DOI: 10.1080/13880209.2022.2131841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease associated with respiratory symptoms and narrowing of airways. Gyeji-tang (GJT) is a traditional Asian medicine that has been used to relieve early-stage cold symptoms, headache, and chills. OBJECTIVE We examined the effect and potential molecular action mechanism of GJT in a mouse model of COPD induced by cigarette smoke (CS) plus lipopolysaccharide (LPS). MATERIALS AND METHODS COPD was induced in C57BL/6J mice via daily exposure to CS for 1 h for 8 weeks and intranasal administration of LPS on weeks 1, 3, 5, and 7. GJT (100 or 200 mg/kg) or roflumilast (5 mg/kg) was administrated daily for the final 4 weeks of COPD induction. RESULTS Administration of GJT significantly suppressed the CS/LPS-induced increases in: the numbers of total cells and macrophages in bronchoalveolar lavage fluid; the expression levels of tumour necrosis factor-α, interleukin (IL)-6, IL-1β, and IL-8; the activities (phosphorylation) of nuclear factor kappa B and signal transducer and activator of transcription 3; and the expression levels of the structural remodelling markers, transforming growth factor beta, matrix metallopeptidase (MMP)-7, and MMP-9. DISCUSSION AND CONCLUSIONS These results demonstrate that GJT prevents the lung inflammation and airway remodelling induced by CS plus LPS exposure in mice, suggesting that GJT may have therapeutic potential for the treatment of COPD.
Collapse
Affiliation(s)
- Eun Bok Baek
- Department of Veterinary Pathology, Collage of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Yu Jin Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Jin-Hyung Rho
- Department of Veterinary Pathology, Collage of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Eun-Ju Hong
- Department of Veterinary Pathology, Collage of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Mee-Young Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, Collage of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
18
|
Zhai K, Wang W, Zheng M, Khan GJ, Wang Q, Chang J, Dong Z, Zhang X, Duan H, Gong Z, Cao H. Protective effects of
Isodon Suzhouensis
extract and glaucocalyxin A on chronic obstructive pulmonary disease through SOCS3–JAKs/STATs pathway. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kefeng Zhai
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 China
| | - Wei Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Mengqing Zheng
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy University of Central Punjab Lahore 54000 Pakistan
| | - Qunbo Wang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Jingwen Chang
- Faculty of Pharmacy Bengbu Medical College Bengbu 233030 China
| | - Zeng Dong
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Xingtao Zhang
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
| | - Hong Duan
- Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province School of Biological and Food Engineering Suzhou University Suzhou 234000 China
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) Guizhou Medical University Guiyang 550004 China
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo ‐ Ourense Campus Ourense E‐32004 Spain
| |
Collapse
|
19
|
Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J, Weng CF. Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev 2022; 31:31/164/220028. [PMID: 35705209 PMCID: PMC9648508 DOI: 10.1183/16000617.0028-2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
COPD is predicted to become the third leading cause of morbidity and mortality worldwide by 2030. Cigarette smoking (active or passive) is one of its chief causes, with about 20% of cigarette smokers developing COPD from cigarette smoke (CS)-induced irreversible damage and sustained inflammation of the airway epithelium. Inflammasome activation leads to the cleavage of pro-interleukin (IL)-1β and pro-IL-18, along with the release of pro-inflammatory cytokines via gasdermin D N-terminal fragment membrane pores, which further triggers acute phase pro-inflammatory responses and concurrent pyroptosis. There is currently intense interest in the role of nucleotide-binding oligomerisation domain-like receptor family, pyrin domain containing protein-3 inflammasomes in chronic inflammatory lung diseases such as COPD and their potential for therapeutic targeting. Phytochemicals including polyphenols and flavonoids have phyto-medicinal benefits in CS-COPD. Here, we review published articles from the last decade regarding the known associations between inflammasome-mediated responses and ameliorations in pre-clinical manifestations of CS-COPD via polyphenol and flavonoid treatment, with a focus on the underlying mechanistic insights. This article will potentially assist the development of drugs for the prevention and therapy of COPD, particularly in cigarette smokers. This review compiles current investigations into the role of polyphenols/flavonoids in the alleviation of cigarette smoke-induced inflammasome; notably it provides a promising hit for rectifying the treatment of COPD.https://bit.ly/36OcUO9
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China.,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ning Kang
- Dept of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Yanping Yu
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Yan Mi
- Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jialin Guo
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Jingyi Wu
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| | - Ching-Feng Weng
- Anatomy and Functional Physiology Section, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China .,Institute of Respiratory Disease, Dept of Basic Medical Science, Xiamen Medical College, Xiamen, Fujian, China
| |
Collapse
|
20
|
