1
|
Bahnasy MI, Abdel Razik AB, Ahmed MF, Nasser MA, Mekiso GT, Ahmed EZ, Hussien ET. In Vitro Culture of Aegle marmelos Against Media Composition Stress: Molecular Identification, Media, and Enzyme Optimization for Higher Growth Yields. Int J Genomics 2025; 2025:4630425. [PMID: 40260051 PMCID: PMC12011463 DOI: 10.1155/ijog/4630425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 04/23/2025] Open
Abstract
Aegle marmelos, known for its spiky appearance, is a versatile tree found worldwide. In the Indian medical tradition, this therapeutic tree is utilized to treat various ailments. It is commonly propagated through seeds, although they have a limited lifespan and are susceptible to insect damage. Due to the variability of seed offspring, standardized varieties are not readily available. Molecular identification was performed for the plant species to be as a fingerprint identification based on genomic basic. Hence, this study manipulated the in vitro multiplication for enhancing Aegle marmelos traits through variation in media type and composition. In phase one of the experiment, successful micropropagation has been easily achieved with shoot tip culture on two growth in vitro media: Murashige and Skoog (MS) medium and woody plant medium (WPM) with different concentrations (one-fourth, one-half, three-fourths, and full power media) with two sucrose concentration 20 and 30 g/L. The growth parameters measured indicated a heightened response to both MS and WPM media, each with its distinct composition. The genetic variation via intersimple sequence repeat (ISSR) molecular marker in the first phase was 35.5%. In phase two, the hormonal treatment was applied for the best media choice from Phase 1. During the second phase of multiplication and rooting stages with phytohormones, the optimal treatments were chosen to maximize yields. In the multiplication stage, the most favorable conditions, as determined by morphological parameters, were achieved with full MS medium supplemented with 30 g sucrose, 0.1 mg/L Kin, and 0.75 mg/L BAP. In contrast, for the rooting stage, the optimal treatment consisted of one-fourth MS medium supplemented with 15 g sucrose, 0.5 mg/L Kin, 0.1 g/L activated charcoal, and 15 mg/L IBA. Physiological parameters exhibited variability, with each metabolite displaying distinct optimal conditions. Catalase plays a crucial role in decomposing hydrogen peroxide to protect cells, tissues, and organs. This research effectively enhanced the in vitro micropropagation of Aegle marmelos by determining the most efficacious medium formulations and hormonal treatments for shoot multiplication and roots, while also illustrating the influence of WPM on catalase enzyme activity enhancement.
Collapse
Affiliation(s)
- Magdy I. Bahnasy
- Forestry and Timber Tree Research Department, Horticulture Research Institute, Agriculture Research Center, Giza, Egypt
| | | | - Mohamed F. Ahmed
- Dry and Saline Farming Technology Department, Arid Land Agricultural Graduate Studies and Research Institute, Ain shams University, Cairo, Egypt
| | - Mohamed A. Nasser
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | | | - Eman Z. Ahmed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Eman T. Hussien
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Kim KW, Choi BR, Shin WC, Jang JK, Lee YS, Yoon D, Lee DY. Metabolic Profiling of Fermented Products of the Ethanolic Extract of Acanthopanax sessiliflorus Fruit and Evaluation of Its Immune Enhancement Effect in RAW 264.7 Macrophages and BV2 Microglia. Antioxidants (Basel) 2025; 14:397. [PMID: 40298657 PMCID: PMC12024371 DOI: 10.3390/antiox14040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
In this study, we sought to evaluate the potential availability of 30% ethanol extract of Acanthopanax sessiliflorus fruit (ASE) as a prebiotic and compare the immune enhancement effect of ASE and its fermented products, which were fermented with three probiotic bacteria, namely, Lactobacillus plantarum (ASE-LPF), Streptococcus thermophilus (ASE-STF), and Lactobacillus helveticus (ASE-LHF). RAW264.7 and BV2 cells were treated with various concentrations of ASE and its fermented products. The level of nitric oxide was evaluated using a Griess reagent, and the levels of inflammatory cytokines were determined through an enzyme-linked immunosorbent assay. Western blot analysis was employed to determine the expression of various proteins related to immune responses. Our results show that fermentation with ASE significantly improved the probiotic growth of S. thermophilus and L. helveticus. Compared with ASE, treatment with only ASE-LHF increased the level of nitric oxide. Compared with ASE, treatment with ASE-LHF augmented the expression of inducible nitric oxide synthase, cyclooxygenase-2, and the production of inflammatory cytokines. It was confirmed that these enhancement effects were due to the activation of the nuclear factor kappa B and extracellular signal-regulated kinase mitogen-activated protein kinase signaling pathways. Additionally, secondary metabolite profiling of ASE and its fermented products was performed using UPLC-QTOF/MS to identify ASE's promising compounds. Through metabolomic analysis, 23 metabolites showing significant differences between ASE and its fermented products were compared. Therefore, this study demonstrates the possibility of ASE-LHF as a potential material for immune-enhancing agents.
Collapse
Affiliation(s)
- Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Bo-Ram Choi
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Woo-Cheol Shin
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Kyu Jang
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea
| | - Dae Young Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Zhang H, Zhou Z, Yang M, Li S, Liu X, Jin L, Shou Q, Fu H. One new polyketide and four new sesquiterpenes derivatives from the fungicolous fungi aspergillus nidulans LZ8 of Ganoderma lingzhi. Fitoterapia 2025; 180:106339. [PMID: 39657866 DOI: 10.1016/j.fitote.2024.106339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
One new polyketide asperfuranone D (1), four new sesquiterpenes derivatives aspergillone C-F (2-5) and three known compounds (6-8) were successfully isolated from Aspergillus nidulans LZ8, a fungicolous fungi from the macrofungal Ganoderma lingzhi. The structures of these compounds were elucidated by extensive spectroscopic analyses including ultraviolet-visible spectroscopy (UV), mass spectrometry (MS), nuclear magnetic resonance (NMR), and electronic circular dichroism (ECD) calculation. In addition, the anti-inflammatory activities of the new compounds were evaluated using LPS-induced RAW 264.7 cells. The results revealed that compound 5 showed moderate nitric oxide (NO) inhibitory activity with the IC50 value of 13.19 ± 1.05 μM, while the IC50 value of the positive control L-NMMA was 41.88 ± 0.91 μM.
Collapse
Affiliation(s)
- Hong Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zhuoda Zhou
- Jinhua Academy of Zhejiang Chinese Medical University, Jinhua 321000, China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shengyu Li
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xia Liu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Jin
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiyang Shou
- Jinhua Academy of Zhejiang Chinese Medical University, Jinhua 321000, China.
| | - Huiying Fu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Fathima A, Farboodniay Jahromi MA, Begum SA, Jamma T. Withametelin inhibits TGF-β induced Epithelial-to-Mesenchymal Transition and Programmed-Death Ligand-1 expression in vitro. Front Oncol 2024; 14:1435516. [PMID: 39077463 PMCID: PMC11284055 DOI: 10.3389/fonc.2024.1435516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Withanolides are a group of naturally occurring plant-based small molecules known for their wide range of host cellular functions. The anticancer potential of withanolides has been explored in varying cancer cell lines in vitro. Based on our prior studies, among the tested withanolides, withametelin (WM) has shown significant cytotoxicity with the highest efficacy on HCT-116 colon cancer cells (IC50 0.719 ± 0.12μM). Treatment with WM reduced the TGF-β driven proliferation, colony-forming ability, migration, and invasiveness of HCT-116 cells in vitro. WM also downregulated the expression of mesenchymal markers such as N-CADHERIN, SNAIL, and SLUG in HCT-116 cells. At the molecular level, WM inhibited TGF-β induced phosphorylation of SMAD2/3 and reduced the expression of an immune checkpoint inhibitor programmed-death ligand-1 (PD-L1). Our study highlights the possible anticancer mechanisms of WM involving modulation of the TGF-β pathway and associated target gene expression, suggesting its potential utility in cancer therapy.
