1
|
Aykan FS, Çölkesen F, Evcen R, Kılınç M, Yıldız E, Ergün ÜY, Önalan T, Akkuş FA, Kahraman S, Gerek ME, Arslan Ş. Exploring noninfectious radiological lung findings in adult patients with primary immunodeficiency diseases. Allergol Immunopathol (Madr) 2025; 53:41-50. [PMID: 40342113 DOI: 10.15586/aei.v53i3.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/20/2025] [Indexed: 05/11/2025]
Abstract
Primary immunodeficiency diseases (PIDs) show different patterns of airway involvement, particularly bronchiectasis; however, comparative studies of radiologic manifestations in patients with PIDs are scarce. Hence, the aim of this study to investigate radiologic lung findings in adult patients with PIDs and evaluate the possible relationship between clinical and immunologic features and respiratory function in these patients. In this study, the demographic and clinical characteristics, serum immunoglobulins (Ig), lymphocyte subgroups, high-resolution computed tomography (HRCT), and pulmonary function tests (PFTs) of 116 adult patients with PID were evaluated and those with and without abnormal HRCT were compared. The median age was 40 (28-48) years, and there were 51 (44%) females. Abnormal findings were detected in 55.2% of the HRCTs, but the most common findings were bronchiectasis (30.2%), bilateral involvement (73.5%), and lower lobe predominance. The median age and age of diagnosis were higher in those with HRCT findings. The obstructive pattern was the most common found in the PFTs. Forced vital capacity, maximal mid-expiratory flow at 25-75%, immunoglobulin G (IgG), immunoglobulin A (IgA), immunoglobulin M (IgM), cluster of differentiation (CD)4+ T cell, CD4+/CD8+ ratio, and class-switched memory B (cSMB) cell levels were significantly lower, whereas mortality was higher. Noninfectious pulmonary complications are among the important causes of morbidity and mortality in PID that could result in chronic lung disease despite adequate Ig therapy. Considering the extra radiation dose of HRCT, clinical findings and immunological and PFT parameters accompanying radiological features may be helpful in predicting the diagnosis; it may also be useful in determining additional treatment modalities and reducing mortality.
Collapse
Affiliation(s)
- Filiz Sadi Aykan
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Ankara Health Sciences University Gülhane Training and Research Hospital, Ankara, Türkiye;
| | - Fatih Çölkesen
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| | - Recep Evcen
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Recep Tayyip Erdoğan University Training and Research Hospital, Rize, Türkiye
| | - Mehmet Kılınç
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Batman Training and Research Hospital, Batman, Türkiye
| | - Eray Yıldız
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necip Fazıl City Hospital, Kahramanmaraş, Türkiye
| | - Ümmügülsüm Yılmaz Ergün
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| | - Tuğba Önalan
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| | - Fatma Arzu Akkuş
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| | - Selim Kahraman
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| | - Mehmet Emin Gerek
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| | - Şevket Arslan
- Division of Clinical Immunology and Allergy, Department of Internal Medicine, Necmettin Erbakan University Faculty of Medicine, Konya, Türkiye
| |
Collapse
|
2
|
Bintalib HM, Grigoriadou S, Patel SY, Mutlu L, Sooriyakumar K, Vaitla P, McDermott E, Drewe E, Steele C, Ahuja M, Garcez T, Gompels M, Grammatikos A, Herwadkar A, Ayub R, Halliday N, Burns SO, Hurst JR, Goddard S. Investigating pulmonary and non-infectious complications in common variable immunodeficiency disorders: a UK national multi-centre study. Front Immunol 2024; 15:1451813. [PMID: 39318627 PMCID: PMC11420000 DOI: 10.3389/fimmu.2024.1451813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Background Common Variable Immunodeficiency Disorders (CVID) encompass a spectrum of immunodeficiency characterised by recurrent infections and diverse non-infectious complications (NICs). This study aimed to describe the clinical features and variation in NICs in CVID with and without interstitial lung disease (ILD) from a large UK national registry population. Methods Retrospective, cross-sectional data from a UK multicentre database (previously known as UKPIN), categorising patients into those with CVID-ILD and those with NICs related to CVID but without pulmonary involvement (CVID-EP; EP= extra-pulmonary involvement only). Results 129 patients were included. Chronic lung diseases, especially CVID-ILD, are prominent complications in complex CVID, occurring in 62% of the cohort. Bronchiectasis was common (64% of the cohort) and associated with greater pulmonary function impairment in patients with CVID-ILD compared to those without bronchiectasis. Lymphadenopathy and the absence of gastrointestinal diseases were significant predictors of ILD in complex CVID. Although the presence of liver disease did not differ significantly between the groups, nearly half of the CVID-ILD patients were found to have liver disease. Patients with CVID-ILD were more likely to receive immunosuppressive treatments such as rituximab and mycophenolate mofetil than the CVID-EP group, indicating greater need for treatment and risk of complications. Conclusion This study highlights the significant burden of CVID-ILD within the CVID population with NICs only. The lungs emerged as the most frequently affected organ, with ILD and bronchiectasis both highly prevalent. These findings emphasise the necessity of a comprehensive and multidisciplinary approach in managing CVID patients, considering their susceptibility to various comorbidities and complications.
Collapse
Affiliation(s)
- Heba M. Bintalib
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Sofia Grigoriadou
- Department of Immunology, Barts Health National Health Service (NHS) Trust, The Royal London Hospital, London, United Kingdom
| | - Smita Y. Patel
- Clinical Immunology, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Leman Mutlu
- Clinical Immunology and Allergy, Department of Pathology, East Kent Hospitals University NHS Foundation Trust, Canterbury, United Kingdom
| | - Kavitha Sooriyakumar
- Department of Allergy and Immunology, University Hospitals Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Prashantha Vaitla
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Elizabeth McDermott
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Elizabeth Drewe
- Clinical Immunology and Allergy Department, Queens Medical Centre campus, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Cathal Steele
- Regional Immunology Service of Northern Ireland, The Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Manisha Ahuja
- Clinical Research Fellow, Newcastle University; Specialist Registrar Newcastle upon Tyne Hospitals NHSFT, Newcastle, United Kingdom
| | - Tomaz Garcez
- Department of Immunology, Manchester University National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Mark Gompels
- The Bristol National Health Service (NHS) Immunology Allergy Centre, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Alexandros Grammatikos
- The Bristol National Health Service (NHS) Immunology Allergy Centre, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom
| | - Archana Herwadkar
- Immunology Department, Division of Surgery and Tertiary Medicine, Salford Royal National Health Service (NHS) Foundation Trust, Salford, United Kingdom
| | - Rehana Ayub
- Clinical Immunology, Leeds Teaching Hospitals National Health Service (NHS) Trust, Leeds, United Kingdom
| | - Neil Halliday
- University College London (UCL) Institute for Liver and Digestive Health, University College London, London, United Kingdom
- Sheila Sherlock Liver Centre, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - John R. Hurst
- University College London (UCL) Respiratory, University College London, London, United Kingdom
| | - Sarah Goddard
- Department of Immunology, University Hospitals North Midlands, Royal Stoke Hospital, Stoke-on-Trent, United Kingdom
| |
Collapse
|
3
|
Smits BM, Boland SL, Hol ME, Dandis R, Leavis HL, de Jong PA, Prevaes SMPJ, Mohamed Hoesein FAA, van Montfrans JM, Ellerbroek PM. Pulmonary Computed Tomography Screening Frequency in Primary Antibody Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1037-1048.e3. [PMID: 38182096 DOI: 10.1016/j.jaip.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Patients with primary antibody deficiency (PAD) frequently suffer from pulmonary complications, associated with severe morbidity and mortality. Hence, regular pulmonary screening by computed tomography (CT) scanning is advised. However, predictive risk factors for pulmonary morbidity are lacking. OBJECTIVE To identify patients with PAD at risk for pulmonary complications necessitating regular CT screening. METHODS A retrospective, longitudinal cohort study of patients with PAD (median follow-up 7.4 [2.3-14.8] years) was performed. CTs were scored using the modified Brody-II scoring system. Clinical and laboratory parameters were retrospectively collected. Potential risk factors were identified by univariate analysis when P < .2 and confirmed by multivariable logistic regression when P < .05. RESULTS The following independent risk factors for progression of airway disease (AD) were identified: (1) diagnosis of X-linked agammaglobulinemia (XLA), (2) recurrent airway infections (2.5/year), and (3) the presence of AD at baseline. Signs of AD progression were detected in 5 of 11 patients with XLA and in 17 of 80 of the other patients with PAD. Of the 22 patients who progressed, 17 had pre-existent AD scores ≥7.0%. Increased AD scores were related to poorer forced expiratory volume in 1 second values and chronic cough. Common variable immunodeficiency and increased CD4 effector/memory cells were risk factors for an interstitial lung disease (ILD) score ≥13.0%. ILD ≥13.0% occurred in 12 of 80 patients. Signs of ILD progression were detected in 8 of 80 patients, and 4 of 8 patients showing progression had pre-existent ILD scores ≥13.0%. CONCLUSION We identified risk factors that distinguished patients with PAD at risk for AD and ILD presence and progression, which could guide future screening frequency; however, independent and preferably prospective validation is needed.
