1
|
Leiding JW, Mathews CE, Arnold DE, Chen J. The Role of NADPH Oxidase 2 in Leukocytes. Antioxidants (Basel) 2025; 14:309. [PMID: 40227295 PMCID: PMC11939230 DOI: 10.3390/antiox14030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
NADPH oxidase (NOX) family members are major resources of intracellular reactive oxygen species (ROS). In the immune system, ROS derived from phagocytic NOX (NOX2) participate in both pathogen clearance and signaling transduction. The role of NOX2 in neutrophils and macrophages has been well studied as mutations in NOX2 subunits cause chronic granulomas disease (CGD). NOX2 is expressed across a wide range of immune cells and recent reports have demonstrated that NOX2-derived ROS play important roles in other immune cells during an immune response. In this review, we summarize current knowledge of functions of NADPH oxidase 2 in each subset of leukocytes, as well as associations of NOX2 deficiency with diseases associated specifically with autoimmunity and immune deficiency. We also discuss important knowledge gaps as well as potential future directions for NOX2 research.
Collapse
Affiliation(s)
- Jennifer W. Leiding
- Division of Allergy and Immunology, John Hopkins University, Baltimore, MD 21218, USA;
- Cancer and Blood Disorders Institute, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Danielle E. Arnold
- Immune Deficiency Cellular Therapy Program, National Cancer Institutes, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
2
|
Wolach B, Gavrieli R, Wolach O, Salamon P, de Boer M, van Leeuwen K, Abuzaitoun O, Broides A, Gottesman G, Grisaru-Soen G, Hagin D, Marcus N, Rottem M, Schlesinger Y, Stauber T, Stepensky P, Dinur-Schejter Y, Zeeli T, Hanna S, Etzioni A, Frizinsky S, Somech R, Roos D, Lachover-Roth I. Genotype-phenotype correlations in chronic granulomatous disease: insights from a large national cohort. Blood 2024; 144:1300-1313. [PMID: 38905634 DOI: 10.1182/blood.2023022590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Neutrophils are the first line of defense against invading pathogens. Neutrophils execute and modulate immune responses by generating reactive oxygen species (ROS). Chronic granulomatous disease (CGD) is a primary immune deficiency disorder of phagocytes, caused by inherited mutations in the genes of the nicotinamide adenine dinucleotide phosphate reduced oxidase enzyme. These mutations lead to failure of ROS generation followed by recurrent bacterial and fungal infections, frequently associated with hyperinflammatory manifestations. We report a multicenter cumulative experience in diagnosing and treating patients with CGD. From 1986 to 2021, 2918 patients experiencing frequent infections were referred for neutrophil evaluation. Among them, 110 patients were diagnosed with CGD: 56 of Jewish ancestry, 48 of Arabic ancestry, and 6 of non-Jewish/non-Arabic ancestry. As opposed to other Western countries, the autosomal recessive (AR) CGD subtypes were predominant in Israel (71/110 patients). Thirty-nine patients had X-linked CGD, in most patients associated with severe infections (clinical severity score ≥3) and poor outcomes, presenting at a significantly earlier age than AR-CGD subtypes. The full spectrum of infections and hyperinflammatory manifestations is described. Six patients had hypomorphic mutations with significantly milder phenotype, clinical severity score ≤2, and better outcomes. Hematopoietic stem cell transplantation was implemented in 39 of 110 patients (35.5%). Successful engraftment was achieved in 92%, with 82% long-term survival and 71% full clinical recovery. CGD is a complex disorder requiring a multiprofessional team. Early identification of the genetic mutation is essential for prompt diagnosis, suitable management, and prevention.
Collapse
Affiliation(s)
- Baruch Wolach
- Division of Pediatrics, Pediatric Hematology Clinic, Kfar Saba, Israel
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Gavrieli
- Division of Pediatrics, Pediatric Hematology Clinic, Kfar Saba, Israel
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Wolach
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Pazit Salamon
- The Herbert Mast Cell Disorders Center, Laboratory of Allergy and Clinical Immunology, Meir Medical Center, Kfar Saba, Israel
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Arnon Broides
- Immunology Clinic, Soroka Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Joyce and Irving Goldman Medical School, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Giora Gottesman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Infectious Disease Unit, Division of Pediatrics, Meir Medical Center, Kfar Saba, Israel
| | - Galia Grisaru-Soen
- Hemato-Immunology Laboratory, Meir Medical Center, Kfar Saba, Israel
- Pediatric Infectious Diseases Unit, Dana-Dwek Children's Hospital, Sourasky Medical Center, Tel Aviv, Israel
| | - David Hagin
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Department of Medicine, Sourasky Medical Center, Tel Aviv, Israel
| | - Nufar Marcus
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Immunology Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Menachem Rottem
- Allergy Asthma and Immunology Service, Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Tali Stauber
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Polina Stepensky
- Department of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Medical Center, Jerusalem, Israel
| | - Yael Dinur-Schejter
- Department of Pediatric Hematology-Oncology and Bone Marrow Transplantation, Hadassah Medical Center, Jerusalem, Israel
- Allergy and Clinical Immunology Unit and The Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah Ein Kerem Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Zeeli
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Dermatology, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Suheir Hanna
- Ruth Children's Hospital and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amos Etzioni
- Ruth Children's Hospital and Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shirly Frizinsky
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Department A and Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
- The Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Idit Lachover-Roth
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
3
|
León-Lara X, Pérez-Blanco U, Yamazaki-Nakashimada MA, Bustamante-Ogando JC, Aguilar-Gómez N, Cristerna-Tarrasa H, Staines-Boone AT, Saucedo-Ramírez OJ, Fregoso-Zuñiga E, Macías-Robles AP, Canseco-Raymundo MR, Venancio-Hernández M, Moctezuma-Trejo C, Gámez-González B, Zarate-Hernández C, Ramírez-Rivera R, Scheffler-Mendoza S, Jiménez-Polvo N, Hernández-Nieto L, Carmona-Vargas J, García-Cruz ML, Zavaleta-Martínez Ó, Román-Montes CM, Cervantes-Parra V, González-Reynoso A, Guzmán-Cotaya R, Espinosa-Rosales F, Saltigeral-Simental P, Espinosa-Padilla S, Blancas Galicia L. Description of BCG and Tuberculosis Disease in a Cohort of 79 Patients with Chronic Granulomatous Disease. J Clin Immunol 2024; 44:171. [PMID: 39102004 DOI: 10.1007/s10875-024-01778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Chronic granulomatous disease (CGD) is an inherited immunodeficiency caused by pathogenic variants of genes encoding the enzyme complex NADPH oxidase. In countries where tuberculosis (TB) is endemic and the Bacillus Calmette-Guérin (BCG) vaccine is routinely administered, mycobacteria are major disease-causing pathogens in CGD. However, information on the clinical evolution and treatment of mycobacterial diseases in patients with CGD is limited. The present study describes the adverse reactions to BCG and TB in Mexican patients with CGD. METHODS Patients with CGD who were evaluated at the Immunodeficiency Laboratory of the National Institute of Pediatrics between 2013 and 2024 were included. Medical records were reviewed to determine the clinical course and treatment of adverse reactions to BCG and TB disease. RESULTS A total of 79 patients with CGD were included in this study. Adverse reactions to BCG were reported in 55 (72%) of 76 patients who received the vaccine. Tuberculosis was diagnosed in 19 (24%) patients. Relapse was documented in three (10%) of 31 patients with BGC-osis and six (32%) of 19 patients with TB, despite antituberculosis treatment. There was no difference in the frequency of BCG and TB disease between patients with pathogenic variants of the X-linked CYBB gene versus recessive variants. CONCLUSIONS This report highlights the importance of considering TB in endemic areas and BCG complications in children with CGD to enable appropriate diagnostic and therapeutic approaches to improve prognosis and reduce the risk of relapse.
Collapse
Affiliation(s)
- Ximena León-Lara
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
| | - Uriel Pérez-Blanco
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Juan Carlos Bustamante-Ogando
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
- Department of Clinical Immunology, National Institute of Pediatrics, Mexico City, Mexico
| | - Nancy Aguilar-Gómez
- Department of Infectious Diseases, National Institute of Pediatrics, Mexico City, Mexico
| | | | | | | | - Eunice Fregoso-Zuñiga
- Department of Immunology, Children's Hospital of Morelia "Eva Sámano de López Mateos", Michoacan, Mexico
| | | | | | | | | | - Berenise Gámez-González
- Department of Allergy and Clinical Immunology, Chihuahua Pediatric Specialty Hospital, Chihuahua, Mexico
| | | | - Roselia Ramírez-Rivera
- Pediatrics Department, Specialty Hospital for Children and Women "Dr Felipe Nuñez Lara", Queretaro, Mexico
| | | | - Nancy Jiménez-Polvo
- Department of Immunology, Children's Hospital of Tlaxcala, Mexico, Tlaxcala, Mexico
| | | | - Jocelyn Carmona-Vargas
- Department of Infectious Diseases, Hospital for Children and Women of San Luis Potosí, San Luis Potosí, Mexico
| | | | | | - Carla M Román-Montes
- Clinical Microbiology Laboratory, INCMNSZ, Mexico City, Mexico
- Department of Infectious Diseases, INCMNSZ, Mexico City, Mexico
| | | | | | - Rogelio Guzmán-Cotaya
- Department of Pediatrics, General Hospital Agustín O' Horan, Mérida, Yucatan, Mexico
| | | | | | - Sara Espinosa-Padilla
- Laboratory of Immunodeficiency, National Institute of Pediatrics, Mexico City, Mexico
| | | |
Collapse
|
4
|
O’Donovan CJ, Tan LT, Abidin MAZ, Roderick MR, Grammatikos A, Bernatoniene J. Diagnosis of Chronic Granulomatous Disease: Strengths and Challenges in the Genomic Era. J Clin Med 2024; 13:4435. [PMID: 39124702 PMCID: PMC11313294 DOI: 10.3390/jcm13154435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic granulomatous disease (CGD) is a group of rare primary inborn errors of immunity characterised by a defect in the phagocyte respiratory burst, which leads to severe and life-threatening infective and inflammatory complications. Despite recent advances in our understanding of the genetic and molecular pathophysiology of X-linked and autosomal recessive CGD, and growth in the availability of functional and genetic testing, there remain significant barriers to early and accurate diagnosis. In the current review, we provide an up-to-date summary of CGD pathophysiology, underpinning current methods of diagnostic testing for CGD and closely related disorders. We present an overview of the benefits of early diagnosis and when to suspect and test for CGD. We discuss current and historical methods for functional testing of NADPH oxidase activity, as well as assays for measuring protein expression of NADPH oxidase subunits. Lastly, we focus on genetic and genomic methods employed to diagnose CGD, including gene-targeted panels, comprehensive genomic testing and ancillary methods. Throughout, we highlight general limitations of testing, and caveats specific to interpretation of results in the context of CGD and related disorders, and provide an outlook for newborn screening and the future.
Collapse
Affiliation(s)
- Conor J. O’Donovan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Lay Teng Tan
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, University Malaya Medical Center, Lembah Pantai, Kuala Lumpur 59100, Malaysia
| | - Mohd A. Z. Abidin
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Marion R. Roderick
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Alexandros Grammatikos
- Department of Immunology, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, University Hospitals Bristol and Weston NHS Foundation Trust, Upper Maudlin Street, Bristol BS2 8BJ, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Grammatikos A, Gennery AR. Inflammatory Complications in Chronic Granulomatous Disease. J Clin Med 2024; 13:1092. [PMID: 38398405 PMCID: PMC10889279 DOI: 10.3390/jcm13041092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic granulomatous disease (CGD) is a rare inborn error of immunity that typically manifests with infectious complications. As the name suggest though, inflammatory complications are also common, often affecting the gastrointestinal, respiratory, urinary tracts and other tissues. These can be seen in all various types of CGD, from X-linked and autosomal recessive to X-linked carriers. The pathogenetic mechanisms underlying these complications are not well understood, but are likely multi-factorial and reflect the body's attempt to control infections. The different levels of neutrophil residual oxidase activity are thought to contribute to the large phenotypic variations. Immunosuppressive agents have traditionally been used to treat these complications, but their use is hindered by the fact that CGD patients are predisposed to infection. Novel therapeutic agents, like anti-TNFa monoclonal antibodies, anakinra, ustekinumab, and vedolizumab offer promise for the future, while hematopoietic stem cell transplantation should also be considered in these patients.
Collapse
Affiliation(s)
- Alexandros Grammatikos
- The Bristol Immunology and Allergy Centre, North Bristol NHS Trust, Bristol BS10 5NB, UK
| | - Andrew R. Gennery
- Paediatric Stem Cell Transplant Unit, Great North Children’s Hospital, Newcastle upon Tyne NE1 4LP, UK;
| |
Collapse
|
6
|
Al Kuwaiti AA, Al Dhaheri AD, Al Hassani M, Ruszczak Z, Alrustamani A, Abuhammour W, El Ghazali G, Al-Hammadi S, Shendi HM. Chronic granulomatous disease in the United Arab Emirates: clinical and molecular characteristics in a single center. Front Immunol 2023; 14:1228161. [PMID: 38022624 PMCID: PMC10652277 DOI: 10.3389/fimmu.2023.1228161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Background Chronic granulomatous disease (CGD) is a genetic disorder caused by defective oxidative burst within phagocytes, manifesting as recurrent, severe infections as well as hyperinflammation. Objective This is the first report from the United Arab Emirates (UAE) to describe the demographic, clinical, laboratory, radiological, and genetic characteristics of patients with CGD. Methods This is a retrospective study that was conducted at Tawam Hospital in the UAE on patients with confirmed CGD between 2017 and 2022. Results A total of 14 patients were diagnosed with CGD, of whom 13 patients had autosomal recessive (AR) CGD due to NCF1 deficiency. Consanguinity was noted in all patients with AR CGD, whereas positive family history was identified in 50% of cases. The median age of onset of symptoms was 24 months, while the median age at diagnosis was 72 months. Lymphadenitis was the most common clinical feature identified in 71% of patients. Other common infectious manifestations included abscess formation (57%), pneumonia (50%), invasive aspergillosis (21%), oral thrush (14%), and sepsis (14%). Disseminated trichosporonosis was reported in one patient. Autoimmune and inflammatory manifestations included celiac disease in two patients, diabetes mellitus and asymptomatic colitis in one patient each. Genetic analysis was performed in all patients; NCF1 deficiency was diagnosed in 13 (93%) patients, with c.579G>A being the most prevalent pathogenic variant identified. The treatment modalities, as well as treatment of acute infections, treatment modalities included antimicrobial prophylaxis in 12 (86%) patients and hematopoietic stem cell transplant in six patients (42%). Conclusion This is the first report from the UAE describing the clinical and molecular characteristics of patients with CGD. The homozygous variant c.579G>A causing NCF1 deficiency can be considered as a founder mutation for AR CGD in the UAE.