Collapse
Affiliation(s)
- Ashna Fathima
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Hyderabad, India
| | | | - Sajeli A. Begum
- Department of Pharmacy, Birla Institute of Technology & Science, Hyderabad, India
| | - Trinath Jamma
- Cell Signaling Laboratory, Department of Biological Sciences, Birla Institute of Technology & Science, Hyderabad, India
| |
Collapse
|
5
|
Zhang Z, Yang Y, Xu Y, Liu Y, Li H, Chen L. Molecular targets and mechanisms of anti-cancer effects of withanolides. Chem Biol Interact 2023; 384:110698. [PMID: 37690745 DOI: 10.1016/j.cbi.2023.110698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Withanolides are a class of natural products with a steroidal lactone structure that exhibit a broad spectrum of anti-cancer effects. To date, several studies have shown that their possible mechanisms in cancer development and progression are associated with the regulation of cell proliferation, apoptosis, metastasis, and angiogenesis. Withanolides can also attenuate inflammatory responses, as well as modulate the genomic instability and energy metabolism of cancer cells. In addition, they may improve the safety and efficacy of cancer treatments as adjuvants to traditional cancer therapeutics. Herein, we summarize the molecular targets and mechanisms of withanolides in different cancers, as well as their current clinical studies on them.
Collapse
Affiliation(s)
- Zhiruo Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yueying Yang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
6
|
Xue G, Zhao C, Xue J, Duan J, Pan H, Zhao X, Yang Z, Chen H, Sun Y, Feng W. 2,3-Seco and 3-nor guaianolides fromAchillea alpina with antidiabetic activity. Chin J Nat Med 2023; 21:610-618. [PMID: 37611979 DOI: 10.1016/s1875-5364(23)60411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 08/25/2023]
Abstract
In this study, we presented the isolation and characterization of eight novel seco-guaianolide sesquiterpenoids (1-8) and two known guaianolide derivatives (9 and 10), from the aerial part of Achillea alpina L.. Compounds 1-3 were identified as guaianolides bearing an oxygen insertion at the 2, 3 position, while compounds 4-8 belonged to a group of special 3-nor guaianolide sesquiterpenoids. The structural elucidation of 1-8, including their absolute configurations, were accomplished by a combination of spectroscopic data analysis and quantum electronic circular dichroism (ECD) calculations. To evaluate the potential antidiabetic activity of compounds 1-10, we investigated their effects on glucose consumption in palmitic acid (PA)-mediated HepG2-insulin resistance (IR) cells. Among the tested compounds, compound 7 demonstrated the most pronounced ability to reverse IR. Moreover, a mechanistic investigation revealed that compound 7 exerted its antidiabetic effect by reducing the production of the pro-inflammatory cytokine IL-1β, which was achieved through the suppression of the NLRP3 pathway.
Collapse
Affiliation(s)
- Guimin Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Chenguang Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinfeng Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangjing Duan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hao Pan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xuan Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhikang Yang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yanjun Sun
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Wu H, Lin T, Chen Y, Chen F, Zhang S, Pang H, Huang L, Yu C, Wang G, Wu C. Ethanol Extract of Rosa laevigata Michx. Fruit Inhibits Inflammatory Responses through NF-κB/MAPK Signaling Pathways via AMPK Activation in RAW 264.7 Macrophages. Molecules 2023; 28:molecules28062813. [PMID: 36985786 PMCID: PMC10054580 DOI: 10.3390/molecules28062813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The fruit of Rosa laevigata Michx. (FR), a traditional Chinese herb utilized for the treatment of a variety diseases, has notably diverse pharmacological activities including hepatoprotective, anti-oxidant, and anti-inflammatory effects. Despite ongoing research on illustrating the underlying anti-inflammatory mechanism of FR, the principal mechanism remained inadequately understood. In this study, we investigated in depth the molecular mechanism of the anti-inflammatory actions of the ethanol extract of FR (EFR) and its potential targets using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro. We showed that EFR effectively ameliorated the overproduction of inflammatory mediators and cytokines, as well as the expression of related genes. It was further demonstrated that LPS-induced activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) were significantly inhibited by pretreatment with EFR, accompanied by a concomitant decrease in the nuclear translocation of the p65 subunit of NF-κB and activator protein 1 (AP-1). In addition, EFR pretreatment potently prevented LPS-induced decreased phosphorylation of adenosine monophosphate-activated protein kinase (AMPK). Our data also revealed that the activation of AMPK and subsequent inhibition of the mammalian target of the rapamycin (mTOR) signaling pathway was probably responsible for the inhibitory effect of EFR on LPS-induced inflammatory responses, evidenced by reverse changes observed under the condition of AMPK inactivation following co-treatment with the AMPK-specific inhibitor Compound C. Finally, the main components with an anti-inflammatory effect in EFR were identified as madecassic acid, ellagic acid, quinic acid, and procyanidin C1 by LC-MS and testified based on the inhibition of NO production and inflammatory mediator expression. Taken together, our results indicated that EFR was able to ameliorate inflammatory responses via the suppression of MAPKs/NF-κB signaling pathways following AMPK activation, suggesting the therapeutic potential of EFR for inflammatory diseases.
Collapse
Affiliation(s)
- Hongtan Wu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Tingting Lin
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Yupei Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Fangfang Chen
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Shudi Zhang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Haiyue Pang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Lisen Huang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Chihli Yu
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Gueyhorng Wang
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
- Engineering Research Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen 361023, China
| | - Chun Wu
- Department of Clinical Medicine, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
8
|
Monika S, Thirumal M, Kumar PR. Phytochemical and biological review of Aegle marmelos Linn. Future Sci OA 2023; 9:FSO849. [PMID: 37026028 PMCID: PMC10072075 DOI: 10.2144/fsoa-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
India has one of the most expanded plant-origin medical traditions in the world. Researchers have evaluated molecules obtained from plants to treat a variety of ailments. Literature review shows that fundamental parts of the plant are used to treat different diseases. The related data is retrieved from Google scholar, PubMed, Science Direct and Scopus. The keywords include Bael, A. marmelos, Vilvam, and Marmelosin. Extensive studies show that A. marmelos has antidiarrhoeal, antimicrobial, antiviral, anticancer, chemopreventive, antipyretic, ulcer healing, antigenotoxic, diuretic, antifertility, and anti-inflammatory properties. In this work, an updated literature review is presented to clarify the current state of research on A. marmelos elucidating its constituents and their most relevant biological activities.
Collapse
|
9
|
Hay T, Prakash S, Daygon VD, Fitzgerald M. Review of edible Australian flora for colour and flavour additives: Appraisal of suitability and ethicality for bushfoods as natural additives to facilitate new industry growth. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Añibarro-Ortega M, Pinela J, Alexopoulos A, Petropoulos SA, Ferreira ICFR, Barros L. The powerful Solanaceae: Food and nutraceutical applications in a sustainable world. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:131-172. [PMID: 35659351 DOI: 10.1016/bs.afnr.2022.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Solanaceae family is considered one of the most important families among plant species because, on one hand encompasses many staple food crops of the human diet while, on the other hand, it includes species rich in powerful secondary metabolites that could be valorized in medicine or drug formulation as well as nutraceuticals and food supplements. The main genera are Solanum, Capsicum, Physalis, and Lycium which comprise several important cultivated crops (e.g., tomato, pepper, eggplant, tomatillo, and goji berry), as well as genera notable for species with several pharmaceutical properties (e.g., Datura, Nicotiana, Atropa, Mandragora, etc.). This chapter discusses the nutritional value of the most important Solanaceae species commonly used for their edible fruit, as well as those used in the development of functional foods, food supplements, and nutraceuticals due to their bioactive constituents. The toxic and poisonous effects are also discussed aiming to highlight possible detrimental consequences due to irrational use. Finally, considering the high amount of waste and by-products generated through the value chain of the main crops, the sustainable management practices implemented so far are presented with the aim to increase the added-value of these crops.
