1
|
Sicard L, Maillard S, Mbita Akoa D, Torrens C, Collignon AM, Coradin T, Chaussain C. Sclerostin Antibody-Loaded Dense Collagen Hydrogels Promote Critical-Size Bone Defect Repair. ACS Biomater Sci Eng 2024; 10:6451-6464. [PMID: 39269225 DOI: 10.1021/acsbiomaterials.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
The management of extensive bone loss remains a clinical challenge. Numerous studies are underway to develop a combination of biomaterials, biomolecules, and stem cells to address this challenge. In particular, the systemic administration of antibodies against sclerostin, a regulator of bone formation, was recently shown to enhance the bone repair efficiency of dense collagen hydrogels (DCHs) hosting murine dental pulp stem cells (mDPSCs). The aim of the present study was to assess whether these antibodies, encapsulated and released from DCHs, could promote craniofacial bone repair by the local inhibition of sclerostin. In vitro studies showed that antibody loading modified neither the hydrogel structure nor the viability of seeded mDPSCs. When implanted in a mouse calvaria critical-size bone defect, antibody-loaded DCHs showed repair capabilities similar to those of acellular unloaded DCHs combined with antibody injections. Importantly, the addition of mDPSCs provided no further benefit. Altogether, the local delivery of antisclerostin antibodies from acellular dense collagen scaffolds is highly effective for bone repair. The drastic reduction in the required amount of antibody compared to systemic injection should reduce the cost of the procedure, making the strategy proposed here a promising therapeutic approach for large bone defect repair.
Collapse
Affiliation(s)
- Ludovic Sicard
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
| | - Sophie Maillard
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
| | - Daline Mbita Akoa
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Coralie Torrens
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
| | - Anne-Margaux Collignon
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 Place Jussieu, 75005 Paris, France
| | - Catherine Chaussain
- Université Paris Cité, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d'Imagerie du Vivant (PIV), 92120 Montrouge, France
- AP-HP, Dental Medicine Departments, Bretonneau and Louis Mourier Hospitals, GHN-Université Paris Cité, 75018 Paris, France
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université Paris Cité, 75018 Paris, France
| |
Collapse
|
2
|
Lazăr AI, Aghasoleimani K, Semertsidou A, Vyas J, Roșca AL, Ficai D, Ficai A. Graphene-Related Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1092. [PMID: 36985986 PMCID: PMC10051126 DOI: 10.3390/nano13061092] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.
Collapse
Affiliation(s)
- Andreea-Isabela Lazăr
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | | | - Anna Semertsidou
- Charles River Laboratories, Margate, Manston Road, Kent CT9 4LT, UK
| | - Jahnavi Vyas
- Drug Development Solution, Newmarket road, Ely, CB7 5WW, UK
| | - Alin-Lucian Roșca
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050045 Bucharest, Romania
| |
Collapse
|
3
|
Wang Y, Yan Z, Liu W, Liu C, Xu N, Wu Y, Sun F, Wang X, Qian Y, Jiang L, Sun X. Biomechanically-Adapted Immunohydrogels Reconstructing Myelin Sheath for Peripheral Nerve Regeneration. Adv Healthc Mater 2022; 11:e2201596. [PMID: 35920510 DOI: 10.1002/adhm.202201596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/28/2022] [Indexed: 01/28/2023]
Abstract
Myelin sheath reconstruction plays an important role in peripheral nerve regeneration. But the hindered reconstruction of myelin sheath, due to the inadequate repair phenotypes of macrophages and Schwann cells after peripheral nerve injury, often causes poor functional nerve recovery. Here, biomechanically-adapted immunohydrogels are prepared as the FK506-loaded platforms and nerve tissue engineering scaffolds to reconstruct myelin sheath for peripheral nerve regeneration. By immunofluorescent staining, an increase in the proportion of F4/80+ markers reveals that the biomechanically-adapted scaffolds facilitate recruitment of macrophages. Furthermore, the high Interleukin 10 (IL-10) mRNA expression level suggests the anti-inflammation learning effects of FK506 in vitro, which is further confirmed by a high CD206/TNF-α ratio in the FK506 Gel group in vivo. The immune learning effects are positively related to the increase in compactness and thickness of myelin sheath, indicating the synergy of structural reconstruction of myelin sheath and M2 phenotype polarization of macrophages. All these data indicate that the biomechanically-adapted immunohydrogels enhance recruitment of macrophages, educate M2 polarization of macrophages and promote a neuroprotective environment, which in consequence reconstructs myelin sheath for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| | - Wenjun Liu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| | - Chunlin Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Nan Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yixian Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Fengbo Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, P. R. China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, P. R. China
| | - Le Jiang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Darvish DM. Collagen fibril formation in vitro: From origin to opportunities. Mater Today Bio 2022; 15:100322. [PMID: 35757034 PMCID: PMC9218154 DOI: 10.1016/j.mtbio.2022.100322] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Sometimes, to move forward, it is necessary to look back. Collagen type I is one of the most commonly used biomaterials in tissue engineering and regenerative medicine. There are a variety of collagen scaffolds and biomedical products based on collagen have been made, and the development of new ones is still ongoing. Materials, where collagen is in the fibrillar form, have some advantages: they have superior mechanical properties, higher degradation time and, what is most important, mimic the structure of the native extracellular matrix. There are some standard protocols for the formation of collagen fibrils in vitro, but if we look more carefully at those methods, we can see some controversies. For example, why is the formation of collagen gel commonly carried out at 37 °C, when it was well investigated that the temperature higher than 35 °C results in a formation of not well-ordered fibrils? Biomimetic collagen materials can be obtained both using culture medium or neutralizing solution, but it requires a deep understanding of all of the crucial points. One of this point is collagen extraction method, since not every method retains the ability of collagen to reconstitute native banded fibrils. Collagen polymorphism is also often overlooked in spite of the appearance of different polymorphic forms during fibril formation is possible, especially when collagen blends are utilized. In this review, we will not only pay attention to these issues, but we will overview the most prominent works related to the formation of collagen fibrils in vitro starting from the first approaches and moving to the up-to-date recipes.
Collapse
Affiliation(s)
- Diana M Darvish
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Prospekt, 4, Saint-Petersburg, 194064, Russia
| |
Collapse
|
5
|
Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomater 2022; 140:178-189. [PMID: 34875361 DOI: 10.1016/j.actbio.2021.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Scaffolds associated with different types of mesenchymal stromal stem cells (MSC) are extensively studied for the development of novel therapies for large bone defects. Moreover, monoclonal antibodies have been recently introduced for the treatment of cancer-associated bone loss and other skeletal pathologies. In particular, antibodies against sclerostin, a key player in bone remodeling regulation, have demonstrated a real benefit for treating osteoporosis but their contribution to bone tissue-engineering remains uncharted. Here, we show that combining implantation of dense collagen hydrogels hosting wild-type (WT) murine dental pulp stem cells (mDPSC) with weekly systemic injections of a sclerostin antibody (Scl-Ab) leads to increased bone regeneration within critical size calvarial defects performed in WT mice. Furthermore, we show that bone formation is equivalent in calvarial defects in WT mice implanted with Sost knock-out (KO) mDPSC and in Sost KO mice, suggesting that the implantation of sclerostin-deficient MSC similarly promotes new bone formation than complete sclerostin deficiency. Altogether, our data demonstrate that an antibody-based therapy can potentialize tissue-engineering strategies for large craniofacial bone defects and urges the need to conduct research for antibody-enabled local inhibition of sclerostin. STATEMENT OF SIGNIFICANCE: The use of monoclonal antibodies is nowadays broadly spread for the treatment of several conditions including skeletal bone diseases. However, their use to potentialize tissue engineering constructs for bone repair remains unmet. Here, we demonstrate that the neutralization of sclerostin, through either a systemic inhibition by a monoclonal antibody or the implantation of sclerostin-deficient mesenchymal stromal stem cells (MSC) directly within the defect, improves the outcome of a tissue engineering approach, combining dense collagen hydrogels and MSC derived from the dental pulp, for the treatment of large craniofacial bone defects.