Collapse
Affiliation(s)
- Bas M Smits
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sharisa L Boland
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjolein E Hol
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rana Dandis
- Research Department, Trial and Datacenter, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, Utrecht University, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sabine M P J Prevaes
- Department of Pediatric Pulmonology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pauline M Ellerbroek
- Department of Internal Medicine, Infectious Diseases, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Remiker A, Bolling K, Verbsky J. Common Variable Immunodeficiency. Med Clin North Am 2024; 108:107-121. [PMID: 37951645 DOI: 10.1016/j.mcna.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common primary immune deficiency characterized by impaired production of specific immunoglobulin. The clinical manifestations are heterogeneous including acquisition of recurrent bacterial infections after a period of wellness, lymphoproliferation, autoimmunity, pulmonary disease, liver disease, enteropathy, granulomas, and an increased risk of malignancy. The etiology of CVID is largely unknown, with a considerable number of patients having an underlying genetic defect causing immune dysregulation. The antibody deficiency found in CVID is treated with lifelong immunoglobulin therapy, which is preventative of the majority of infections when given regularly.
Collapse
Affiliation(s)
- Allison Remiker
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA.
| | - Kristina Bolling
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA
| | - James Verbsky
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA; Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Scarpa R, Cinetto F, Milito C, Gianese S, Soccodato V, Buso H, Garzi G, Carrabba M, Messina E, Panebianco V, Catalano C, Morana G, Lougaris V, Landini N, Bondioni MP. Common and Uncommon CT Findings in CVID-Related GL-ILD: Correlations with Clinical Parameters, Therapeutic Decisions and Potential Implications in the Differential Diagnosis. J Clin Immunol 2023; 43:1903-1915. [PMID: 37548814 PMCID: PMC10661728 DOI: 10.1007/s10875-023-01552-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE To investigate computed tomography (CT) findings of Granulomatous Lymphocytic Interstitial Lung Disease (GL-ILD) in Common Variable Immunodeficiency (CVID), also in comparison with non-GL-ILD abnormalities, correlating GL-ILD features with functional/immunological parameters and looking for GL-ILD therapy predictive elements. METHODS CT features of 38 GL-ILD and 38 matched non-GL-ILD subjects were retrospectively described. Correlations of GL-ILD features with functional/immunological features were assessed. A logistic regression was performed to find a predictive model of GL-ILD therapeutic decisions. RESULTS Most common GL-ILD CT findings were bronchiectasis, non-perilymphatic nodules, consolidations, Ground Glass Opacities (GGO), bands and enlarged lymphnodes. GL-ILD was usually predominant in lower fields. Multiple small nodules (≤10 mm), consolidations, reticulations and fibrotic ILD are more indicative of GL-ILD. Bronchiectasis, GGO, Reticulations and fibrotic ILD correlated with decreased lung performance. Bronchiectasis, GGO and fibrotic ILD were associated with low IgA levels, whereas high CD4+ T cells percentage was related to GGO. Twenty out of 38 patients underwent GL-ILD therapy. A model combining Marginal Zone (MZ) B cells percentage, IgA levels, lower field consolidations and lymphnodes enlargement showed a good discriminatory capacity with regards to GL-ILD treatment. CONCLUSIONS GL-ILD is a lower field predominant disease, commonly characterized by bronchiectasis, non-perilymphatic small nodules, consolidations, GGO and bands. Multiple small nodules, consolidations, reticulations and fibrotic ILD may suggest the presence of GL-ILD in CVID. MZ B cells percentage, IgA levels at diagnosis, lower field consolidations and mediastinal lymphnodes enlargement may predict the need of a specific GL-ILD therapy.
Collapse
Affiliation(s)
- Riccardo Scarpa
- Department of Medicine, DIMED, University of Padova, Padova, Italy
- Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Francesco Cinetto
- Department of Medicine, DIMED, University of Padova, Padova, Italy
- Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.
| | - Sabrina Gianese
- Department of Medicine, DIMED, University of Padova, Padova, Italy
- Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Valentina Soccodato
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Helena Buso
- Department of Medicine, DIMED, University of Padova, Padova, Italy
- Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Maria Carrabba
- Internal Medicine Department, Rare Disease Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Emanuele Messina
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, "Sapienza" University, Rome, Italy
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, "Sapienza" University, Rome, Italy
| | - Carlo Catalano
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, "Sapienza" University, Rome, Italy
| | - Giovanni Morana
- Department of Radiology, Ca' Foncello General Hospital, Treviso, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
- ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Nicholas Landini
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, "Sapienza" University, Rome, Italy
| | | |
Collapse
|
6
|
Bintalib HM, van de Ven A, Jacob J, Davidsen JR, Fevang B, Hanitsch LG, Malphettes M, van Montfrans J, Maglione PJ, Milito C, Routes J, Warnatz K, Hurst JR. Diagnostic testing for interstitial lung disease in common variable immunodeficiency: a systematic review. Front Immunol 2023; 14:1190235. [PMID: 37223103 PMCID: PMC10200864 DOI: 10.3389/fimmu.2023.1190235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Common variable immunodeficiency related interstitial lung disease (CVID-ILD, also referred to as GLILD) is generally considered a manifestation of systemic immune dysregulation occurring in up to 20% of people with CVID. There is a lack of evidence-based guidelines for the diagnosis and management of CVID-ILD. Aim To systematically review use of diagnostic tests for assessing patients with CVID for possible ILD, and to evaluate their utility and risks. Methods EMBASE, MEDLINE, PubMed and Cochrane databases were searched. Papers reporting information on the diagnosis of ILD in patients with CVID were included. Results 58 studies were included. Radiology was the investigation modality most commonly used. HRCT was the most reported test, as abnormal radiology often first raised suspicion of CVID-ILD. Lung biopsy was used in 42 (72%) of studies, and surgical lung biopsy had more conclusive results compared to trans-bronchial biopsy (TBB). Analysis of broncho-alveolar lavage was reported in 24 (41%) studies, primarily to exclude infection. Pulmonary function tests, most commonly gas transfer, were widely used. However, results varied from normal to severely impaired, typically with a restrictive pattern and reduced gas transfer. Conclusion Consensus diagnostic criteria are urgently required to support accurate assessment and monitoring in CVID-ILD. ESID and the ERS e-GLILDnet CRC have initiated a diagnostic and management guideline through international collaboration. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022276337.
Collapse
Affiliation(s)
- Heba M. Bintalib
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Department of Respiratory Care, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Centre, Jeddah, Saudi Arabia
| | - Annick van de Ven
- Departments of Internal Medicine & Allergology, Rheumatology & Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| | - Joseph Jacob
- University College London (UCL) Respiratory, University College London, London, United Kingdom
- Satsuma Lab, Centre for Medical Image Computing, University College London (UCL), London, United Kingdom
| | - Jesper Rømhild Davidsen
- South Danish Center for Interstitial Lung Diseases (SCILS), Department of Respiratory Medicine, Odense University Hospital, Odense, Denmark
- Odense Respiratory Research Unit (ODIN), Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Børre Fevang
- Centre for Rare Disorders, Division of Paediatric and Adolescent Health, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Division of Surgery, Inflammatory Medicine and Transplantation, Oslo University Hospital, Oslo, Norway
| | - Leif G. Hanitsch
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1 and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, Berlin, Germany
| | - Marion Malphettes
- Department of Clinic Immunopathology, Hôpital Saint-Louis, Paris, France
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Childrens Hospital, University Medical Center Utrecht (UMC), Utrecht, Netherlands
| | - Paul J. Maglione
- Section of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - John Routes
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Medicine, Microbiology and Immunology, Medical College Wisconsin, Milwaukee, WI, United States
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John R. Hurst
- University College London (UCL) Respiratory, University College London, London, United Kingdom
| |
Collapse
|
7
|
Gao X, Michel K, Griese M. Interstitial Lung Disease in Immunocompromised Children. Diagnostics (Basel) 2022; 13:diagnostics13010064. [PMID: 36611354 PMCID: PMC9818431 DOI: 10.3390/diagnostics13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The range of pulmonary complications beyond infections in pediatric immunocompromised patients is broad but not well characterized. Our goal was to assess the spectrum of disorders with a focus on interstitial lung diseases (ILD) in immunodeficient patients. METHODS We reviewed 217 immunocompromised children attending a specialized pneumology service during a period of 23 years. We assigned molecular diagnoses where possible and categorized the underlying immunological conditions into inborn errors of immunity or secondary immunodeficiencies according to the IUIS and the pulmonary conditions according to the chILD-EU classification system. RESULTS Among a wide array of conditions, opportunistic and chronic infections were the most frequent. ILD had a 40% prevalence. Of these children, 89% had a CT available, and 66% had a lung biopsy, which supported the diagnosis of ILD in 95% of cases. Histology was often lymphocyte predominant with the histo-pattern of granulomatous and lymphocytic interstitial lung disease (GLILD), follicular bronchiolitis or lymphocytic interstitial pneumonitis. Of interest, DIP, PAP and NSIP were also diagnosed. ILD was detected in several immunological disorders not yet associated with ILD. CONCLUSIONS Specialized pneumological expertise is necessary to manage the full spectrum of respiratory complications in pediatric immunocompromised patients.