Collapse
Affiliation(s)
- Amna Ali Al Kuwaiti
- Department of Pediatrics, Division of Pediatric Allergy/Immunology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ahmed Darwaish Al Dhaheri
- Department of Pediatrics, Division of Pediatric Allergy/Immunology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Moza Al Hassani
- Department of Pediatrics, Infectious Disease Division, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Zbigniew Ruszczak
- Division of Dermatology, Department of Medicine, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Ahmad Alrustamani
- Department of Medicine, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Walid Abuhammour
- College of Medicine, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Pediatrics, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Gehad El Ghazali
- Department of Immunology, Sheikh Khalifa Medical City, Union71- Purehealth, Abu Dhabi, United Arab Emirates
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suleiman Al-Hammadi
- Department of Pediatrics, Division of Pediatric Allergy/Immunology, Tawam Hospital, Al Ain, United Arab Emirates
- College of Medicine, Mohamed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Department of Pediatrics, Al Jalila Children’s Hospital, Dubai, United Arab Emirates
| | - Hiba M. Shendi
- Department of Pediatrics, Division of Pediatric Allergy/Immunology, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
7
|
Abd Elaziz D, El Hawary R, Meshaal S, Alkady R, Lotfy S, Eldash A, Erfan A, Chohayeb E, Saad M, Boutros J, Galal N, Elmarsafy A. Chronic Granulomatous Disease: a Cohort of 173 Patients-10-Years Single Center Experience from Egypt. J Clin Immunol 2023; 43:1799-1811. [PMID: 37433991 PMCID: PMC10661789 DOI: 10.1007/s10875-023-01541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Chronic granulomatous disease (CGD) is an inherited primary immunodeficiency disorder of phagocytes, characterized by recurrent fungal and bacterial infections. Our aim is to describe the different clinical presentations, non-infectious auto-inflammatory features, types and sites of infections, and to estimate the mortality among our large cohort. METHODS This is a retrospective study conducted at the Pediatric Department of Cairo University Children's Hospital in Egypt, including cases with a confirmed CGD diagnosis. RESULTS One hundred seventy-three confirmed CGD patients were included. AR-CGD was diagnosed in 132 patients (76.3%) including 83 patients (48%) with p47phox defect, 44 patients (25.4%) with p22phox defect, and 5 patients (2.9%) with p67phox defect. XL-CGD was diagnosed in 25 patients (14.4%). The most common recorded clinical manifestations were deep-seated abscesses and pneumonia. Gram-negative bacteria and Aspergillus were the most frequently isolated species. Regarding the outcome, 36 patients (20.8%) were lost from follow-up. Among patients with known outcome, 94/137 patients (68.6%) are living, while 43/137 patients (31.4%) died. CONCLUSION AR-CGD is predominant in Egypt; CGD must always be ruled out in any patient presenting with typical or atypical mycobacterial or BCG-disease.
Collapse
Affiliation(s)
- Dalia Abd Elaziz
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Rabab El Hawary
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Safa Meshaal
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Radwa Alkady
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sohilla Lotfy
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alia Eldash
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aya Erfan
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Engy Chohayeb
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai Saad
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Jeannette Boutros
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen Galal
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Aisha Elmarsafy
- Pediatric Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Vignesh P, Sil A, Aggarwal R, Laha W, Mondal S, Dhaliwal M, Sharma S, Pilania RK, Jindal AK, Suri D, Sethi S, Rawat A, Singh S. Tuberculosis and Bacillus Calmette-Guérin Disease in Patients with Chronic Granulomatous Disease: an Experience from a Tertiary Care Center in North India. J Clin Immunol 2023; 43:2049-2061. [PMID: 37721651 DOI: 10.1007/s10875-023-01581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Chronic granulomatous disease (CGD) is a phagocytic defect characterized by recurrent bacterial and fungal infections. We report clinical profile of patients with CGD and mycobacterial infections in a cohort from North India. A review of clinical and laboratory records was carried out for patients with CGD registered at our center between 1990 and 2021. Of the 99 patients with CGD, 22 had mycobacterial infections-Mycobacterium tuberculosis and M. bovis-BCG in 11 each. Among the children with M. bovis-BCG infection, 6 had localized and 5 had disseminated BCG disease. Median age at onset of symptoms and diagnosis of BCG disease was 5 months and 15 months, respectively. While disseminated forms of BCG were noted only in CYBB defect, none of the patients with NCF1 defect developed complications due to BCG vaccine. A recurring radiological feature was left axillary lymph node calcification, which was present in around 50% of CGD patients with BCG infections. Of 11 patients with tuberculosis, pulmonary, pleuro-pulmonary, abdominal, and disseminated forms were present in 6, 1, 2, and 2, respectively. Median age at onset of symptoms and diagnosis of tuberculosis was 129 months and 130 months, respectively. Molecular defects were identified in CYBB (5), NCF1 (4), and CYBA (1). Incidence of tuberculosis and BCG-related complications in patients with CGD is higher than the normal population. Screening for CGD is warranted in any patient with adverse reactions to BCG vaccination, calcification of left axillary lymph node, and persistent, recurrent or disseminated forms of tuberculosis.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Archan Sil
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ridhima Aggarwal
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Wrik Laha
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjib Mondal
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manpreet Dhaliwal
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Saniya Sharma
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Rakesh Kumar Pilania
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Deepti Suri
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sunil Sethi
- TB and Serology Division, Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Surjit Singh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
9
|
Basu S, Vignesh P, Prithiviraj K, Nadig PL, Sekar A, Rawat A. Infections due to Salmonella sp. in children with chronic granulomatous disease: Our experience from North India. Clin Immunol 2023; 255:109769. [PMID: 37704015 DOI: 10.1016/j.clim.2023.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/05/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Infections with non-typhoidal Salmonella sp. have been documented in children with chronic granulomatous disease (CGD), but the prevalence of salmonella infection in children with CGD in underdeveloped countries is unknown. We assessed the clinical profiles of CGD patients diagnosed at our tertiary care centre in north India and had Salmonella sp.infections. We found three patients with Salmonella sp. bloodstream infections (2-proven, 1-probable) among the 99 CGD patients. After receiving cotrimoxazole prophylaxis following a CGD diagnosis, we noted that none of our patients experienced non-typhoidal salmonella infection. One patient experienced severe typhoidal bacteremia despite receipt of cotrimoxazole prophylaxis. This patient required numerous hospital admissions and prolonged intravenous antibiotic regimen. We suggest that vaccination with killed typhoidal vaccines should be regularly given to children with CGD in order to avoid typhoidal bacteremia, in addition to cotrimoxazole prophylaxis and a focus on good hand and food hygiene.
Collapse
Affiliation(s)
- Suprit Basu
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Pandiarajan Vignesh
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | - K Prithiviraj
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Pallavi L Nadig
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aravind Sekar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Amit Rawat
- Pediatric Allergy Immunology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
10
|
Justiz-Vaillant AA, Williams-Persad AFA, Arozarena-Fundora R, Gopaul D, Soodeen S, Asin-Milan O, Thompson R, Unakal C, Akpaka PE. Chronic Granulomatous Disease (CGD): Commonly Associated Pathogens, Diagnosis and Treatment. Microorganisms 2023; 11:2233. [PMID: 37764077 PMCID: PMC10534792 DOI: 10.3390/microorganisms11092233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by a defect in the phagocytic function of the innate immune system owing to mutations in genes encoding the five subunits of the nicotinamide adenine dinucleotide phosphatase (NADPH) oxidase enzyme complex. This review aimed to provide a comprehensive approach to the pathogens associated with chronic granulomatous disease (CGD) and its management. Patients with CGD, often children, have recurrent life-threatening infections and may develop infectious or inflammatory complications. The most common microorganisms observed in the patients with CGD are Staphylococcus aureus, Aspergillus spp., Candida spp., Nocardia spp., Burkholderia spp., Serratia spp., and Salmonella spp. Antibacterial prophylaxis with trimethoprim-sulfamethoxazole, antifungal prophylaxis usually with itraconazole, and interferon gamma immunotherapy have been successfully used in reducing infection in CGD. Haematopoietic stem cell transplantation (HCT) have been successfully proven to be the treatment of choice in patients with CGD.
Collapse
Affiliation(s)
- Angel A. Justiz-Vaillant
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Arlene Faye-Ann Williams-Persad
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Darren Gopaul
- Department of Internal Medicine, Port of Spain General Hospital, The University of the West Indies, St. Augustine, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | | | - Reinand Thompson
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Patrick Eberechi Akpaka
- Department of Paraclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago; (A.F.-A.W.-P.); (S.S.); (R.T.); (C.U.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, Trinidad and Tobago;
| |
Collapse
|
11
|
Gul I, Khan TA, Akbar NU, Gul N, Ali R, Khan SN. Novel mutations in CYBB Gene Cause X-linked chronic Granulomatous Disease in Pakistani patients. Ital J Pediatr 2023; 49:95. [PMID: 37533075 PMCID: PMC10399011 DOI: 10.1186/s13052-023-01496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Chronic Granulomatous Disease (CGD) is a primary immunodeficiency that causes susceptibility to recurrent fungal and bacterial infections. The CYBB gene encodes gp91phox component of the Phagocytic Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and specifically, X-linked CGD is caused by mutations in the CYBB gene, located on the X chromosome. The aim of the study was to characterize functional and genetic mutations in X-linked CGD. METHODS Functional analysis was conducted on the whole blood of seventeen male individuals who were suspected to have X-linked chronic granulomatous disease (CGD). Flow cytometry was employed to assess the capacity of NADPH oxidase, measuring both H2O2 production and gp91phox protein expression in neutrophils. Additionally, DNA Sanger sequencing was performed for genetic analysis. The pathogenicity of novel mutations was assessed by pathogenicity prediction tools. RESULT Among the seventeen patients evaluated, five patients (P1, P2, P3, P4, and P5) displayed impaired H2O2 production by their neutrophils upon stimulation with Phorbol myristate acetate (PMA), accompanied by abnormal gp91phox expression. DNA sequencing of the CYBB gene identified specific mutations in each patient. In P1 and P2 (previously reported cases), a hemizygous missense mutation, c.925G > A/p.E309K was identified. In P3 and P4 (novel cases), hemizygous nonsense mutations, c.216T > A/p.C72X were found. Lastly, in P5 (also a novel case), a hemizygous missense mutation, c.732T > G/p.C244W was detected. These mutations reside in exons 9,3 and 7 of the CYBB gene, respectively. CONCLUSIONS The current study contributes to the understanding of the clinical and genetic spectrum associated with X-linked chronic granulomatous disease (CGD). It highlights the significance of early diagnosis in CGD and emphasizes the importance of lifelong prophylaxis to prevent severe infections.
Collapse
Affiliation(s)
- Irum Gul
- Department of Zoology, Kohat University of Science and Technology, 26000, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, 25160, Peshawar, Pakistan.
| | - Noor Ul Akbar
- Department of Zoology, Kohat University of Science and Technology, 26000, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Naila Gul
- Department of Zoology, Kohat University of Science and Technology, 26000, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Rehman Ali
- Department of Zoology, Kohat University of Science and Technology, 26000, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, 26000, Kohat, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
12
|
Peñafiel-Vicuña AK, Coyata-Guzmán R, González Reynoso A, Palma-Chan AG, Baeza-Bastarrachea R, García-Ruelas SA, Costta-Michuy Á, Razo-Requena C, León-Lara X, Espinosa-Padilla S, Espinosa-Rosales F, Bustamante J, Blancas-Galicia L. [Bacillus Calmette-Guérin infection and chronic granulomatous disease due to new pathogenic variants in the NCF2 gene in the Mayan ethnic group. Report of two cases.]. REVISTA ALERGIA MÉXICO 2023; 69:220-227. [PMID: 37218049 DOI: 10.29262/ram.v69i4.1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/13/2023] [Indexed: 05/24/2023] Open
Abstract
INTRODUCTION Chronic granulomatous disease (CGD) is an inborn error of immunity, characterized by abnormal susceptibility to bacterial and fungal infections and a lack of systemic inflammatory regulation. Pathogenic variants in the CYBB gene are transmitted in an X-linked pattern of inheritance; while the pathogenic variants present in the EROS, NCF1, NCF2, NCF4, or CYBA genes are transmitted with an autosomal recessive inheritance pattern. OBJETIVES To describe the clinical, immunological, and genetic characteristics of two patients with CGD and BCG infection. METHODS In peripheral blood neutrophils, H2O2 production and the expression of NADPH oxidase subunits were measured. Detection of pathogenic variants was by Sanger sequencing of the NCF2 gene. The clinical information was extracted from the records by the treating physicians. RESULTS We present two male infants from two unrelated families of Mayan ethnicity, with CGD and BCG vaccine infection. Three different pathogenic variants in the NCF2 gene were identified; on the one hand, c.304 C>T (p.Arg102*) has already been reported, on the other hand, c.1369 A>T (p.Lys457*) and c.979 G>T (p.Gly327*) not reported. CONCLUSIONS In patients with mycobacterial infection with BCG, we should suspect an inborn error of immunity, such as CGD. The diagnosis of CGD is made through the detection of a lack of radical oxygen species in neutrophils. The reported patients had pathogenic variants in the NCF2 gene, two of which have not been previously reported in the literature.