Collapse
|
6
|
Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. J Colloid Interface Sci 2021; 607:869-880. [PMID: 34536940 DOI: 10.1016/j.jcis.2021.08.199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Coatings with bioactive properties play a key role in the success of orthopaedic implants. Recent studies focused on composite coatings incorporating biocompatible elements that can increase the nucleation of hydroxyapatite (HA), the mineral component of bone, and have promising bioactive and biodegradable properties. Here we report a method of fabricating composite collagen, chitosan and copper-doped phosphate glass (PG) coatings for biomedical applications using electrophoretic deposition (EPD). The use of collagen and chitosan (CTS) allows for the co-deposition of PG particles at standard ambient temperature and pressure (1 kPa, 25 °C), and the addition of collagen led to the steric stabilization of PG in solution. The coating composition was varied by altering the collagen/CTS concentrations in the solutions, as well as depositing PG with 0, 5 and 10 mol% CuO dopant. A monolayer of collagen/CTS containing PG was obtained on stainless steel cathodes, showing that deposition of PG in conjunction with a polymer is feasible. The mass of the monolayer varied depending on the polymer (collagen, CTS and collagen/CTS) and combination of polymer + PG (collagen-PG, CTS-PG and collagen/CTS-PG), while the presence of copper led to agglomerates during deposition at higher concentrations. The deposition yield was studied at different time points and showed a profile typical of constant voltage deposition. Increasing the concentration of collagen in the PG solution allows for a higher deposition yield, while pure collagen solutions resulted in hydrogen gas evolution at the cathode. The ability to deposit polymer-PG coatings that can mimic native bone tissue allows for the potential to fabricate orthopaedic implants with tailored biological properties with lower risk of rejection from the host and exhibit increased bioactivity.
Collapse
|
7
|
Kim TH, Yan JJ, Jang JY, Lee GM, Lee SK, Kim BS, Chung JJ, Kim SH, Jung Y, Yang J. Tissue-engineered vascular microphysiological platform to study immune modulation of xenograft rejection. SCIENCE ADVANCES 2021; 7:7/22/eabg2237. [PMID: 34049875 PMCID: PMC8163083 DOI: 10.1126/sciadv.abg2237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Most of the vascular platforms currently being studied are lab-on-a-chip types that mimic capillary networks and are applied for vascular response analysis in vitro. However, these platforms have a limitation in clearly assessing the physiological phenomena of native blood vessels compared to in vivo evaluation. Here, we developed a simply fabricable tissue-engineered vascular microphysiological platform (TEVMP) with a three-dimensional (3D) vascular structure similar to an artery that can be applied for ex vivo and in vivo evaluation. Furthermore, we applied the TEVMP as ex vivo and in vivo screening systems to evaluate the effect of human CD200 (hCD200) overexpression in porcine endothelial cells (PECs) on vascular xenogeneic immune responses. These screening systems, in contrast to 2D in vitro and cellular xenotransplantation in vivo models, clearly demonstrated that hCD200 overexpression effectively suppressed vascular xenograft rejection. The TEVMP has a high potential as a platform to assess various vascular-related responses.
Collapse
Affiliation(s)
- Tae Hee Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ji-Jing Yan
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Young Jang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gwang-Min Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sun-Kyung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Justin J Chung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- School of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, Republic of Korea
| | - Jaeseok Yang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
- Transplantation Center, Seoul National University hospital, Seoul, Republic of Korea
| |
Collapse
|
8
|
Park H, Collignon AM, Lepry WC, Ramirez-GarciaLuna JL, Rosenzweig DH, Chaussain C, Nazhat SN. Acellular dense collagen-S53P4 bioactive glass hybrid gel scaffolds form more bone than stem cell delivered constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111743. [PMID: 33545885 DOI: 10.1016/j.msec.2020.111743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023]
Abstract
Dense collagen (DC) gels facilitate the osteoblastic differentiation of seeded dental pulp stem cells (DPSCs) and undergo rapid acellular mineralization when incorporated with bioactive glass particles, both in vitro and subcutaneously in vivo. However, the potential of DC-bioactive glass hybrid gels in delivering DPSCs for bone regeneration in an osseous site has not been investigated. In this study, the efficacies of both acellular and DPSC-seeded DC-S53P4 bioactive glass [(53)SiO2-(23)Na2O-(20)CaO-(4)P2O5, wt%] hybrid gels were investigated in a critical-sized murine calvarial defect. The incorporation of S53P4, an osteostimulative bioactive glass, into DC gels led to its accelerated acellular mineralization in simulated body fluid (SBF), in vitro, where hydroxycarbonated apatite was detected within 1 day. By day 7 in SBF, micro-mechanical analysis demonstrated an 8-fold increase in the compressive modulus of the mineralized gels. The in-situ effect of the bioactive glass on human-DPSCs within DC-S53P4 was evident, by their osteogenic differentiation in the absence of osteogenic supplements. The production of alkaline phosphatase and collagen type I was further increased when cultured in osteogenic media. This osteostimulative effect of DC-S53P4 constructs was confirmed in vivo, where after 8 weeks implantation, both acellular scaffolds and DPSC-seeded DC-S53P4 constructs formed mineralized and vascularized bone matrices with osteoblastic and osteoclastic cell activity. Surprisingly, however, in vivo micro-CT analysis confirmed that the acellular scaffolds generated larger volumes of bone, already visible at week 3 and exhibiting superior trabecular architecture. The results of this study suggest that DC-S53P4 scaffolds negate the need for stem cell delivery for effective bone tissue regeneration and may expedite their path towards clinical applications.
Collapse
Affiliation(s)
- Hyeree Park
- Department of Mining and Materials Engineering, McGill University, Canada
| | - Anne-Margaux Collignon
- Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging, and Biotherapies and Life Imaging Platform (PIV), Montrouge, France; AP-HP, GH Nord Université de Paris (Louis Mourier and Bretonneau hospitals), France
| | - William C Lepry
- Department of Mining and Materials Engineering, McGill University, Canada
| | | | - Derek H Rosenzweig
- Division of Orthopedic Surgery, McGill University, Canada; Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Canada
| | - Catherine Chaussain
- Université de Paris, URP 2496 Laboratory Orofacial Pathologies, Imaging, and Biotherapies and Life Imaging Platform (PIV), Montrouge, France; AP-HP, GH Nord Université de Paris (Louis Mourier and Bretonneau hospitals), France
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Canada.
| |
Collapse
|
9
|
Smolar J, Nardo DD, Reichmann E, Gobet R, Eberli D, Horst M. Detrusor bioengineering using a cell-enriched compressed collagen hydrogel. J Biomed Mater Res B Appl Biomater 2020; 108:3045-3055. [PMID: 32420687 DOI: 10.1002/jbm.b.34633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/07/2020] [Accepted: 04/18/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The gold standard for bladder regeneration in end-stage bladder disease is the use of intestinal tissue, which is however associated with significant long-term complications. Our study aims to bioengineer functional detrusor muscle combining bladder smooth muscle cells (SMC) and SMC-like adipose-derived stem cells (pADSC) in compressed collagen (CC) hydrogels and to investigate biocompatibility and tissue regeneration of such detrusor-equivalents in a rat detrusorectomy model. METHODS Compressed collagen hydrogels seeded with 1 × 106 or 4 × 106 SMC alone or in combination with pADSC in a 1:1 ratio were investigated. Morphology, phenotype, and viability as well as proteomic secretome analysis were assessed in the 1:1 co-cultures and the respective monocultures. The hydrogels were implanted into rat bladders after partial detrusorectomy. Bladders were harvested 8 weeks after transplantation, and assessed for tissue morphology, detrusor regeneration, neo-vascularization and -innervation. RESULTS Co-cultured cells exhibited native SMC morphology, high viability and proliferated to form microtissues in vitro. The pro-angiogenic factors angiogenin, vascular endothelial growth factor (VEGF)-A and -D were increased in the secretome of the pADSC samples. After 8 weeks of in vivo, the regenerated bladder wall showed a multilayered structure containing all bladder wall components. The overall performance of the bladder wall regeneration of CC seeded with 4 × 106 cells was significantly better than with 1 × 106 cells and the combination SMC:pADCS performed slightly better than SMC alone. CONCLUSION Compressed collagen possesses an adequate regenerative potential to promote regeneration of bladder wall tissue in vivo. Seeded with a combination of pADSC and SMC this may well be the first step towards a functional bladder reconstruction especially in patients suffering of end-stage bladder diseases.