Collapse
Affiliation(s)
| | | | - Matthias Griese
- Correspondence: ; Tel.: +49-89-4400-57870; Fax: +49-89-4400-57872
| |
Collapse
|
8
|
Lee EY, Betschel S, Grunebaum E. Monitoring patients with uncomplicated common variable immunodeficiency: a systematic review. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:21. [PMID: 35264237 PMCID: PMC8908590 DOI: 10.1186/s13223-022-00661-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Non-infectious complications have become a major cause of morbidity and mortality in patients with Common Variable Immunodeficiency (CVID). The monitoring of patients with CVID prior to the development of non-infectious complications is not well defined. OBJECTIVE Our objectives were to systematically review the current literature on the monitoring of CVID patients without non-infectious complications and to develop recommendations for such monitoring. METHODS MEDLINE and EMBASE were searched from January 1st, 2000 to March 25th, 2021. Studies on any aspects of CVID monitoring were included. Studies that included only children, on monitoring CVID patients with existing non-infectious complications, or in the format of case reports were excluded. RESULTS Nine studies on CVID monitoring, including 3 cohort studies, 3 experts' opinions, 2 consensus statements and a single guideline report were identified. These studies revealed that clinical assessment and bloodwork were preformed every 6 to 12 months in asymptomatic patients. Some centers performed computerized tomography scan of the chest every 2-5 years to identify chronic lung disease, although the majority did chest imaging in accordance with clinical indications. Pulmonary function tests were done annually at most centers. Most studies did not address the role of abdominal imaging to screen for liver diseases or endoscopy to screen for gastric cancer in asymptomatic patients with uncomplicated CVID. CONCLUSIONS There is paucity of evidence-based information to guide the routine monitoring of CVID patients without non-infectious complications. Prospective studies are needed to determine the best monitoring practices in this group of patients.
Collapse
Affiliation(s)
- Erika Yue Lee
- Division of Clinical Immunology and Allergy, Department of Medicine, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada. .,Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Stephen Betschel
- Division of Clinical Immunology and Allergy, Department of Medicine, St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Lehman HK, Yu KOA, Towe CT, Risma KA. Respiratory Infections in Patients with Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:683-691.e1. [PMID: 34890826 DOI: 10.1016/j.jaip.2021.10.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Recurrent and life-threatening respiratory infections are nearly universal in patients with primary immunodeficiency diseases (PIDD). Early recognition, aggressive treatment, and prophylaxis with antimicrobials and immunoglobulin replacement have been the mainstays of management and will be reviewed here with an emphasis on respiratory infections. Genetic discoveries have allowed direct translation of research to clinical practice, improving our understanding of clinical patterns of pathogen susceptibilities and guiding prophylaxis. The recent identification of inborn errors in type I interferon signaling as a basis for life-threatening viral infections in otherwise healthy individuals suggests another targetable pathway for treatment and/or prophylaxis. The future of PIDD diagnosis will certainly involve early genetic identification by newborn screening before onset of infections, with early treatment offering the potential of preventing disease complications such as chronic lung changes. Gene editing approaches offer tremendous therapeutic potential, with rapidly emerging delivery systems. Antiviral therapies are desperately needed, and specific cellular therapies show promise in patients requiring hematopoietic stem cell transplantation. The introduction of approved therapies for clinical use in PIDD is limited by the difficulty of studying outcomes in rare patients/conditions with conventional clinical trials.
Collapse
Affiliation(s)
- Heather K Lehman
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY.
| | - Karl O A Yu
- Division of Infectious Diseases, Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, the State University of New York, and John R. Oishei Children's Hospital, Buffalo, NY
| | - Christopher T Towe
- Division of Pulmonary Medicine, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kimberly A Risma
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, and Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
10
|
Krone KA, Winant AJ, Vargas SO, Platt CD, Bartnikas LM, Janssen E, Lillehei C, Lee EY, Fishman MP, Casey A. Pulmonary manifestations of immune dysregulation in CTLA-4 haploinsufficiency and LRBA deficiency. Pediatr Pulmonol 2021; 56:2232-2241. [PMID: 33710794 DOI: 10.1002/ppul.25373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The primary immunodeficiency syndromes of cytotoxic T lymphocyte-associated protein 4 (CTLA-4) haploinsufficiency and lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency present with multisystem immune dysregulation. The aim of this study was to characterize and compare the pulmonary manifestations of these two diseases. METHODS We retrospectively analyzed the pulmonary clinical, radiologic, and histopathologic characteristics of six patients with CTLA-4 haploinsufficiency and four patients with LRBA deficiency with pulmonary involvement followed at a large tertiary care center. RESULTS Chronic respiratory symptoms were more frequent in patients with LRBA deficiency versus CTLA-4 haploinsufficiency (3/4 vs. 1/6). Cough was the most common respiratory symptom. Abnormalities in pulmonary exam and pulmonary function testing were more frequent in LRBA deficiency (4/4, 2/4) compared to CTLA-4 haploinsufficiency (1/6, 2/6). Chest computed tomography (CT) findings included mediastinal lymphadenopathy (4/4 in LRBA deficiency vs. 1/4 in CTLA-4 haploinsufficiency), pulmonary nodules (4/4, 3/4), ground-glass opacification (4/4, 3/4), and bronchiectasis (3/4, 1/4). Lymphocytic inflammation, concentrated bronchovasculocentrically and paraseptally, was the predominant pathologic finding and was observed in all patients who had lung biopsies (N = 3 with LRBA deficiency; N = 3 with CTLA-4 haploinsufficiency). CONCLUSION Despite phenotypic overlap amongst these diseases, LRBA deficiency demonstrated greater severity of pulmonary disease, indicated by respiratory symptoms, pulmonary exam, and intrathoracic radiologic findings. Chest CT was the most sensitive indicator of pulmonary involvement in both disorders. Lymphocytic inflammation is the key histologic feature of both disorders. Pediatric pulmonologists should consider these disorders of immune dysregulation in the relevant clinical context to provide earlier diagnosis, comprehensive pulmonary evaluation and treatment.
Collapse
Affiliation(s)
- Katie A Krone
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abbey J Winant
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa M Bartnikas
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig Lillehei
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward Y Lee
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martha P Fishman
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Franquet T, Franks TJ, Galvin JR, Marchiori E, Giménez A, Mazzini S, Johkoh T, Lee KS. Non-Infectious Granulomatous Lung Disease: Imaging Findings with Pathologic Correlation. Korean J Radiol 2021; 22:1416-1435. [PMID: 34132073 PMCID: PMC8316771 DOI: 10.3348/kjr.2020.1082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Non-infectious granulomatous lung disease represents a diverse group of disorders characterized by pulmonary opacities associated with granulomatous inflammation, a relatively nonspecific finding commonly encountered by pathologists. Some lesions may present a diagnostic challenge because of nonspecific imaging features; however, recognition of the various imaging manifestations of these disorders in conjunction with patients' clinical history, such as age, symptom onset and duration, immune status, and presence of asthma or cutaneous lesions, is imperative for narrowing the differential diagnosis and determining appropriate management of this rare group of disorders. In this pictorial review, we describe the pathologic findings of various non-infectious granulomatous lung diseases as well as the radiologic features and high-resolution computed tomography imaging features.
Collapse
Affiliation(s)
- Tomás Franquet
- Department of Diagnostic Radiology, Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain.
| | - Teri J Franks
- Department of Defense, Pulmonary & Mediastinal Pathology, The Joint Pathology Center, Silver Spring, MD, USA
| | - Jeffrey R Galvin
- Department of Diagnostic Radiology, Chest Imaging, & Pulmonary Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edson Marchiori
- Department of Radiology, Hospital Universitário Clementino Fraga Filho-Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Giménez
- Department of Diagnostic Radiology, Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Sandra Mazzini
- Department of Diagnostic Radiology, Hospital de Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Takeshi Johkoh
- Department of Radiology, Kansai Rosai Hospital, Hyogo, Japan
| | - Kyung Soo Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine (SKKU-SOM), Seoul, Korea
| |
Collapse
|
12
|
Janssen LMA, van der Flier M, de Vries E. Lessons Learned From the Clinical Presentation of Common Variable Immunodeficiency Disorders: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:620709. [PMID: 33833753 PMCID: PMC8021796 DOI: 10.3389/fimmu.2021.620709] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Background Diagnostic delay in common variable immunodeficiency disorders (CVID) is considerable. There is no generally accepted symptom-recognition framework for its early detection. Objective To systematically review all existing data on the clinical presentation of CVID. Methods PubMed, EMBASE and Cochrane were searched for cohort studies, published January/1999-December/2019, detailing the clinical manifestations before, at and after the CVID-diagnosis. Results In 51 studies (n=8521 patients) 134 presenting and 270 total clinical manifestations were identified. Recurrent upper and/or lower respiratory infections were present at diagnosis in 75%. Many patients had suffered severe bacterial infections (osteomyelitis 4%, meningitis 6%, septicemia 8%, mastoiditis 8%). Bronchiectasis (28%), lymphadenopathy (27%), splenomegaly (13%), inflammatory bowel disease (11%), autoimmune cytopenia (10%) and idiopathic thrombocytopenia (6%) were also frequently reported. A bimodal sex distribution was found, with male predominance in children (62%) and female predominance in adults (58%). 25% of CVID-patients developed other manifestations besides infections in childhood, this percentage was much higher in adults (62%). Immune-dysregulation features, such as granulomatous-lymphocytic interstitial lung disease and inflammatory bowel disease, were more prominent in adults. Conclusions The shift from male predominance in childhood to female predominance in adults suggests differences in genetic and environmental etiology in CVID and has consequences for pathophysiologic studies. We confirm the high frequency of respiratory infections at presentation, but also show a high incidence of severe bacterial infections such as sepsis and meningitis, and immune dysregulation features including lymphoproliferative, gastrointestinal and autoimmune manifestations. Early detection of CVID may be improved by screening for antibody deficiency in patients with these manifestations.