Collapse
Affiliation(s)
- Mikel Añibarro-Ortega
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| | - Alexios Alexopoulos
- Laboratory of Agronomy, Department of Agriculture, University of the Peloponnese, Kalamata, Messinia, Greece
| | - Spyridon A Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal.
| |
Collapse
|
11
|
Lem FF, Yong YS, Goh S, Chin SN, Chee FT. Withanolides, the hidden gem in Physalis minima: A mini review on their anti-inflammatory, anti-neuroinflammatory and anti-cancer effects. Food Chem 2022; 377:132002. [PMID: 35033733 DOI: 10.1016/j.foodchem.2021.132002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/08/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023]
Abstract
The Southeast Asian rainforests, notably in East Malaysia, are home to a diverse range of medicinal plant species with limitless therapeutic potential. Physalis minima (family Solanaceae) is a native East Malaysia plant which is closely linked to P. angulata, are recognized for their various pharmacology properties are abundance in Withanolides, a C28-steroidal lactones based on an ergostane skeleton. This review focuses on the bioactive compounds of this herb, as it is frequently used to treat inflammation, neurodegenerative disease and cancer among East Malaysian ethnic groups. In this review, a total of 103 Withanolides were reported, with 59 of them being newly characterized. Previous scientific data revealed that Withanolides were intriguing principal compounds for inflammatory, neuroinflammatory and cancer treatment due to unique steroidal structure and strong bioactivities. Despite their excellent pharmacological characteristics, only a few Withanolides have been extensively studied, and the majority of them, particularly the newly discovered Withanolides, remained unknown for their therapeutic properties. This indicates that P. minima compounds are worth to be investigate for its pharmacological effects.
Collapse
Affiliation(s)
- Fui Fui Lem
- Clinical Research Centre, Hospital Queen Elizabeth, Ministry of Health Malaysia, 88586 Kota Kinabalu Sabah, Malaysia
| | - Yoong Soon Yong
- Laboratory Center, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria 43900 Sepang Selangor, Malaysia
| | - Saintella Goh
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No 3, 90509 Sandakan Sabah, Malaysia
| | - Su Na Chin
- Faculty of Science and Natural Resources Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu Sabah, Malaysia
| | - Fong Tyng Chee
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No 3, 90509 Sandakan Sabah, Malaysia.
| |
Collapse
|
12
|
Hu B, Li H, Tang C, Ke CQ, Geng M, Yao S, Xie Z, Ye Y. Withaphysalins from Medicinal and Edible Physalis minima and Their Anti-inflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5595-5609. [PMID: 35476903 DOI: 10.1021/acs.jafc.2c01519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Physalis minima is a medicinal and edible plant in China. In this study, 22 new withaphysalins, including a novel 1(10 → 6)abeo-14β-hydroxy one (1) and other 15 unusual 14β-hydroxy ones (3-4, 6-17, 19), were isolated from the whole herbs of P. minima together with two known analogues (23-24). Their structures were established by extensive analysis of high-resolution electrospray ionization mass spectrometry, IR, and 1D and 2D NMR spectroscopic data. Their absolute configurations were determined by electronic circular dichroism (ECD) spectra and single-crystal X-ray crystallographic analyses, together with DFT NMR calculations. All isolated compounds were evaluated for their anti-inflammatory activity via measuring the colorimetric reporter of the secreted embryonic alkaline phosphatase gene driven by an IFN-β minimal promoter fused to five copies of the NF-κB consensus transcriptional response element and three copies of the c-Rel binding site in LPS-stimulated human THP1-Dual cells. Compounds 2, 5, 6, 9, 10, 11, and 20 showed significant anti-inflammatory effects with IC50 values in the range of 3.01-13.39 μM. Among them, compounds 2 and 10 showed better anti-inflammatory effects to inhibit the secretion of IL-6, IL-1β, and TNF-α in LPS-stimulated THP1-Dual cells.
Collapse
Affiliation(s)
- Bintao Hu
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023 China
| | - Chunping Tang
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chang-Qiang Ke
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023 China
| | - Sheng Yao
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yang Ye
- State Key Laboratory of Drug Research and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201203, China
| |
Collapse
|
13
|
Recent Advances in the Chemistry and Therapeutic Evaluation of Naturally Occurring and Synthetic Withanolides. Molecules 2022; 27:molecules27030886. [PMID: 35164150 PMCID: PMC8840339 DOI: 10.3390/molecules27030886] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products are a major source of biologically active compounds that make promising lead molecules for developing efficacious drug-like molecules. Natural withanolides are found in many flora and fauna, including plants, algae, and corals, that traditionally have shown multiple health benefits and are known for their anti-cancer, anti-inflammatory, anti-bacterial, anti-leishmaniasis, and many other medicinal properties. Structures of these withanolides possess a few reactive sites that can be exploited to design and synthesize more potent and safe analogs. In this review, we discuss the literature evidence related to the medicinal implications, particularly anticancer properties of natural withanolides and their synthetic analogs, and provide perspectives on the translational potential of these promising compounds.
Collapse
|
14
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
15
|
Xue GM, Zhao CG, Xue JF, Chen H, Zhao ZZ, Si YY, Du K, Zhi YL, Feng WS. Fissisternoids A and B, two 2′,5′-quinodihydrochalcone-based meroterpenoid enantiomers with unusual carbon skeletons from Fissistigma bracteolatum. Org Chem Front 2022. [DOI: 10.1039/d1qo01404h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compound 1 represents an unprecedented meroterpenoid featuring a unique tricyclo [3,3,1,01′,5′] decane central framework and 2 possesses a rare 6/6/5/4 tetracyclic carbon skeleton were isolated from Fissistigma bracteolatum.
Collapse
Affiliation(s)
- Gui-Min Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chen-Guang Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jin-Feng Xue
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhen-Zhu Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ying-Ying Si
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Kun Du
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yan-Le Zhi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei-Sheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
16
|
Ko W, Kim KW, Liu Z, Dong L, Yoon CS, Lee H, Kim YC, Oh H, Lee DS, Kim SC. Macluraxanthone B inhibits LPS-induced inflammatory responses in RAW264.7 and BV2 cells by regulating the NF-κB and MAPK signaling pathways. Immunopharmacol Immunotoxicol 2021; 44:67-75. [PMID: 34821534 DOI: 10.1080/08923973.2021.2006215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The prenylated xanthones compounds, macluraxanthone B (MCXB) was isolated from the MeOH extracts of Cudrania tricuspidata. In this study, we investigated the effect of MCXB on inflammatory response. MATERIALS AND METHODS Anti-inflammatory effects of MCXB were examined in lipopolysaccharide (LPS)-stimulated RAW264.7 and BV2 cells. We observed their anti-inflammatory effects by ELISA, western blot analysis, and immunofluorescence. RESULTS MCXB significantly inhibited the LPS-stimulated production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6), and tumor necrosis factor (TNF)-α in RAW264.7 and BV2 cells. MCXB also reduced the LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 proteins. Incubating cells with MCXB prevented subsequent activation of the nuclear factor kappa B (NF-κB) signaling pathway by inhibiting the nuclear localization and DNA-binding activity of the p65 subunit induced by LPS. MCXB inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinases (MAPKs) in RAW264.7 and BV2 cells. MCXB induced the expression of heme oxygenase (HO)-1 protein, and the inhibitory effect of MCXB on nitric oxide production was partially reversed by a selective HO-1 inhibitor. DISCUSSION AND CONCLUSIONS Our results suggested that the anti-inflammatory effect of MCXB is partly regulated by HO-1 induction. In conclusion, MCXB could be a useful candidate for the development of therapeutic and preventive agents to treat inflammatory diseases.
Collapse
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, Republic of Korea
| | - Zhiming Liu
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Linsha Dong
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Chi-Su Yoon
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Sam Cheol Kim
- Department of Family Practice and Community Medicine, Chosun University College of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
17
|
Abstract
Covering: March 2010 to December 2020. Previous review: Nat. Prod. Rep., 2011, 28, 705This review summarizes the latest progress and perspectives on the structural classification, biological activities and mechanisms, metabolism and pharmacokinetic investigations, biosynthesis, chemical synthesis and structural modifications, as well as future research directions of the promising natural withanolides. The literature from March 2010 to December 2020 is reviewed, and 287 references are cited.