Wang L, Zhu T, Feng D, Li R, Zhang C. Polyphenols from Chinese Herbal Medicine: Molecular Mechanisms and Therapeutic Targets in Pulmonary Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1063-1094. [PMID: 35475972 DOI: 10.1142/s0192415x22500434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pulmonary fibrosis (PF) is a highly confounding and fatal pathological process with finite treatment options. Multiple factors such as oxidative and immune/inflammation involve key pathological processes in chronic lung disease, and their intimate interactions mediate chronic lung damage, denudation of the alveolar epithelium, hyperproliferation of type II alveolar epithelial cells (AECIIs), proliferation and differentiation of fibroblasts, and the permeability of microvessels. We reviewed the classic mechanism of PF and highlighted a few emerging mechanisms for studying complex networks in lung disease pathology. Polyphenols, as a multi-target drug, has excellent potential in the treatment of pulmonary fibrosis. We then reviewed recent advances in discovering phenolic compounds from fruits, tea, and medical herbs with the bioactivities of simultaneously regulating multiple factors (e.g., oxidative stress, inflammation, autophagy, apoptosis, pyroptosis) for minimizing pulmonary fibrosis injury. These compounds include resveratrol, curcumin, salvianolic acid B, epigallocatechin-3-gallate, gallic acid, corilagin. Each phenolic compound can exert its anti-PF effect through various mechanisms, and the signaling pathways involved in different phenolic compounds are not the same. This review summarized the available evidence on phenolic compounds' effectiveness in pulmonary diseases and explored the molecular mechanisms and therapeutic targets of phenolic compounds from Chinese herbal medicine with the properties of inhibition of ongoing fibrogenesis and resolution of existing fibrosis.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, P. R. China
| | - Deqin Feng
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Renshi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chaofeng Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Sino-Jan Joint Lab of Natural Health Products Research, School of Traditional Chinese Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
21
|
Kim MO, Lee JW, Lee JK, Song YN, Oh ES, Ro H, Yoon D, Jeong YH, Park JY, Hong ST, Ryu HW, Lee SU, Lee DY. Black Ginseng Extract Suppresses Airway Inflammation Induced by Cigarette Smoke and Lipopolysaccharides In Vivo. Antioxidants (Basel) 2022; 11:antiox11040679. [PMID: 35453364 PMCID: PMC9025275 DOI: 10.3390/antiox11040679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor that can induce airway enlargement, airway obstruction, and airway mucus hypersecretion. Although studies have shown that Korean black ginseng extract (BGE) has potent anti-inflammatory and antioxidant activities, the CS-induced inflammatory responses and molecular mechanisms are yet to be examined. The aim of this study was to examine the effect of BGE on the airway inflammatory response and its molecular mechanisms, using CS/lipopolysaccharides (LPS)-exposed animals and PMA-stimulated human airway epithelial NCI-H292 cells. The results show that BGE inhibited the recruitment of immune cells and the release of inflammatory mediators, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, elastase, and reactive oxygen species (ROS) in the airways of CS/LPS-exposed animals. BGE inhibited mucus secretion and the expression of Mucin 5AC (MUC5AC). Furthermore, BGE exhibited an anti-inflammatory effect by downregulating a signaling pathway mediated by transforming growth factor-β-activated kinase (TAK) 1, an important protein that accelerates inflammation by cigarette smoke (CS). Overall, the findings show that BGE inhibits lung inflammation and mucus secretion by decreasing the activation of TAK1 both in human epithelial cells and in CS/LPS-exposed animals, and could be a potential adjuvant in the treatment and prevention of airway inflammatory diseases caused by airway irritants such as CS.
Collapse
Affiliation(s)
- Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
| | - Jae Kyoung Lee
- Rpbio Research Institute, Rpbio Co., Ltd., Suwon 16229, Korea;
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hyunju Ro
- Departments of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea;
| | - Yun-Hwa Jeong
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Ji-Yoon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Sung-Tae Hong
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Korea; (M.-O.K.); (J.-W.L.); (Y.N.S.); (E.S.O.); (Y.-H.J.); (J.-Y.P.)
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Korea;
- Correspondence: (H.W.R.); (S.U.L.); (D.Y.L.); Tel.: +82-43-240-6117 (H.W.R.); +82-43-240-6106 (S.U.L.); +82-43-871-5781 (D.Y.L.)
| |
Collapse
|
22
|
Guifu Dihuang Pills Ameliorated Mucus Hypersecretion by Suppressing Muc5ac Expression and Inactivating the ERK-SP1 Pathway in Lipopolysaccharide/Cigarette Smoke-Induced Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9539218. [PMID: 34777538 PMCID: PMC8580658 DOI: 10.1155/2021/9539218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Mucus hypersecretion is a hallmark of chronic obstructive pulmonary disease (COPD) and is associated with increasing sputum production and declining pulmonary function. Therefore, reducing mucus secretion can be a new therapeutic opportunity for preventing COPD. The Guifu Dihuang pill (GFDHP) is a classical Chinese medicine and has been used as an immunoregulator for treatment of kidney yang deficiency syndrome, including hypothyroidism, adrenocortical hypofunction, chronic bronchitis, and COPD, for more than 2000 years. However, the protective effects and mechanisms of GFDHP against mucus hypersecretion in COPD remain obscure. The aim of the present study was to explore the inhibitory effects of GFDHP on lipopolysaccharide/cigarette smoke- (LPS/CS-) induced Mucin5ac (Muc5ac) overproduction and airway goblet cell hyperplasia in mice. The mice were randomly assigned into 6 groups: control, model, GFDHP-L, GFDHP-M, GFDHP-H, and dexamethasone. The mice were given LPS twice through intranasal inhalation and then exposed to CS daily for 6 weeks. Three doses of GFDHP were orally administered daily during the last 3 weeks of the experiment. Pulmonary function was examined with an EMKA pulmonary system, and pulmonary hyperpermeability and lung damage were evaluated with an in vivo imaging system. Inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) were detected with a cell count analyzer and though ELISA analysis, respectively. Lung pathological changes and airway goblet cell hyperplasia were analyzed with hematoxylin and eosin and Alcian blue periodic acid Schiff staining. The protein expression levels of Muc5ac and extracellular signal-regulated kinase (ERK)-specificity protein1 (SP1) signaling pathway were measured with Western blot and immunohistochemistry. The results demonstrated that GFDHP improved pulmonary function and suppressed mouse pulmonary hyperpermeability and edema. GFDHP suppressed inflammatory cell infiltration and cytokine release in BALF, thereby elevating pulmonary function. It ameliorated lung pathological changes and airway goblet cell hyperplasia, and suppressed expression levels of Muc5ac mRNA and protein and phospho-ERK and SP1 levels in the lung tissues of the COPD mice. In conclusion, GFDHP inhibited mucus hypersecretion induced by LPS/CS by suppressing the activation of the ERK-SP1 pathway.