Collapse
Affiliation(s)
- Jakub Smolar
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Daniele De Nardo
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Ernst Reichmann
- Department of Surgery, Tissue Biology Research Unit, University Children's Hospital Zurich, Zurich, Switzerland
| | - Rita Gobet
- Division of Pediatric Urology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | - Maya Horst
- Division of Pediatric Urology, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Sohutskay DO, Puls TJ, Voytik-Harbin SL. Collagen Self-assembly: Biophysics and Biosignaling for Advanced Tissue Generation. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Physical and mechanical properties of RAFT-stabilised collagen gels for tissue engineering applications. J Mech Behav Biomed Mater 2019; 99:216-224. [DOI: 10.1016/j.jmbbm.2019.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022]
|
12
|
Deen I, Rosei F. Silk fibroin-derived polypeptides additives to promote hydroxyapatite nucleation in dense collagen hydrogels. PLoS One 2019; 14:e0219429. [PMID: 31306436 PMCID: PMC6629059 DOI: 10.1371/journal.pone.0219429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/24/2019] [Indexed: 11/30/2022] Open
Abstract
Silk fibroin-derived polypeptides (FDPs) are polypeptides resulting from the enzymatic separation of the hydrophobic crystalline (Cp) and hydrophilic electronegative amorphous (Cs) components of silk fibroin (SF). The role of these polypeptides in promoting the nucleation of hydroxyapatite (HA) has been previously investigated, yet is still not fully understood. Here we study the potential of HA mineralization via FDPs incorporated at 1:10, 1:2 and 1:1 in a plastically compressed (PC) and dense collagen (DC) scaffold. Scaffolds were immersed in simulated body fluid (SBF) at physiological conditions (pH = 7.4, 37°C) to promote biomineralization. The effect of Cs and Cp to promote HA nucleation was investigated at different time points, and compared to pure DC scaffolds. Characterization of Cs and Cp fragments using Liquid Chromatography-Mass Spectrometry (LCMS) showed little difference in the amino acid composition of the FDPs. Results obtained in vitro using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM) X-Ray Diffraction (XRD) and mass analysis showed little difference between scaffolds that incorporated Cs, Cp, and DC hydrogels. These results demonstrated that silk FDPs incorporation are not yet suitable to promote HA nucleation in vivo without further refining the collagen-FDP system.
Collapse
Affiliation(s)
- Imran Deen
- Centre Énergie, Matériaux et Télécommunications, Institut national de la recherche scientifique, Varennes, QC, Canada
| | - Federico Rosei
- Centre Énergie, Matériaux et Télécommunications, Institut national de la recherche scientifique, Varennes, QC, Canada
| |
Collapse
|
13
|
Chen S, Zhao Y, Yan X, Zhang L, Li G, Yang Y. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury. J Biomed Mater Res A 2019; 107:1273-1283. [DOI: 10.1002/jbm.a.36637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/02/2019] [Accepted: 01/28/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Shiyu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong University 226001, Nantong People's Republic of China
- Co‐innovation Center of NeuroregenerationNantong University 226001, Nantong People's Republic of China
| | - Yinxin Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong University 226001, Nantong People's Republic of China
- Co‐innovation Center of NeuroregenerationNantong University 226001, Nantong People's Republic of China
| | - Xiaoli Yan
- Jiangsu Testing and Inspection Institute for Medical Devices 17 Kangwen Road, Nanjing JS 210019 People's Republic of China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong University 226001, Nantong People's Republic of China
- Co‐innovation Center of NeuroregenerationNantong University 226001, Nantong People's Republic of China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong University 226001, Nantong People's Republic of China
- Co‐innovation Center of NeuroregenerationNantong University 226001, Nantong People's Republic of China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of EducationNantong University 226001, Nantong People's Republic of China
- Co‐innovation Center of NeuroregenerationNantong University 226001, Nantong People's Republic of China
| |
Collapse
|
14
|
James-Bhasin M, Siegel PM, Nazhat SN. A Three-Dimensional Dense Collagen Hydrogel to Model Cancer Cell/Osteoblast Interactions. J Funct Biomater 2018; 9:E72. [PMID: 30545096 PMCID: PMC6306762 DOI: 10.3390/jfb9040072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
No curative treatment options exist once breast cancer metastasizes to bone. This is due, in part, to an incomplete understanding of how osteolytic cancers interact with bone. Presented here is a novel approach to study the interactions between triple negative breast cancer cells and osteoblasts within a 3D collagenous environment. More specifically, a dense collagen hydrogel was employed to model interactions between MDA-MB-231 breast cancer cells and MC3T3-E1 pre-osteoblasts. Co-cultures with these two cell types, or MDA-MB-231-derived conditioned medium applied to MC3T3-E1 cells, were established in the context of plastically compressed dense collagen gel matrices. Importantly, breast cancer-derived conditioned medium or the establishment of breast cancer/osteoblast co-cultures did not negatively influence MC3T3-E1 cell viability. The inclusion of either conditioned medium or the presence of MDA-MB-231 cells resulted in impaired MC3T3-E1 differentiation into osteoblasts, which coincided with reduced osteoblast-mediated mineralization. The results presented here demonstrate that dense collagen gels provide a model environment to examine the effect of osteolytic breast cancer cells on osteoblast differentiation and subsequent mineralization of the collagen scaffold.
Collapse
Affiliation(s)
- Mark James-Bhasin
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada.
| | - Peter M Siegel
- Departments of Medicine, Biochemistry and Anatomy & Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada.
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montréal, QC H3A 0C5, Canada.
| |
Collapse
|
15
|
Shojaati G, Khandaker I, Sylakowski K, Funderburgh ML, Du Y, Funderburgh JL. Compressed Collagen Enhances Stem Cell Therapy for Corneal Scarring. Stem Cells Transl Med 2018; 7:487-494. [PMID: 29654654 PMCID: PMC5980128 DOI: 10.1002/sctm.17-0258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Stem cells from human corneal stroma (CSSC) suppress corneal stromal scarring in a mouse wound‐healing model and promote regeneration of native transparent tissue (PMID:25504883). This study investigated efficacy of compressed collagen gel (CCG) as a vehicle to deliver CSSC for corneal therapy. CSSC isolated from limbal stroma of human donor corneas were embedded in soluble rat‐tendon collagen, gelled at 37°C, and partially dehydrated to a thickness of 100 µm by passive absorption. The CCG disks were dimensionally stable, easy to handle, and could be adhered securely to de‐epithelialized mouse cornea with fibrin‐based adhesive. CSSC in CCG maintained >80% viability for >1 week in culture media and could be cryopreserved in 20% fetal bovine serum‐10%DMSO in liquid nitrogen. CCG containing as few as 500 CSSC effectively prevented visible scarring and suppressed expression of fibrotic Col3a1 mRNA. CSSC in CCG were more effective at blocking scarring on a per‐cell basis than CSSC delivered directly in a fibrin gel as previously described. Collagen‐embedded cells retained the ability to suppress corneal scarring after conventional cryopreservation. This study demonstrates use of a common biomaterial that can facilitate storage and handling of stem cells in a manner that may provide off‐the‐shelf delivery of stem cells as a therapy for corneal scarring. stemcellstranslationalmedicine2018;7:487–494
Collapse
Affiliation(s)
- Golnar Shojaati
- Department of Ophthalmology, Kantonsspital Winterthur, Zurich, Switzerland.,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Irona Khandaker
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kyle Sylakowski
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martha L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Compressed collagen constructs with optimized mechanical properties and cell interactions for tissue engineering applications. Int J Biol Macromol 2017; 108:158-166. [PMID: 29162461 DOI: 10.1016/j.ijbiomac.2017.11.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
In this study, we are introducing a simple, fast and reliable add-in to the technique of plastic compression to obtain collagen sheets with decreased fibrillar densities, representing improved cell-interactions and mechanical properties. Collagen hydrogels with different initial concentrations (1.64mg/mL-0.41mg/mL) were compressed around an electrospun sheet of PLGA. The scaffolds were then studied as non-seeded, or seeded with 3T3 fibroblast cells and cultured for 7days. Confocal microscopy and TEM imaging of non-seeded scaffolds showed that by decreasing the share of collagen in the hydrogel formula, collagen sheets with similar thickness but lower fibrous densities were achieved. Nanomechanical characterization of compressed collagen sheets by AFM showed that Young's modulus was inversely proportional to the final concentration of collagen. Similarly, according to SEM, MTS, and cell nuclei counting, all the scaffolds supported cell adhesion and proliferation, whilst the highest metabolic activities and proliferation were seen in the scaffolds with lowest collagen content in hydrogel formula. We conclude that by decreasing the collagen content in the formula of collagen hydrogel for plastic compression, not only a better cell environment and optimum mechanical properties are achieved, but also the application costs of this biopolymer is reduced.