Collapse
Affiliation(s)
- Lisanne M A Janssen
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Department of Pediatrics, Amalia Children's Hospital, Nijmegen, Netherlands
| | - Michiel van der Flier
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Esther de Vries
- Department of Tranzo, Tilburg University, Tilburg, Netherlands.,Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands
| |
Collapse
|
13
|
Lopes JP, Ho HE, Cunningham-Rundles C. Interstitial Lung Disease in Common Variable Immunodeficiency. Front Immunol 2021; 12:605945. [PMID: 33776995 PMCID: PMC7990881 DOI: 10.3389/fimmu.2021.605945] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Interstitial lung disease (ILD) is a common complication in patients with common variable immunodeficiency (CVID) and often associated with other features, such as bronchiectasis and autoimmunity. As the ILD term encompasses different acute and chronic pulmonary conditions, the diagnosis is commonly made based on imaging features; histopathology is less frequently available. From a cohort of 637 patients with CVID followed at our center over 4 decades, we reviewed the data for 46 subjects (30 females, 16 males) who had lung biopsies with proven ILD. They had a median age at CVID diagnosis of 26 years old, with a median IgG level at diagnosis of 285.0 mg/dL with average isotype switched memory B cells of 0.5%. Lung biopsy pathology revealed granulomas in 25 patients (54.4%), lymphoid interstitial pneumonia in 13 patients (28.3%), lymphoid hyperplasia not otherwise specified in 7 patients (15.2%), cryptogenic organizing pneumonia in 7 patients (15.2%), follicular bronchitis in 4 patients (8.7%), and predominance of pulmonary fibrosis in 4 patients (8.7%). Autoimmune manifestations were common and were present in 28 (60.9%) patients. Nine patients (19.6%) died, with a median age at death of 49-years-old. Lung transplant was done in 3 of these patients (6.5%) who are no longer alive. These analyses reveal the high burden of this complication, with almost one-fifth of the group deceased in this period. Further understanding of the causes of the development and progression of ILD in CVID patients is required to define the best management for this patient population.
Collapse
Affiliation(s)
- Joao Pedro Lopes
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, UH University Hospitals Rainbow Babies and Children, Cleveland, OH, United States.,Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hsi-En Ho
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
14
|
Dhalla F, Lochlainn DJM, Chapel H, Patel SY. Histology of Interstitial Lung Disease in Common Variable Immune Deficiency. Front Immunol 2020; 11:605187. [PMID: 33329602 PMCID: PMC7718002 DOI: 10.3389/fimmu.2020.605187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022] Open
Abstract
Interstitial lung disease (ILD) is an important non-infectious complication in several primary immune deficiencies. In common variable immune deficiency (CVID) it is associated with complex clinical phenotypes and adverse outcomes. The histology of ILD in CVID is heterogeneous and mixed patterns are frequently observed within a single biopsy, including non-necrotising granulomatous inflammation, lymphoid interstitial pneumonitis, lymphoid hyperplasia, follicular bronchiolitis, organizing pneumonia, and interstitial fibrosis; ILD has to be differentiated from lymphoma. The term granulomatous-lymphocytic interstitial lung disease (GLILD), coined to describe the histopathological findings within the lungs of patients with CVID with or without multisystem granulomata, is somewhat controversial as pulmonary granulomata are not always present on histology and the nature of infiltrating lymphocytes is variable. In this mini review we summarize the literature on the histology of CVID-related ILD and discuss some of the factors that may contribute to the inter- and intra- patient variability in the histological patterns reported. Finally, we highlight areas for future development. In particular, there is a need for standardization of histological assessments and reporting, together with a better understanding of the immunopathogenesis of CVID-related ILD to resolve the apparent heterogeneity of ILD in this setting and guide the selection of rational targeted therapies in different patients.
Collapse
Affiliation(s)
- Fatima Dhalla
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Developmental Immunology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Dylan J Mac Lochlainn
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Helen Chapel
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Primary Immunodeficiency Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Smita Y Patel
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.,Primary Immunodeficiency Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
López A, Paolini M, Fernández Romero D. Lung disease in patients with common variable immunodeficiency. Allergol Immunopathol (Madr) 2020; 48:720-728. [PMID: 32446785 DOI: 10.1016/j.aller.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Common Variable Immunodeficiency (CVID) is characterized by an impaired antibody production and a higher susceptibility to encapsulated bacterial infections. Lung disease is considered to be the most important cause of morbidity and mortality. METHODS We analyzed clinical, radiological and functional characteristics in 80 patients with CVID assisted in the Unidad Inmunologia e Histocompatibilidad at Durand Hospital from 1982 to 2018. RESULTS Of the 80 patients, 55 showed pathologic lung Computed Tomography (CT). Twenty of them (36.4%) showed bronchiectasis; 26 (47.3%) interstitial involvement associated with nodules and adenopathies called GLILD (granulomatous-lymphocytic interstitial lung disease); and nine patients (16.3%) showed other lesions. Nine percent of patients with lung disease showed CT progression; none of them had spirometry worsening. GLILD patients had normal and restrictive patterns in lung function tests, in equal proportions. Two patients - one with GLILD and the other one with bronchiectasis - had an increase in spirometric pattern severity without CT progression. Lung biopsy was performed in 19% of GLILD patients, all of whom had histopathologic diagnosis of Lymphoid Interstitial Pneumonia (LIP). CONCLUSIONS GLILD is the major cause of lung disease in CVID. Computed tomography is useful for diagnosis but not necessary in follow-up, in which functional tests should have better correlation with clinical evolution, reducing radiation exposure. Biopsy should be indicated when the clinical diagnosis is unclear. Treatment should be considered whenever there is clear evidence of disease progression.
Collapse
|
16
|
Meerburg JJ, Hartmann IJC, Goldacker S, Baumann U, Uhlmann A, Andrinopoulou ER, Kemner V/D Corput MPC, Warnatz K, Tiddens HAWM. Analysis of Granulomatous Lymphocytic Interstitial Lung Disease Using Two Scoring Systems for Computed Tomography Scans-A Retrospective Cohort Study. Front Immunol 2020; 11:589148. [PMID: 33193417 PMCID: PMC7662109 DOI: 10.3389/fimmu.2020.589148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/05/2020] [Indexed: 01/16/2023] Open
Abstract
Background Granulomatous lymphocytic interstitial lung disease (GLILD) is present in about 20% of patients with common variable immunodeficiency disorders (CVID). GLILD is characterized by nodules, reticulation, and ground-glass opacities on CT scans. To date, large cohort studies that include sensitive CT outcome measures are lacking, and severity of structural lung disease remains unknown. The aim of this study was to introduce and compare two scoring methods to phenotype CT scans of GLILD patients. Methods Patients were enrolled in the “Study of Interstitial Lung Disease in Primary Antibody Deficiency” (STILPAD) international cohort. Inclusion criteria were diagnosis of both CVID and GLILD, as defined by the treating immunologist and radiologist. Retrospectively collected CT scans were scored systematically with the Baumann and Hartmann methods. Results In total, 356 CT scans from 138 patients were included. Cross-sectionally, 95% of patients met a radiological definition of GLILD using both methods. Bronchiectasis was present in 82% of patients. Inter-observer reproducibility (intraclass correlation coefficients) of GLILD and airway disease were 0.84 and 0.69 for the Hartmann method and 0.74 and 0.42 for the Baumann method. Conclusions In both the Hartmann and Baumann scoring method, the composite score GLILD was reproducible and therefore might be a valuable outcome measure in future studies. Overall, the reproducibility of the Hartmann method appears to be slightly better than that of the Baumann method. With a systematic analysis, we showed that GLILD patients suffer from extensive lung disease, including airway disease. Further validation of these scoring methods should be performed in a prospective cohort study involving routine collection of standardized CT scans. Clinical Trial Registration https://www.drks.de, identifier DRKS00000799.
Collapse
Affiliation(s)
- Jennifer J Meerburg
- Department of Paediatric Pulmonology and Allergology, Sophia Children's Hospital-Erasmus Medical Center, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Sigune Goldacker
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Annette Uhlmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Mariette P C Kemner V/D Corput
- Department of Paediatric Pulmonology and Allergology, Sophia Children's Hospital-Erasmus Medical Center, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Harm A W M Tiddens
- Department of Paediatric Pulmonology and Allergology, Sophia Children's Hospital-Erasmus Medical Center, Rotterdam, Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
17
|
Cirillo E, Giardino G, Ricci S, Moschese V, Lougaris V, Conti F, Azzari C, Barzaghi F, Canessa C, Martire B, Badolato R, Dotta L, Soresina A, Cancrini C, Finocchi A, Montin D, Romano R, Amodio D, Ferrua F, Tommasini A, Baselli LA, Dellepiane RM, Polizzi A, Chessa L, Marzollo A, Cicalese MP, Putti MC, Pession A, Aiuti A, Locatelli F, Plebani A, Pignata C. Consensus of the Italian Primary Immunodeficiency Network on transition management from pediatric to adult care in patients affected with childhood-onset inborn errors of immunity. J Allergy Clin Immunol 2020; 146:967-983. [PMID: 32827505 DOI: 10.1016/j.jaci.2020.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Medical advances have dramatically improved the long-term prognosis of children and adolescents with inborn errors of immunity (IEIs). Transfer of the medical care of individuals with pediatric IEIs to adult facilities is also a complex task because of the large number of distinct disorders, which requires involvement of patients and both pediatric and adult care providers. To date, there is no consensus on the optimal pathway of the transitional care process and no specific data are available in the literature regarding patients with IEIs. We aimed to develop a consensus statement on the transition process to adult health care services for patients with IEIs. Physicians from major Italian Primary Immunodeficiency Network centers formulated and answered questions after examining the currently published literature on the transition from childhood to adulthood. The authors voted on each recommendation. The most frequent IEIs sharing common main clinical problems requiring full attention during the transitional phase were categorized into different groups of clinically related disorders. For each group of clinically related disorders, physicians from major Italian Primary Immunodeficiency Network institutions focused on selected clinical issues representing the clinical hallmark during early adulthood.