Collapse
Affiliation(s)
- Gui-Yang Xia
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China. .,Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shi-Jie Cao
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| | - Li-Xia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-Based Chinese Medicine, Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
18
|
Anti-Inflammatory Effects of the Fraction from the Leaves of Pyrus pyrifolia on LPS-Stimulated THP-1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4946241. [PMID: 34484392 PMCID: PMC8413047 DOI: 10.1155/2021/4946241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 01/22/2023]
Abstract
Pyrus pyrifolia Nakai (P. pyrifolia) has been traditionally used in East Asia to treat diseases such as phlegm, cough, hangover, and fever. However, there is no investigation that evaluates the biological activities of the leaves of P. pyrifolia. This study aims at describing the anti-inflammatory effects of PP, a bioactive fraction from the leaves of P. pyrifolia, in lipopolysaccharide (LPS)-stimulated THP-1 cells. Initially, PP decreased the protein and RNA expression of TNF-α, MCP-1, IL-8, and IL-6 induced by LPS. Moreover, PP attenuated the phosphorylation of p38, JNK, and ERK. In addition, after stimulation with LPS, the degradation of IκB-α was suppressed by PP, and the phosphorylation of IκB-α and p65 was suppressed by PP. Additionally, PP increased HO-1, which controls the production of inflammatory molecules, by activating Nrf2. These results indicated that PP could be used as an anti-inflammatory drug to promote wellness.
Collapse
|
19
|
Iridoids with anti-inflammatory effect from the aerial parts of Morinda officinalis How. Fitoterapia 2021; 153:104991. [PMID: 34265404 DOI: 10.1016/j.fitote.2021.104991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022]
Abstract
Morinda officinalis How was widely applied to alleviate symptom like impotence, menstrual disorders, osteoporosis, and rheumatoid arthritis. To expand resources usage, phytochemistry of the aerial parts was studied and the structures of compounds were elucidated based on NMR, HRESIMS, IR and UV. Moreover, the anti-inflammatory effect and possible mechanism were investigated by Griess kit, RT-qPCR, ELISA, western blot and molecular docking on LPS-induced inflammation in RAW 264.7 cells. Herein, we isolated and identified 16 iridoid derivatives, including seven new iridoids officinaloside A-G (1-7) and nine known iridoids. All the compounds were safe to RAW 264.7 cells. Luckily, compounds 5 and 6 showed inhibitory effect on production of NO, and decreased the expression of inflammatory cytokines at mRNA and protein levels in a dose-dependent way. The possible mechanism of their anti-inflammation may be the affinity interaction between 5 with COX-2 protein, and 6 with iNOS protein. Overall, compounds 5 and 6 exert promising effects in inhibiting inflammatory cytokines, indicating that they could be used as lead compounds for developing health products or clinical practice for inflammation, which provides a scientific basis for further sustainable development and usage of the aerial parts of Morinda officinalis How.
Collapse
|
20
|
Wang CF, Xu WJ, Xu Y, Wang YX, Liu JQ. Transcriptomic analyses reveal antiinflammatory mechanism of withanolides derived from the fruits of Physalis alkekengi L. var. franchetii. Phytother Res 2021; 35:2568-2578. [PMID: 33350549 DOI: 10.1002/ptr.6987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 01/02/2023]
Abstract
In China, the fruits of Physalis alkekengi L. var. franchetii, which are conventionally utilized as edible berry, have attracted wide attention due to its significant biological activities. In the present study, phytochemical studies on the fruits of Physalis plants afforded six compounds, including two new withanolides (1-2) and four known agnologues (3-6). The inhibitory effects of these compounds on the formation of nitric oxide (NO) stimulated by lipopolysaccharide (LPS) in RAW264.7 macrophages were evaluated. Physapubescin M (1), with IC50 value of 1.58 μM, was selected for further study. The protein expression of COX-2 and iNOS, and LPS-induced production of cytokines (IL-6, IL-1β and TNF-α) were reduced by physapubescin M (1) in a dose-dependent way. In addition, transcriptomic analyses were conducted to profile gene expression alterations in LPS-induced RAW264.7 cells upon treatment of physapubescin M (1) and the potential antiinflammatory mechanism of withnolides was mentioned. These results provide broad view to the underlying antiinflammatory mechanism of withnolides, and give a theoretical basis for the utilization of the fruits of P. alkekengi L. var. franchetii.
Collapse
Affiliation(s)
- Cui Fang Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China
| | - Wen Juan Xu
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Ying Xu
- School of Medicine, Huaqiao University, Quanzhou, China
| | - Yi Xuan Wang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China
| | - Jie Qing Liu
- School of Medicine, Huaqiao University, Quanzhou, China
| |
Collapse
|
21
|
Cho SH, Kim SR, Jeong MS, Choi M, Park S, Kim KN. Protective Effect of Brassica napus L. Hydrosols against Inflammation Response in RAW 264.7 Cells. Chin J Integr Med 2021; 27:273-279. [PMID: 33759044 DOI: 10.1007/s11655-021-3330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2019] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To demonstrate the anti-inflammatory activity of Brassica napus L. hydrosols (BNH) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. METHODS Composition analysis of BNH was conducted via gas chromatography-mass spectrometry after BNH were extracted. The nitric oxide (NO) production was measured using the Griess assay. Prostaglandin E2 (PGE2) production was evaluated with enzyme-linked immunosorbent assay. The effects of BNH on LPS-induced pro-inflammatory enzymes including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were evaluated using Western blot analysis. Furthermore, phosphorylation of nuclear factor-kappa B (NF-κB) and nuclear translocation of NF-κB p65 were evaluated with Western blot analysis and immunofluorescence staining, respectively. RESULTS Compared with LPS-stimulated cells, BNH markedly decreased the generation of NO and PGE2 in LPS-stimulated RAW 264.7 cells (P<0.01 or P<0.05). Moreover, BNH inhibited protein levels of iNOS and COX-2 (P<0.01). Phosphorylation of NF-κB and nuclear translocation of NF-κB p65 was significantly inhibited by BNH (P<0.01 or P<0.05). CONCLUSION The anti-inflammatory activities of BNH were mediated via blockage of the NF-κB signaling pathways in LPS-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Song Rae Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Miri Choi
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - SeonJu Park
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
22
|
Wei Z, Li T, Sun Y, Su H, Zeng Y, Wang Q, Kuang H. Daturataturin A, a withanolide in Datura metel L., induces HaCaT autophagy through the PI3K-Akt-mTOR signaling pathway. Phytother Res 2021; 35:1546-1558. [PMID: 33560581 DOI: 10.1002/ptr.6921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/02/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Daturataturin A (DTA), a withanolide compound in Datura metel L., exhibits excellent anti-inflammatory and anti-proliferative activities. Here, we report the study of DTA-induced proliferation and inflammation in human immortalized keratinocytes (HaCaTs) and the associated molecular mechanisms. HaCaTs are a model of the epidermal proliferative state of cells. The pharmacodynamics and mechanism of DTA were studied by western blot, immunofluorescence, apoptosis and proliferation detection, and real-time quantitative polymerase chain reaction. We confirmed that DTA induced HaCaT autophagy, which, in turn, induced HaCaT senescence and, ultimately, led to cell cycle arrest. DTA also negatively regulated inflammation through the activation of autophagy. This may be one of the mechanisms underlying the action of Datura metel L. preparation used for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zheng Wei
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tingting Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanping Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huilin Su
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuanning Zeng
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuhong Wang
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
23
|
Gil TY, Jin BR, Hong CH, Park JH, An HJ. Astilbe Chinensis ethanol extract suppresses inflammation in macrophages via NF-κB pathway. BMC Complement Med Ther 2020; 20:302. [PMID: 33028307 PMCID: PMC7542915 DOI: 10.1186/s12906-020-03073-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022] Open
Abstract
Background Macrophages play a crucial role in inflammation. Astilbe chinensis is one of perennial herbs belonging to the genus Astilbe. Plants in the genus have been used for pain, headaches, arthralgia, and chronic bronchitis. However, the effect of A.chinensis on inflammation remains unclear. To study the anti-inflammatory action of A.chinensis ethanol extract (ACE), we investigated the effect of ACE on the production of pro-inflammatory mediators and cytokines in macrophages. Methods We evaluated the effectiveness of ACE in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and thioglycollate (TG)-elicited peritoneal macrophages from male C57BL/6 mice. We measured the levels of pro-inflammatory mediators and cytokines, and examined the anti-inflammatory actions of ACE on nuclear factor κB (NF-κB) pathway in the macrophages. Western blot analysis and immunofluorescence microscopy were used to determine protein level and translocation, respectively. Results ACE suppressed the output of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines in stimulated macrophages via inhibiting the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. ACE suppressed mRNA expression of pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α). We examined the efficacies of ACE on NF-κB activation by measuring the expressions including IκB kinase (IKK), inhibitor of κB (IκB), and nuclear p65 proteins. In addition, the inhibition of NF-κB p65’s translocation was determined with immunofluorescence assay. Conclusion Our findings manifested that ACE inhibited LPS or TG-induced inflammation by blocking the NF-κB signaling pathway in macrophages. It indicated that ACE is a potential therapeutic mean for inflammation and related diseases.