Collapse
|
17
|
Nijsure MP, Pastakia M, Spano J, Fenn MB, Kishore V. Bioglass incorporation improves mechanical properties and enhances cell-mediated mineralization on electrochemically aligned collagen threads. J Biomed Mater Res A 2017; 105:2429-2440. [DOI: 10.1002/jbm.a.36102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/03/2017] [Accepted: 04/26/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Madhura P. Nijsure
- Department of Chemical Engineering; Florida Institute of Technology; Melbourne Florida 32901
| | - Meet Pastakia
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
| | - Joseph Spano
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Center for Medical Materials and Biophotonics, Florida Institute of Technology; Melbourne Florida 32901
| | - Michael B. Fenn
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Center for Medical Materials and Biophotonics, Florida Institute of Technology; Melbourne Florida 32901
| | - Vipuil Kishore
- Department of Chemical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Center for Medical Materials and Biophotonics, Florida Institute of Technology; Melbourne Florida 32901
| |
Collapse
|
18
|
Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells. Sci Rep 2016; 6:38814. [PMID: 27934940 PMCID: PMC5146967 DOI: 10.1038/srep38814] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.
Collapse
|
19
|
Loy C, Lainé A, Mantovani D. Rotation-based technique for the rapid densification of tubular collagen gel scaffolds. Biotechnol J 2016; 11:1673-1679. [DOI: 10.1002/biot.201600268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Caroline Loy
- Laboratory for Biomaterials & Bioengineering, CRC-1, Department of Mines-Metallurgy-Materials Engineering & the CHU de Québec Research Center; Laval University; Québec, QC Canada
| | - Audrey Lainé
- Laboratory for Biomaterials & Bioengineering, CRC-1, Department of Mines-Metallurgy-Materials Engineering & the CHU de Québec Research Center; Laval University; Québec, QC Canada
| | - Diego Mantovani
- Laboratory for Biomaterials & Bioengineering, CRC-1, Department of Mines-Metallurgy-Materials Engineering & the CHU de Québec Research Center; Laval University; Québec, QC Canada
| |
Collapse
|
20
|
Rothdiener M, Hegemann M, Uynuk-Ool T, Walters B, Papugy P, Nguyen P, Claus V, Seeger T, Stoeckle U, Boehme KA, Aicher WK, Stegemann JP, Hart ML, Kurz B, Klein G, Rolauffs B. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition. Sci Rep 2016; 6:35840. [PMID: 27775041 PMCID: PMC5075785 DOI: 10.1038/srep35840] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/05/2016] [Indexed: 12/18/2022] Open
Abstract
Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.
Collapse
Affiliation(s)
- Miriam Rothdiener
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | | | - Tatiana Uynuk-Ool
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Brandan Walters
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Piruntha Papugy
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Phong Nguyen
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Valentin Claus
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Tanja Seeger
- Center for Medical Research, Medical University Clinic II, University of Tuebingen, Germany
| | - Ulrich Stoeckle
- Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Germany
| | - Karen A. Boehme
- Department of Orthopaedic Surgery, University of Tuebingen, Germany
| | | | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Melanie L. Hart
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs-University, Freiburg, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Kiel, Germany
| | - Gerd Klein
- Center for Medical Research, Medical University Clinic II, University of Tuebingen, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
21
|
Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix. Eur J Pharm Biopharm 2016; 107:180-90. [PMID: 27368749 DOI: 10.1016/j.ejpb.2016.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/03/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023]
|
22
|
Novak T, Seelbinder B, Twitchell CM, van Donkelaar CC, Voytik-Harbin SL, Neu CP. Mechanisms and Microenvironment Investigation of Cellularized High Density Gradient Collagen Matrices via Densification. ADVANCED FUNCTIONAL MATERIALS 2016; 26:2617-2628. [PMID: 27346992 PMCID: PMC4917229 DOI: 10.1002/adfm.201503971] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Biological tissues and biomaterials are often defined by unique spatial gradients in physical properties that impart specialized function over hierarchical scales. The structure and organization of these materials forms continuous transitional gradients and discrete local microenvironments between adjacent (or within) tissues, and across matrix-cell boundaries, which can be difficult to replicate with common scaffold systems. Here, we studied the matrix densification of collagen leading to gradients in density, mechanical properties, and fibril morphology. High-density regions formed via a fluid pore pressure and flow-driven mechanism, with increased relative fibril density (10×), mechanical properties (20×, to 94.40±18.74kPa), and maximum fibril thickness (1.9×, to >1μm) compared to low-density regions, while maintaining porosity and fluid/mass transport to support viability of encapsulated cells. Similar to the organization of the articular cartilage zonal structure, we found that high-density collagen regions induced cell and nuclear alignment of primary chondrocytes. Chondrocyte gene expression was maintained in collagen matrices, and no phenotypic changes were observed as a result of densification. Densification of collagen matrices provides a unique, tunable platform for the creation of gradient systems to study complex cell-matrix interactions. These methods are easily generalized to compression and boundary condition modalities useful to mimic a broad range of tissues.
Collapse
Affiliation(s)
- Tyler Novak
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Benjamin Seelbinder
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Celina M Twitchell
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Corrinus C van Donkelaar
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Sherry L Voytik-Harbin
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Corey P Neu
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| |
Collapse
|
23
|
Blum KM, Novak T, Watkins L, Neu CP, Wallace JM, Bart ZR, Voytik-Harbin SL. Acellular and cellular high-density, collagen-fibril constructs with suprafibrillar organization. Biomater Sci 2016; 4:711-23. [PMID: 26902645 DOI: 10.1039/c5bm00443h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Collagen is used extensively for tissue engineering due to its prevalence in connective tissues and its role in defining tissue biophysical and biological signalling properties. However, traditional collagen-based materials fashioned from atelocollagen and telocollagen have lacked collagen densities, multi-scale organization, mechanical integrity, and proteolytic resistance found within tissues in vivo. Here, highly interconnected low-density matrices of D-banded fibrils were created from collagen oligomers, which exhibit fibrillar as well as suprafibrillar assembly. Confined compression then was applied to controllably reduce the interstitial fluid while maintaining fibril integrity. More specifically, low-density (3.5 mg mL(-1)) oligomer matrices were densified to create collagen-fibril constructs with average concentrations of 12.25 mg mL(-1) and 24.5 mg mL(-1). Control and densified constructs exhibited nearly linear increases in ultimate stress, Young's modulus, and compressive modulus over the ranges of 65 to 213 kPa, 400 to 1.26 MPa, and 20 to 150 kPa, respectively. Densification also increased construct resistance to collagenase degradability. Finally, this process was amenable to creating high-density cellularized tissues; all constructs maintained high cell viability (at least 97%) immediately following compression as well as after 1 day and 7 days of culture. This method, which integrates the suprafibrillar assembly capacity of oligomers and controlled fluid reduction by confined compression, supports the rational and scalable design of a broad range of collagen-fibril materials and cell-encapsulated tissue constructs for tissue engineering applications.