Collapse
Affiliation(s)
- Ana Karen Peñafiel-Vicuña
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
- Hospital Pediátrico Baca Ortiz, Quito, Ecuador
| | | | | | | | | | - Sherel A García-Ruelas
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
- Departamento de Genética, Instituto Nacional de Pediatría, Ciudad de México, México
| | | | - Cielo Razo-Requena
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ximena León-Lara
- Instituto de Inmunología, Escuela de Medicina de Hannover, Hannover, Alemania
| | - Sara Espinosa-Padilla
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México
| | | | - Jacinta Bustamante
- Laboratorio de Genética Humana de Enfermedades Infecciosas (GHMI), INSERM 1163, Paris, Francia
| | - Lizbeth Blancas-Galicia
- Unidad de Investigación en Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México, México.
| |
Collapse
|
13
|
Nunoi H, Nakamura H, Nishimura T, Matsukura M. Recent topics and advanced therapies in chronic granulomatous disease. Hum Cell 2023; 36:515-527. [PMID: 36534309 DOI: 10.1007/s13577-022-00846-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by the inability of phagocytes to produce reactive oxygen species (ROS) owing to a defect in any of the five components (CYBB/gp91phox, CYBA/p22phox, NCF1/p47phox, NCF2/p67phox, and NCF4/p40phox) and a concomitant regulatory component of Rac1/2 and CYBC1/Eros of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Patients with CGD are at an increased risk of life-threatening infections caused by catalase-positive bacteria and fungi and of inflammatory complications such as CGD colitis. Antimicrobial and azole antifungal prophylaxes have considerably reduced the incidence and severity of bacterial and improved fungal infections and overall survival. CGD studies have revealed the precise epidemiology and role of NADPH oxidase in innate immunity which has led to a new understanding of the importance of phagocyte oxygen metabolism in various host-defense systems and the fields leading to cell death processes. Moreover, ROS plays central roles in the determination of cell fate as secondary messengers and by modifying of various signaling molecules. According to this increasing knowledge about the effects of ROS on the inflammasomal system, immunomodulatory treatments, such as IFN-γ and anti-IL-1 antibodies, have been established. This review covers the current topics in CGD and the relationship between ROS and ROS-mediated pathophysiological phenomena. In addition to the shirt summary of hematopoietic stem cell transplantation and gene therapy, we introduce a novel ROS-producing enzyme replacement therapy using PEG-fDAO to compensate for NADPH oxidase deficiency.
Collapse
Affiliation(s)
- Hiroyuki Nunoi
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki-City, Miyazaki, 889-1692, Japan. .,Aisenkai Nichinan Hospital, 3649-2 Kazeta, Nichinan-City, Miyazaki, 887-0034, Japan.
| | - Hideki Nakamura
- Laboratory of Environmental Science and Technology, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto City, 860-0082, Japan
| | - Toyoki Nishimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki-City, Miyazaki, 889-1692, Japan
| | - Makoto Matsukura
- Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-Ku, Kumamoto City, 860-0082, Japan
| |
Collapse
|
14
|
OKTAY İ, SERTDEMİR AL, İÇLİ A. A CASE OF ACUTE CORONARY SYNDROME UNDER IMMUNSUPRESSION WHO IS THE CRIMINAL NEUTROPHILS OR T CELLS? JOURNAL OF EMERGENCY MEDICINE CASE REPORTS 2022. [DOI: 10.33706/jemcr.1124235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by recurrent, life-threatening bacterial and fungal infections of the skin, airways, lymph nodes, liver, brain, and bones. These infections most commonly occur in organs in contact with the outside world (lungs, gastrointestinal tract, and skin), as well as in lymph nodes that drain these structures. While involvement can be seen in many organs, there is no known cardiovascular involvement. Our case is an ACS case that has a different place in the literature because acute coronary syndrome (ACS) was seen in a 20-year-old male patient with a diagnosis of chronic granulomatous disease.
Collapse
Affiliation(s)
- İrem OKTAY
- NECMETTİN ERBAKAN ÜNİVERSİTESİ, MERAM TIP FAKÜLTESİ, MERAM TIP PR
| | | | - Abdullah İÇLİ
- NECMETTİN ERBAKAN ÜNİVERSİTESİ, MERAM TIP FAKÜLTESİ, MERAM TIP PR
| |
Collapse
|
15
|
Mellouli F, Ksouri H, Lajhouri M, Ben Khaled M, Rekaya S, Ben Fraj E, Ouederni M, Barbouche MR, Bejaoui M. Long-Term Observational Study of Chronic Granulomatous Disease About 41 Patients From Tunisia and Comparison to Other Long-Term Follow-Up Studies. Clin Pediatr (Phila) 2022; 61:629-644. [PMID: 35678026 DOI: 10.1177/00099228221096329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic granulomatous disease (CGD) is an inherited autosomal recessive or X-Linked primitive immunodeficiency (PID), due to a defective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex impairing anti-infectious and anti-inflammatory role of peripheral blood mononuclear cells. It is characterized by severe bacterial and fungal infections and by excessive inflammation leading to granulomatous complications. This work was made over a period of 34 years on 41 Tunisian patients suffering from CGD. Cumulative follow-up of patients was 2768.5 months, median 31 months. Survival was studied by survival curves according to Kaplan-Meier method. Lymphatic nodes, pulmonary and cutaneous infections predominate as revealing manifestations and as infectious events during patients' monitoring. At study end 12 patients died mainly of invasive pulmonary aspergillosis and septicemia. Median age of death was 30 months. CGD remains compatible with a decent quality of life. Early diagnosis, anti-infectious prophylaxis, and initiation of adequate management, as soon as complication is perceived, promote pretty good evolution.
Collapse
Affiliation(s)
- Fethi Mellouli
- Pediatric Immunohematology Service, Bone Marrow Transplant Center, Tunis, Tunisia
| | - Habib Ksouri
- Laboratories Service, Bone Marrow Transplant Center, Tunis, Tunisia
| | - Maïssa Lajhouri
- Pediatric Immunohematology Service, Bone Marrow Transplant Center, Tunis, Tunisia
| | - Monia Ben Khaled
- Pediatric Immunohematology Service, Bone Marrow Transplant Center, Tunis, Tunisia
| | - Samia Rekaya
- Pediatric Immunohematology Service, Bone Marrow Transplant Center, Tunis, Tunisia
| | - Elhem Ben Fraj
- Pediatric Immunohematology Service, Bone Marrow Transplant Center, Tunis, Tunisia
| | - Monia Ouederni
- Pediatric Immunohematology Service, Bone Marrow Transplant Center, Tunis, Tunisia
| | | | - Mohamed Bejaoui
- Pediatric Immunohematology Service, Bone Marrow Transplant Center, Tunis, Tunisia
| |
Collapse
|
16
|
Antimycobacterial prophylaxis regarding Bacillus Calmette-Guérin -associated complications in children with primary immunodeficiency. Respir Med 2022; 200:106919. [PMID: 35779416 DOI: 10.1016/j.rmed.2022.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Bacillus Calmette-Guérin (BCG) vaccine derived from Mycobacterium bovis can cause BCG vaccine associated complications (BCG-VAC) especially in patients with primary immunodeficiencies (PID). No consensus exists for antimycobacterial prophylactic therapy for patients with PID who receive the BCG vaccine. AIM This study aimed to define the risk factors in the development of BCG-VAC and effect of antimycobacterial prophylaxis in PID patients vaccinated with BCG. METHODS This is a retrospective cohort study. 104 patients diagnosed with PID who received the BCG vaccination were referred to pediatric pulmonology in a single center were enrolled. The demographic characteristics, type, dosage and duration of antimycobacterial prophylaxis regimen, treatment modalities for BCG-VAC were documented. Regression analysis was performed to evaluate the effect of covariates for predicting BCG-VAC in patients with PIDs. RESULTS Among 104 patients 21 (21.2%) developed BCG-VAC. The frequency of BCG-VAC was highest in patients with Mendelian susceptibility to mycobacterial disease (46.2%) followed by patients with severe combined immunodeficiency (22.4%) and those with chronic granulomatous disease (9.5%). Prophylactic therapy against mycobacterium was initiated for 72 patients (69.2%). Among patients who received the antimycobacterial prophylaxis, BCG-VAC developed in only four patients (5.6%), whereas 17 patients (53.1%) developed BCG-VAC in the non-prophylaxis group and this difference was statistically significant (p < 0.001). Multivariable regression analysis with age at diagnosis, type of PID, receiving antimycobacterial prophylaxis, median T cell number at the time of PID diagnosis and HSCT status showed that not receiving antimycobacterial prophylaxis and lower median T cell number were predictors, with antimycobacterial prophylaxis having the highest odds ratio for BCG-VAC prediction in patients with PIDs (p:<0.001, R2:0.64). CONCLUSION The lower frequency of BCG-VAC in our cohort can be explained by two main reasons; relatively late BCG vaccination schedule and receiving antimycobacterial prophylaxis. It is reasonable to begin antimycobacterial prophylaxis in patients with PIDs who are susceptible to BCG-VAC.
Collapse
|
17
|
Bernatowska E, Pac M, Heropolitańska-Pliszka E, Pietrucha B, Dąbrowska-Leonik N, Skomska-Pawliszak M, Bernat-Sitarz K, Krzysztopa-Grzybowska K, Wolska-Kuśnierz B, Bohynikova N, Augustynowicz E, Augustynowicz-Kopeć E, Korzeniewska-Koseła M, Wieteska-Klimczak A, Książyk J, Jackowska T, van den Burg M, Casanova JL, Picard C, Mikołuć B. BCG Moreau Polish Substrain Infections in Patients With Inborn Errors of Immunity: 40 Years of Experience in the Department of Immunology, Children's Memorial Health Institute, Warsaw. Front Pediatr 2022; 10:839111. [PMID: 35664873 PMCID: PMC9161164 DOI: 10.3389/fped.2022.839111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
Objective We aimed to assess BCG (Bacillus Calmette-Guérin) complications in patients with Inborn Errors of Immunity (IEI), according to the inherited disorders and associated immunological defects, as well as the different BCG substrains. Material We studied adverse reactions to the locally-produced BCG Moreau vaccine, analyzed in patients with IEI diagnosed between 1980 and 2020 in the Department of Immunology, Children's Memorial Health Institute (CMHI), Warsaw. These results were compared with previously published studies. Results Significantly fewer disseminated BCG infections (BCGosis) were found in 11 of 72 (15%) SCID (Severe Combined Immunodeficiency) NK (Natural Killer)-phenotype patients, when compared with the 119 out of 349 (34%) (p = 0.0012) patients with SCID with BCG in other countries. Significantly fewer deaths caused by BCGosis were observed (p = 0.0402). A significantly higher number of hematopoietic stem cell transplantations (HSCTs) were performed in the CMHI study (p = 0.00001). BCGosis was found in six patients with Mendelian susceptibility to mycobacterial diseases (MSMD). Other patients with IEI prone to BCG complications, such as CGD (Chronic Granulomatous Disease), showed no case of BCGosis. Conclusion The BCG Moreau substrain vaccine, produced in Poland since 1955, showed genetic differences with its parental Brazilian substrain together with a superior clinical safety profile in comparison with the other BCG substrains, with no BCGosis in patients with IEI other than SCID and MSMD. Our data also confirmed significantly fewer cases of BCGosis and deaths caused by BCG infection in patients with SCID with this vaccine substrain. Finally, they confirmed the protecting role of NK cells, probably via their production of IFN-γ.
Collapse
Affiliation(s)
- Ewa Bernatowska
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Małgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Barbara Pietrucha
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | | | | | | | - Katarzyna Krzysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland
| | | | - Nadia Bohynikova
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Ewa Augustynowicz
- Department of Epidemiology, National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Maria Korzeniewska-Koseła
- Department of Tuberculosis Epidemiology and Surveillance, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Anna Wieteska-Klimczak
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Janusz Książyk
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Teresa Jackowska
- Department of Paediatrics, Medical Centre of Postgraduate Education, Warsaw, Poland
- Department of Paediatrics, Bielanski Hospital, Warsaw, Poland
| | - Mirjam van den Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute, New York, NY, United States
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University Hospital, New York, NY, United States
- Necker Hospital for Sick Children, Paris Descartes University, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Necker Hospital and School of Medicine, University Paris Descartes, Paris, France
| | - Capucine Picard
- Imagine Institute, Université de paris, Paris, France
- Study Centre for Primary Immunodeficiency, Necker-Enfants, Malades Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Bożena Mikołuć
- Department of Paediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
18
|
Chiu TLH, Leung D, Chan KW, Yeung HM, Wong CY, Mao H, He J, Vignesh P, Liang W, Liew WK, Jiang LP, Chen TX, Chen XY, Tao YB, Xu YB, Yu HH, Terblanche A, Lung DC, Li CR, Chen J, Tian M, Eley B, Yang X, Yang J, Chiang WC, Lee BW, Suri D, Rawat A, Gupta A, Singh S, Wong WHS, Chua GT, Duque JSDR, Cheong KN, Chong PCY, Ho MHK, Lee TL, Yang W, Lee PP, Lau YL. Phenomic Analysis of Chronic Granulomatous Disease Reveals More Severe Integumentary Infections in X-Linked Compared With Autosomal Recessive Chronic Granulomatous Disease. Front Immunol 2022; 12:803763. [PMID: 35140711 PMCID: PMC8818666 DOI: 10.3389/fimmu.2021.803763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is an inborn error of immunity (IEI), characterised by recurrent bacterial and fungal infections. It is inherited either in an X-linked (XL) or autosomal recessive (AR) mode. Phenome refers to the entire set of phenotypes expressed, and its study allows us to generate new knowledge of the disease. The objective of the study is to reveal the phenomic differences between XL and AR-CGD by using Human Phenotype Ontology (HPO) terms. METHODS We collected data on 117 patients with genetically diagnosed CGD from Asia and Africa referred to the Asian Primary Immunodeficiency Network (APID network). Only 90 patients with sufficient clinical information were included for phenomic analysis. We used HPO terms to describe all phenotypes manifested in the patients. RESULTS XL-CGD patients had a lower age of onset, referral, clinical diagnosis, and genetic diagnosis compared with AR-CGD patients. The integument and central nervous system were more frequently affected in XL-CGD patients. Regarding HPO terms, perianal abscess, cutaneous abscess, and elevated hepatic transaminase were correlated with XL-CGD. A higher percentage of XL-CGD patients presented with BCGitis/BCGosis as their first manifestation. Among our CGD patients, lung was the most frequently infected organ, with gastrointestinal system and skin ranking second and third, respectively. Aspergillus species, Mycobacterium bovis, and Mycobacteirum tuberculosis were the most frequent pathogens to be found. CONCLUSION Phenomic analysis confirmed that XL-CGD patients have more recurrent and aggressive infections compared with AR-CGD patients. Various phenotypic differences listed out can be used as clinical handles to distinguish XL or AR-CGD based on clinical features.