Collapse
Affiliation(s)
- Tae-Young Gil
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83, Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Bo-Ram Jin
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83, Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | - Chul-Hee Hong
- Department of Korean Medicine Ophthalmology & Otolaryngology & Dermatology, College of Korean Medicine, Sangji University, 83, Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea
| | | | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83, Sangjidae-gil, Wonju-si, Gangwon-do, 26339, Republic of Korea.
| |
Collapse
|
24
|
Zhang XJ, Zhong WM, Liu RX, Wang YM, Luo T, Zou Y, Qin HY, Li XL, Zhang R, Xiao WL. Structurally Diverse Labdane Diterpenoids from Leonurus japonicus and Their Anti-inflammatory Properties in LPS-Induced RAW264.7 Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:2545-2558. [PMID: 32935986 DOI: 10.1021/acs.jnatprod.9b00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A phytochemical study on the aerial parts of Leonurus japonicus led to the isolation and identification of 38 labdane diterpenoids, including 18 new (1, 2, 11, 12, 16-21, 24, 30-34, 37, 38) and 20 known (3-10, 13-15, 22, 23, 25-29, 35, 36) analogues. Their structures were elucidated based on physical data analysis, including 1D and 2D NMR, HRMS, UV, IR, and X-ray diffraction. The structure of the known compound 4 was confirmed by single-crystal X-ray diffraction data. These compounds can be divided into furanolabdane (1-10), tetrahydrofuranolabdane (11-15), lactonelabdane (16-23), labdane (24-29), and seco-labdane (30-38) type diterpenoids. All compounds were screened by lipopolysaccharide (LPS)-induced nitric acid (NO) production in RAW264.7 cells to evaluate anti-inflammatory effects. Compounds 1, 5, 10-13, 16-19, 31-33, and 38 inhibited NO production with IC50 values lower than 50 μM, with compound 30 being the most active, with an IC50 value of 3.9 ± 1.7 μM. Further studies show that compound 30 inhibits pro-inflammatory cytokine production and IKK α/β phosphorylation and restores the IκB expression levels in the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xing-Jie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Wei-Mao Zhong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Rui-Xue Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Yong-Mei Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ting Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Yan Zou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Hua-Yan Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Xiao-Li Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Wei-Lie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
25
|
Ko W, Kim KW, Quang TH, Yoon CS, Kim N, Lee H, Kim SC, Woo ER, Kim YC, Oh H, Lee DS. Cudraflavanone B Isolated from the Root Bark of Cudrania tricuspidata Alleviates Lipopolysaccharide-Induced Inflammatory Responses by Downregulating NF-κB and ERK MAPK Signaling Pathways in RAW264.7 Macrophages and BV2 Microglia. Inflammation 2020; 44:104-115. [PMID: 32766955 DOI: 10.1007/s10753-020-01312-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A prenylated flavonoid, cudraflavanone B, is isolated from Cudrania tricuspidata. In this study, we investigated its anti-inflammatory and anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 and BV2 cells. In our initial study of the anti-inflammatory effects of cudraflavanone B the production of nitric oxide and prostaglandin E2 was attenuated in LPS-stimulated RAW264.7 and BV2 cells. These inhibitory effects were related to the downregulation of inducible nitric oxide synthase and cyclooxygenase-2. In addition, cudraflavanone B suppressed the production of pro-inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α in LPS-induced RAW264.7 and BV2 cells. Moreover, the evaluation of the molecular mechanisms underlying the anti-inflammatory effects of cudraflavanone B revealed that the compound attenuated the nuclear factor-kappa B signaling pathway in LPS-induced RAW264.7 and BV2 cells. In addition, cudraflavanone B inhibited the phosphorylation of extracellular signal-regulated kinase mitogen-activated protein kinase signaling pathways in these LPS-stimulated cells. Thus, cudraflavanone B suppressed nuclear factor-κB, and extracellular signal-regulated kinase mitogen-activated protein kinase mediated inflammatory pathways, demonstrating its potential in the treatment of neuroinflammatory conditions.
Collapse
Affiliation(s)
- Wonmin Ko
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Chi-Su Yoon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, 28116, Republic of Korea
| | - Nayeon Kim
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Sam-Cheol Kim
- Department of Family Practice and Community Medicine, Chosun University College of Medicine, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
26
|
Huang M, He JX, Hu HX, Zhang K, Wang XN, Zhao BB, Lou HX, Ren DM, Shen T. Withanolides from the genus Physalis: a review on their phytochemical and pharmacological aspects. J Pharm Pharmacol 2019; 72:649-669. [DOI: 10.1111/jphp.13209] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/16/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Objectives
Withanolides are a group of modified C28 ergostane-type steroids with a C-22, C-26 δ-lactone side chain or a C-23, C-26 γ-lactone side chain. They enjoy a limited distribution in the plant kingdom and predominantly occur in several genera of Solanaceae. Of which, the genus Physalis is an important resource for this type of natural molecules. The present review aims to comprehensively illustrate the structural characteristics and classification of withanolides, and particularly focus on the progression on phytochemical and pharmacological aspects of withanolides from Physalis ranging from January 2015 to June 2019.
Key findings
Approximately 351 natural withanolides with novel and unique structures have so far been identified from genus Physalis, mainly isolated from the species of P. angulata and P. peruviana. Withanolides demonstrated diverse biological activity, such as anticancer, anti-inflammatory, antimicrobial, immunoregulatory, trypanocidal and leishmanicidal activity. Their observed pharmacological functions supported the uses of Physalis species in traditional or folk medicines.
Summary
Due to their unique structure skeleton and potent bioactivities, withanolides are regarded to be promising drug candidates, particularly for developing anticancer and anti-inflammatory agents. Further investigations for discovering novel withanolides of genus Physalis, exploiting their pharmacological values and evaluating their potency as therapeutic agents are significant work.
Collapse
Affiliation(s)
- Min Huang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Xiang He
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Xin Hu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Kan Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Bao-Bing Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
27
|
Five new 5,6-β-epoxywithanolides from Physalis minima. Fitoterapia 2019; 140:104413. [PMID: 31705953 DOI: 10.1016/j.fitote.2019.104413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022]
Abstract
Five new 5,6-β-epoxywithanolides (1-5) were isolated from the whole plants of Physalis minima L. Their structural elucidations were achieved by the extensive spectroscopic analysis (IR, UV, HR-ESI-MS, 1D-NMR, and 2D-NMR). The isolates were evaluated for their anti-inflammatory activities on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells and cytotoxic activities against three cancer cell lines, viz. A549 lung adenocarcinoma cells, SMMC-7721 hepatic carcinoma cells and MCF-7 breast cancer cells by using the MTT-based assay. All of them possessed moderate inhibition to the production of nitric oxide with IC50 values from 42.18 to 73.26 μM, and the IC50 values of the cytotoxic activities were in the range of 31.25 to 80.14 μM.
Collapse
|
28
|
Withaminimas A-F, six withanolides with potential anti-inflammatory activity from Physalis minima. Chin J Nat Med 2019; 17:469-474. [PMID: 31262459 DOI: 10.1016/s1875-5364(19)30054-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 11/24/2022]
Abstract
Withaminimas A-F (1-6), six new withaphysalin-type withanolides were isolated from the aerial parts of Physalis minima L.. The structures of these compounds were elucidated through a variety of spectroscopic techniques including HR-MS, NMR, and ECD. Compound 1 belongs to rare 18-norwithanolides, and 2-3 were 13/14-secowithanolides. According to the traditional usage of P. minima, inhibitory effects on nitric oxide (NO) production in lipopolysaccaride-activated RAW264.7 macrophages were evaluated, and compounds 1-4 exhibited significant inhibitory effects with IC50 values among 3.91-18.46 μmol·L-1.