Collapse
Affiliation(s)
- Kevin M Blum
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu G, Pastakia M, Fenn MB, Kishore V. Saos-2 cell-mediated mineralization on collagen gels: Effect of densification and bioglass incorporation. J Biomed Mater Res A 2016; 104:1121-34. [DOI: 10.1002/jbm.a.35651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/21/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Gengbo Liu
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
| | - Meet Pastakia
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
| | - Michael B. Fenn
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
| | - Vipuil Kishore
- Department of Biomedical Engineering; Florida Institute of Technology; Melbourne Florida 32901
- Department of Chemical Engineering; Florida Institute of Technology; Melbourne Florida 32901
| |
Collapse
|
25
|
Mullen CA, Vaughan TJ, Billiar KL, McNamara LM. The effect of substrate stiffness, thickness, and cross-linking density on osteogenic cell behavior. Biophys J 2016; 108:1604-1612. [PMID: 25863052 DOI: 10.1016/j.bpj.2015.02.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 11/16/2022] Open
Abstract
Osteogenic cells respond to mechanical changes in their environment by altering their spread area, morphology, and gene expression profile. In particular, the bulk modulus of the substrate, as well as its microstructure and thickness, can substantially alter the local stiffness experienced by the cell. Although bone tissue regeneration strategies involve culture of bone cells on various biomaterial scaffolds, which are often cross-linked to enhance their physical integrity, it is difficult to ascertain and compare the local stiffness experienced by cells cultured on different biomaterials. In this study, we seek to characterize the local stiffness at the cellular level for MC3T3-E1 cells plated on biomaterial substrates of varying modulus, thickness, and cross-linking concentration. Cells were cultured on flat and wedge-shaped gels made from polyacrylamide or cross-linked collagen. The cross-linking density of the collagen gels was varied to investigate the effect of fiber cross-linking in conjunction with substrate thickness. Cell spread area was used as a measure of osteogenic differentiation. Finite element simulations were used to examine the effects of fiber cross-linking and substrate thickness on the resistance of the gel to cellular forces, corresponding to the equivalent shear stiffness for the gel structure in the region directly surrounding the cell. The results of this study show that MC3T3 cells cultured on a soft fibrous substrate attain the same spread cell area as those cultured on a much higher modulus, but nonfibrous substrate. Finite element simulations predict that a dramatic increase in the equivalent shear stiffness of fibrous collagen gels occurs as cross-linking density is increased, with equivalent stiffness also increasing as gel thickness is decreased. These results provide an insight into the response of osteogenic cells to individual substrate parameters and have the potential to inform future bone tissue regeneration strategies that can optimize the equivalent stiffness experienced by a cell.
Collapse
Affiliation(s)
- Conleth A Mullen
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Ireland; National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Ireland
| | - Ted J Vaughan
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Ireland
| | - Kristen L Billiar
- Department Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Laoise M McNamara
- Centre for Biomechanics Research (BMEC), Department of Biomedical Engineering, NUI Galway, Galway, Ireland; National Centre for Biomedical Engineering Science (NCBES), NUI Galway, Galway, Ireland.
| |
Collapse
|
26
|
Carriel V, Scionti G, Campos F, Roda O, Castro B, Cornelissen M, Garzón I, Alaminos M. In vitro characterization of a nanostructured fibrin agarose bio-artificial nerve substitute. J Tissue Eng Regen Med 2015; 11:1412-1426. [PMID: 26177604 DOI: 10.1002/term.2039] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/26/2015] [Accepted: 04/29/2015] [Indexed: 02/03/2023]
Abstract
Neural tissue engineering is focused on the design of novel biocompatible substitutes to repair peripheral nerve injuries. In this paper we describe a nanostructured fibrin-agarose bioartificial nerve substitute (NFABNS), based on nanostructured fibrin-agarose hydrogels (FAHs) with human adipose-derived mesenchymal stem cells (HADMSCs). These NFABNSs were mechanically characterized and HADMSCs behaviour was evaluated using histological and ultrastructural techniques. Mechanical characterization showed that the NFABNSs were resistant, flexible and elastic, with a high deformation capability. Histological analyses carried out in vitro during 16 days revealed that the number of HADMSCs decreased over time, with a significant increase after 16 days. HADMSCs formed cell clusters and degraded the surrounding scaffold during this time; additionally, HADMSCs showed active cell proliferation and cytoskeletal remodelling, with a progressive synthesis of extracellular matrix molecules. Finally, this study demonstrated that it is possible to generate biologically active and mechanically stable tissue-like substitutes with specific dimensions, based on the use of HADMSCs, FAHs and a nanostructure technique. However, in vivo analyses are needed to demonstrate their potential usefulness in peripheral nerve repair. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria, Ibs. GRANADA, Spain.,Department of Basic Medical Sciences, Histology and Tissue Engineering Group, Faculty of Medicine, Ghent University, Belgium.,Doctorate Programmes in Clinical Medicine and Public Health, University of Granada Spain, Health Sciences, Doctoral School of Life Sciences and Medicine, Ghent University, Belgium
| | - Giuseppe Scionti
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria, Ibs. GRANADA, Spain
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria, Ibs. GRANADA, Spain
| | - Olga Roda
- Department of Anatomy, Faculty of Medicine, University of Granada, Spain
| | - Begoña Castro
- Histocell, S.L., Science and Technology, Derio, Vizcaya, Spain
| | - Maria Cornelissen
- Department of Basic Medical Sciences, Histology and Tissue Engineering Group, Faculty of Medicine, Ghent University, Belgium
| | - Ingrid Garzón
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria, Ibs. GRANADA, Spain
| | - Miguel Alaminos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria, Ibs. GRANADA, Spain
| |
Collapse
|
27
|
Chung E, Rytlewski JA, Merchant AG, Dhada KS, Lewis EW, Suggs LJ. Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomater 2015; 17:78-88. [PMID: 25600400 DOI: 10.1016/j.actbio.2015.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 01/07/2015] [Accepted: 01/11/2015] [Indexed: 12/27/2022]
Abstract
Engineered three-dimensional biomaterials are known to affect the regenerative capacity of stem cells. The extent to which these materials can modify cellular activities is still poorly understood, particularly for adipose-derived stem cells (ASCs). This study evaluates PEGylated fibrin (P-fibrin) gels as an ASC-carrying scaffold for encouraging local angiogenesis by comparing with two commonly used hydrogels (i.e., collagen and fibrin) in the tissue-engineering field. Human ASCs in P-fibrin were compared to cultures in collagen and fibrin under basic growth media without any additional soluble factors. ASCs proliferated similarly in all gel scaffolds but showed significantly elongated morphologies in the P-fibrin gels relative to other gels. P-fibrin elicited higher von Willebrand factor expression in ASCs than either collagen or fibrin while cells in collagen expressed more smooth muscle alpha actin than in other gels. VEGF was secreted more at 7 days in fibrin and P-fibrin than in collagen and several other angiogenic and immunomodulatory cytokines were similarly enhanced. Fibrin-based matrices appear to activate angiogenic signaling in ASCs while P-fibrin matrices are uniquely able to also drive a vessel-like ASC phenotype. Collectively, these results suggest that P-fibrin promotes the angiogenic potential of ASC-based therapeutic applications.
Collapse
Affiliation(s)
- Eunna Chung
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA.
| | - Julie A Rytlewski
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Arjun G Merchant
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Kabir S Dhada
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Evan W Lewis
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712-0238, USA.
| |
Collapse
|
28
|
Alekseeva T, Unger RE, Brochhausen C, Brown RA, Kirkpatrick JC. Engineering a microvascular capillary bed in a tissue-like collagen construct. Tissue Eng Part A 2014; 20:2656-65. [PMID: 24684395 PMCID: PMC4195478 DOI: 10.1089/ten.tea.2013.0570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/19/2014] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that plastic compression (PC) of collagen gels allows a rapid and controlled fabrication of matrix- and cell-rich constructs in vitro that closely mimic the structure and characteristics of tissues in vivo. Microvascular endothelial cells, the major cell type making up the blood vessels in the body, were added to the PC collagen to determine whether cells attach, survive, grow, and express endothelial cell characteristics when seeded alone or in coculture with other cells. Endothelial cells seeded on the PC collagen containing human foreskin fibroblasts (HFF) or human osteoblasts (HOS) formed vessel-like structures over 3 weeks in culture without the addition of exogenous growth factors in the medium. In contrast, on the PC scaffolds without HFF or HOS, human dermal microvascular endothelial cells (HDMEC) exhibited a typical cobblestone morphology for 21 days under the same conditions. We propose that the coculture of primary endothelial cells with PC collagen constructs, containing a stromal cell population, is a valuable technique for in vitro modeling of proangiogenic responses toward such biomimetic constructs in vivo. A major observation in the cocultures was the absence of gel contraction, even after 3 weeks of fibroblast culture. This collagen form could, for example, be of great value in tissue engineering of the skin, as contractures are both aesthetically and functionally disabling.
Collapse
Affiliation(s)
- Tijna Alekseeva
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ronald E. Unger
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Christoph Brochhausen
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - James C. Kirkpatrick
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
29
|
Walters BD, Stegemann JP. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater 2014; 10:1488-501. [PMID: 24012608 PMCID: PMC3947739 DOI: 10.1016/j.actbio.2013.08.038] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/17/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well-characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve the desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them both to the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure and thereby to direct its biological and mechanical functions.