Collapse
Affiliation(s)
- Timothy Lok-Hin Chiu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Hok Man Yeung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Chung-Yin Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Huawei Mao
- Department of Immunology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jianxin He
- Department of Respiratory Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Pandiarajan Vignesh
- Allergy & Immunology Unit, Department of Paediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Weiling Liang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Woei Kang Liew
- Paediatric Immunology Service, KK Hospital, Singapore, Singapore
| | - Li-Ping Jiang
- Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Tong-Xin Chen
- Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang-Yuan Chen
- Department of Allergy, Immunology and Rheumatology, Guangzhou Children’s Hospital, Guangdong, China
| | - Yin-Bo Tao
- Department of Allergy, Immunology and Rheumatology, Guangzhou Children’s Hospital, Guangdong, China
| | - Yong-Bin Xu
- Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Hsin-Hui Yu
- Department of Paediatrics, National Taiwan University Children’s Hospital, Taipei, Taiwan
| | - Alta Terblanche
- Paediatric Gastroenterology and Hepatology Unit, University of Pretoria, Pretoria, South Africa
| | - David Christopher Lung
- Department of Pathology, Queen Elizabeth Hospital/Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Cheng-Rong Li
- Department of Nephrology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jing Chen
- Department of Hematology/Oncology, Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man Tian
- Department of Tuberculosis, Nanjing Chest Hospital, Nanjing, China
| | - Brian Eley
- Department of Paediatrics and Child Health, University of Cape Town and Red Cross War Memorial Children’s Hospital, Cape Town, South Africa
| | - Xingtian Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Jing Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Wen Chin Chiang
- Paediatric Immunology Service, KK Hospital, Singapore, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Deepti Suri
- Allergy & Immunology Unit, Department of Paediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy & Immunology Unit, Department of Paediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Allergy & Immunology Unit, Department of Paediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Allergy & Immunology Unit, Department of Paediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Wilfred Hing Sang Wong
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Gilbert T. Chua
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Jaime Sou Da Rosa Duque
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Kai-Ning Cheong
- Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | | | | | - Tsz-Leung Lee
- Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Pamela P. Lee
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
A fludarabine and melphalan reduced-intensity conditioning regimen for HSCT in fifteen chronic granulomatous disease patients and a literature review. Ann Hematol 2022; 101:869-880. [DOI: 10.1007/s00277-022-04751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 12/22/2021] [Indexed: 11/01/2022]
|
20
|
Sekar A, Gupta K, Rawat A, Jindal A, Pandiarajan V, Suri D, Gupta A, Kaur G, Kumar I, Gummadi A, Sil A, Singh S. Utility of Immunohistochemistry and Immunofluorescence in Determining the Pathogenic Variants of Chronic Granulomatous Disease. J Clin Immunol 2022; 42:85-93. [PMID: 34651207 DOI: 10.1007/s10875-021-01148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a primary immunodeficiency disorder of phagocytes due to defects in any of the five subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. An initial diagnosis of CGD is made by flow cytometry-based dihydrorhodamine assay or nitro blue tetrazolium test, which is further confirmed by molecular assays. Expression of five subunits of NADPH oxidase components by either flow cytometric or western blot analysis provides clues toward the potential gene targets which are subsequently confirmed by various genetic assays. Immunohistochemistry (IHC) and immunofluorescence (IF) have never been earlier used to determine the expression of different subunits of NADPH oxidase system. We evaluated the utility of IHC and IF in determining the underlying pathogenic variants of CGD. MATERIALS AND METHODS Twelve genetically confirmed cases of CGD, comprising of biopsy specimens (n = 6), tissue blocks from autopsy cases (n = 3), and cellblocks of cell pellet prepared from peripheral blood (n = 4) were included. IHC for p67phox and p47phox subunits and IF for cytochrome b558 were performed. RESULTS All 4 cases with pathogenic variation of NCF2 gene showed loss of expression for p67phox subunit. Two cases with pathogenic variation of NCF1 gene showed loss of expression for p47phox subunit. Five cases, except a single case with CYBB gene pathogenic variation, showed loss of expression for cytochrome b558 on IF. Thus, loss of expression consistently matched with the underlying genetic defects assessed by sequencing. CONCLUSIONS Our results confirm our hypothesis that IHC and IF are two rapid, economical, pathologist-friendly techniques providing pertinent information regarding the underlying pathogenic variants and such immuno-analysis can be easily performed on the tissue.
Collapse
Affiliation(s)
- Aravind Sekar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Amit Rawat
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Ankur Jindal
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vignesh Pandiarajan
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurjit Kaur
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ishwar Kumar
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anjani Gummadi
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Archan Sil
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics (Allergy and Immunology Unit), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Parker HA, Forrester L, Kaldor CD, Dickerhof N, Hampton MB. Antimicrobial Activity of Neutrophils Against Mycobacteria. Front Immunol 2021; 12:782495. [PMID: 35003097 PMCID: PMC8732375 DOI: 10.3389/fimmu.2021.782495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The mycobacterium genus contains a broad range of species, including the human pathogens M. tuberculosis and M. leprae. These bacteria are best known for their residence inside host cells. Neutrophils are frequently observed at sites of mycobacterial infection, but their role in clearance is not well understood. In this review, we discuss how neutrophils attempt to control mycobacterial infections, either through the ingestion of bacteria into intracellular phagosomes, or the release of neutrophil extracellular traps (NETs). Despite their powerful antimicrobial activity, including the production of reactive oxidants such as hypochlorous acid, neutrophils appear ineffective in killing pathogenic mycobacteria. We explore mycobacterial resistance mechanisms, and how thwarting neutrophil action exacerbates disease pathology. A better understanding of how mycobacteria protect themselves from neutrophils will aid the development of novel strategies that facilitate bacterial clearance and limit host tissue damage.
Collapse
Affiliation(s)
| | | | | | | | - Mark B. Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
22
|
Branch A, Modi B, Bahrani B, Hildebrand KJ, Cameron SB, Junker AK, Turvey SE, Biggs CM. Diverse clinical features and diagnostic delay in monogenic inborn errors of immunity: A call for access to genetic testing. Pediatr Allergy Immunol 2021; 32:1796-1803. [PMID: 34097760 DOI: 10.1111/pai.13571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inborn errors of immunity (IEIs) are a group of conditions affecting immune system development and function. Due to their clinical heterogeneity and lack of provider awareness, patients suffer from long diagnostic delays that increase morbidity and mortality. Next-generation sequencing facilitates earlier diagnosis and treatment of IEIs, but too often patients are unable to see the benefit of this technology due to gaps in providers' knowledge regarding which patients to test and barriers to accessing sequencing. METHODS Here, we provide detailed clinical phenotyping and describe the impact of genetic sequencing on a cohort of 43 patients with monogenic IEIs seen in a tertiary care center from 2014 to 2019. Data were abstracted from a chart review, and a panel of clinical immunologists were consulted on the impact of genetic sequencing on their patients. RESULTS We found that our patients had significant diagnostic delays, averaging 3.3 years; had diverse manifestations of immune system dysfunction; and had demonstrated highly complex medical needs, with on average 7.9 subspecialties involved in their care and 4.9 hospitalizations prior to definitive treatment. Our results also demonstrate the benefits of genetic testing, as it provided the majority of our patients with a diagnosis, and positively impacted their treatment, follow-up, and prognosis. CONCLUSION This paper expands the paucity of literature on genetically confirmed IEIs in North America and supports the expansion of access to genetic testing for patients with clinical features suggesting IEI, such as those presented in our cohort.
Collapse
Affiliation(s)
- Anna Branch
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bhavi Modi
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bahar Bahrani
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,University of Toronto, Toronto, ON, Canada
| | - Kyla J Hildebrand
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Scott B Cameron
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Anne K Junker
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Catherine M Biggs
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
23
|
Mortimer PM, Mc Intyre SA, Thomas DC. Beyond the Extra Respiration of Phagocytosis: NADPH Oxidase 2 in Adaptive Immunity and Inflammation. Front Immunol 2021; 12:733918. [PMID: 34539670 PMCID: PMC8440999 DOI: 10.3389/fimmu.2021.733918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) derived from the phagocyte NADPH oxidase (NOX2) are essential for host defence and immunoregulation. Their levels must be tightly controlled. ROS are required to prevent infection and are used in signalling to regulate several processes that are essential for normal immunity. A lack of ROS then leads to immunodeficiency and autoinflammation. However, excess ROS are also deleterious, damaging tissues by causing oxidative stress. In this review, we focus on two particular aspects of ROS biology: (i) the emerging understanding that NOX2-derived ROS play a pivotal role in the development and maintenance of adaptive immunity and (ii) the effects of excess ROS in systemic disease and how limiting ROS might represent a therapeutic avenue in limiting excess inflammation.
Collapse
Affiliation(s)
- Paige M Mortimer
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| | - Stacey A Mc Intyre
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| | - David C Thomas
- Centre for Inflammatory Disease, Department of Immunology & Inflammation, Imperial College, London, United Kingdom
| |
Collapse
|
24
|
Pilania RK, Rawat A, Vignesh P, Guleria S, Jindal AK, Das G, Suri D, Gupta A, Gupta K, Chan KW, Lau YL, Imai K, Singh S. Liver Abscess in Chronic Granulomatous Disease-Two Decades of Experience from a Tertiary Care Centre in North-West India. J Clin Immunol 2021; 41:552-564. [PMID: 33387158 DOI: 10.1007/s10875-020-00938-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Most of the literature on liver abscess in chronic granulomatous disease (CGD) emanates from developed countries. Data from developing countries are scarce. In this study, we report clinical features, microbiological profile, and treatment difficulties encountered while managing liver abscesses in patients with CGD at a tertiary care centre in North-West India. METHODOLOGY Case records of children with CGD and liver abscesses at Pediatric Immunodeficiency Clinic, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India were analyzed. RESULTS Seven of 68 patients (10.29%) with CGD presented with hepatic abscess. One patient had 2 recurrences. All were males and age-range at presentation was 7 months-22 years. Mutation analysis was carried out in all patients-3 had defects in CYBB gene; 2 in NCF1; 2 in NCF2 gene. Staphylococcus aureus was isolated from 5 patients. Duration of antimicrobial treatment ranged from 3 weeks to 7 months. Open drainage was required in 1 patient, and 1 patient was treated with a prolonged course of prednisolone. Two children succumbed to the illness. CONCLUSIONS This is the largest reported experience of liver abscesses in patients with CGD from the developing world. Staphylococcus aureus was the commonest pathogen isolated. In our experience, prolonged courses of antimicrobials are usually necessary in these patients. Glucocorticoids can reduce inflammatory response and facilitate early resolution of abscesses in CGD.
Collapse
Affiliation(s)
- Rakesh Kumar Pilania
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sandesh Guleria
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Ankur Kumar Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Gargi Das
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Anju Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Koon-Wing Chan
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kohsuke Imai
- Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
25
|
Bakri FG, Mollin M, Beaumel S, Vigne B, Roux-Buisson N, Al-Wahadneh AM, Alzyoud RM, Hayajneh WA, Daoud AK, Shukair MEA, Karadshe MF, Sarhan MM, Al-Ramahi JAW, Fauré J, Rendu J, Stasia MJ. Second Report of Chronic Granulomatous Disease in Jordan: Clinical and Genetic Description of 31 Patients From 21 Different Families, Including Families From Lybia and Iraq. Front Immunol 2021; 12:639226. [PMID: 33746979 PMCID: PMC7973097 DOI: 10.3389/fimmu.2021.639226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic granulomatous Disease (CGD) is a rare innate immunodeficiency disorder caused by mutations in one of the six genes (CYBA, CYBB, NCF1, NCF2, NCF4, and CYBC1/EROS) encoding the superoxide-producing nicotinamide adenine dinucleotide phosphate (NADPH)—oxidase complex in phagocytes. In the Western population, the most prevalent form of CGD (about two-thirds of all cases) is the X-linked form (X-CGD) caused by mutations in CYBB. The autosomal recessive forms (AR-CGD), due to mutations in the other genes, collectively account for the remaining one-third of CGD cases. We investigated the clinical and molecular features of 22 Jordanian, 7 Libyan, and 2 Iraqi CGD patients from 21 different families. In addition, 11 sibling patients from these families were suspected to have been died from CGD as suggested by their familial and clinical history. All patients except 9 were children of consanguineous parents. Most of the patients suffered from AR-CGD, with mutations in CYBA, NCF1, and NCF2, encoding p22phox, p47phox, and p67phox proteins, respectively. AR-CGD was the most frequent form, in Jordan probably because consanguineous marriages are common in this country. Only one patient from non-consanguineous parents suffered from an X910 CGD subtype (0 indicates no protein expression). AR670 CGD and AR220 CGD appeared to be the most frequently found sub-types but also the most severe clinical forms compared to AR470 CGD. As a geographical clustering of 11 patients from eight Jordanian families exhibited the c.1171_1175delAAGCT mutation in NCF2, segregation analysis with nine polymorphic markers overlapping NCF2 indicates that a common ancestor has arisen ~1,075 years ago.