Collapse
|
23
|
Baek EB, Rho JH, Jung E, Seo CS, Kim JH, Kwun HJ. Protective effect of Palmijihwanghwan in a mouse model of cigarette smoke and lipopolysaccharide-induced chronic obstructive pulmonary disease. BMC Complement Med Ther 2021; 21:281. [PMID: 34784929 PMCID: PMC8594196 DOI: 10.1186/s12906-021-03453-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background Palmijihwanghwan (PJH) is a traditional medicine and eight constituents derived from PJH possess anti-inflammatory activities. However, the scientific evidence for its potential as a therapeutic agent for inflammatory lung disease has not yet been studied. In this study, we examined the protective effect of PJH in a mouse model of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke (CS) with lipopolysaccharide (LPS). Methods Mice received CS exposure for 8 weeks and intranasal instillation of LPS on weeks 1, 3, 5 and 7. PJH (100 and 200 mg/kg) was administrated daily 1 h before CS treatment for the last 4 weeks. Results Compared with CS plus LPS-exposed mice, mice in the PJH-treated group showed significantly decreased inflammatory cells count and reduced inflammatory cytokines including interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α) levels in broncho-alveolar lavage fluid (BALF) and lung tissue. PJH also suppressed the phosphorylation of nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinase1/2 (ERK1/2) caused by CS plus LPS exposure. Furthermore, CS plus LPS induced increases in matrix metallopeptidase (MMP)-7, MMP-9, and transforming growth factor-β (TGF-β) expression and collagen deposition that were inhibited in PJH-treated mice. Conclusions This study demonstrates that PJH prevents respiratory inflammation and airway remodeling caused by CS with LPS exposure suggesting potential therapy for the treatment of COPD. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03453-5.
Collapse
Affiliation(s)
- Eun Bok Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, South Korea
| | - Jin-Hyung Rho
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, South Korea
| | - Eunhye Jung
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, South Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Jin-Hee Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, 34134, South Korea.
| |
Collapse
|
24
|
Wang J, Wu Q, Ding L, Song S, Li Y, Shi L, Wang T, Zhao D, Wang Z, Li X. Therapeutic Effects and Molecular Mechanisms of Bioactive Compounds Against Respiratory Diseases: Traditional Chinese Medicine Theory and High-Frequency Use. Front Pharmacol 2021; 12:734450. [PMID: 34512360 PMCID: PMC8429615 DOI: 10.3389/fphar.2021.734450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 12/28/2022] Open
Abstract
Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lu Ding
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Li Shi
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Tan Wang
- Department of Respiratory, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
25
|
The Clinical Efficiency and the Mechanism of Sanzi Yangqin Decoction for Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5565562. [PMID: 34221077 PMCID: PMC8213503 DOI: 10.1155/2021/5565562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/24/2021] [Accepted: 05/27/2021] [Indexed: 11/18/2022]
Abstract
This work is carried out to evaluate the clinical efficacy of Sanzi Yangqin decoction (SZYQD) treating chronic obstructive pulmonary disease (COPD) and to analyze its mechanism. The clinical efficacy of SZYQD treating COPD was evaluated by meta-analysis, and its mechanism was analyzed by network pharmacology. Molecular docking validation of the main active compounds and the core targets was performed by AutoDock vina software. A cigarette smoke (CS) and LPS-induced COPD model in ICR mice was constructed to confirm the effects of luteolin on COPD. Results showed that SZYQD has a greater benefit on the total effect (OR = 3.85, 95% CI [3.07, 4.83], P=1) in the trial group compared with the control group. The percentage of forced expiratory volume in one second (FEV1%) (MD = 0.5, 95% CI [0.41, 0.59], P < 0.00001) and first seconds breathing volume percentage of forced vital capacity (FEV1%/FVC) were improved (MD = 5.97, 95% CI [3.23, 8.71], P < 0.00001). There are 27 compounds in SZYQD targeting 104 disease targets related to COPD. PPI network analysis indicated that EGFR, MMP9, PTGS2, MMP2, APP, and ERBB2 may be the core targets for the treatment of COPD. Molecular docking demonstrated that luteolin in SZYQD showed the strongest binding activity to core targets. Experimental results revealed that the expression of COPD-related targets in lung tissue was significantly increased in the COPD group and was improved in the luteolin group. Our data indicated that SZYQD has a curative effect on COPD and luteolin is a candidate compound for COPD treatment by regulating EGFR, MMP9, PTGS2, MMP2, APP, and ERBB2.