Collapse
Affiliation(s)
- B D Walters
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - J P Stegemann
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Phillips JB. Building stable anisotropic tissues using cellular collagen gels. Organogenesis 2014; 10:6-8. [PMID: 24389600 PMCID: PMC4049896 DOI: 10.4161/org.27487] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 01/26/2023] Open
Abstract
Combining cellular self-alignment within tethered collagen gels with stabilization through subsequent removal of interstitial fluid has yielded a new process for the fabrication of aligned cellular biomaterials. This commentary discusses the generation of engineered neural tissue for peripheral nerve repair using this combination of techniques, providing additional insight into the rationale underpinning the approach. By describing the potential benefits of using cell and matrix interactions to organize 3D hydrogels that can be stabilized to form tissue-like constructs, the article aims to highlight the potential for the approach to be used in the generation of a wider range of functional replacement tissues.
Collapse
Affiliation(s)
- James B Phillips
- University College London; Department of Biomaterials & Tissue Engineering; UCL Eastman Dental Institute; London, UK
| |
Collapse
|
31
|
Serpooshan V, Ruiz-Lozano P. Ultra-rapid manufacturing of engineered epicardial substitute to regenerate cardiac tissue following acute ischemic injury. Methods Mol Biol 2014; 1210:239-248. [PMID: 25173173 DOI: 10.1007/978-1-4939-1435-7_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Considering the impaired regenerative capacity of adult mammalian heart tissue, cardiovascular tissue engineering aims to create functional substitutes that can restore the structure and function of the damaged cardiac tissue. The success of cardiac regenerative therapies has been limited mainly due to poor control on the structure and properties of the tissue substitute, lack of vascularization, and immunogenicity. In this study we introduce a new approach to rapidly engineer dense biomimetic scaffolds consisting of type I collagen, to protect the heart against severe ischemic injury. Scaffold biomechanical properties are adjusted to mimic embryonic epicardium which is shown to be optimal to support cardiomyocyte contractile work. Moreover, the designed patch can serve as a delivery device for targeted, controlled release of cells or therapeutic macromolecules into the lesion area.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Department of Pediatrics, Stanford Cardiovascular Institute, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | | |
Collapse
|
32
|
Design and Validation of a Physiologically-Adapted Bioreactor for Tissue Engineering of the Nucleus Pulposus. Processes (Basel) 2013. [DOI: 10.3390/pr2010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
33
|
Chicatun F, Pedraza CE, Muja N, Ghezzi CE, McKee MD, Nazhat SN. Effect of chitosan incorporation and scaffold geometry on chondrocyte function in dense collagen type I hydrogels. Tissue Eng Part A 2013; 19:2553-64. [PMID: 23859275 PMCID: PMC3856934 DOI: 10.1089/ten.tea.2013.0114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/19/2013] [Indexed: 01/01/2023] Open
Abstract
Tissue engineering approaches for articular cartilage (AC) repair using collagen type I (Coll)-based hydrogels are limited by their low collagen fibril density (CFD; <0.5 wt%) and their poor capacity to support chondrocyte differentiation. Chitosan (CTS) is a well-characterized polysaccharide that mimics the glycosaminoglycans (GAGs) present in native AC extracellular matrix and exhibits chondroprotective properties. Here dense Coll/CTS hydrogel discs (16 mm diameter, 140-250 μm thickness) with CFD (∼6 wt%) approaching that of AC were developed to investigate the effect of CTS content on the growth and differentiation of three-dimensionally seeded RCJ3.1C5.18 chondroprogenitor cells. Compared to dense Coll alone, cells seeded within Coll/CTS showed increased viability and metabolic activity, as well as a decrease in cell-mediated gel contraction. Immunohistochemistry for collagen type II, in combination with Safranin O staining and GAG quantification, indicated greater chondroprogenitor differentiation within Coll/CTS, compared to cells seeded within Coll alone. The complex interplay between scaffold geometry, microstructure, composition, mechanical properties and cell function was further evaluated by rolling dense planar sheets to prepare cylindrically shaped constructs having clinically relevant diameters (3-5 mm diameter, 9 mm height). The compressive modulus of the cylindrically shaped constructs decreased significantly after 7 days in culture, and remained unchanged up to 21 days for each scaffold composition. Unlike Coll, cells seeded within Coll/CTS showed greater viability along the entire radial extent of the cylindrical rolls and increased GAG production at each time point. While GAG content decreased over time and reduced cell viability was observed within the core region of all cylindrical rolls, the incorporation of CTS diminished both these effects. In summary, these findings provide insight into the challenges involved when scaling up scaffolds designed and optimised in vitro for tissue repair.
Collapse
Affiliation(s)
- Florencia Chicatun
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Canada
| | | | - Naser Muja
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Canada
| | - Chiara E. Ghezzi
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Canada
| | - Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Canada
| |
Collapse
|
34
|
Serpooshan V, Zhao M, Metzler SA, Wei K, Shah PB, Wang A, Mahmoudi M, Malkovskiy AV, Rajadas J, Butte MJ, Bernstein D, Ruiz-Lozano P. The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials 2013; 34:9048-55. [PMID: 23992980 PMCID: PMC3809823 DOI: 10.1016/j.biomaterials.2013.08.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/07/2013] [Indexed: 12/11/2022]
Abstract
Regeneration of the damaged myocardium is one of the most challenging fronts in the field of tissue engineering due to the limited capacity of adult heart tissue to heal and to the mechanical and structural constraints of the cardiac tissue. In this study we demonstrate that an engineered acellular scaffold comprising type I collagen, endowed with specific physiomechanical properties, improves cardiac function when used as a cardiac patch following myocardial infarction. Patches were grafted onto the infarcted myocardium in adult murine hearts immediately after ligation of left anterior descending artery and the physiological outcomes were monitored by echocardiography, and by hemodynamic and histological analyses four weeks post infarction. In comparison to infarcted hearts with no treatment, hearts bearing patches preserved contractility and significantly protected the cardiac tissue from injury at the anatomical and functional levels. This improvement was accompanied by attenuated left ventricular remodeling, diminished fibrosis, and formation of a network of interconnected blood vessels within the infarct. Histological and immunostaining confirmed integration of the patch with native cardiac cells including fibroblasts, smooth muscle cells, epicardial cells, and immature cardiomyocytes. In summary, an acellular biomaterial with specific biomechanical properties promotes the endogenous capacity of the infarcted myocardium to attenuate remodeling and improve heart function following myocardial infarction.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
| | - Mingming Zhao
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
| | - Scott A. Metzler
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
| | - Ke Wei
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037
| | - Parisha B. Shah
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
| | - Andrew Wang
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
| | - Morteza Mahmoudi
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
| | - Andrey V. Malkovskiy
- Stanford University, Biomaterials and Advanced Drug Delivery Laboratory, 300 Pasteur Dr., Stanford, CA 94305
| | - Jayakumar Rajadas
- Stanford University, Biomaterials and Advanced Drug Delivery Laboratory, 300 Pasteur Dr., Stanford, CA 94305
| | - Manish J. Butte
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
| | - Daniel Bernstein
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
| | - Pilar Ruiz-Lozano
- Stanford University, Department of Pediatrics, 300 Pasteur Dr., Stanford, CA 94305
- Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
35
|
Georgiou M, Bunting SC, Davies HA, Loughlin AJ, Golding JP, Phillips JB. Engineered neural tissue for peripheral nerve repair. Biomaterials 2013; 34:7335-43. [DOI: 10.1016/j.biomaterials.2013.06.025] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
|
36
|
Harmon MD, James R, Shelke NB, Kumbar SG. Synthesis and characterization of poly(caprolactone triol succinate) elastomer for tissue engineering application. J Appl Polym Sci 2013. [DOI: 10.1002/app.39633] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Cheema U, Brown RA. Rapid Fabrication of Living Tissue Models by Collagen Plastic Compression: Understanding Three-Dimensional Cell Matrix Repair In Vitro.. Adv Wound Care (New Rochelle) 2013; 2:176-184. [PMID: 24527341 PMCID: PMC3840553 DOI: 10.1089/wound.2012.0392] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To produce biomimetic collagen scaffolds for tissue modeling and as tissue-engineered implants. APPROACH Control of collagen fibril material parameters in collagen hydrogel scaffolds by using plastic compression (PC), resulting in direct control of cell proliferation, cell migration, and cell-cell interaction. RESULTS We were able to control the density of collagen in such scaffolds from between 0.2% and 30%, and controllably layer the fibrils in the Z-plane. Cell migration was observed in gels where a gradient of collagen density was present. In these gels, cells preferentially migrated toward the collagen-dense areas. Cell proliferation rates were measurably higher in dense collagen gels. INNOVATION The use of PC to control material properties of collagen hydrogels results in collagen scaffolds that are biomimetic. These collagen gels reproduce the relevant matrix-mechanical environment in which behavior is more representative of that found in vivo. CONCLUSION The material properties of native collagen type I gels can be engineered to match those found in tissues in vivo to elicit more biomimetic cell behavior.