Collapse
Affiliation(s)
- Faris Ghalib Bakri
- Division of Infectious Diseases, Department of Medicine, Jordan University Hospital, Amman, Jordan.,Infectious Diseases and Vaccine Center, University of Jordan, Amman, Jordan
| | - Michelle Mollin
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Sylvain Beaumel
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Bénédicte Vigne
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France
| | - Nathalie Roux-Buisson
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | - Raed Mohammed Alzyoud
- Division of Immunology, Department of Pediatrics, Queen Rani Children's Hospital, Amman, Jordan
| | - Wail Ahmad Hayajneh
- Division of Infectious Diseases, Department of Pediatrics, Jordan University of Science & Technology, Irbid, Jordan
| | - Ammar Khaled Daoud
- Division of Immunology, Jordan University of Science & Technology, Irbid, Jordan
| | | | | | | | | | - Julien Fauré
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - John Rendu
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Laboratoire de Biochimie et Génétique Moléculaire, La Tronche, France.,Université Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Marie Jose Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle de Biologie, Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Grenoble, France.,Université Grenoble Alpes, Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
26
|
Rawat A, Vignesh P, Sudhakar M, Sharma M, Suri D, Jindal A, Gupta A, Shandilya JK, Loganathan SK, Kaur G, Chawla S, Patra PK, Khadwal A, Saikia B, Minz RW, Aggarwal V, Taur P, Pandrowala A, Gowri V, Desai M, Kulkarni M, Hule G, Bargir U, Kambli P, Madkaikar M, Bhattad S, Ginigeri C, Kumar H, Jayaram A, Munirathnam D, Sivasankaran M, Raj R, Uppuluri R, Na F, George B, Lashkari HP, Kalra M, Sachdeva A, Seth S, Sabui T, Gupta A, van Leeuwen K, de Boer M, Chan KW, Imai K, Ohara O, Nonoyama S, Lau YL, Singh S. Clinical, Immunological, and Molecular Profile of Chronic Granulomatous Disease: A Multi-Centric Study of 236 Patients From India. Front Immunol 2021; 12:625320. [PMID: 33717137 PMCID: PMC7946827 DOI: 10.3389/fimmu.2021.625320] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is an inherited defect in phagocytic respiratory burst that results in severe and life-threatening infections in affected children. Single center studies from India have shown that proportion of autosomal recessive (AR) CGD is more than that reported from the West. Further, affected patients have high mortality rates due to late referrals and difficulties in accessing appropriate treatment. However, there is lack of multicentric collaborative data on CGD from India. OBJECTIVE To describe infection patterns, immunological, and molecular features of CGD from multiple centers in India. METHODS A detailed proforma that included clinical and laboratory details was prepared and sent to multiple centers in India that are involved in the care and management of patients with inborn errors of immunity. Twelve centers have provided data which were later pooled together and analyzed. RESULTS Of the 236 patients analyzed in our study, X-linked and AR-CGD was seen in 77 and 97, respectively. Male female ratio was 172:64. Median age at onset of symptoms and diagnosis was 8 and 24 months, respectively. Common infections documented include pneumonia (71.6%), lymphadenitis (31.6%), skin and subcutaneous abscess (23.7%), blood-stream infection (13.6%), osteomyelitis (8.6%), liver abscess (7.2%), lung abscess (2.9%), meningoencephalitis (2.5%), splenic abscess (1.7%), and brain abscess (0.9%). Forty-four patients (18.6%) had evidence of mycobacterial infection. Results of molecular assay were available for 141 patients (59.7%)-CYBB (44.7%) gene defect was most common, followed by NCF1 (31.9%), NCF2 (14.9%), and CYBA (8.5%). While CYBA variants were documented only in Southern and Western parts of India, a common dinucleotide deletion in NCF2 (c.835_836delAC) was noted only in North Indian population. Of the 174 patients with available outcome data, 67 (38.5%) had expired. Hematopoietic stem cell transplantation was carried out in 23 patients, and 12 are doing well on follow-up. CONCLUSIONS In India, proportion of patients with AR-CGD is higher as compared to Western cohorts, though regional differences in types of AR-CGD exist. Clinical profile and mortality rates are similar in both X-linked and AR-CGD. However, this may be a reflection of the fact that milder forms of AR-CGD are probably being missed.
Collapse
Affiliation(s)
- Amit Rawat
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Murugan Sudhakar
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jitendra Kumar Shandilya
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sathish Kumar Loganathan
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurjit Kaur
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanchi Chawla
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pratap Kumar Patra
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Bone Marrow Transplantation Unit, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vaishali Aggarwal
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | | | - Gauri Hule
- ICMR—National Institute of Immunohaematology, Mumbai, India
| | - Umair Bargir
- ICMR—National Institute of Immunohaematology, Mumbai, India
| | | | | | - Sagar Bhattad
- Department of Pediatrics, Aster CMI Hospital, Bengaluru, India
| | - Chetan Ginigeri
- Department of Pediatrics, Aster CMI Hospital, Bengaluru, India
| | - Harish Kumar
- Department of Pediatrics, Aster CMI Hospital, Bengaluru, India
| | | | - Deenadayalan Munirathnam
- Department of Pediatric Hematology and Oncology, Kanchi Kamakoti Child Trust Hospital, Chennai, India
| | - Meena Sivasankaran
- Department of Pediatric Hematology and Oncology, Kanchi Kamakoti Child Trust Hospital, Chennai, India
| | | | | | - Fouzia Na
- Christian Medical College, Vellore, India
| | | | | | - Manas Kalra
- Sir Ganga Ram Hospital, Rajendra Nagar, New Delhi, India
| | | | - Shishir Seth
- Apollo Cancer Institute, Indraprastha Apollo Hospitals, Savita Vihar, New Delhi, India
| | | | - Aman Gupta
- Department of Pediatric Rheumatology & Immunology, MEDENS Hospital, Panchkula, India
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Martin de Boer
- Sanquin Research and Landsteiner Laboratory, Amsterdam Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Surjit Singh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
27
|
Akar HT, Esenboga S, Cagdas D, Halacli SO, Ozbek B, van Leeuwen K, de Boer M, Tan CS, Köker Y, Roos D, Tezcan I. Clinical and Immunological Characteristics of 63 Patients with Chronic Granulomatous Disease: Hacettepe Experience. J Clin Immunol 2021; 41:992-1003. [PMID: 33629196 DOI: 10.1007/s10875-021-01002-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Chronic granulomatous disease (CGD), one of the phagocytic system defects, is the primary immunodeficiency caused by dysfunction of the NADPH oxidase complex which generates reactive oxygen species (ROS), which are essential for killing pathogenic microorganisms, especially catalase-positive bacteria and fungi. OBJECTIVE The objective of our study was to assess the clinical and laboratory characteristics, treatment modalities, and prognosis of patients with CGD. METHODS We retrospectively reviewed 63 patients with CGD who have been diagnosed, treated, and/or followed-up between 1984 and 2018 in Hacettepe University, Ankara, in Turkey, as a developing country. RESULTS The number of female and male patients was 26/37. The median age at diagnosis was 3.8 (IQR: 1.0-9.6) years. The rate of consanguinity was 63.5%. The most common physical examination finding was lymphadenopathy (44/63), growth retardation (33/63), and hepatomegaly (27/63). One adult patient had squamous cell carcinoma of the lung. The most common infections were lung infection (53/63), skin abscess (43/63), and lymphadenitis (19/63). Of the 63 patients with CGD, 6 patients had inflammatory bowel disease (IBD). Twelve of the 63 patients died during follow-up. CYBA, NCF1, CYBB, and NCF2 mutations were detected in 35%, 27.5%, 25%, and 12.5% of the patients, respectively. CONCLUSION We identified 63 patients with CGD from a single center in Turkey. Unlike other cohort studies in Turkey, due to the high consanguineous marriage rate in our study group, AR form of CGD was more frequent, and gastrointestinal involvement were found at relatively lower rates. The rate of patients who treated with HSCT was lower in our research than in the literature. A majority of the patients in this study received conventional prophylactic therapies, which highlight on the outcome of individuals who have not undergone HSCT.
Collapse
Affiliation(s)
- Halil Tuna Akar
- Faculty of Medicine, Department of Pediatrics, Hacettepe University, 06100, Ankara, Turkey.
| | - Saliha Esenboga
- Faculty of Medicine, Department of Pediatrics, Division of Immunology, Hacettepe University, 06100, Ankara, Turkey
| | - Deniz Cagdas
- Faculty of Medicine, Department of Pediatrics, Division of Immunology, Hacettepe University, 06100, Ankara, Turkey
| | - Sevil Oskay Halacli
- Institute of Children's Health Basic Sciences of Pediatrics Division of Pediatric Immunology, Hacettepe University, 06100, Sihhiye/Ankara, Turkey
| | - Begum Ozbek
- Institute of Children's Health Basic Sciences of Pediatrics Division of Pediatric Immunology, Hacettepe University, 06100, Sihhiye/Ankara, Turkey
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin de Boer
- Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cagman Sun Tan
- Institute of Children's Health Basic Sciences of Pediatrics Division of Pediatric Immunology, Hacettepe University, 06100, Sihhiye/Ankara, Turkey
| | - Yavuz Köker
- Faculty of Medicine, Department of Immunology, Erciyes University, Kayseri, Turkey
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilhan Tezcan
- Faculty of Medicine, Department of Pediatrics, Division of Immunology, Hacettepe University, 06100, Ankara, Turkey
| |
Collapse
|
28
|
Bhattarai D, Gupta A, Vignesh P, Rao H, Angrup A, Rawat A. Infection Due to Serratia sp. in Chronic Granulomatous Disease-Is the Incidence Low in Tropical Countries? J Clin Immunol 2020; 41:486-490. [PMID: 33216270 DOI: 10.1007/s10875-020-00919-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Dharmagat Bhattarai
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, PGIMER, Chandigarh, 160012, India
| | - Aman Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, PGIMER, Chandigarh, 160012, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, PGIMER, Chandigarh, 160012, India.
| | - Hitender Rao
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, PGIMER, Chandigarh, 160012, India
| | - Archana Angrup
- Department of Microbiology, Post Graduate Institute of Medical Education & Research, PGIMER, Chandigarh, 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
29
|
Heydari A, Abolnezhadian F, Sadeghi-Shabestari M, Saberi A, Shamsizadeh A, Ghadiri AA, Ghandil P. Identification of Cytochrome b-245, beta-chain gene mutations, and clinical presentations in Iranian patients with X-linked chronic granulomatous disease. J Clin Lab Anal 2020; 35:e23637. [PMID: 33098164 PMCID: PMC7891530 DOI: 10.1002/jcla.23637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/25/2023] Open
Abstract
Background X‐linked chronic granulomatous disease (X‐CGD) is an immunodeficiency disorder caused by defects in the gp91phox subunit that leads to life‐threatening infections. We aimed to identify CYBB gene mutations and study clinical phenotypes in Iranian patients with probable X‐CGD. Methods We studied four unrelated Iranian patients with probable X‐CGD and their families recruited in several years. We isolated genomic DNA from whole blood and performed Sanger sequencing in the CYBB gene's coding and flanking regions. We also performed pathogenicity predictions using in silico tools. Results We detected four different mutations, including a novel insertion mutation in exon 5 (p.Ile117AsnfsX6), in the patient. Bioinformatics analysis confirmed the pathogenic effect of this mutation. We predicted protein modeling and demonstrated lost functional domains. The patient with the insertion mutation presented pneumonia and acute sinusitis during his life. We also detected three other known nonsense mutations (p.Arg157Ter, p.Arg226Ter, and p.Trp424Ter) in the CYBB gene. The patient with p.Arg157Ter developed lymphadenitis and pneumonia. Moreover, the patient with inflammatory bowel disease showed p.Arg226Ter and the patient with tuberculosis presented p.Trp424Ter. We detected different clinical features in the patients compared to other Iranian patients with the same mutations. Conclusion Our results expand the genetic database of patients with X‐CGD from Iran and make it much easier and faster to identify patients with X‐CGD. Our results also help to detect carriers and enable prenatal diagnosis in high‐risk families as a cost‐effective strategy.
Collapse
Affiliation(s)
- Atefeh Heydari
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahnaz Sadeghi-Shabestari
- Immunology research center of Tabriz-TB and lung research center of Tabriz-children hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Shamsizadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata A Ghadiri
- Department of Immunology, Cellular and Molecular Research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pegah Ghandil
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
30
|
Abd Elaziz D, Abd El-Ghany M, Meshaal S, El Hawary R, Lotfy S, Galal N, Ouf SA, Elmarsafy A. Fungal infections in primary immunodeficiency diseases. Clin Immunol 2020; 219:108553. [PMID: 32738296 DOI: 10.1016/j.clim.2020.108553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
Primary immunodeficiency diseases (PID), encompass a heterogeneous group of diseases, with increased susceptibility to recurrent, severe infections. Invasive fungal infections raise a serious concern related to their morbidity and mortality. Herein, we describe various fungal infections among different PID patients. Twenty-eight PID patients diagnosed with fungal infections were included; fourteen patients with chronic granulomatous disease, two with Hyper Immunoglobulin E syndrome, one with LRBA deficiency and one with MHC class II defect, one with unclassified immune dysregulation, one with CD4 lymphopenia and one patient with Immune dysregulation Polyendocrinopathy Enteropathy X-linked syndrome. Aspergillus species were the most common isolated causative organisms in 78% of patients, Candida species were the causative organisms in 32%, Pneumocystis jirovecii caused infections in 7% followed by Malassezia furfur, Fusarium spp., Mucormycosis, and Penicillium chrysogenium 3.5% for each. The mortality rate among our patients was 10/28 (35.7%). PID patients are at high risk of developing fungal infections.