Collapse
Affiliation(s)
- Emilia Cirillo
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Silvia Ricci
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, University of Rome Tor Vergata, Rome, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Francesca Conti
- Unit of Pediatrics, University of Bologna, St. Orsola University Hospital, Bologna, Italy
| | - Chiara Azzari
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Clementina Canessa
- Division of Pediatric Immunology, Department of Health Sciences, University of Florence and Meyer Children's Hospital, Florence, Italy
| | - Baldassarre Martire
- Unit of Pediatric and Neonatology, Maternal-Infant Department, Mons A. R. Dimiccoli Hospital, Barletta, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Laura Dotta
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Caterina Cancrini
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Finocchi
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy
| | - Donato Amodio
- Unit of Immunology and Infectious Diseases, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste and Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Lucia Augusta Baselli
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Pediatrics, Milan, Italy
| | - Rosa Maria Dellepiane
- Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Department of Pediatrics, Milan, Italy
| | - Agata Polizzi
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, Sapienza, University of Rome, Rome, Italy
| | - Antonio Marzollo
- Department of Women's and Children's Health, Pediatric Hematology-Oncology Unit, University of Padua, Padua, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Caterina Putti
- Department of Women's and Children's Health, Pediatric Hematology-Oncology Unit, University of Padua, Padua, Italy
| | - Andrea Pession
- Unit of Pediatrics, University of Bologna, St. Orsola University Hospital, Bologna, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy and Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Childrens' Hospital, Sapienza, University of Rome, Rome Italy
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, University of Brescia and Department of Pediatrics, ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Sciences, Pediatric Section, Federico II University, Naples, Italy.
| |
Collapse
|
18
|
Verbsky JW, Hintermeyer MK, Simpson PM, Feng M, Barbeau J, Rao N, Cool CD, Sosa-Lozano LA, Baruah D, Hammelev E, Busalacchi A, Rymaszewski A, Woodliff J, Chen S, Bausch-Jurken M, Routes JM. Rituximab and antimetabolite treatment of granulomatous and lymphocytic interstitial lung disease in common variable immunodeficiency. J Allergy Clin Immunol 2020; 147:704-712.e17. [PMID: 32745555 DOI: 10.1016/j.jaci.2020.07.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Granulomatous and lymphocytic interstitial lung disease (GLILD) is a life-threatening complication in patients with common variable immunodeficiency (CVID), but the optimal treatment is unknown. OBJECTIVE Our aim was to determine whether rituximab with azathioprine or mycophenolate mofetil improves the high-resolution computed tomography (HRCT) chest scans and/or pulmonary function test results in patients with CVID and GLILD. METHODS A retrospective chart review of clinical and laboratory data on 39 patients with CVID and GLILD who completed immunosuppressive therapy was performed. Chest HRCT scans, performed before therapy and after the conclusion of therapy, were blinded, randomized, and scored independently by 2 radiologists. Differences between pretreatment and posttreatment HRCT scan scores, pulmonary function test results, and lymphocyte subsets were analyzed. Whole exome sequencing was performed on all patients. RESULTS Immunosuppressive therapy improved patients' HRCT scan scores (P < .0001), forced vital capacity (P = .0017), FEV1 (P = .037), and total lung capacity (P = .013) but not their lung carbon monoxide diffusion capacity (P = .12). Nine patients relapsed and 6 completed retreatment, with 5 of 6 of these patients (83%) having improved HRCT scan scores (P = .063). Relapse was associated with an increased number of B cells (P = .016) and activated CD4 T cells (P = .016). Four patients (10%) had pneumonia while undergoing active treatment, and 2 patients (5%) died after completion of therapy. Eight patients (21%) had a damaging mutation in a gene known to predispose (TNFRSF13B [n = 3]) or cause a CVID-like primary immunodeficiency (CTLA4 [n = 2], KMT2D [n = 2], or BIRC4 [n = 1]). Immunosuppression improved the HRCT scan scores in patients with (P = .0078) and without (P < .0001) a damaging mutation. CONCLUSIONS Immunosuppressive therapy improved the radiographic abnormalities and pulmonary function of patients with GLILD. A majority of patients had sustained remissions.
Collapse
Affiliation(s)
- James W Verbsky
- Division of Pediatric Rheumatology, Medical College Wisconsin, Milwaukee, Wis; Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis
| | - Mary K Hintermeyer
- Asthma, Allergy and Clinical Immunology, Children's Wisconsin, Milwaukee, Wis
| | - Pippa M Simpson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Mingen Feng
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Jody Barbeau
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Department of Quantitative Health Sciences, Medical College Wisconsin, Milwaukee, Wis
| | - Nagarjun Rao
- Department of Pathology, Aurora Clinical Laboratories/Great Lakes Pathologists, Aurora West Allis Medical Center, West Allis, Wis
| | - Carlyne D Cool
- Department of Pathology and Division of Pulmonary and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colo; National Jewish Health, Denver, Colo
| | - Luis A Sosa-Lozano
- Division of Diagnostic Radiology, Medical College of Wisconsin, Milwaukee, Wis
| | - Dhiraj Baruah
- Division of Thoracic Radiology, Medical University of South Carolina, Charleston, SC
| | - Erin Hammelev
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Alyssa Busalacchi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Amy Rymaszewski
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Jeff Woodliff
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Shaoying Chen
- Division of Pediatric Rheumatology, Medical College Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - Mary Bausch-Jurken
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis
| | - John M Routes
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wis; Division of Asthma, Allergy and Clinical Immunology, Medical College of Wisconsin, Milwaukee, Wis.
| |
Collapse
|
19
|
Berbers RM, Mohamed Hoesein FAA, Ellerbroek PM, van Montfrans JM, Dalm VASH, van Hagen PM, Paganelli FL, Viveen MC, Rogers MRC, de Jong PA, Uh HW, Willems RJL, Leavis HL. Low IgA Associated With Oropharyngeal Microbiota Changes and Lung Disease in Primary Antibody Deficiency. Front Immunol 2020; 11:1245. [PMID: 32636843 PMCID: PMC7318304 DOI: 10.3389/fimmu.2020.01245] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Common Variable Immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) are primary antibody deficiencies characterized by hypogammaglobulinemia and recurrent infections, which can lead to structural airway disease (AD) and interstitial lung disease (ILD). We investigated associations between serum IgA, oropharyngeal microbiota composition and severity of lung disease in these patients. In this cross-sectional multicentre study we analyzed oropharyngeal microbiota composition of 86 CVID patients, 12 XLA patients and 49 healthy controls (HC) using next-generation sequencing of the 16S rRNA gene. qPCR was used to estimate bacterial load. IgA was measured in serum. High resolution CT scans were scored for severity of AD and ILD. Oropharyngeal bacterial load was increased in CVID patients with low IgA (p = 0.013) and XLA (p = 0.029) compared to HC. IgA status was associated with distinct beta (between-sample) diversity (p = 0.039), enrichment of (Allo)prevotella, and more severe radiographic lung disease (p = 0.003), independently of recent antibiotic use. AD scores were positively associated with Prevotella, Alloprevotella, and Selenomonas, and ILD scores with Streptococcus and negatively with Rothia. In clinically stable patients with CVID and XLA, radiographic lung disease was associated with IgA deficiency and expansion of distinct oropharyngeal bacterial taxa. Our findings highlight IgA as a potential driver of upper respiratory tract microbiota homeostasis.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Joris M van Montfrans
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Virgil A S H Dalm
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - P Martin van Hagen
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Hae-Won Uh
- Department of Biostatistics and Research Support, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
20
|
Maglione PJ. Chronic Lung Disease in Primary Antibody Deficiency: Diagnosis and Management. Immunol Allergy Clin North Am 2020; 40:437-459. [PMID: 32654691 DOI: 10.1016/j.iac.2020.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic lung disease is a complication of primary antibody deficiency (PAD) associated with significant morbidity and mortality. Manifestations of lung disease in PAD are numerous. Thoughtful application of diagnostic approaches is imperative to accurately identify the form of disease. Much of the treatment used is adapted from immunocompetent populations. Recent genomic and translational medicine advances have led to specific treatments. As chronic lung disease has continued to affect patients with PAD, we hope that continued advancements in our understanding of pulmonary pathology will ultimately lead to effective methods that alleviate impact on quality of life and survival.