Collapse
Affiliation(s)
- Umber Cheema
- UCL Tissue Repair and Engineering Centre, Institute of Orthopaedics, Division of Surgery, University College London, Stanmore Campus, London, United Kingdom
| | - Robert A. Brown
- UCL Tissue Repair and Engineering Centre, Institute of Orthopaedics, Division of Surgery, University College London, Stanmore Campus, London, United Kingdom
| |
Collapse
|
38
|
Mori H, Shimizu K, Hara M. Dynamic viscoelastic properties of collagen gels with high mechanical strength. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3230-6. [PMID: 23706205 DOI: 10.1016/j.msec.2013.03.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 03/08/2013] [Accepted: 03/29/2013] [Indexed: 11/17/2022]
Abstract
We developed a new method for the preparation of mechanically strong collagen gels by combining successively basic gel formation, followed by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) cross-linking and lyophilization. Gels cross-linked three times with this method showed stronger mechanical properties (G': 3730±2060 Pa, G″: 288±35 Pa) than a conventional gel that was sequentially cross-linked with EDC once (G': 226±70 Pa, G″: 21±4.4 Pa), but not as strong as the same gel with heating for 30 min at 80°C (G': 7010±830 Pa, G″: 288±35 Pa) reported in our previous paper. The conventional collagen gel was cross-linked with EDC once, heated once, and then subjected twice to a lyophilization-gel formation-cross-linking cycle to give three-cycled gel 2. This gel had the strongest mechanical properties (G': 40,200±18,000 Pa, G″: 3090±1400 Pa, Young's modulus: 0.197±0.069 MPa) of the gels tested. These promising results suggest possible applications of the gels as scaffolds in tissue engineering research.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, Japan
| | | | | |
Collapse
|
39
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-456. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
Affiliation(s)
- Ensanya A Abou Neel
- King Abdulaziz University, Conservative Dental Science Department, Biomaterials Division, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Serpooshan V, Quinn TM, Muja N, Nazhat SN. Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. Acta Biomater 2013; 9:4673-80. [PMID: 22947324 DOI: 10.1016/j.actbio.2012.08.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/01/2012] [Accepted: 08/20/2012] [Indexed: 01/07/2023]
Abstract
Under conditions of free fluid flow, highly hydrated fibrillar collagen gels expel fluid and undergo gravity driven consolidation (self-compression; SC). This process can be accelerated by the application of a compressive stress (plastic compression; PC) in order to generate dense collagen scaffolds for tissue engineering. To define the microstructural evolution of collagen gels under PC, this study applied a two-layer micromechanical model that was previously developed to measure hydraulic permeability (k) under SC. Radially confined PC resulted in unidirectional fluid flow through the gel and the formation of a dense lamella at the fluid expulsion boundary which was confirmed by confocal microscopy of collagen immunoreactivity. Gel mass loss due to PC and subsequent SC were measured and applied to Darcy's law to calculate the thickness of the lamella and hydrated layer, as well as their relative permeabilities. Increasing PC level resulted in a significant increase in mass loss fraction and lamellar thickness, while the thickness of the hydrated layer dramatically decreased. Permeability of lamella also decreased from 1.8×10(-15) to 1.0×10(-15) m(2) in response to an increase in PC level. Ongoing SC, following PC, resulted in a uniform decrease in mass loss and k with increasing PC level and as a function SC time. Experimental k data were in close agreement with those estimated by the Happel model. Calculation of average k values for various two-layer microstructures indicated that they each approached 10(-15)-10(-14) m(2) at equilibrium. In summary, the two-layer micromechanical model can be used to define the microstructure and permeability of multi-layered biomimetic scaffolds generated by PC.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
41
|
Acarregui A, Murua A, Pedraz JL, Orive G, Hernández RM. A Perspective on Bioactive Cell Microencapsulation. BioDrugs 2012; 26:283-301. [DOI: 10.1007/bf03261887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Kagawa R, Kishino M, Sato S, Ishida K, Ogawa Y, Ikebe K, Oya K, Ishimoto T, Nakano T, Maeda Y, Komori T, Toyosawa S. Chronological histological changes during bone regeneration on a non-crosslinked atelocollagen matrix. J Bone Miner Metab 2012; 30:638-50. [PMID: 22864413 DOI: 10.1007/s00774-012-0376-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 06/26/2012] [Indexed: 11/26/2022]
Abstract
Cleavage of the antigenic telopeptide region from type I collagen yields atelocollagen, and this is widely used as a scaffold for bone regeneration combined with cells, growth factors, etc. However, neither the biological effect of atelocollagen alone or its contribution to bone regeneration has been well studied. We evaluated the chronological histological changes during bone regeneration following implantation of non-crosslinked atelocollagen (Koken Co., Ltd.) in rat calvarial defects. One week after implantation, osteogenic cells positive for runt-related transcription factor 2 (Runx2) and osteoclasts positive for tartrate-resistant acid phosphatase (TRAP) were present in the atelocollagen implant in the absence of bone formation. The number of Runx2-positive osteogenic cells and Osterix-positive osteoblasts increased 2 weeks after implantation, and bone matrix proteins (osteopontin, OPN; osteocalcin, OC; dentin matrix protein 1, DMP1) were distributed in newly formed bone in a way comparable to normal bone. Some resorption cavities containing osteoclasts were also present. By 3 weeks after implantation, most of the implanted atelocollagen was replaced by new bone containing many resorption cavities, and OPN, OC, and DMP1 were deposited in the residual collagenous matrix. After 4 weeks, nearly all of the atelocollagen implant was replaced with new bone including hematopoietic marrow. Immunohistochemistry for the telopeptide region of type I collagen (TeloCOL1) during these processes demonstrated that the TeloCOL1-negative atelocollagen implant was replaced by TeloCOL1-positive collagenous matrix and new bone, indicating that new bone was mostly composed of endogenous type I collagen. These findings suggest that the atelocollagen itself can support bone regeneration by promoting osteoblast differentiation and type I collagen production.
Collapse
Affiliation(s)
- Ryosuke Kagawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The application of plastic compression to modulate fibrin hydrogel mechanical properties. J Mech Behav Biomed Mater 2012; 16:66-72. [PMID: 23149099 DOI: 10.1016/j.jmbbm.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/22/2022]
Abstract
The inherent biocompatibility of fibrin hydrogels makes them an attractive material for use in a wide range of tissue engineering applications. Despite this, their relatively low stiffness and high compliance limits their potential for certain orthopaedic applications. Enhanced mechanical properties are desirable so as to withstand surgical handling and in vivo loading after implantation and additionally, can provide important cues to cells seeded within the hydrogel. Standard methods used to enhance the mechanical properties of biological scaffolds such as chemical or thermal crosslinking cannot be used with fibrin hydrogels as cell seeding and gel formation occurs simultaneously. The objective of this study was to investigate the use of plastic compression as a means to improve the mechanical properties of chondrocyte-seeded fibrin hydrogels and to determine the influence of such compression on cell viability within these constructs. It was found that the application of 80% strain to fibrin hydrogels for 30 min (which resulted in a permanent strain of 47.4%) produced a 2.1-fold increase in the subsequent compressive modulus. Additionally, chondrocyte viability was maintained in the plastically compressed gels with significant cellular proliferation and extracellular matrix accumulation observed over 28 days of culture. In conclusion, plastic compression can be used to modulate the density and mechanical properties of cell-seeded fibrin hydrogels and represents a useful tool for both in theatre and in vitro tissue engineering applications.