Collapse
Affiliation(s)
- Dalia Abd Elaziz
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mohamed Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Safa Meshaal
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rabab El Hawary
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sohilla Lotfy
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen Galal
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Salama A Ouf
- Botany and Microbiology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Aisha Elmarsafy
- Pediatrics Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Prince BT, Thielen BK, Williams KW, Kellner ES, Arnold DE, Cosme-Blanco W, Redmond MT, Hartog NL, Chong HJ, Holland SM. Geographic Variability and Pathogen-Specific Considerations in the Diagnosis and Management of Chronic Granulomatous Disease. Pediatric Health Med Ther 2020; 11:257-268. [PMID: 32801991 PMCID: PMC7383027 DOI: 10.2147/phmt.s254253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic granulomatous disease (CGD) is a rare but serious primary immunodeficiency with varying prevalence and rates of X-linked and autosomal recessive disease worldwide. Functional defects in the phagocyte nicotinamide adenine dinucleotide phosphate oxidase complex predispose patients to a relatively narrow spectrum of bacterial and fungal infections that are sometimes fastidious and often difficult to identify. When evaluating and treating patients with CGD, it is important to consider their native country of birth, climate, and living situation, which may predispose them to types of infections that are atypical to your routine practice. In addition to recurrent and often severe infections, patients with CGD and X-linked female carriers are also susceptible to developing many non-infectious complications including tissue granuloma formation and autoimmunity. The DHR-123 oxidation assay is the gold standard for making the diagnosis and it along with genetic testing can help predict the severity and prognosis in patients with CGD. Disease management focuses on prophylaxis with antibacterial, antifungal, and immunomodulatory medications, prompt identification and treatment of acute infections, and prevention of secondary granulomatous complications. While hematopoietic stem-cell transplantation is the only widely available curative treatment for patients with CGD, recent advances in gene therapy may provide a safer, more direct alternative.
Collapse
Affiliation(s)
- Benjamin T Prince
- Division of Allergy and Immunology, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Beth K Thielen
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Kelli W Williams
- Department of Pediatrics, Division of Pediatric Pulmonology, Allergy & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Erinn S Kellner
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Danielle E Arnold
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wilfredo Cosme-Blanco
- Department of Allergy and Immunology, Veteran Affairs Caribbean Healthcare System, San Juan, Puerto Rico
| | - Margaret T Redmond
- Division of Allergy and Immunology, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Nicholas L Hartog
- Department of Allergy and Immunology, Spectrum Health Helen DeVos Children’s Hospital, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Hey J Chong
- Division of Allergy and Immunology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Holland
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Shabani M, Pazouki R, Parvin M, Khodabande A, van Leeuwen K, Shahrooei M, Parvaneh N. Ocular Manifestations of Chronic Granulomatous Disease: First Report of Coats' Disease and Literature Review. J Clin Immunol 2020; 40:940-947. [PMID: 32638195 DOI: 10.1007/s10875-020-00810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/18/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Mahsima Shabani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roxana Pazouki
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Parvin
- Department of Pathology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urology and Nephrology Research Center (UNRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Khodabande
- Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Karin van Leeuwen
- Department of Research facilities, Sanquin Research, Amsterdam, The Netherlands
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Nima Parvaneh
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran. .,Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran. .,Children's Medical Centre, No. 62 Qarib St, Tehran, 1419733152, Iran.
| |
Collapse
|
33
|
Schejtman A, Aragão-Filho WC, Clare S, Zinicola M, Weisser M, Burns SO, Booth C, Gaspar HB, Thomas DC, Condino-Neto A, Thrasher AJ, Santilli G. Lentiviral gene therapy rescues p47 phox chronic granulomatous disease and the ability to fight Salmonella infection in mice. Gene Ther 2020; 27:459-469. [PMID: 32533104 PMCID: PMC7500983 DOI: 10.1038/s41434-020-0164-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022]
Abstract
Chronic granulomatous disease (CGD) is an inherited primary immunodeficiency disorder characterised by recurrent and often life-threatening infections and hyperinflammation. It is caused by defects of the phagocytic NADPH oxidase, a multicomponent enzyme system responsible for effective pathogen killing. A phase I/II clinical trial of lentiviral gene therapy is underway for the most common form of CGD, X-linked, caused by mutations in the gp91phox subunit of the NADPH oxidase. We propose to use a similar strategy to tackle p47phox-deficient CGD, caused by mutations in NCF1, which encodes the p47phox cytosolic component of the enzymatic complex. We generated a pCCLCHIM-p47phox lentiviral vector, containing the chimeric Cathepsin G/FES myeloid promoter and a codon-optimised version of the human NCF1 cDNA. Here we show that transduction with the pCCLCHIM-p47phox vector efficiently restores p47phox expression and biochemical NADPH oxidase function in p47phox-deficient human and murine cells. We also tested the ability of our gene therapy approach to control infection by challenging p47phox-null mice with Salmonella Typhimurium, a leading cause of sepsis in CGD patients, and found that mice reconstituted with lentivirus-transduced hematopoietic stem cells had a reduced bacterial load compared with untreated mice. Overall, our results potentially support the clinical development of a gene therapy approach using the pCCLCHIM-p47phox vector.
Collapse
Affiliation(s)
- Andrea Schejtman
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Walmir Cutrim Aragão-Filho
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust genome Campus, Hinxton, Cambridge, UK
| | - Marta Zinicola
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Maren Weisser
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Siobhan O Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, London, UK.,Institute for Immunity and Transplantation, University College London, London, UK
| | - Claire Booth
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| | - Hubert B Gaspar
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Orchard Therapeutics, London, UK
| | | | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| | - Giorgia Santilli
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| |
Collapse
|
34
|
Aygun D, Koker MY, Nepesov S, Koker N, van Leeuwen K, de Boer M, Kıykım A, Ozsoy S, Cokugras H, Kuijpers T, Roos D, Camcıoglu Y. Genetic Characteristics, Infectious, and Noninfectious Manifestations of 32 Patients with Chronic Granulomatous Disease. Int Arch Allergy Immunol 2020; 181:540-550. [DOI: 10.1159/000507366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/17/2020] [Indexed: 11/19/2022] Open
|
35
|
Blancas-Galicia L, Santos-Chávez E, Deswarte C, Mignac Q, Medina-Vera I, León-Lara X, Roynard M, Scheffler-Mendoza SC, Rioja-Valencia R, Alvirde-Ayala A, Lugo Reyes SO, Staines-Boone T, García-Campos J, Saucedo-Ramírez OJ, Del-Río_Navarro BE, Zamora-Chávez A, López-Larios A, García-Pavón-Osorio S, Melgoza-Arcos E, Canseco-Raymundo MR, Mogica-Martínez D, Venancio-Hernández M, Pacheco-Rosas D, Pedraza-Sánchez S, Guevara-Cruz M, Saracho-Weber F, Gámez-González B, Wakida-Kuzunoki G, Morán-Mendoza AR, Macías-Robles AP, Ramírez-Rivera R, Vargas-Camaño E, Zarate-Hernández C, Gómez-Tello H, Ramírez-Sánchez E, Ruíz-Hernández F, Ramos-López D, Acuña-Martínez H, García-Cruz ML, Román-Jiménez MG, González-Villarreal MG, Álvarez-Cardona A, Llamas-Guillén BA, Cuellar-Rodríguez J, Olaya-Vargas A, Ramírez-Uribe N, Boisson-Dupuis S, Casanova JL, Espinosa-Rosales FJ, Serafín-López J, Yamazaki-Nakashimada M, Espinosa-Padilla S, Bustamante J. Genetic, Immunological, and Clinical Features of the First Mexican Cohort of Patients with Chronic Granulomatous Disease. J Clin Immunol 2020; 40:475-493. [DOI: 10.1007/s10875-020-00750-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
|
36
|
Robles-Marhuenda A, Álvarez-Troncoso J, Rodríguez-Pena R, Busca-Arenzana C, López-Granados E, Arnalich-Fernández F. Chronic granulomatous disease: Single-center Spanish experience. Clin Immunol 2020; 211:108323. [DOI: 10.1016/j.clim.2019.108323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/07/2019] [Indexed: 11/15/2022]
|
37
|
Bernatowska E, Skomska-Pawliszak M, Wolska-Kuśnierz B, Pac M, Heropolitanska-Pliszka E, Pietrucha B, Bernat-Sitarz K, Dąbrowska-Leonik N, Bohynikova N, Piątosa B, Lutyńska A, Augustynowicz E, Augustynowicz-Kopeć E, Korzeniewska-Koseła M, Krasińska M, Krzysztopa-Grzybowska K, Wieteska-Klimczak A, Książyk J, Jackowska T, van den Burg M, van Dongen JJM, Casanova JL, Picard C, Mikołuć B. BCG Moreau Vaccine Safety Profile and NK Cells-Double Protection Against Disseminated BCG Infection in Retrospective Study of BCG Vaccination in 52 Polish Children with Severe Combined Immunodeficiency. J Clin Immunol 2020; 40:138-146. [PMID: 31749033 PMCID: PMC7082382 DOI: 10.1007/s10875-019-00709-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/14/2019] [Indexed: 12/04/2022]
Abstract
OBJECTIVES The aim of the study was to estimate the rate of adverse reactions to live BCG Moreau vaccine, manufactured by Biomed in Poland, in severe combined immunodeficiency (SCID) patients. MATERIAL The profiles of 52 SCID patients vaccinated at birth with BCG, hospitalized in Children's Memorial Health Institute, Warsaw (CMHI), in the years 1980-2015 were compared with those of 349 BCG-vaccinated SCID patients from other countries analyzed by Beatriz E. Marciano et al. in a retrospective study (Marciano et al. J Allergy Clin Immunol. 2014;133(4):1134-1141). RESULTS Significantly less disseminated BCG infections (10 out of 52 SCID, 19%) occurred in comparison with Marciano study-119 out of 349, 34% (p = 0.0028), with no death in patients treated with SCID anti-TB drug, except one in lethal condition. In our study, disseminated BCG infection was observed only in SCID with T-B+NK- phenotype and significantly lower NK cell counts (p = 0.0161). NK cells do not influence on the frequency of local BCG reaction. A significantly higher number of hematopoietic stem cells transplantations (HSCT) were performed in CMHI study (p = 0.0001). Anti-TB treatment with at least two medicines was provided. CONCLUSION The BCG Moreau vaccine produced in Poland, with well-documented genetic characteristics, seems to be safer than other BCG substrains used in other regions of the world. Importantly, NK cells seem to play a role in protecting SCID patients against disseminated BCG complications, which NK- SCID patients are more prone to. HSCT and TB therapy could be relevant due to the patients' survival and the fact that they protect against BCG infection.
Collapse
Affiliation(s)
- Ewa Bernatowska
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | | | - Małgorzata Pac
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Nel Dąbrowska-Leonik
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Nadia Bohynikova
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Barbara Piątosa
- Histocompatibility Laboratory, Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Lutyńska
- Department of Medical Biology, The Cardinal Stefan Wyszyński Institute of Cardiology, Warsaw, Poland
| | - Ewa Augustynowicz
- Department of Epidemiology, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Maria Korzeniewska-Koseła
- Department of Tuberculosis Epidemiology and Surveillance, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| | - Maria Krasińska
- Department of Tuberculosis and Lung Disease, Mazovian Centre for Tuberculosis and Lung Disease, Otwock, Poland
| | - Katarzyna Krzysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health - National Institute of Hygiene, Warsaw, Poland
| | - Anna Wieteska-Klimczak
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Janusz Książyk
- Department of Paediatrics, Nutrition and Metabolic Diseases, Children's Memorial Health Institute, Warsaw, Poland
| | - Teresa Jackowska
- Department of Paediatrics, Medical Centre of Postgraduate Education, Warsaw, Poland
- Department of Paediatrics, Bielanski Hospital, Warsaw, Poland
| | - Mirjam van den Burg
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), 2333, Leiden, ZA, Netherlands
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), 2333, Leiden, ZA, Netherlands
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, Paris, France
- Paediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Paris Descartes University, Imagine Institute, Paris, France
| | - Capucine Picard
- Paris Descartes University, Imagine Institute, Paris, France
- Study Centre for Primary Immunodeficiency, Necker-Enfants Malades Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Bożena Mikołuć
- Department of Paediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
38
|
A novel mutation in NCF2 resulting in very-early-onset colitis and juvenile idiopathic arthritis in a patient with chronic granulomatous disease. Allergy Asthma Clin Immunol 2019; 15:68. [PMID: 31832070 PMCID: PMC6873422 DOI: 10.1186/s13223-019-0386-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Chronic granulomatous disease (CGD) is a rare primary immunodeficiency disorder caused by a defect in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. The disease primarily presents with recurrent infections, and patients may also present with inflammatory conditions, including noninfectious colitis, and an increased frequency of autoimmunity. We report here a patient with CGD in whom the presentation, unlike the classical presentation of CGD, was predominantly of an inflammatory and autoimmune phenotype. Case presentation A 3-year-old Pakistani female presented with bloody diarrhea since the age of 7 days, followed by the development of perianal abscesses and fistula. There was no other history of recurrent infections. The patient subsequently developed joint pain and stiffness with persistently elevated inflammatory markers and elevated anti-cyclic citrullinate peptide (anti-CCP) antibody titer. She was diagnosed with oligoarticular juvenile idiopathic arthritis and colitis. The diagnosis of CGD was later made and was based on the absence of NADPH oxidase activity in the patient’s neutrophils upon phorbol myristate acetate (PMA) stimulation using the dihydrorhodamine-1,2,3 (DHR) flow cytometry test. Targeted next-generation sequencing revealed an unreported deletion mutation in exon 10 as a homozygous loss-of-function variant of the human neutrophil oxidase factor 2 (NCF2) (NCF2: NM_001190789, nucleotide change: c.855_856del:p.T285fs). The gene encodes a protein subunit, p67phox, in the NADPH enzyme complex. Conclusions The case emphasizes the importance of maintaining high clinical suspicion of immunodeficiency and CGD in patients with very-early-onset colitis and autoimmune disorders. This case is important due to its rarity and because it might represent a previously undiscovered mutation, which is possibly more common in the patient’s ethnic group. Other mutations in NCF2 have been linked to inflammatory bowel disease and autoimmunity, but without CGD, suggesting similarities in the pathogenesis.