Collapse
|
29
|
Castro SJ, Casero CN, Padrón JM, Nicotra VE. Selective Antiproliferative Withanolides from Species in the Genera Eriolarynx and Deprea. JOURNAL OF NATURAL PRODUCTS 2019; 82:1338-1344. [PMID: 31070367 DOI: 10.1021/acs.jnatprod.9b00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Four new withanolides (2-5), together with 4β,7β,20-trihydroxy-1-oxowitha-2,5,24-trienolide (1), were isolated from the aerial parts of Eriolarynx iochromoides. The antiproliferative activity of all compounds purified from E. iochromoides together with four withaphysalins and four physangulidines isolated previously from three Deprea species were evaluated against human solid tumor cell lines. Four withanolides showed antiproliferative activity comparable in potency to cisplatin. Selectivity toward cancer cells and interaction with P-glycoprotein of the active withanolides were evaluated.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/drug effects
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Screening Assays, Antitumor
- Humans
- Molecular Structure
- Nuclear Magnetic Resonance, Biomolecular
- Plant Components, Aerial/chemistry
- Solanaceae/chemistry
- Structure-Activity Relationship
- Withanolides/isolation & purification
- Withanolides/pharmacology
Collapse
Affiliation(s)
- Sebastián J Castro
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) , Universidad Nacional de Córdoba , Casilla de Correo 495 , 5000 Córdoba , Argentina
| | - Carina N Casero
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) , Universidad Nacional de Córdoba , Casilla de Correo 495 , 5000 Córdoba , Argentina
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN) , Universidad de La Laguna , C/Astrofísico Francisco Sánchez 2 , 38206 La Laguna , Spain
| | - Viviana E Nicotra
- Facultad de Ciencias Químicas, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) , Universidad Nacional de Córdoba , Casilla de Correo 495 , 5000 Córdoba , Argentina
| |
Collapse
|
30
|
An F, Wang X, Yang M, Luo J, Kong L. Bioactive A-ring rearranged limonoids from the root barks of Walsura robusta. Acta Pharm Sin B 2019; 9:545-556. [PMID: 31193828 PMCID: PMC6543057 DOI: 10.1016/j.apsb.2019.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Accepted: 02/15/2019] [Indexed: 01/09/2023] Open
Abstract
Screening active natural products, rapid identification, and accurate isolation are of great important for modern natural lead compounds discovery1. We hereby reported the isolation of seven new neotecleanin-type limonoids (1-7), seven new limonoids with 5-oxatricyclo[5.4.0.11., 4.]hendecane ring system (8-14), and two new precursors (15-16) together with four known limonoids (17-20) from the root barks of Walsura robusta. Their structures, including their absolute configurations, were elucidated based on analyses of HR-ESI-MS, 1D/2D NMR, ECD spectrum calculations and single-crystal X-ray diffraction techniques. Compounds 2, 8, 9, 11, 13, 14, 18 showed significant anti-inflammatory activities in LPS-induced RAW 264.7 cell line, BV2 microglial cells, and Propionibacterium acnes-stimulated THP-1 human monocytic cells. Walrobsin M (11) exhibited anti-inflammatory activity with IC50 value of 7.96±0.36 μmol/L, and down-regulated phosphorylation levels of ERK and p38 in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
31
|
Phragmalin-type limonoids with structural diversity at D-ring from the fruit shells of Chukrasia tabularis. Fitoterapia 2019; 134:188-195. [DOI: 10.1016/j.fitote.2019.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/18/2023]
|
32
|
|
33
|
Li YR, Xu WJ, Wei SS, Lu WJ, Luo J, Kong LY. Hyperbeanols F-Q, diverse monoterpenoid polyprenylated acylphloroglucinols from the flowers of Hypericum beanii. PHYTOCHEMISTRY 2019; 159:56-64. [PMID: 30578929 DOI: 10.1016/j.phytochem.2018.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Hyperbeanols F-Q, which are twelve undescribed monoterpenoid polyprenylated acylphloroglucinols, and four known analogues were isolated from the dried flowers of Hypericum beanii. Their structures were elucidated by detailed HRESIMS and 1D and 2D NMR data analyses. The absolute configurations of hyperbeanols FH were established by the circular dichroism (CD) exciton chirality method. The plausible biosynthetic pathway speculation of hyperbeanols F-Q indicated that diverse reactions, including prenylation, 1,6-ene reaction, rearrangement, epoxidation and dehydration, contributed to their diverse skeletons. Hyperbeanols FI, O and hypercalin B exhibited moderate nitric oxide (NO) inhibitory activities in LPS-induced RAW 264.7 macrophages, with IC50 values in the range of 17.11-28.74 μM.
Collapse
Affiliation(s)
- Yi-Ran Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wen-Jun Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shan-Shan Wei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wei-Jia Lu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jun Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
34
|
Jiang K, Guo S, Yang C, Yang J, Chen Y, Shaukat A, Zhao G, Wu H, Deng G. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-κB pathway. Int Immunopharmacol 2018; 64:140-150. [DOI: 10.1016/j.intimp.2018.08.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/07/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022]
|
35
|
Wu J, Li X, Zhao J, Wang R, Xia Z, Li X, Liu Y, Xu Q, Khan IA, Yang S. Anti-inflammatory and cytotoxic withanolides from Physalis minima. PHYTOCHEMISTRY 2018; 155:164-170. [PMID: 30125848 DOI: 10.1016/j.phytochem.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 05/27/2023]
Abstract
Six undescribed withanolides were isolated and characterized during the investigation of anti-inflammatory and cytotoxic constituents from the whole plants of Physalis minima L. Their structures were elucidated by extensive spectroscopic analyses (IR, UV, HR-ESI-MS, 1D-NMR, and 2D-NMR), and their anti-inflammatory and cytotoxic activities were evaluated in vitro. All the compounds exhibited anti-inflammatory ability via inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. Moderate cytotoxic activities against A549 lung adenocarcinoma cells, SMMC-7721 hepatic carcinoma cells and MCF-7 breast cancer cells with IC50 values in the range of 40.01-82.17 μM were observed for these withanolides.
Collapse
Affiliation(s)
- Jiangping Wu
- College of Pharmaceutical Science, Bozhou Vocational and Technical College, Bozhou, 236800, China; College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xia Li
- Department I of Pharmacology, Clinical Pharmacology, Cologne University Hospital, Cologne, 50931, Germany
| | - Jianping Zhao
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, 38677, USA
| | - Ruijuan Wang
- College of Pharmaceutical Science, Bozhou Vocational and Technical College, Bozhou, 236800, China
| | - Zifei Xia
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Xiaoran Li
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China
| | - Yanli Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| | - Qiongming Xu
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China.