Collapse
Affiliation(s)
- Paul J Maglione
- Pulmonary Center, Boston University School of Medicine, 72 East Concord Street, R304, Boston, MA 02118, USA.
| |
Collapse
|
21
|
Airway tapering: an objective image biomarker for bronchiectasis. Eur Radiol 2020; 30:2703-2711. [PMID: 32025831 PMCID: PMC7160094 DOI: 10.1007/s00330-019-06606-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
Purpose To estimate airway tapering in control subjects and to assess the usability of tapering as a bronchiectasis biomarker in paediatric populations. Methods Airway tapering values were semi-automatically quantified in 156 children with control CTs collected in the Normal Chest CT Study Group. Airway tapering as a biomarker for bronchiectasis was assessed on spirometer-guided inspiratory CTs from 12 patients with bronchiectasis and 12 age- and sex-matched controls. Semi-automatic image analysis software was used to quantify intra-branch tapering (reduction in airway diameter along the branch), inter-branch tapering (reduction in airway diameter before and after bifurcation) and airway-artery ratios on chest CTs. Biomarkers were further stratified in small, medium and large airways based on three equal groups of the accompanying vessel size. Results Control subjects showed intra-branch tapering of 1% and inter-branch tapering of 24–39%. Subjects with bronchiectasis showed significantly reduced intra-branch of 0.8% and inter-branch tapering of 19–32% and increased airway–artery ratios compared with controls (p < 0.01). Tapering measurements were significantly different between diseased and controls across all airway sizes. Difference in airway–artery ratio was only significant in small airways. Conclusion Paediatric normal values for airway tapering were established in control subjects. Tapering showed to be a promising biomarker for bronchiectasis as subjects with bronchiectasis show significantly less airway tapering across all airway sizes compared with controls. Detecting less tapering in larger airways could potentially lead to earlier diagnosis of bronchiectasis. Additionally, compared with the conventional airway–artery ratio, this novel biomarker has the advantage that it does not require pairing with pulmonary arteries. Key Points • Tapering is a promising objective image biomarker for bronchiectasis that can be extracted semi-automatically and has good correlation with validated visual scoring methods. • Less airway tapering was observed in patients with bronchiectasis and can be observed sensitively throughout the bronchial tree, even in the more central airways. • Tapering values seemed to be less influenced by variety in scanning protocols and lung volume making it a more robust biomarker for bronchiectasis detection. Electronic supplementary material The online version of this article (10.1007/s00330-019-06606-w) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Ramzi N, Jamee M, Bakhtiyari M, Rafiemanesh H, Zainaldain H, Tavakol M, Rezaei A, Kalvandi M, Zian Z, Mohammadi H, Jadidi-Niaragh F, Yazdani R, Abolhassani H, Aghamohammadi A, Azizi G. Bronchiectasis in common variable immunodeficiency: A systematic review and meta-analysis. Pediatr Pulmonol 2020; 55:292-299. [PMID: 31833673 DOI: 10.1002/ppul.24599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency disorder characterized by infectious and noninfectious complications. Bronchiectasis continues to be a common respiratory problem and therapeutic challenge in CVID. The aim of this study is to estimate the overall prevalence of bronchiectasis and its associated phenotype in patients with CVID. METHODS A systematic literature search was performed in Web of Science, PubMed, and Scopus from the earliest available date to February 2019 with standard keywords. All pooled analyses of bronchiectasis prevalence and the corresponding 95% confidence intervals (CIs) were based on random-effects models. RESULTS Fifty-five studies comprising 8535 patients with CVID were included in the meta-analysis. Overall prevalence of bronchiectasis was 34% (95% CI: 30-38; I2 = 90.19%). CVID patients with bronchiectasis had significantly lower serum immunoglobulin A (IgA) and IgM levels at the time of diagnosis compared with those without bronchiectasis. Among the clinical features, the frequencies of splenomegaly, pneumonia, otitis media, and lymphocytic interstitial pneumonia were significantly higher in CVID patients with bronchiectasis compared with those without bronchiectasis, respectively. CONCLUSION A higher prevalence of bronchiectasis in patients with CVID should be managed by controlling recurrent and severe pneumonia episodes which are immune dysregulation since this complication is associated with poor prognosis in these patients.
Collapse
Affiliation(s)
- Nasim Ramzi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Bakhtiyari
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Community Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Rafiemanesh
- Student Research Committee, Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Zainaldain
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Tavakol
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Amir Rezaei
- Department of Pediatrics, Imam Ali Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Mustafa Kalvandi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
23
|
Hwangpo T, Wang Z, Ghably J, Bhatt SP, Cui X, Schroeder HW. Use of FEF25-75% to Guide IgG Dosing to Protect Pulmonary Function in CVID. J Clin Immunol 2020; 40:310-320. [PMID: 31897777 DOI: 10.1007/s10875-019-00730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Immunoglobulin replacement therapy (IGRT) can protect against lung function decline in CVID. We tested whether increasing IgG dosage was beneficial in patients who exhibited a decline in forced expiratory flow at 25-75% (FEF25-75%) even though they were receiving IgG doses within the therapeutic range. Of 189 CVID patients seen over 12 years, 38 patients met inclusion criteria, were seen on ≥ 3 visits, and demonstrated a ≥ 10% decrease in FEF25-75% from visits 1 to 2. FEF25-75%, forced expiratory flow at 1 s (FEV1), and FEV1/FVC at visit 3 were compared among those with non-dose adjustment (non-DA) versus additional IgG dose adjustment (DA). Three FEF25-75% tiers were identified: top (> 80% predicted), middle (50-80%), and bottom (< 50%). DA and non-DA groups did not differ in clinical infections or bronchodilator use, although the non-DA group tended to use more antibiotics. In the top, normal tier, FEF25-75% increased in DA, but the change did not achieve statistical significance. In the middle moderate obstruction tier, visit 3 FEF25-75% increased among DA but not non-DA sets (11.8 ± 12.4%, p = 0.003 vs. 0.3 ± 9.9%, p = 0.94). Improvement in FEV1/FVC at visit 3 was also significant among DA vs. non-DA (7.2 ± 12.4%, p = 0.04 vs. - 0.2 ± 2.7%, p = 0.85). In the bottom, severe tier, FEF25-75% was unchanged in DA (- 0.5 ± 5.2%, p = 0.79), but increased in non-DA (5.1 ± 5.2%, p = 0.02). Among IGRT CVID patients with moderate but not severe obstruction as assessed by spirometry, increasing IgG dosage led to an increase in FEF25-75% and FEV1/FVC.
Collapse
Affiliation(s)
- Tracy Hwangpo
- Department of Medicine, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35233, USA
| | - Zhixin Wang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jack Ghably
- Department of Medicine, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35233, USA
| | - Surya P Bhatt
- Department of Medicine, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35233, USA
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA.,The Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35233, USA.
| |
Collapse
|
24
|
Askin CC, Coviello MJ, Reis MJ. An unusual mimicker of asthma in an active duty army physician: Common variable immunodeficiency presenting as granulomatous lymphocytic interstitial lung disease. Respir Med Case Rep 2019; 29:100965. [PMID: 31828008 PMCID: PMC6889248 DOI: 10.1016/j.rmcr.2019.100965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
Active duty service members are frequently diagnosed with asthma after referral to pulmonary for undifferentiated cough and dyspnea. Occasionally, patients have symptoms despite optimal therapy necessitating evaluation for asthma mimickers. We present a 48 year-old active duty physician who initially presented in 2007 with dyspnea and cough. Despite the absence of variable obstruction on spirometry, a clinical diagnosis of asthma was made. The patient's symptoms were temporized with inhaled corticosteroids and bronchodilators, titrated to his symptoms, until eventual therapeutic failure resulted in re-referral to pulmonary. Chest computed tomography (CT) showed ground-glass nodules and patchy airspace opacities with evidence of thoracic lymphadenopathy. A positron emission tomography CT (PET CT) showed diffuse adenopathy throughout his thorax and abdomen with high avidity for fluorodeoxyglucose (FGD)-18. This prompted a comprehensive pathologic and serologic evaluation that unveiled a diagnosis of granulomatous-lymphocytic interstitial lung disease (GLILD) secondary to common variable immunodeficiency (CVID). Once the diagnosis was made, the patient was treated with intravenous immunoglobulin resulting in clinical improvement. Given the patient's time-to-diagnosis and response to IVIG monotherapy, this case serves as a unique presentation of a rare pathophysiologic entity which should be considered in refractory cough and dyspnea with radiographic abnormalities.
Collapse
Affiliation(s)
- Cpt Cyrus Askin
- Department of Internal Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Maj Jean Coviello
- Department of Pathology, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| | - Maj Justin Reis
- Department of Pulmonary & Critical Care Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas, USA
| |
Collapse
|
25
|
Kellner ES, Fuleihan R, Cunningham-Rundles C, Wechsler JB. Cellular Defects in CVID Patients with Chronic Lung Disease in the USIDNET Registry. J Clin Immunol 2019; 39:569-576. [PMID: 31250334 PMCID: PMC6903687 DOI: 10.1007/s10875-019-00657-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 06/10/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE Chronic lung disease is the most common cause of morbidity and mortality in patients with common variable immunodeficiency (CVID). While biomarkers exist to predict non-infectious complications, the unique features that define CVID patients with chronic lung disease are not well understood. METHODS We analyzed data from CVID patients from the retrospective USIDNET (United States Immunodeficiency Network) patient database. Patients were categorized into 3 phenotypes for comparison: (1) CVID without chronic lung disease, (2) CVID with bronchiectasis only, and (3) CVID with interstitial lung disease (ILD) with or without bronchiectasis. Among these groups, differences were assessed in demographics, comorbidities, infections, treatments, and peripheral blood immune measures. We analyzed 1518 CVID patients which included 1233 (81.2%) without chronic lung disease, 147 (9.7%) with bronchiectasis only, and 138 (9.1%) with interstitial lung disease. RESULTS Patients with ILD had lower CD3+ cell counts (P = .001), CD4+ cell counts (P < .05), and CD8+ cell counts (P < .001) compared with patients without lung disease. Additionally, there was significantly more CVID patients with ILD with pneumonia (P < .001), herpes viruses (P = .01) and fungal infections (P < .001) compared with patients with CVID without chronic lung disease. CONCLUSION This analysis suggests that patients with chronic lung disease may be more likely to have lower peripheral T cell counts and complications of those defects compared with CVID patients without chronic lung disease.