Collapse
|
39
|
Linares NA, Bouchard M, Gutiérrez NS, Colmenares M, Cantor-Garcia A, Gabaldon-Figueira JC, Bellorin AV, Rujano B, Peterson DL, Salmen S. Immunological features in pediatric patients with recurrent and severe infection: Identification of Primary Immunodeficiency Diseases in Merida, Venezuela. Allergol Immunopathol (Madr) 2019; 47:437-448. [PMID: 31371133 DOI: 10.1016/j.aller.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/26/2019] [Accepted: 02/07/2019] [Indexed: 11/16/2022]
Abstract
INTRODUCTION AND OBJECTIVES Primary immunodeficiency diseases (PIDs) are disorders associated mainly with recurrent and severe infection and an increase in susceptibility to autoimmune conditions and cancer. In Venezuela, PIDs are underdiagnosed and there is usually a delay in their diagnosis. Hence there are no data concerning the frequency and type of PIDs that occur. The aim of this study was to identify and quantify the types of PIDs that occur in Merida, a population within Venezuela. PATIENTS OR MATERIALS AND METHODS Following an informative program designed to alert local health professionals to the warning signs for PIDs, patients with a history of recurrent infections were referred to the Instituto de Inmunologia Clinica, Universidad de Los Andes. RESULTS AND CONCLUSIONS During the three-year period January 2014 to January 2017, thirty-two cases of PIDs were identified in pediatric patients, and 17 different types of PIDs, were identified. Predominantly antibody deficiencies were most frequent (40.6%), followed by immunodeficiencies affecting cellular and humoral immunity (21.8%), congenital defects of phagocyte (18.7%), CID with associated or syndromic features (9.3%), defects in intrinsic and innate immunity (6.4%) and diseases of immune dysregulation (3.2%). These results have important implications not only to the future approach for management of patients in our regions, but add important knowledge concerning PIDs in Latin America and worldwide.
Collapse
Affiliation(s)
- N A Linares
- Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida, Venezuela
| | - M Bouchard
- Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida, Venezuela
| | - N S Gutiérrez
- Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida, Venezuela
| | - M Colmenares
- Centro de Microscopía Electrónica "Dr Ernesto Palacios Prü". Universidad de Los Andes, Mérida, Venezuela
| | - A Cantor-Garcia
- Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida, Venezuela
| | - J C Gabaldon-Figueira
- Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida, Venezuela
| | - A V Bellorin
- Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida, Venezuela
| | - B Rujano
- Departamento de Pediatría, Instituto Autónomo Hospital Universitario de Los Andes, Merida, Venezuela
| | - D L Peterson
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - S Salmen
- Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida, Venezuela.
| |
Collapse
|
40
|
Gao LW, Yin QQ, Tong YJ, Gui JG, Liu XY, Feng XL, Yin J, Liu J, Guo Y, Yao Y, Xu BP, He JX, Shen KL, Lau YL, Jiang ZF. Clinical and genetic characteristics of Chinese pediatric patients with chronic granulomatous disease. Pediatr Allergy Immunol 2019; 30:378-386. [PMID: 30716179 PMCID: PMC6850071 DOI: 10.1111/pai.13033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is a rare disease in China, and very little large-scale studies have been conducted to date. We aimed to investigate the clinical and genetic features of CGD in Chinese pediatric patients. METHODS Pediatric patients with CGD from Beijing Children's Hospital, Capital Medical University, China, were enrolled from January 2006 to December 2016. RESULTS A total of 159 pediatric patients with CGD were enrolled. The median age of clinical onset was 1.4 months, and 73% (116/159) had clinical onset symptoms before the 1 year of age. The most common site of invasion was the lungs. The lymph nodes, liver, and skin were more frequently invaded in X-linked (XL) CGD patients than in autosomal recessive (AR) CGD patients (P < 0.05). Approximately 64% (92/144) of the pediatric patients suffered from abnormal response to BCG vaccination. The most frequent pathogens were Aspergillus and Mycobacterium tuberculosis. Gene analysis indicated that 132 cases (89%, 132/147) harbored CYBB pathogenic variants, 7 (5%, 7/147) carried CYBA pathogenic variants, 4 (3%, 4/147) had NCF1 pathogenic variants, and 4 (3%, 4/147) had NCF2 pathogenic variants. The overall mortality rate in this study was 43%, particularly the patients were males, with CYBB mutant and did not receive HSCT treatment. CONCLUSIONS Chronic granulomatous disease is a rare disease affecting Chinese children; however, it is often diagnosed at a later age, and thus, the mortality rate is relatively high. The prevalence and the severity of disease in XL-CGD are higher than AR-CGD.
Collapse
Affiliation(s)
- Li-Wei Gao
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Qing-Qin Yin
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Yue-Juan Tong
- National Center for Children's Health, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jin-Gang Gui
- National Center for Children's Health, Beijing, China.,Laboratory of Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiu-Yun Liu
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Xue-Li Feng
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Ju Yin
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Jun Liu
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Yan Guo
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Yao Yao
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Bao-Ping Xu
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Jian-Xin He
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Kun-Ling Shen
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| | - Yu-Lung Lau
- Department of Pediatrics, Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Zai-Fang Jiang
- China National Clinical Research Center for Respiratory Diseases, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, Beijing, China.,National Center for Children's Health, Beijing, China
| |
Collapse
|
41
|
Tajik S, Badalzadeh M, Fazlollahi MR, Houshmand M, Bazargan N, Movahedi M, Mahlouji Rad M, Mahdaviani SA, Mamishi S, Khotaei GT, Mansouri D, Zandieh F, Pourpak Z. Genetic and molecular findings of 38 Iranian patients with chronic granulomatous disease caused by p47-phox defect. Scand J Immunol 2019; 90:e12767. [PMID: 30963593 DOI: 10.1111/sji.12767] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 03/25/2019] [Accepted: 03/31/2019] [Indexed: 01/16/2023]
Abstract
One of the components of NADPH oxidase is p47-phox, encoded by NCF1 gene. This study aims to find new genetic changes and clinical features in 38 Iranian patients with autosomal recessive chronic granulomatous disease (AR-CGD) caused by NCF1 gene defect. Patients who had abnormal NBT and DHR-1,2,3 assay with loss of p47-phox in Western blotting were included in this study. After recording demographic and clinical data, PCR amplification was performed followed by direct sequencing for all exons and exon-intron boundaries. The most common form of CGD in Iran was AR-CGD due to consanguinity marriages. Among patients with AR-CGD, NCF1 deficiency was found to be more common than other forms. Cutaneous involvements (53%), pulmonary infections (50%) and lymphadenopathy (29%) were more prevalent than other clinical manifestations of CGD. Mutation analysis of NCF1 gene identified five different mutations. Homozygous delta GT deletion (c.75_76delGT) was the most frequent mutation and was detected in more than 63% of families. Six families had a nonsense mutation in exon 7 (c.579G > A). Two novel mutations were found in exon 4 in two families, including a missense mutation (c.328C > T) and a nine-nucleotide deletion (c.331_339delTGTCCCCAC). Genetic detection of these mutations may result in early diagnosis and prevention of possible complications of the disease. This could be useful for timely decision-making for haematopoietic stem cell transplantation and for carrier detection as well as prenatal diagnosis of next children in the affected families. Our findings might help to predict outcomes, raise awareness and help effective treatment in these patients.
Collapse
Affiliation(s)
- Shaghayegh Tajik
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Fazlollahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Nasrin Bazargan
- Department of Pediatrics, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Movahedi
- Department of Immunology and Allergy, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahlouji Rad
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Department of Infectious Diseases, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghamar Taj Khotaei
- Department of Infectious Diseases, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- National Research Institute of Tuberculosis and Lung Disease, Masih Daneshvari University Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariborz Zandieh
- Department of Asthma, Allergy and Immunology, Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Mortaz E, Azempour E, Mansouri D, Tabarsi P, Ghazi M, Koenderman L, Roos D, Adcock IM. Common Infections and Target Organs Associated with Chronic Granulomatous Disease in Iran. Int Arch Allergy Immunol 2019; 179:62-73. [PMID: 30904913 DOI: 10.1159/000496181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/12/2018] [Indexed: 11/19/2022] Open
Abstract
Recurrent severe bacterial and fungal infections are characteristic features of the rare genetic immunodeficiency disorder chronic granulomatous disease (CGD). The disease usually manifests within the first years of life with an incidence of 1 in approximately 200,000 live births. The incidence is higher in Iran and Morocco where it reaches 1.5 per 100,000 live births. Mutations have been described in the 5 subunits of NADPH oxidase, mostly in gp91phox and p47phox, with fewer mutations reported in p67phox, p22phox, and p40phox. These mutations cause loss of superoxide production in phagocytic cells. CYBB, the gene encoding the large gp91phox subunit of the transmembrane component cytochrome b558 of the NADPH oxidase complex, is localized on the X-chromosome. Genetic defects in CYBB are responsible for the disease in the majority of male CGD patients. CGD is associated with the development of granulomatous reactions in the skin, lungs, bones, and lymph nodes, and chronic infections may be seen in the liver, gastrointestinal tract, brain, and eyes. There is usually a history of repeated infections, including inflammation of the lymph glands, skin infections, and pneumonia. There may also be a persistent runny nose, inflammation of the skin, and inflammation of the mucous membranes of the mouth. Gastrointestinal problems can also occur, including diarrhea, abdominal pain, and perianal abscesses. Infection of the bones, brain abscesses, obstruction of the genitourinary tract and/or gastrointestinal tract due to the formation of granulomatous tissue, and delayed growth are also symptomatic of CGD. The prevention of infectious complications in patients with CGD involves targeted prophylaxis against opportunistic microorganisms such as Staphylococcus aureus, Klebsiella spp., Salmonella spp. and Aspergillus spp. In this review, we provide an update on organ involvement and the association with specific isolated microorganisms in CGD patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Azempour
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Ghazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk Roos
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Ian M Adcock
- Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom, .,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia,
| |
Collapse
|
43
|
Li T, Zhou X, Ling Y, Jiang N, Ai J, Wu J, Chen J, Chen L, Qian X, Liu X, Xi X, Xia L, Fan X, Lu S, Zhang WH. Genetic and Clinical Profiles of Disseminated Bacillus Calmette-Guérin Disease and Chronic Granulomatous Disease in China. Front Immunol 2019; 10:73. [PMID: 30761141 PMCID: PMC6361786 DOI: 10.3389/fimmu.2019.00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Disseminated Bacillus Calmette-Guérin disease (D-BCG) in children with chronic granulomatous disease (CGD) can be fatal, while its clinical characteristics remain unclear because both diseases are extremely rare. The patients with CGD receive BCG vaccination, because BCG vaccination is usually performed within 24 h after delivery in China. Methods: We prospectively followed-up Chinese patients with CGD who developed D-BCG to characterize their clinical and genetic characteristics. The diagnoses were based on the patients' clinical, genetic, and microbiological characteristics. Results: Between September 2009 and September 2016, we identified 23 patients with CGD who developed D-BCG. Their overall 10-year survival rate was 34%. We created a simple dissemination score to evaluate the number of infected organ systems and the survival probabilities after 8 years were 62 and 17% among patients with simple dissemination scores of ≤3 and >3, respectively (p = 0.0424). Survival was not significantly associated with the CGD stimulation index or interferon-γ treatment. Eight patients underwent umbilical cord blood transplantation and 5 of them were successfully treated. The genetic analyses found mutations in CYBB (19 patients), CYBA (1 patient), NCF1 (1 patient), and NCF2 (1 patient). We identified 6 novel highly likely pathogenic mutations, including 4 mutations in CYBB and 2 mutations in NCF1. Conclusions: D-BCG is a deadly complication of CGD. The extent of BCG spreading is strongly associated with clinical outcomes, and hematopoietic stem cell transplantation may be a therapeutic option for this condition.