| | - Ikhlas A Khan
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China; National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, MS, 38677, USA
| | - Shilin Yang
- College of Pharmaceutical Science, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Science, College of Pharmaceutical Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| |
Collapse
|
36
|
Huang W, Huang L, Wen M, Fang M, Deng Y, Zeng H. Long non‑coding RNA DILC is involved in sepsis by modulating the signaling pathway of the interleukin‑6/signal transducer and activator of transcription 3/Toll‑like receptor 4 axis. Mol Med Rep 2018; 18:5775-5783. [PMID: 30365067 DOI: 10.3892/mmr.2018.9559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/28/2017] [Indexed: 11/05/2022] Open
Abstract
Sepsis is characterized by systemic inflammatory responses. In the present study, the role of deleted in liver cancer 1 (DILC), interleukin (IL)‑6, signal transducer and activator of transcription 3 (STAT3), and Toll‑like receptor 4 (TLR4) in the pathogenesis of sepsis was investigated. Reverse transcription‑quantitative polymerase chain reaction analysis and western blotting were performed to evaluate the effects of lipopolysaccharide (LPS) on the expression of DILC, IL‑6, STAT3, and TLR4, in addition to the effects of DILC and IL‑6 on the synthesis of tumor necrosis factor (TNF‑α), chemokine ligand 5 (CCL5), E‑selectin and C‑X‑C motif chemokine receptor 1 (CXCR1). In addition, the regulatory association between DILC, IL‑6, STAT3 and TLR4 was investigated. LPS reduced the expression level of DILC, and enhanced the expression of IL‑6, STAT3 and TLR4. DILC directly and negatively regulated the synthesis of IL‑6, as demonstrated by the markedly decreased luciferase activity in cells transfected with a wild‑type DILC plasmid. On the other hand, compared with the scramble control, DILC and IL‑6 small interfering (si)RNAs significantly suppressed the expression of IL‑6, STAT3 and TLR4. In addition, DILC siRNA enhanced the expression of IL‑6, STAT3 and TLR4, whereas the expression levels of TNF‑α, CCL5, E‑selectin and CXCR1 in LPS‑treated THP‑1 cells were downregulated following transfection with DILC and IL‑6 siRNAs. In patients with sepsis, DILC expression was inhibited, although the expression levels of IL‑6, STAT3 and TLR4 were upregulated. In addition, the expression levels of TNF‑α, CCL5, E‑selectin and CXCR1 in patients with sepsis were higher compared with normal subjects. Therefore, DILC may mediate the crosstalk between the cascades of IL‑6/STAT3 and TNF‑α signaling, indicating that DILC may act as a prognostic biomarker of sepsis, and may serve as a potential therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- Weiping Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Ming Fang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hongke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
37
|
Thrombospondin-1 Production Regulates the Inflammatory Cytokine Secretion in THP-1 Cells Through NF-κB Signaling Pathway. Inflammation 2018. [PMID: 28634844 DOI: 10.1007/s10753-017-0601-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. Recent data have shown that macrophages from TSP-1-deficient mice have a reduced inflammatory phenotype, suggesting that TSP-1 plays a part in macrophage activation. DNA microarray approach revealed that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) may induce the enhanced TSP-1 expression in human monocytes, suggesting a role of TSP-1-mediated pathogenesis in periodontitis. Until recently, the function of TSP-1 has been a matter of debate. In this study, we explored the role of TSP-1 in inflammatory cytokine secretions and its putative mechanism in pathogenesis of periodontitis. We demonstrated that TSP-1 expression was significantly upregulated in gingival tissues with periodontitis and in P. gingivalis LPS-stimulated THP-1 cells. Deficiency of TSP-1 by transfecting siRNAs decreased IL-6, IL-1β, and TNF-α secretions in THP-1 cells, whereas overexpression of TSP-1 resulted in an upregulation of IL-6, IL-1β, and TNF-α productions. Additional experiments showed that Pyrrolidine dithiocarbamate (PDTC) inhibited IL-6, IL-1β, and TNF-α expression induced by overexpression of TSP-1, accompanying with downregulation of phosphorylated p65 and IκBα protein levels in response to P. gingivalis LPS. These results indicated that TSP-1 played a significant role in P. gingivalis LPS-initiated inflammatory cytokines (IL-6, IL-1β, and TNF-α) secretions of THP-1 cells, and the NF-κB signaling is involved in its induction of expression. Thus, TSP-1 effectively elevated P. gingivalis LPS-induced inflammation mediated by the NF-κB pathway and may be critical for pathology of periodontitis.
Collapse
|
38
|
Feng S, Zhu Y, Yu C, Jiao K, Jiang M, Lu J, Shen C, Ying Q, Wang H. Development of Species-Specific SCAR Markers, Based on a SCoT Analysis, to Authenticate Physalis (Solanaceae) Species. Front Genet 2018; 9:192. [PMID: 29910824 PMCID: PMC5992434 DOI: 10.3389/fgene.2018.00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/11/2018] [Indexed: 11/13/2022] Open
Abstract
Physalis is an important genus in the Solanaceae family. It includes many species of significant medicinal value, edible value, and ornamental value. However, many Physalis species are easily confused because of their similar morphological traits, which hinder the utilization and protection of Physalis resources. Therefore, it is necessary to create fast, sensitive, and reliable methods for the Physalis species authentication. Intended for that, in this study, species-specific sequence-characterized amplified region (SCAR) markers were developed for accurate identification of the closely related Physalis species P. angulata, P. minima, P. pubescens, and P. alkekengi var. franchetii, based on a simple and novel marker system, start codon targeted (SCoT) marker. A total of 34 selected SCoT primers yielded 289 reliable SCoT loci, of which 265 were polymorphic. Four species-specific SCoT fragments (SCoT3-1404, SCoT3-1589, SCoT5-550, and SCoT36-520) from Physalis species were successfully identified, cloned, and sequenced. Based on these selected specific DNA fragments, four SCAR primers pairs were developed and named ST3KZ, ST3MSJ, ST5SJ, and ST36XSJ. PCR analysis of each of these primer pairs clearly demonstrated a specific amplified band in all samples of the target Physalis species, but no amplification was observed in other Physalis species. Therefore, the species-specific SCAR primer pairs developed in this study could be used as powerful tools that can rapidly, effectively, and reliably identify and differentiate Physalis species.
Collapse
Affiliation(s)
- Shangguo Feng
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yujia Zhu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenliang Yu
- The Institute of Vegetable, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaili Jiao
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Mengying Jiang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qicai Ying
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
39
|
Zhou MM, Zhang WY, Li RJ, Guo C, Wei SS, Tian XM, Luo J, Kong LY. Anti-inflammatory activity of Khayandirobilide A from Khaya senegalensis via NF-κB, AP-1 and p38 MAPK/Nrf2/HO-1 signaling pathways in lipopolysaccharide-stimulated RAW 264.7 and BV-2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:152-163. [PMID: 29655681 DOI: 10.1016/j.phymed.2018.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/05/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Immunocytes-involved inflammation is considered to modulate the damage in various diseases. Herein, novel therapeutics suppressing over-activation of immunocytes could prove an effective strategy to prevent inflammation-related diseases. PURPOSE The objective of this study is to evaluate the anti-inflammatory activity of Khayandirobilide A (KLA), a new andirobin-type limonoid with modified furan ring isolated from the Khaya senegalensis (Desr.) A. Juss., and to explore its potential underlying mechanisms in LPS-stimulated inflammatory models. METHODS The structure of KLA was elucidated on the basis of 1D- and 2D-NMR spectroscopic data as well as HR-ESI-MS. As for its anti-inflammatory effect, the production of pro-inflammatory mediators and cytokines in LPS-stimulated RAW 264.7 and BV-2 cells were measured by Griess reagent, ELISA and qRT-PCR. The relevant proteins including nuclear factor κB (NF-κB), p-AKT, p-p38 and Nrf2/HO-1 were investigated by western blot. Nuclear localisations of NF-κB, activator protein-1 (AP-1) and Nrf2 were also examined by western blot and immunofluorescence. RESULTS KLA could inhibit the production of LPS-induced NO with IC50 values of 5.04 ± 0.14 µM and 4.97 ± 0.5 µM in RAW 264.7 and BV-2 cells, respectively. KLA also attenuated interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels. Further mechanistic studies demonstrated the activation of NF-κB and AP-1 were reduced by KLA. Moreover, KLA elevated expression of heme oxygenase-1(HO-1) via inducing Keap1 autophagic degradation and promoting Nrf2 nuclear translocation. Despite KLA induced the phosphorylation of mitogen-activated protein kinases (MAPKs) family, inhibiting the phosphorylation of p38 by its specific inhibitor SB203580 attenuated the degradation of KLA-induced Keap1, and then reduced KLA-induced Nrf2 nuclear translocation and HO-1 expression. Furthermore, SB203580, Brusatol (a Nrf2 specific inhibitor) and ZnPP (a HO-1 specific inhibitor) could partly reverse the suppressive effects of KLA on LPS-induced NO production and mRNA levels of pro-inflammatory genes. CONCLUSION These data displayed that KLA possessed anti-inflammatory activity, which was attributed to inhibit the release of LPS-stimulated inflammatory mediators via suppressing the activation of NF-κB, AP-1, and upregulating the induction of p38 MAPK/Nrf2-mediated HO-1.