Collapse
|
44
|
Mori H, Shimizu K, Hara M. Dynamic viscoelastic properties of collagen gels in the presence and absence of collagen fibrils. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:2007-2016. [DOI: 10.1016/j.msec.2012.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 04/05/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
|
45
|
Petroll WM, Lakshman N, Ma L. Experimental models for investigating intra-stromal migration of corneal keratocytes, fibroblasts and myofibroblasts. J Funct Biomater 2012; 3:183-98. [PMID: 23482859 PMCID: PMC3589802 DOI: 10.3390/jfb3010183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/10/2012] [Accepted: 03/13/2012] [Indexed: 11/16/2022] Open
Abstract
Following laser vision correction, corneal keratocytes must repopulate areas of cell loss by migrating through the intact corneal stroma, and this can impact corneal shape and transparency. In this study, we evaluate 3D culture models for simulating this process in vitro. Buttons (8 mm diameter) were first punched out of keratocyte populated compressed collagen matrices, exposed to a 3mm diameter freeze injury, and cultured in serum-free media (basal media) or media supplemented with 10% FBS, TGFβ1 or PDGF BB. Following freeze injury, a region of cell death was observed in the center of the constructs. Although cells readily migrated on top of the matrices to cover the wound area, a limited amount of cell migration was observed within the constructs. We next developed a novel "sandwich" model, which better mimics the native lamellar architecture of the cornea. Using this model, significant migration was observed under all conditions studied. In both models, cells in TGFβ and 10% FBS developed stress fibers; whereas cells in PDGF were more dendritic. PDGF stimulated the most inter-lamellar migration in the sandwich construct. Overall, these models provide insights into the complex interplay between growth factors, cell mechanical phenotypes and the structural properties of the ECM.
Collapse
Affiliation(s)
- W Matthew Petroll
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX; (W.P.); (N.L.); (L.M.)
| | | | | |
Collapse
|
46
|
Marelli B, Ghezzi CE, Mohn D, Stark WJ, Barralet JE, Boccaccini AR, Nazhat SN. Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 2011; 32:8915-26. [PMID: 21889796 DOI: 10.1016/j.biomaterials.2011.08.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/08/2011] [Indexed: 02/07/2023]
Abstract
Plastically compressed dense collagen (DC) gels mimic the microstructural, mechanical, and biological properties of native osteoid. This study investigated the effect of hybridizing DC with osteoinductive nano-sized bioactive glass (nBG) particles in order to potentially produce readily implantable, and mineralizable, cell seeded hydrogel scaffolds for bone tissue engineering. Due to the high surface area of nBG and increased reactivity, calcium phosphate formation was immediately detected within as processed DC-nGB hybrid gel scaffolds. By day 3 in simulated body fluid, accelerated mineralization was confirmed through the homogeneous growth of carbonated hydroxylapatite on the nanofibrillar collagen framework. At day 7, there was a 13 fold increase in the hybrid gel scaffold compressive modulus. MC3T3-E1 pre-osteoblasts, three-dimensionally seeded at the point of nanocomposite self-assembly, were viable up to day 28 in culture. In the absence of osteogenic supplements, MC3T3-E1 metabolic activity and alkaline phosphatase production were affected by the presence of nBG, indicating accelerated osteogenic differentiation. Additionally, no cell-induced contraction of DC-nBG gel scaffolds was detected. The accelerated mineralization of rapidly produced DC-nBG hybrid gels indicates their potential suitability as osteoinductive cell delivery scaffolds for bone regenerative therapy.
Collapse
Affiliation(s)
- Benedetto Marelli
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Hadjipanayi E, Ananta M, Binkowski M, Streeter I, Lu Z, Cui ZF, Brown RA, Mudera V. Mechanisms of structure generation during plastic compression of nanofibrillar collagen hydrogel scaffolds: towards engineering of collagen. J Tissue Eng Regen Med 2011; 5:505-19. [PMID: 21695792 DOI: 10.1002/term.343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/07/2010] [Indexed: 02/03/2023]
Abstract
Operator control of cell/matrix density of plastically compressed collagen hydrogel scaffolds critically depends on reproducibly limiting the extent of scaffold compaction, as fluid expulsion. A functional model of the compression process is presented, based on the idea that the main fluid-leaving surface (FLS) behaves as an ultrafiltration membrane, allowing fluid (water) out but retaining collagen fibrils to form a cake. We hypothesize that accumulation of collagen at the FLS produces anisotropic structuring but also increases FLS hydraulic resistance (R(FLS) ), in turn limiting the flux. Our findings show that while compressive load is the primary determinant of flux at the beginning of compression (load-dependent phase), increasing FLS collagen density (measured by X-ray attenuation) and increasing R(FLS) become the key determinants of flux as the process proceeds (flow-dependent phase). The model integrates these two phases and can closely predict fluid loss over time for a range of compressive loads. This model provides a useful tool for engineering cell and matrix density to tissue-specific levels, as well as generating localized 3D nano micro-scale structures and zonal heterogeneity within scaffolds. Such structure generation is important for complex tissue engineering and forms the basis for process automation and up-scaling.
Collapse
Affiliation(s)
- E Hadjipanayi
- University College London, Tissue Repair and Engineering Centre, Stanmore Campus, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chicatun F, Pedraza CE, Ghezzi CE, Marelli B, Kaartinen MT, McKee MD, Nazhat SN. Osteoid-mimicking dense collagen/chitosan hybrid gels. Biomacromolecules 2011; 12:2946-56. [PMID: 21661759 DOI: 10.1021/bm200528z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone extracellular matrix (ECM) is a 3D network, composed of collagen type I and a number of other macromolecules, including glycosaminoglycans (GAGs), which stimulate signaling pathways that regulate osteoblast growth and differentiation. To model the ECM of bone for tissue regenerative approaches, dense collagen/chitosan (Coll/CTS) hybrid hydrogels were developed using different proportions of CTS to mimic GAG components of the ECM. MC3T3-E1 mouse calvaria preosteoblasts were seeded within plastically compressed Coll/CTS hydrogels with solid content approaching that of native bone osteoid. Dense, cellular Coll/CTS hybrids were maintained for up to 8 weeks under either basal or osteogenic conditions. Higher CTS content significantly increased gel resistance to collagenase degradation. The incorporation of CTS to collagen gels decreased the apparent tensile modulus from 1.82 to 0.33 MPa. In contrast, the compressive modulus of Coll/CTS hybrids increased in direct proportion to CTS content exhibiting an increase from 23.50 to 55.25 kPa. CTS incorporation also led to an increase in scaffold resistance to cell-induced contraction. MC3T3-E1 viability, proliferation, and matrix remodeling capability (via matrix metalloproteinase expression) were maintained. Alkaline phosphatase activity was increased up to two-fold, and quantification of phosphate mineral deposition was significantly increased with CTS incorporation. Thus, dense Coll/CTS scaffolds provide osteoid-like models for the study of osteoblast differentiation and bone tissue engineering.
Collapse
Affiliation(s)
- Florencia Chicatun
- Department of Mining and Materials Engineering, Faculty of Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
A bioreactor is defined as a specifically designed vessel to facilitate the growth of organisms and cells through application of physical and/or electrical stimulus. When cells with therapeutic potential were first discovered, they were initially cultured and expanded in two-dimensional (2-D) culture vessels such as plates or T-flasks. However, it was soon discovered that bioreactors could be used to expand and maintain cultures more easily and efficiently. Since then, bioreactors have come to be accepted as an indispensable tool to advance cell and tissue culture further. A wide array of bioreactors has been developed to date, and in recent years businesses have started supplying bioreactors commercially. Bioreactors in the research arena range from stirred tank bioreactors for suspension culture to those with various mechanical actuators that can apply different fluidic and mechanical stresses to tissues and three-dimensional (3-D) scaffolds. As regenerative medicine gains more traction in the clinic, bioreactors for use with cellular therapies are being developed and marketed. While many of the simpler bioreactors are fit for purpose, others fail to satisfy the complex requirements of tissues in culture. We have examined the use of different types of bioreactors in regenerative medicine and evaluated the application of bioreactors in the realization of emerging cellular therapies.
Collapse
Affiliation(s)
- M W Naing
- Healthcare Engineering Research Group, Centre for Biological Engineering, Loughborough University, Loughborough, UK
| | | |
Collapse
|
50
|
Serpooshan V, Muja N, Marelli B, Nazhat SN. Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability. J Biomed Mater Res A 2011; 96:609-20. [DOI: 10.1002/jbm.a.33008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/10/2010] [Accepted: 11/02/2010] [Indexed: 01/07/2023]
|