Collapse
|
26
|
Allam VSRR, Chellappan DK, Jha NK, Shastri MD, Gupta G, Shukla SD, Singh SK, Sunkara K, Chitranshi N, Gupta V, Wich PR, MacLoughlin R, Oliver BGG, Wernersson S, Pejler G, Dua K. Treatment of chronic airway diseases using nutraceuticals: Mechanistic insight. Crit Rev Food Sci Nutr 2021; 62:7576-7590. [PMID: 33977840 DOI: 10.1080/10408398.2021.1915744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Madhur D Shastri
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, New South Wales, Australia
| | - Sachin K Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Krishna Sunkara
- Emergency Clinical Management, Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, New South Wales, Australia.,Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland.,School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia.,Woolcock Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
27
|
Hosseini SA, Zahedipour F, Sathyapalan T, Jamialahmadi T, Sahebkar A. Pulmonary fibrosis: Therapeutic and mechanistic insights into the role of phytochemicals. Biofactors 2021; 47:250-269. [PMID: 33548106 DOI: 10.1002/biof.1713] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary fibrosis (PF) is the devastating consequence of various inflammatory diseases of the lung. PF leads to a reduction of lung function, respiratory failure, and death. Several molecular pathways are involved in PF, such as inflammatory cytokines including tumor necrosis factor α (TNFα), tumor necrosis factor β1 (TNFβ1), interleukin 6 (IL-6), and interleukin 4 (IL-4), reactive oxygen species, matrix metalloproteases, and transforming growth factor-beta (TGF-β). Targeting these processes involved in the progression of PF is essential for the treatment of this disease. Natural products, including plant extracts and active compound that directly target the processes involved in PF, could be suitable therapeutic options with less adverse effects. In the present study, we reviewed the protective effects and the therapeutic role of various bioactive compounds from plants in PF management.
Collapse
Affiliation(s)
- Seyede Atefe Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Zahedipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
28
|
Zhang MY, Jiang YX, Yang YC, Liu JY, Huo C, Ji XL, Qu YQ. Cigarette smoke extract induces pyroptosis in human bronchial epithelial cells through the ROS/NLRP3/caspase-1 pathway. Life Sci 2021; 269:119090. [PMID: 33465393 DOI: 10.1016/j.lfs.2021.119090] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
AIMS Pyroptosis and inflammation are involved in the development of chronic obstructive pulmonary disease (COPD). However, the cigarette smoke-mediated mechanism of COPD remains unclear. In this study, we aimed to investigate the role of nucleotide-binding domain-like receptor protein-3 (NLRP3) inflammasome-mediated pyroptosis in the death of human bronchial epithelial (HBE) cells after cigarette smoke extract (CSE) exposure. MAIN METHODS The protein level of NLRP3 in lung tissue was measured after cigarette smoke exposure in vivo. In vitro, HBE cells were treated with CSE. Subsequently, the activity of caspase-1, lactate dehydrogenase (LDH) release, release of interleukin (IL)-1β and NLRP3 expression levels were measured. The involvement of reactive oxygen species (ROS) was also explored. KEY FINDINGS After exposure to CSE, increased release of LDH, the transcriptional and translational upregulation of NLRP3, the caspase-1 activity levels, and enhanced IL-1β and IL-18 release were observed in 16HBE cells. In addition, NLRP3 was required to activate the caspase-1. Our results suggested that pre-stimulated of 16HBE with a caspase-1 inhibitor, or using NLRP3 siRNA to silence NLRP3 expression, also caused the decrease of IL-1β release and pyroptosis. SIGNIFICANCES CSE induced inflammation and contributed to pyroptosis through the ROS/NLRP3/caspase-1 pathway in 16HBE cells. The NLRP3 inflammasome participates in CSE-induced HBE cell damage and pyroptosis, which could provide new insights into COPD.