Collapse
Affiliation(s)
- Miao-Miao Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wen-Yan Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Rui-Jun Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Chao Guo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Shan-Shan Wei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Meng Tian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
40
|
Park HA, Lee JW, Kwon OK, Lee G, Lim Y, Kim JH, Paik JH, Choi S, Paryanto I, Yuniato P, Kim DY, Ryu HW, Oh SR, Lee SJ, Ahn KS. Physalis peruviana L. inhibits airway inflammation induced by cigarette smoke and lipopolysaccharide through inhibition of extracellular signal-regulated kinase and induction of heme oxygenase-1. Int J Mol Med 2017; 40:1557-1565. [PMID: 28949372 DOI: 10.3892/ijmm.2017.3139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/08/2017] [Indexed: 11/06/2022] Open
Abstract
Physalis peruviana L. (PP) is a medicinal herb that has been confirmed to have several biological activities, including anticancer, antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the protective effect of PP on cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced pulmonary inflammation. Treatment with PP significantly reduced the influx of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung of mice with CS- and LPS-induced pulmonary inflammation. PP also decreased the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF. PP effectively attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and the activation of extracellular signal-regulated kinase (ERK) in the lung. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression were increased by PP treatment. In an in vitro experiment, PP reduced the mRNA expression of TNF-α and MCP-1, and the activation of ERK in CS extract-stimulated A549 epithelial cells. Furthermore, PP increased the activation of Nrf2 and the expression of HO-1 in A549 cells. These findings suggest that PP has a therapeutic potential for the treatment of pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Gilhye Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Yourim Lim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Imam Paryanto
- Center for Pharmaceutical and Medical Technology, The Agency for the Assessment and Application of Technology (BPPT), Tangerang, Banten 15314, Indonesia
| | - Prasetyawan Yuniato
- Center for Pharmaceutical and Medical Technology, The Agency for the Assessment and Application of Technology (BPPT), Tangerang, Banten 15314, Indonesia
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk 28116, Republic of Korea
| |
Collapse
|
41
|
An FL, Sun DM, Li RJ, Zhou MM, Yang MH, Yin Y, Kong LY, Luo J. Walrobsins A and B, Two Anti-inflammatory Limonoids from Root Barks of Walsura robusta. Org Lett 2017; 19:4568-4571. [DOI: 10.1021/acs.orglett.7b02173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fa-Liang An
- Jiangsu Key Laboratory of
Bioactive Natural Product Research and State Key Laboratory of Natural
Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Dong-Mei Sun
- Jiangsu Key Laboratory of
Bioactive Natural Product Research and State Key Laboratory of Natural
Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Rui-Jun Li
- Jiangsu Key Laboratory of
Bioactive Natural Product Research and State Key Laboratory of Natural
Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Miao-Miao Zhou
- Jiangsu Key Laboratory of
Bioactive Natural Product Research and State Key Laboratory of Natural
Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of
Bioactive Natural Product Research and State Key Laboratory of Natural
Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of
Bioactive Natural Product Research and State Key Laboratory of Natural
Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of
Bioactive Natural Product Research and State Key Laboratory of Natural
Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| | - Jun Luo
- Jiangsu Key Laboratory of
Bioactive Natural Product Research and State Key Laboratory of Natural
Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China
| |
Collapse
|
42
|
Pinus densiflora needle supercritical fluid extract suppresses the expression of pro-inflammatory mediators iNOS, IL-6 and IL-1β, and activation of inflammatory STAT1 and STAT3 signaling proteins in bacterial lipopolysaccharide-challenged murine macrophages. ACTA ACUST UNITED AC 2017; 25:18. [PMID: 28778215 PMCID: PMC5544993 DOI: 10.1186/s40199-017-0184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022]
Abstract
Background Regulation of a persistently-activated inflammatory response in macrophages is an important target for treatment of various chronic diseases. Pine needle extracts are well known to have potent immunomodulatory effects. The current study was designed to evaluate the effects of Pinus densiflora needle supercritical fluid extract (PDN-SCFE) on bacterial lipopolysaccharide (LPS)-induced inflammatory response in RAW 264.7 murine macrophages. Methods Cytotoxic effect of PDN-SCFE was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The levels of nitric oxide (NO) and the corresponding enzyme, inducible nitric oxide synthase (iNOS), were quantified by Griess and immunoblotting methods, respectively. The levels of cytokines were quantified using commercial ELISA kits. Quantitative real-time PCR (qRT-PCR) analysis was performed to assess the mRNA expression of iNOS and cytokines. To elucidate the mechanism of action, the involvement of nuclear transcription factor-kappa B (NFκB), mitogen activated protein kinases (MAPKs) and Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathways were examined by an immunoblotting method. In addition, the cellular localization of NFκB was analyzed by immunofluorescence staining. Results MTT assay results indicated that PDN-SCFE is non-toxic to RAW 264.7 cells up to a maximum assayed concentration of 40 μg/mL. The PDN-SCFE exhibited a concentration-dependent inhibitory effect on LPS-induced NO production by down regulating the expression of iNOS. In addition, the extract suppressed the LPS-induced expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β) but not tumour necrosis factor-α (TNFα). Mechanistic studies revealed that PDN-SCFE does not influence the NFκB and MAPK pathways. However, it showed a significant inhibitory effect on LPS-induced activation of STAT1 and STAT3 proteins in macrophages. Conclusion The present findings revealed that the anti-inflammatory activity of PDN-SCFE in LPS-challenged RAW 264.7 macrophages is probably caused by the suppression of the JAK-STAT signaling pathway. Graphical Abstract ![]()
Collapse
|
43
|
Abstract
A new withanolide (1), physagulide P, together with five known withanolides (2-6), was isolated from the aerial parts of Physalis angulata L. The structure of new compound was elucidated on the basis of extensive spectroscopic techniques, including 1D, 2D NMR and HRESIMS. The activity screening indicated that compound 1 showed significant cytotoxicities against the human osteosarcoma cell line MG-63, HepG-2 hepatoma cells and breast cancer cells MDA-MB-231 with the IC50 value of 3.50, 4.22 and 15.74 μM.
Collapse
Affiliation(s)
- Caiyun Gao
- a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Ruijun Li
- a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Miaomiao Zhou
- a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Yanwei Yang
- a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Lingyi Kong
- a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Jun Luo
- a State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry , China Pharmaceutical University , Nanjing , People's Republic of China
| |
Collapse
|
44
|
Zhao G, Jiang K, Wu H, Qiu C, Deng G, Peng X. Polydatin reduces Staphylococcus aureus lipoteichoic acid-induced injury by attenuating reactive oxygen species generation and TLR2-NFκB signalling. J Cell Mol Med 2017; 21:2796-2808. [PMID: 28524642 PMCID: PMC5661256 DOI: 10.1111/jcmm.13194] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus (S. aureus) causes severe inflammation in various infectious diseases, leading to high mortality. The clinical application of antibiotics has gained a significant curative effect. However, it has led to the emergence of various resistant bacteria. Therefore, in this study, we investigated the protective effect of polydatin (PD), a traditional Chinese medicine extract, on S. aureus lipoteichoic acid (LTA)-induced injury in vitro and in vivo. First, a significant improvement in the pathological conditions of PD in vivo was observed, suggesting that PD had a certain protective effect on LTA-induced injury in a mouse model. To further explore the underlying mechanisms of this protective effect of PD, LTA-induced murine macrophages were used in this study. The results have shown that PD could reduce the NF-κB p65, and IκBα phosphorylation levels increased by LTA, resulting in a decrease in the transcription of pro-inflammatory factors, such as TNF-α, IL-1β and IL-6. However, LTA can not only activate NF-κB through the recognition of TLR2 but also increase the level of intracellular reactive oxygen species (ROS), thereby activating NF-κB signalling. We also detected high levels of ROS that activate caspases 9 and 3 to induce apoptosis. In addition, using a specific NF-κB inhibitor that could attenuate apoptosis, namely NF-κB p65, acted as a pro-apoptotic transcription factor in LTA-induced murine macrophages. However, PD could inhibit the generation of ROS and NF-κB p65 activation, suggesting that PD suppressed LTA-induced injury by attenuating ROS generation and TLR2-NFκB signalling.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|