Collapse
Affiliation(s)
- Erinn S Kellner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Ramsay Fuleihan
- Division of Allergy-Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Charlotte Cunningham-Rundles
- Division of Allergy and Immunology, Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joshua B Wechsler
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
| |
Collapse
|
26
|
Characteristics of the patients followed with the diagnosis of common variable immunodeficiency and the complications. Cent Eur J Immunol 2019; 44:119-126. [PMID: 31530980 PMCID: PMC6745547 DOI: 10.5114/ceji.2019.87060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction In this study, we aimed to retrospectively evaluate the clinical and laboratory findings and complications of 28 common variable immunodeficiency (CVID) patients. Material and methods The clinical features and laboratory data of 28 CVID patients were evaluated. Results Nineteen patients were male. In 53.5% of the cases, complications included inflammatory bowel disease, cytopenia, bronchiectasis, granulomatous lymphocytic interstitial lung disease (ILD) and asthma. In their immunological evaluations, IgG, IgM, and IgA mean values were 474.8 ±214.1 mg/dl; 56.7 ±41.9 mg/dl; 35.3 ±58.2 mg/dl, respectively, and the vaccine response was positive in 64.2% of the cases. In all age groups, absolute lymphocyte counts, naive (CD19+IgD+27-), nonswitch (CD19+IgD-27+) memory B cells were numerically higher when compared to the data of healthy children; however, although switch memory (CD19+IgD+27+) B cells were proportionally low in the 4-8 and 12-18 age groups, they were low both numerically and proportionally in the 8-12 age group. No statistically significant difference was found between the cases with complications and without complications. But the cases with pulmonary complications were compared within the group, the CD8 ratio was high but the IgA level was low in patients with bronchiectasis and CD3 was numerically and proportionally low in the cases with ILD compared to others. According to the Paris classification, 11/27 (40.7%) of the cases, 3/27 (11.1%) of them and 13/27 (48.2%) of them were evaluated as MB0, MB1, and MB2, respectively. Conclusions In genetic studies, TACI (trans-membrane activator and calcium-modulating cyclophilin ligand interactor – TNFRSF13B) mutation was found positive in 25% of the cases.
Collapse
|
27
|
Patel S, Anzilotti C, Lucas M, Moore N, Chapel H. Interstitial lung disease in patients with common variable immunodeficiency disorders: several different pathologies? Clin Exp Immunol 2019; 198:212-223. [PMID: 31216049 DOI: 10.1111/cei.13343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Various reports of disease-related lung pathologies in common variable immunodeficiency disorder (CVID) patients have been published, with differing histological and high-resolution computed tomography (HRCT) findings. Data were extracted from the validated Oxford Primary Immune Deficiencies Database (PID) database (1986-2016) on adult, sporadic CVID patients with suspected interstitial lung disease (ILD). Histology of lung biopsies was studied in relation to length of follow-up, clinical outcomes, HRCT findings and chest symptoms, to look for evidence for different pathological processes. Twenty-nine CVID patients with lung histology and/or radiological evidence of ILD were followed. After exclusions, lung biopsies from 16 patients were reanalysed for ILD. There were no well-formed granulomata, even though 10 patients had systemic, biopsy-proven granulomata in other organs. Lymphocytic infiltration without recognizable histological pattern was the most common finding, usually with another feature. On immunochemistry (n = 5), lymphocytic infiltration was due to T cells (CD4 or CD8). Only one patient showed B cell follicles with germinal centres. Interstitial inflammation was common; only four of 11 such biopsies also showed interstitial fibrosis. Outcomes were variable and not related to histology, suggesting possible different pathologies. The frequent nodules on HRCT were not correlated with histology, as there were no well-formed granulomata. Five patients were asymptomatic, so it is essential for all patients to undergo HRCT, and to biopsy if abnormal HRCT findings are seen. Internationally standardized pathology and immunochemical data are needed for longitudinal studies to determine the precise pathologies and prognoses in this severe complication of CVIDs, so that appropriate therapies may be found.
Collapse
Affiliation(s)
- S Patel
- Primary Immunodeficiency Unit, Department of Experimental Medicine, Nuffield Department of Medicine, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, UK.,Department of Clinical Immunology, Oxford University Hospitals, John Radcliffe Site, Oxford, UK
| | - C Anzilotti
- Primary Immunodeficiency Unit, Department of Experimental Medicine, Nuffield Department of Medicine, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, UK.,Department of Clinical Immunology, Oxford University Hospitals, John Radcliffe Site, Oxford, UK
| | - M Lucas
- Primary Immunodeficiency Unit, Department of Experimental Medicine, Nuffield Department of Medicine, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - N Moore
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Chapel
- Primary Immunodeficiency Unit, Department of Experimental Medicine, Nuffield Department of Medicine, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, UK.,Department of Clinical Immunology, Oxford University Hospitals, John Radcliffe Site, Oxford, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Shih JA, Crotty RK, Nagarur A. Granulomatous and lymphocytic interstitial lung disease. Postgrad Med J 2019; 95:394-395. [PMID: 31085619 DOI: 10.1136/postgradmedj-2019-136541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Jenny A Shih
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rory K Crotty
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Amulya Nagarur
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Harville T. Can we effectively use radiographic imaging and clinical parameters for making an earlier diagnosis of granulomatous interstitial lung disease in patients with common variable immunodeficiency? Ann Allergy Asthma Immunol 2019; 118:529-530. [PMID: 28477784 DOI: 10.1016/j.anai.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Terry Harville
- Departments of Pathology and Laboratory Services and Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
30
|
Maglione PJ, Gyimesi G, Cols M, Radigan L, Ko HM, Weinberger T, Lee BH, Grasset EK, Rahman AH, Cerutti A, Cunningham-Rundles C. BAFF-driven B cell hyperplasia underlies lung disease in common variable immunodeficiency. JCI Insight 2019; 4:122728. [PMID: 30843876 DOI: 10.1172/jci.insight.122728] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/25/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency and is frequently complicated by interstitial lung disease (ILD) for which etiology is unknown and therapy inadequate. METHODS Medical record review implicated B cell dysregulation in CVID ILD progression. This was further studied in blood and lung samples using culture, cytometry, ELISA, and histology. Eleven CVID ILD patients were treated with rituximab and followed for 18 months. RESULTS Serum IgM increased in conjunction with ILD progression, a finding that reflected the extent of IgM production within B cell follicles in lung parenchyma. Targeting these pulmonary B cell follicles with rituximab ameliorated CVID ILD, but disease recurred in association with IgM elevation. Searching for a stimulus of this pulmonary B cell hyperplasia, we found B cell-activating factor (BAFF) increased in blood and lungs of progressive and post-rituximab CVID ILD patients and detected elevation of BAFF-producing monocytes in progressive ILD. This elevated BAFF interacts with naive B cells, as they are the predominant subset in progressive CVID ILD, expressing BAFF receptor (BAFF-R) within pulmonary B cell follicles and blood to promote Bcl-2 expression. Antiapoptotic Bcl-2 was linked with exclusion of apoptosis from B cell follicles in CVID ILD and increased survival of naive CVID B cells cultured with BAFF. CONCLUSION CVID ILD is driven by pulmonary B cell hyperplasia that is reflected by serum IgM elevation, ameliorated by rituximab, and bolstered by elevated BAFF-mediated apoptosis resistance via BAFF-R. FUNDING NIH, Primary Immune Deficiency Treatment Consortium, and Rare Disease Foundation.
Collapse
Affiliation(s)
| | - Gavin Gyimesi
- Division of Clinical Immunology, Department of Medicine
| | | | - Lin Radigan
- Division of Clinical Immunology, Department of Medicine
| | | | | | - Brian H Lee
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilie K Grasset
- Division of Clinical Immunology, Department of Medicine.,Experimental Cardiovascular Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Adeeb H Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea Cerutti
- Division of Clinical Immunology, Department of Medicine.,Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | |
Collapse
|
31
|
Cereser L, De Carli M, d’Angelo P, Zanelli E, Zuiani C, Girometti R. High-resolution computed tomography findings in humoral primary immunodeficiencies and correlation with pulmonary function tests. World J Radiol 2018; 10:172-183. [PMID: 30568751 PMCID: PMC6288673 DOI: 10.4329/wjr.v10.i11.172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/22/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To compare high-resolution computed tomography (HRCT) findings between humoral primary immunodeficiencies (hPIDs) subtypes; to correlate these findings to pulmonary function tests (PFTs).
METHODS We retrospectively identified 52 consecutive adult patients with hPIDs who underwent 64-row HRCT and PFTs at the time of diagnosis. On a per-patient basis, an experienced radiologist recorded airway abnormalities (bronchiectasis, airway wall thickening, mucus plugging, tree-in-bud, and air-trapping) and parenchymal-interstitial abnormalities (consolidations, ground-glass opacities, linear and/or irregular opacities, nodules, and bullae/cysts) found on HRCT. The chi-square test was performed to compare the prevalence of each abnormality among patients with different subtypes of hPIDs. Overall logistic regression analysis was performed to assess whether HRCT findings predicted obstructive and/or restrictive PFTs results (absent-to-mild vs moderate-to-severe).