Collapse
Affiliation(s)
- Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ying-Xiao Jiang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Can Yang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jian-Yu Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chen Huo
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiu-Li Ji
- Department of Pulmonary Disease, Jinan Traditional Chinese Medicine Hospital, Jinan 250012, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
29
|
Yang K, Dong W. SIRT1-Related Signaling Pathways and Their Association With Bronchopulmonary Dysplasia. Front Med (Lausanne) 2021; 8:595634. [PMID: 33693011 PMCID: PMC7937618 DOI: 10.3389/fmed.2021.595634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic and debilitating disease that can exert serious and overwhelming effects on the physical and mental health of premature infants, predominantly due to intractable short- and long-term complications. Oxidative stress is one of the most predominant causes of BPD. Hyperoxia activates a cascade of hazardous events, including mitochondrial dysfunction, uncontrolled inflammation, reduced autophagy, increased apoptosis, and the induction of fibrosis. These events may involve, to varying degrees, alterations in SIRT1 and its associated targets. In the present review, we describe SIRT1-related signaling pathways and their association with BPD. Our intention is to provide new insights into the molecular mechanisms that regulate BPD and identify potential therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Kun Yang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
30
|
Birru RL, Bein K, Wells H, Bondarchuk N, Barchowsky A, Di YP, Leikauf GD. Phloretin, an Apple Polyphenol, Inhibits Pathogen-Induced Mucin Overproduction. Mol Nutr Food Res 2021; 65:e2000658. [PMID: 33216464 PMCID: PMC8163070 DOI: 10.1002/mnfr.202000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/03/2020] [Indexed: 12/26/2022]
Abstract
SCOPE Bacterial infection induces mucus overproduction, contributing to acute exacerbations and lung function decline in chronic respiratory diseases. A diet enriched in apples may provide protection from pulmonary disease development and progression. This study examined whether phloretin, an apple polyphenol, inhibits mucus synthesis and secretion induced by the predominant bacteria associated with chronic respiratory diseases. METHODS AND RESULTS The expression of mucus constituent mucin 5AC (MUC5AC) in FVB/NJ mice and NCI-H292 epithelial cells is analyzed. Nontypeable Haemophilus influenzae (NTHi)-infected mice developed increased MUC5AC mRNA, which a diet containing phloretin inhibited. In NCI-H292 cells, NTHi, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa increased MUC5AC mRNA, which phloretin inhibited. Phloretin also diminished NTHi-induced MUC5AC protein secretion. NTHi-induced increased MUC5AC required toll-like receptor 4 (TLR4) and NADH oxidase 4 (NOX4) signaling and subsequent activation of the epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK) pathway. Phloretin inhibited NTHi-induced TLR4/NOX4 and EGFR/MAPK signaling, thereby preventing increased MUC5AC mRNA. EGFR activation can also result from increased EGFR ligand synthesis and subsequent ligand activation by matrix metalloproteinases (MMPs). In NCI-H292 cells, NTHi increased EGFR ligand and MMP1 and MMP13 mRNA, which phloretin inhibited. CONCLUSIONS In summary, phloretin is a promising therapeutic candidate for preventing bacterial-induced mucus overproduction.
Collapse
Affiliation(s)
- Rahel L Birru
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Heather Wells
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Natalya Bondarchuk
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
31
|
Huang L, Li X, Chen Z, Liu Y, Zhang X. Identification of inflammation‑associated circulating long non‑coding RNAs and genes in intracranial aneurysm rupture‑induced subarachnoid hemorrhage. Mol Med Rep 2020; 22:4541-4550. [PMID: 33174039 PMCID: PMC7646748 DOI: 10.3892/mmr.2020.11540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Ruptured intracranial aneurysm (IA)-induced subarachnoid hemorrhage (SAH) triggers a series of immune responses and inflammation in the brain and body. The present study was conducted to identify additional circulating biomarkers that may serve as potential therapeutic targets for SAH-induced inflammation. Differentially expressed (DE) long non-coding RNAs (lncRNAs; DElncRNAs) and genes (DEGs) in the peripheral blood mononuclear cells between patients with IA rupture-induced SAH and healthy controls were identified in the GSE36791 dataset. DEGs were used for weighted gene co-expression network analysis (WGCNA), and SAH-associated WGCNA modules were identified. Subsequently, an lncRNA-mRNA regulatory network was constructed using the DEGs in SAH-associated WGCNA modules. A total of 25 DElncRNAs and 1,979 DEGs were screened from patients with IA-induced SAH in the GSE36791 dataset compared with the controls. A total of 11 WGCNA modules, including four upregulated modules significantly associated with IA rupture-induced SAH were obtained. The DEGs in the SAH-associated modules were associated with Gene Ontology biological processes such as ‘regulation of programmed cell death’, ‘apoptosis’ and ‘immune response’. The subsequent lncRNA-mRNA regulatory network included seven upregulated lncRNAs [HCG27, ZNFX1 antisense RNA 1, long intergenic non-protein coding RNA (LINC)00265, murine retrovirus integration site 1 homolog-antisense RNA 1, cytochrome P450 1B1-AS1, LINC01347 and LINC02193] and 375 DEGs. Functional enrichment analysis and screening in the Comparative Toxicogenomics Database demonstrated that SAH-associated DEGs, including neutrophil cytosolic factor (NCF)2 and NCF4, were enriched in ‘chemokine signaling pathway’ (hsa04062), ‘leukocyte transendothelial migration’ (hsa04670) and ‘Fc gamma R-mediated phagocytosis’ (hsa04666). The upregulated lncRNAs and genes, including NCF2 and NCF4, in patients with IA rupture-induced SAH indicated their respective potentials as anti-inflammatory therapeutic targets.