Collapse
Affiliation(s)
- Tao Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xian Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yun Ling
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ning Jiang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Chen
- Department of Medical Microbiology and Parasitology, Fudan University, Shanghai, China
| | - Xiaowen Qian
- Children's Hospital of Fudan University, Shanghai, China
| | - Xuhui Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiuhong Xi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lu Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuihua Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen-Hong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Kutukculer N, Aykut A, Karaca NE, Durmaz A, Aksu G, Genel F, Pariltay E, Cogulu Ö, Azarsız E. Chronic granulamatous disease: Two decades of experience from a paediatric immunology unit in a country with high rate of consangineous marriages. Scand J Immunol 2019; 89:e12737. [DOI: 10.1111/sji.12737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/26/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Necil Kutukculer
- Department of Pediatric Immunology; Ege University Faculty of Medicine; Izmir Turkey
| | - Ayca Aykut
- Department of Medical Genetics; Ege University Faculty of Medicine; Izmir Turkey
| | - Neslihan E. Karaca
- Department of Pediatric Immunology; Ege University Faculty of Medicine; Izmir Turkey
| | - Asude Durmaz
- Department of Medical Genetics; Ege University Faculty of Medicine; Izmir Turkey
| | - Guzide Aksu
- Department of Pediatric Immunology; Ege University Faculty of Medicine; Izmir Turkey
| | - Ferah Genel
- Department of Pediatric Allergy and Immunology; Dr Behcet Uz Children Training and Research Hospital; Izmir Turkey
| | - Erhan Pariltay
- Department of Medical Genetics; Ege University Faculty of Medicine; Izmir Turkey
| | - Özgür Cogulu
- Department of Medical Genetics; Ege University Faculty of Medicine; Izmir Turkey
| | - Elif Azarsız
- Department of Pediatric Immunology; Ege University Faculty of Medicine; Izmir Turkey
| |
Collapse
|
45
|
Kuhns DB, Hsu AP, Sun D, Lau K, Fink D, Griffith P, Huang DW, Priel DAL, Mendez L, Kreuzburg S, Zerbe CS, De Ravin SS, Malech HL, Holland SM, Wu X, Gallin JI. NCF1 (p47 phox)-deficient chronic granulomatous disease: comprehensive genetic and flow cytometric analysis. Blood Adv 2019; 3:136-147. [PMID: 30651282 PMCID: PMC6341190 DOI: 10.1182/bloodadvances.2018023184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/02/2018] [Indexed: 11/20/2022] Open
Abstract
Mutations in NCF1 (p47phox) cause autosomal recessive chronic granulomatous disease (CGD) with abnormal dihydrorhodamine (DHR) assay and absent p47phox protein. Genetic identification of NCF1 mutations is complicated by adjacent highly conserved (>98%) pseudogenes (NCF1B and NCF1C). NCF1 has GTGT at the start of exon 2, whereas the pseudogenes each delete 1 GT (ΔGT). In p47phox CGD, the most common mutation is ΔGT in NCF1 (c.75_76delGT; p.Tyr26fsX26). Sequence homology between NCF1 and its pseudogenes precludes reliable use of standard Sanger sequencing for NCF1 mutations and for confirming carrier status. We first established by flow cytometry that neutrophils from p47phox CGD patients had negligible p47phox expression, whereas those from p47phox CGD carriers had ∼60% of normal p47phox expression, independent of the specific mutation in NCF1 We developed a droplet digital polymerase chain reaction (ddPCR) with 2 distinct probes, recognizing either the wild-type GTGT sequence or the ΔGT sequence. A second ddPCR established copy number by comparison with the single-copy telomerase reverse transcriptase gene, TERT We showed that 84% of p47phox CGD patients were homozygous for ΔGT NCF1 The ddPCR assay also enabled determination of carrier status of relatives. Furthermore, only 79.2% of normal volunteers had 2 copies of GTGT per 6 total (NCF1/NCF1B/NCF1C) copies, designated 2/6; 14.7% had 3/6, and 1.6% had 4/6 GTGT copies. In summary, flow cytometry for p47phox expression quickly identifies patients and carriers of p47phox CGD, and genomic ddPCR identifies patients and carriers of ΔGT NCF1, the most common mutation in p47phox CGD.
Collapse
Affiliation(s)
- Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - David Sun
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - Karen Lau
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Danielle Fink
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Paul Griffith
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - Da Wei Huang
- Lymphoid Malignances Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Debra A Long Priel
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Laura Mendez
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Samantha Kreuzburg
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD; and
| | - John I Gallin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
46
|
de Albuquerque JAT, Lima AM, de Oliveira Junior EB, Ishizuka EK, Aragão-Filho WC, Bengala Zurro N, Mayumi Chiba S, Fernandes FR, Condino-Neto A. A Novel Mutation in the NCF2 Gene in a CGD Patient With Chronic Recurrent Pneumopathy. Front Pediatr 2019; 7:391. [PMID: 31612120 PMCID: PMC6776604 DOI: 10.3389/fped.2019.00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic granulomatous disease (CGD) is an inherited, genetically heterogeneous disease characterized by defective phagocytic cell microbicidal function, leading to increased susceptibility to bacterial and fungal infections. CGD is caused by mutations in components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system, which is responsible for reactive oxygen species production during phagocytosis. Mutations in the neutrophil cytosolic factor 2 (NCF2) gene account for <5% of all cases. Here, we report a case of a 2-year-old female with persistent recurrent pneumopathy, even under trimethoprim-sulfamethoxazole (TMP-SMX) and itraconazole prophylaxis combined with IFNγ treatment. Genetic analysis revealed a novel homozygous mutation in NCF2, sequence depletion in a splicing region (c.256_257+2delAAGT NM_000433), leading to a K86Ifs*2 residue change in the p67-phox protein.
Collapse
Affiliation(s)
| | | | - Edgar Borges de Oliveira Junior
- Immunogenic Inc, São Paulo, Brazil.,PENSI Institute - Jose Luiz Egydio Setubal Foundation, Sabará Hospital, São Paulo, Brazil
| | | | | | - Nuria Bengala Zurro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sônia Mayumi Chiba
- Sabará Hospital, São Paulo, Brazil.,Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil
| | | | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Kulkarni M, Hule G, de Boer M, van Leeuwen K, Kambli P, Aluri J, Gupta M, Dalvi A, Mhatre S, Taur P, Desai M, Madkaikar M. Approach to Molecular Diagnosis of Chronic Granulomatous Disease (CGD): an Experience from a Large Cohort of 90 Indian Patients. J Clin Immunol 2018; 38:898-916. [PMID: 30470980 DOI: 10.1007/s10875-018-0567-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/04/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic granulomatous disease (CGD) is characterized by mutation in any one of the five genes coding NADPH oxidase components that leads to functional abnormality preventing the killing of phagocytosed microbes by affecting the progression of a respiratory burst. CGD patients have an increased susceptibility to infections by opportunistic and pathogenic organisms. Though initial diagnosis of CGD using a nitroblue tetrazolium (NBT) test or dihydrorhodamine (DHR) test is relatively easy, molecular diagnosis is challenging due to involvement of multiple genes, presence of pseudogenes, large deletions, and GC-rich regions, among other factors. The strategies for molecular diagnosis vary depending on the affected gene and the mutation pattern prevalent in the target population. There is a paucity of molecular data related to CGD for Indian population. METHOD This report includes data for a large cohort of CGD patients (n = 90) from India, describing the diagnostic approach, mutation spectrum, and novel mutations identified. We have used mosaicism in mothers and the expression pattern of different NADPH components by flow cytometry as a screening tool to identify the underlying affected gene. The techniques like Sanger sequencing, next-generation sequencing (NGS), and Genescan analysis were used for further molecular analysis. RESULT Of the total molecularly characterized patients (n = 90), 56% of the patients had a mutation in the NCF1 gene, 30% had mutation in the CYBB gene, and 7% each had mutation in the CYBA and NCF2 genes. Among the patients with NCF1 gene mutation, 82% of the patients had 2-bp deletion (DelGT) mutations in the NCF1 gene. In our cohort, 41 different mutations including 9 novel mutations in the CYBB gene and 2 novel mutations each in the NCF2, CYBA, and NCF1 genes were identified. CONCLUSION Substantial number of the patients lack NCF1 gene on both the alleles. This is often missed by advanced molecular techniques like Sanger sequencing and NGS due to the presence of pseudogenes and requires a simple Genescan method for confirmation. Thus, the diagnostic approach may depend on the prevalence of affected genes in respective population. This study identifies potential gene targets with the help of flow cytometric analysis of NADPH oxidase components to design an algorithm for diagnosis of CGD in India. In Indian population, the Genescan method should be preferred as the primary molecular test to rule out NCF1 gene mutations prior to Sanger sequencing and NGS.
Collapse
Affiliation(s)
- Manasi Kulkarni
- National Institute of Immunohaematology-ICMR, 13th floor, KEM Hospital Campus, Mumbai, Parel, 400012, India
| | - Gouri Hule
- National Institute of Immunohaematology-ICMR, 13th floor, KEM Hospital Campus, Mumbai, Parel, 400012, India
| | - Martin de Boer
- Department of Blood Cell Research, Sanquin Blood Supply Organization, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Department of Blood Cell Research, Sanquin Blood Supply Organization, Amsterdam, The Netherlands
| | - Priyanka Kambli
- National Institute of Immunohaematology-ICMR, 13th floor, KEM Hospital Campus, Mumbai, Parel, 400012, India
| | - Jahnavi Aluri
- National Institute of Immunohaematology-ICMR, 13th floor, KEM Hospital Campus, Mumbai, Parel, 400012, India
| | - Maya Gupta
- National Institute of Immunohaematology-ICMR, 13th floor, KEM Hospital Campus, Mumbai, Parel, 400012, India
| | - Aparna Dalvi
- National Institute of Immunohaematology-ICMR, 13th floor, KEM Hospital Campus, Mumbai, Parel, 400012, India
| | - Snehal Mhatre
- National Institute of Immunohaematology-ICMR, 13th floor, KEM Hospital Campus, Mumbai, Parel, 400012, India
| | - Prasad Taur
- Bai Jerbai Wadia Children Hospital, Mumbai, Parel, India
| | - Mukesh Desai
- Bai Jerbai Wadia Children Hospital, Mumbai, Parel, India
| | - Manisha Madkaikar
- National Institute of Immunohaematology-ICMR, 13th floor, KEM Hospital Campus, Mumbai, Parel, 400012, India.
| |
Collapse
|
48
|
Mortaz E, Sarhifynia S, Marjani M, Moniri A, Mansouri D, Mehrian P, van Leeuwen K, Roos D, Garssen J, Adcock IM, Tabarsi P. An adult autosomal recessive chronic granulomatous disease patient with pulmonary Aspergillus terreus infection. BMC Infect Dis 2018; 18:552. [PMID: 30409207 PMCID: PMC6225587 DOI: 10.1186/s12879-018-3451-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 10/18/2018] [Indexed: 11/20/2022] Open
Abstract
Background Genetic mutations that reduce intracellular superoxide production by granulocytes causes chronic granulomatous disease (CGD). These patients suffer from frequent and severe bacterial and fungal infections throughout their early life. Diagnosis is usually made in the first 2 years of life but is sometimes only diagnosed when the patient is an adult although they may have suffered from symptoms since childhood. Case presentation A 26-year-old man was referred with weight loss, fever, hepatosplenomegaly and coughing. He had previously been diagnosed with lymphadenopathy in the neck at age 8 and prescribed anti-tuberculosis treatment. A chest radiograph revealed extensive right-sided consolidation along with smaller foci of consolidation in the left lung. On admission to hospital he had respiratory problems with fever. Laboratory investigations including dihydrorhodamine-123 (DHR) tests and mutational analysis indicated CGD. Stimulation of his isolated peripheral blood neutrophils (PMN) with phorbol 12-myristate 13-acetate (PMA) produced low, subnormal levels of reactive oxygen species (ROS). Aspergillus terreus was isolated from bronchoalveolar lavage (BAL) fluid and sequenced. Conclusions We describe, for the first time, the presence of pulmonary A. terreus infection in an adult autosomal CGD patient on long-term corticosteroid treatment. The combination of the molecular characterization of the inherited CGD and the sequencing of fungal DNA has allowed the identification of the disease-causing agent and the optimal treatment to be given as a consequence.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Somayeh Sarhifynia
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Mehrian
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Nutricia Research Centre for Specialized Nutrition, Utrecht, The Netherlands
| | - Ian M Adcock
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia.,Cell and Molecular Biology Group, Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Characterization of 4 New Mutations in the CYBB Gene in 10 Iranian Families With X-linked Chronic Granulomatous Disease. J Pediatr Hematol Oncol 2018; 40:e268-e272. [PMID: 29702544 DOI: 10.1097/mph.0000000000001189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic granulomatous disease (CGD) is an inherited disease of the innate immune system that results from defects in 1 of the 5 subunits of nicotinamide adenine dinucleotide phosphate oxidase complex and leads to life-threatening infections with granuloma formation. During 3 years of study, we recognized 10 male patients with X-linked CGD from a tertiary referral center for immune deficiencies in Iran. The CGD patients were diagnosed according to clinical features and biochemical tests, including nitroblue tetrazolium and dihydrorhodamine-1, 2, 3 tests, performed on patients and their mothers. In all patients, Western blot analysis showed a gp91 phenotype. Mutation screening by single strand conformation polymorphism and multiplex ligation-dependent probe amplification analysis of the CYBB gene encoding gp91, followed by sequencing, showed 9 different mutations, 4 of them novel as far as we know.
Collapse
|
50
|
Yu JE, Azar AE, Chong HJ, Jongco AM, Prince BT. Considerations in the Diagnosis of Chronic Granulomatous Disease. J Pediatric Infect Dis Soc 2018; 7:S6-S11. [PMID: 29746674 PMCID: PMC5946934 DOI: 10.1093/jpids/piy007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chronic granulomatous disease (CGD) is a rare primary immunodeficiency that is caused by defects in the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. The disease presents in most patients initially with infection, especially of the lymph nodes, lung, liver, bone, and skin. Patients with CGD are susceptible to a narrow spectrum of pathogens, and Staphylococcus aureus, Burkholderia cepacia complex, Serratia marcescens, Nocardia species, and Aspergillus species are the most common organisms implicated in North America. Granuloma formation, most frequently in the gastrointestinal and genitourinary systems, is a common complication of CGD and can be seen even before diagnosis. An increased incidence of autoimmune disease has also been described in patients with CGD and X-linked female carriers. In patients who present with signs and symptoms consistent with CGD, a flow cytometric dihydrorhodamine neutrophil respiratory burst assay is a quick and cost-effective way to evaluate NADPH oxidase function. The purpose of this review is to highlight considerations for and challenges in the diagnosis of CGD.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Medical Center, New York, New York
| | - Antoine E Azar
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hey J Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pennsylvania
| | - Artemio M Jongco
- Division of Allergy and Immunology, Department of Medicine and Pediatrics, Cohen Children’s Medical Center of New York, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Merinoff Center for Patient-Oriented Research, Feinstein Institute for Medical Research, Great Neck
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus,Correspondence: B. T. Prince, MD, MSci, Nationwide Children’s Hospital, Division of Allergy and Immunology, 700 Children’s Dr, Columbus, OH 43215 ()
| |
Collapse
|