Collapse
Affiliation(s)
- Lifa Huang
- Department of Neurosurgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xu Li
- Department of Neurosurgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Zupeng Chen
- Department of Neurosurgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yajun Liu
- Department of Neurosurgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xin Zhang
- Department of Neurosurgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
32
|
Easter M, Bollenbecker S, Barnes JW, Krick S. Targeting Aging Pathways in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:E6924. [PMID: 32967225 PMCID: PMC7555616 DOI: 10.3390/ijms21186924] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) has become a global epidemic and is the third leading cause of death worldwide. COPD is characterized by chronic airway inflammation, loss of alveolar-capillary units, and progressive decline in lung function. Major risk factors for COPD are cigarette smoking and aging. COPD-associated pathomechanisms include multiple aging pathways such as telomere attrition, epigenetic alterations, altered nutrient sensing, mitochondrial dysfunction, cell senescence, stem cell exhaustion and chronic inflammation. In this review, we will highlight the current literature that focuses on the role of age and aging-associated signaling pathways as well as their impact on current treatment strategies in the pathogenesis of COPD. Furthermore, we will discuss established and experimental COPD treatments including senolytic and anti-aging therapies and their potential use as novel treatment strategies in COPD.
Collapse
Affiliation(s)
- Molly Easter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Seth Bollenbecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
| | - Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.); (S.B.); (J.W.B.)
- Gregory Fleming James Cystic Fibrosis Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Ashrafizadeh M, Najafi M, Orouei S, Zabolian A, Saleki H, Azami N, Sharifi N, Hushmandi K, Zarrabi A, Ahn KS. Resveratrol Modulates Transforming Growth Factor-Beta (TGF-β) Signaling Pathway for Disease Therapy: A New Insight into Its Pharmacological Activities. Biomedicines 2020; 8:E261. [PMID: 32752069 PMCID: PMC7460084 DOI: 10.3390/biomedicines8080261] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (Res) is a well-known natural product that can exhibit important pharmacological activities such as antioxidant, anti-diabetes, anti-tumor, and anti-inflammatory. An evaluation of its therapeutic effects demonstrates that this naturally occurring bioactive compound can target different molecular pathways to exert its pharmacological actions. Transforming growth factor-beta (TGF-β) is an important molecular pathway that is capable of regulating different cellular mechanisms such as proliferation, migration, and angiogenesis. TGF-β has been reported to be involved in the development of disorders such as diabetes, cancer, inflammatory disorders, fibrosis, cardiovascular disorders, etc. In the present review, the relationship between Res and TGF-β has been investigated. It was noticed that Res can inhibit TGF-β to suppress the proliferation and migration of cancer cells. In addition, Res can improve fibrosis by reducing inflammation via promoting TGF-β down-regulation. Res has been reported to be also beneficial in the amelioration of diabetic complications via targeting the TGF-β signaling pathway. These topics are discussed in detail in this review to shed light on the protective effects of Res mediated via the modulation of TGF-β signaling.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negar Azami
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Negin Sharifi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
34
|
Chu H, Qu X, Wang F, Chang J, Cheng R, Song X, Chen T, Zhang G. MicroRNA-206 promotes lipopolysaccharide-induced inflammation injury via regulation of IRAK1 in MRC-5 cells. Int Immunopharmacol 2019; 73:590-598. [PMID: 31279225 DOI: 10.1016/j.intimp.2019.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported to play crucial role in the airway inflammatory diseases. However, the involvement of miR-206 in airway inflammatory diseases is still uninvestigated. The study aimed to explore the effect of miR-206 on lipopolysaccharide (LPS)-induced inflammation injury in MRC-5 cells, and point out a potential relevance for chronic obstructive pulmonary disease (COPD). METHODS LPS was utilized to expose MRC-5 cells, then cell viability, cell migration, apoptosis, apoptosis-associated factors, as well as the concentrations and protein levels of IL-6 and IL-8 were explored. After transfected with miR-206 mimic and inhibitor, above parameters were reassessed in LPS-injured cells. Expression level of IRAK1 was examined in miR-206 mimic/inhibitor transfected cells by using RT-qPCR. The effect of IRAK1 on LPS-induced inflammation injury was investigated in MRC-5 cells after transfection with pc-IRAK1 and sh-IRAK1. The effects of miR-206 and IRAK1 on MEK/ERK and JNK pathways were determined by western blot assay. RESULTS LPS significantly triggered inflammation injury in MRC-5 cells by inhibiting cell viability, suppressing the healing of scratches, inducing cell apoptosis, down-regulating Bcl-2 expression and up-regulating Bax, cleaved-Caspase-3 and cleaved-Caspase-9 expression, and concurrently increasing the concentrations and the protein levels of IL-6 and IL-8. MiR-206 overexpression aggravated LPS-induced inflammation injury in MRC-5 cells. Up-regulation of IRAK1 was observed in miR-206 mimic-transfected cells. Moreover, IRAK1 overexpression promoted LPS-induced inflammation injury in MRC-5 cells. MiR-206 activated MEK/ERK and JNK pathways by regulating IRAK1. CONCLUSIONS MiR-206 promotes LPS-induced inflammation injury through regulation of IRAK1 in MRC-5 cells.
Collapse
Affiliation(s)
- Heying Chu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiangwen Qu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng Wang
- Department of Respiratory, The First People's Hospital of Shangqiu, Shangqiu 476100, China
| | - Jingxia Chang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ruirui Cheng
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiangjin Song
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tengfei Chen
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guojun Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
35
|
Multi-target natural products as alternatives against oxidative stress in Chronic Obstructive Pulmonary Disease (COPD). Eur J Med Chem 2019; 163:911-931. [DOI: 10.1016/j.ejmech.2018.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
|
36
|
Wang Z, Fang K, Wang G, Guan X, Pang Z, Guo Y, Yuan Y, Ran N, Liu Y, Wang F. Protective effect of amygdalin on epithelial-mesenchymal transformation in experimental chronic obstructive pulmonary disease mice. Phytother Res 2019; 33:808-817. [DOI: 10.1002/ptr.6274] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/04/2018] [Accepted: 12/08/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ziyan Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Keyong Fang
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Xuewa Guan
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Zhiqiang Pang
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Yingqiao Guo
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Yuze Yuan
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Nan Ran
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Yue Liu
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences; Jilin University; Changchun China
| |
Collapse
|
37
|
Curcumin Attenuates Airway Inflammation and Airway Remolding by Inhibiting NF-κB Signaling and COX-2 in Cigarette Smoke-Induced COPD Mice. Inflammation 2018; 41:1804-1814. [DOI: 10.1007/s10753-018-0823-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Anti-Inflammatory Effects of Resveratrol: Mechanistic Insights. Int J Mol Sci 2018; 19:ijms19061812. [PMID: 29925765 PMCID: PMC6032205 DOI: 10.3390/ijms19061812] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the principal response invoked by the body to address injuries. Despite inflammation constituting a crucial component of tissue repair, it is well known that unchecked or chronic inflammation becomes deleterious, leading to progressive tissue damage. Studies over the past years focused on foods rich in polyphenols with anti-inflammatory and immunomodulatory properties, since inflammation was recognized to play a central role in several diseases. In this review, we discuss the beneficial effects of resveratrol, the most widely investigated polyphenol, on cancer and neurodegenerative, respiratory, metabolic, and cardiovascular diseases. We highlight how resveratrol, despite its unfavorable pharmacokinetics, can modulate the inflammatory pathways underlying those diseases, and we identify future opportunities for the evaluation of its clinical feasibility.
Collapse
|
39
|
Beijers RJHCG, Gosker HR, Schols AMWJ. Resveratrol for patients with chronic obstructive pulmonary disease: hype or hope? Curr Opin Clin Nutr Metab Care 2018; 21:138-144. [PMID: 29200030 PMCID: PMC5811233 DOI: 10.1097/mco.0000000000000444] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Chronic obstructive pulmonary disease (COPD) is a progressive lung disease with a high prevalence of extrapulmonary manifestations and, frequently, cardiovascular comorbidity. Resveratrol is a food-derived compound with anti-inflammatory, antioxidant, metabolic and cardioprotective potential. Therefore, resveratrol might improve the pulmonary as well as extrapulmonary pathology in COPD. In this review, we will evaluate knowledge on the effects of resveratrol on lung injury, muscle metabolism and cardiovascular risk profile and discuss if resveratrol is a hype or hope for patients with COPD. RECENT FINDINGS Experimental models of COPD consistently show decreased inflammation and oxidative stress in the lungs after resveratrol treatment. These beneficial anti-inflammatory and antioxidant properties of resveratrol can indirectly also improve both skeletal and respiratory muscle impairment in COPD. Recent clinical studies in non-COPD populations show improved mitochondrial oxidative metabolism after resveratrol treatment, which could be beneficial for both lung and muscle impairment in COPD. Moreover, preclinical studies suggest cardioprotective effects of resveratrol but results of clinical studies are inconclusive. SUMMARY Resveratrol might be an interesting therapeutic candidate to counteract lung and muscle impairments characteristic to COPD. However, there is no convincing evidence that resveratrol will significantly decrease the cardiovascular risk in patients with COPD.
Collapse
Affiliation(s)
- Rosanne J H C G Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | | |
Collapse
|
40
|
Liu R, Wang P, Wu C, Chen J, Li C, Xie Y, Wang Q, Liu J, He H, Zhu J. Therapeutic effects of Hedyotis diffusa Willd in a COPD mouse model challenged with LPS and smoke. Exp Ther Med 2018; 15:3385-3391. [PMID: 29545859 PMCID: PMC5840915 DOI: 10.3892/etm.2018.5851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 01/10/2018] [Indexed: 01/25/2023] Open
Abstract
Hedyotis diffusa Willd (HDW) is a constituent of several Chinese medicines used clinically to treat inflammatory diseases, including airway inflammation. The aim of the present study was to investigate whether HDW serves a protective role in suppressing chronic airway inflammation and its underlying mechanisms. A mouse model of chronic smoking was induced via exposure to cigarette smoke (CS) for 30 days, increasing the exposure time for up to 5 min per day and the administration of lipopolysaccharide (LPS). Mice were gavaged with HDW (50 or 100 mg/kg body weight), dexamethasone (1 mg/kg body weight) or normal saline (NS, 0.9%) 1 h prior to CS challenge. Compared with CS and LPS (SL)-induced mice, the levels of interleukin (IL)-1β, tumor necrosis factor-α and transforming growth factor-β in bronchoalveolar lavage fluid from HDW+SL mice were significantly decreased and IL-10 was markedly reduced. Histological examination of the lung tissues revealed that HDW treatment alleviates airway inflammation. In addition, the administration of HDW to human bronchial epithelial BEAS-2B cells suppressed the activity of the nuclear factor (NF)-κB signaling pathway. The results of the present study demonstrate that HDW has a therapeutic effect in COPD and the underlying mechanism may be attributed to inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Renping Liu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Peihong Wang
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Caiqing Wu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Juan Chen
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Chengxin Li
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yongtao Xie
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Qi Wang
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Jianming Liu
- Department of Pharmacology, Jiangxi Medical College, Shangrao, Jiangxi 334000, P.R. China
| | - Huan He
- Department of Pharmacology, Fuzhou Medical College of Nanchang University, Fuzhou, Fujian 344000, P.R. China
| | - Jing Zhu
- Medical Experiment Education Department, Medical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| |
Collapse
|
41
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2017; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|
42
|
Li X, Yang H, Wu S, Meng Q, Sun H, Lu R, Cui J, Zheng Y, Chen W, Zhang R, Aschner M, Chen R. Suppression of PTPN6 exacerbates aluminum oxide nanoparticle-induced COPD-like lesions in mice through activation of STAT pathway. Part Fibre Toxicol 2017; 14:53. [PMID: 29233151 PMCID: PMC5728016 DOI: 10.1186/s12989-017-0234-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/28/2017] [Indexed: 02/06/2023] Open
Abstract
Background Inhaled nanoparticles can deposit in the deep lung where they interact with pulmonary cells. Despite numerous studies on pulmonary nanotoxicity, detailed molecular mechanisms of specific nanomaterial-induced lung injury have yet to be identified. Results Using whole-body dynamic inhalation model, we studied the interactions between aluminum oxide nanoparticles (Al2O3 NPs) and the pulmonary system in vivo. We found that seven-day-exposure to Al2O3 NPs resulted in emphysema and small airway remodeling in murine lungs, accompanied by enhanced inflammation and apoptosis. Al2O3 NPs exposure led to suppression of PTPN6 and phosphorylation of STAT3, culminating in increased expression of the apoptotic marker PDCD4. Rescue of PTPN6 expression or application of a STAT3 inhibitor, effectively protected murine lungs from inflammation and apoptosis, as well as, in part, from the induction of chronic obstructive pulmonary disease (COPD)-like effects. Conclusion In summary, our studies show that inhibition of PTPN6 plays a critical role in Al2O3 NPs-induced COPD-like lesions. Electronic supplementary material The online version of this article (10.1186/s12989-017-0234-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaobo Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Qingtao Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Hao Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Runze Lu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Jian Cui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, 266021, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Dingjiaqiao 87, Nanjing, 210009, China. .,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
43
|
Euba B, López-López N, Rodríguez-Arce I, Fernández-Calvet A, Barberán M, Caturla N, Martí S, Díez-Martínez R, Garmendia J. Resveratrol therapeutics combines both antimicrobial and immunomodulatory properties against respiratory infection by nontypeable Haemophilus influenzae. Sci Rep 2017; 7:12860. [PMID: 29038519 PMCID: PMC5643544 DOI: 10.1038/s41598-017-13034-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
The respiratory pathogen nontypeable Haemophilus influenzae (NTHi) is an important cause of acute exacerbation of chronic obstructive pulmonary disease (AECOPD) that requires efficient treatments. A previous screening for host genes differentially expressed upon NTHi infection identified sirtuin-1, which encodes a NAD-dependent deacetylase protective against emphysema and is activated by resveratrol. This polyphenol concomitantly reduces NTHi viability, therefore highlighting its therapeutic potential against NTHi infection at the COPD airway. In this study, resveratrol antimicrobial effect on NTHi was shown to be bacteriostatic and did not induce resistance development in vitro. Analysis of modulatory properties on the NTHi-host airway epithelial interplay showed that resveratrol modulates bacterial invasion but not subcellular location, reduces inflammation without targeting phosphodiesterase 4B gene expression, and dampens β defensin-2 gene expression in infected cells. Moreover, resveratrol therapeutics against NTHi was evaluated in vivo on mouse respiratory and zebrafish septicemia infection model systems, showing to decrease NTHi viability in a dose-dependent manner and reduce airway inflammation upon infection, and to have a significant bacterial clearing effect without signs of host toxicity, respectively. This study presents resveratrol as a therapeutic of particular translational significance due to the attractiveness of targeting both infection and overactive inflammation at the COPD airway.
Collapse
Affiliation(s)
- Begoña Euba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Nahikari López-López
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Irene Rodríguez-Arce
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain
| | | | - Nuria Caturla
- Monteloeder, Elche Parque Empresarial, Elche, Alicante, Spain
| | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Roberto Díez-Martínez
- Ikan Biotech SL, The Zebrafish Lab, Centro Europeo de Empresas e Innovación de Navarra (CEIN), Noáin, Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain. .,Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno Navarra, Mutilva, Spain.
| |
Collapse
|