RESULTS Thirty-eight of the 52 patients with hPIDs showed common variable immunodeficiency disorders (CVID), while the remaining 14 had CVID-like conditions (i.e., 11 had isolated IgG subclass deficiencies and 3 had selective IgA deficiencies). The prevalence of most HRCT abnormalities was not significantly different between CVID and CVID-like patients (P > 0.05), except for linear and/or irregular opacities (prevalence of 31.6% in the CVID group and 0 in the CVID-like group; P = 0.0427). Airway wall thickening was the most frequent HRCT abnormality found in both CVID and CVID-like patients (71% of cases in both groups). The presence of tree-in-bud abnormalities was an independent predictor of moderate-to-severe obstructive defects at PFTs (Odds Ratio, OR, of 18.75, P < 0.05), while the presence of linear and/or irregular opacities was an independent predictor of restrictive defects at PFTs (OR = 13.00; P < 0.05).
CONCLUSION CVID and CVID-like patients showed similar HRCT findings. Tree-in-bud and linear and/or irregular opacities predicted higher risks of, respectively, obstructive and restrictive defects at PFTs.
Collapse
Affiliation(s)
- Lorenzo Cereser
- Institute of Radiology, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria Integrata di Udine, Udine 33100, Italy
| | - Marco De Carli
- Second Unit of Internal Medicine, Azienda Sanitaria Universitaria Integrata di Udine, Udine 33100, Italy
| | - Paola d’Angelo
- Institute of Radiology, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria Integrata di Udine, Udine 33100, Italy
- Department of Imaging, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Elisa Zanelli
- Institute of Radiology, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria Integrata di Udine, Udine 33100, Italy
| | - Chiara Zuiani
- Institute of Radiology, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria Integrata di Udine, Udine 33100, Italy
| | - Rossano Girometti
- Institute of Radiology, Department of Medicine, University of Udine, Azienda Sanitaria Universitaria Integrata di Udine, Udine 33100, Italy
| |
Collapse
|
32
|
Milota T, Bloomfield M, Parackova Z, Sediva A, Bartunkova J, Horvath R. Bronchial Asthma and Bronchial Hyperresponsiveness and Their Characteristics in Patients with Common Variable Immunodeficiency. Int Arch Allergy Immunol 2018; 178:192-200. [PMID: 30458444 DOI: 10.1159/000494128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is one of the most frequent primary immunodeficiencies and is characterized by disturbed immunoglobulin production and dysregulation of the immune system. Results of previous studies suggest a higher prevalence of bronchial asthma (BA) in CVID patients than in the general population. We initiated this study to evaluate lung functions and identify risk factors for BA and bronchial hyperresponsiveness (BHR) in patients with CVID. METHODS Twenty-three patients with CVID were included in this study. In all of them, spirometry and a metacholine bronchoprovocation test were performed. We also investigated the role of atopy, eosinophilic inflammation, and potential risk factors such as gender, age, or immunoglobulin levels at the time of diagnosis. RESULTS BHR was confirmed in 12 patients (52%), all of whom had normal FEV1 and FEV1/FVC. However, BHR-positive patients had significantly decreased MEF25. BHR-positive patients had also more symptoms related to bronchial obstruction, with 8 of them (35%) being suspected of having BA at the end of the study. A higher prevalence of BHR was found in females, with a relative risk of 2.89. CONCLUSIONS An increased prevalence of BHR and BA was detected in CVID patients compared to the general population. BA may develop despite the disturbed immunoglobulin production, and the majority of patients display nonatopic and noneosinophilic properties. These results suggest a limited role of atopy and eosinophilic inflammation in the pathogenesis of BA in CVID patients.
Collapse
Affiliation(s)
- Tomas Milota
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic,
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Rudolf Horvath
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
33
|
Cinetto F, Scarpa R, Rattazzi M, Agostini C. The broad spectrum of lung diseases in primary antibody deficiencies. Eur Respir Rev 2018; 27:27/149/180019. [PMID: 30158276 PMCID: PMC9488739 DOI: 10.1183/16000617.0019-2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
Human primary immunodeficiency diseases (PIDs) represent a heterogeneous group of more than 350 disorders. They are rare diseases, but their global incidence is more relevant than generally thought. The underlying defect may involve different branches of the innate and/or adaptive immune response. Thus, the clinical picture may range from severe phenotypes characterised by a broad spectrum of infections to milder infectious phenotypes due to more selective (and frequent) immune defects. Moreover, infections may not be the main clinical features in some PIDs that might present with autoimmunity, auto-inflammation and/or cancer. Primary antibody deficiencies (PADs) represent a small percentage of the known PIDs but they are the most frequently diagnosed, particularly in adulthood. Common variable immunodeficiency (CVID) is the most prevalent symptomatic PAD. PAD patients share a significant susceptibility to respiratory diseases that represent a relevant cause of morbidity and mortality. Pulmonary complications include acute and chronic infection-related diseases, such as pneumonia and bronchiectasis. They also include immune-mediated interstitial lung diseases, such as granulomatous-lymphocytic interstitial lung disease (GLILD) and cancer. Herein we will discuss the main pulmonary manifestations of PADs, the associated functional and imaging findings, and the relevant role of pulmonologists and chest radiologists in diagnosis and surveillance. The spectrum of lung complications in primary antibody deficiency ranges from asthma or COPD to extremely rare and specific ILDs. Early diagnosis of the underlying immune defect might significantly improve patients' lung disease, QoL and long-term prognosis.http://ow.ly/5cP230kZvOB
Collapse
Affiliation(s)
- Francesco Cinetto
- Dept of Medicine - DIMED, University of Padova, Padova, Italy.,Medicina Interna I, Ca' Foncello Hospital, Treviso, Italy
| | - Riccardo Scarpa
- Dept of Medicine - DIMED, University of Padova, Padova, Italy.,Medicina Interna I, Ca' Foncello Hospital, Treviso, Italy
| | - Marcello Rattazzi
- Dept of Medicine - DIMED, University of Padova, Padova, Italy.,Medicina Interna I, Ca' Foncello Hospital, Treviso, Italy
| | - Carlo Agostini
- Dept of Medicine - DIMED, University of Padova, Padova, Italy.,Medicina Interna I, Ca' Foncello Hospital, Treviso, Italy
| |
Collapse
|
34
|
Baumann U, Routes JM, Soler-Palacín P, Jolles S. The Lung in Primary Immunodeficiencies: New Concepts in Infection and Inflammation. Front Immunol 2018; 9:1837. [PMID: 30147696 PMCID: PMC6096054 DOI: 10.3389/fimmu.2018.01837] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin replacement therapy (IGRT) has contributed critically to the management of primary antibody deficiencies (PAD) and the decrease in pneumonia rate. However, despite adequate IGRT and improved prognosis, patients with PAD continue to experience recurrent respiratory tract infections, leading to bronchiectasis and continuing decline in lung function with a severe impact on their quality of life. Moreover, non-infectious inflammatory and interstitial lung complications, such as granulomatous-lymphocytic interstitial lung disease, contribute substantially to the overall morbidity of PAD. These conditions develop much more often than appreciated and represent a major therapeutic challenge. Therefore, a regular assessment of the structural and functional condition of the lung and the upper airways with appropriate treatment is required to minimize the deterioration of lung function. This work summarizes the knowledge on lung complications in PAD and discusses the currently available diagnostic tools and treatment options.
Collapse
Affiliation(s)
- Ulrich Baumann
- Department of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - John M Routes
- Division of Asthma, Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
35
|
Akhter J, Lefaiver CA, Scalchunes C, DiGirolamo M, Warnatz K. Immunologist’s Perspectives on Assessment and Management of Lung Disease in CVID: a Survey of the Membership of the Clinical Immunology Society and the European Society for Immunodeficiencies. J Clin Immunol 2018; 38:237-246. [DOI: 10.1007/s10875-018-0488-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
36
|
Stubbs A, Bangs C, Shillitoe B, Edgar JD, Burns SO, Thomas M, Alachkar H, Buckland M, McDermott E, Arumugakani G, Jolles MS, Herriot R, Arkwright PD. Bronchiectasis and deteriorating lung function in agammaglobulinaemia despite immunoglobulin replacement therapy. Clin Exp Immunol 2018; 191:212-219. [PMID: 28990652 PMCID: PMC5758375 DOI: 10.1111/cei.13068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Immunoglobulin replacement therapy enhances survival and reduces infection risk in patients with agammaglobulinaemia. We hypothesized that despite regular immunoglobulin therapy, some patients will experience ongoing respiratory infections and develop progressive bronchiectasis with deteriorating lung function. One hundred and thirty-nine (70%) of 199 patients aged 1-80 years from nine cities in the United Kingdom with agammaglobulinaemia currently listed on the UK Primary Immune Deficiency (UKPID) registry were recruited into this retrospective case study and their clinical and laboratory features analysed; 94% were male, 78% of whom had Bruton tyrosine kinase (BTK) gene mutations. All patients were on immunoglobulin replacement therapy and 52% had commenced therapy by the time they were 2 years old. Sixty per cent were also taking prophylactic oral antibiotics; 56% of patients had radiological evidence of bronchiectasis, which developed between the ages of 7 and 45 years. Multivariate analysis showed that three factors were associated significantly with bronchiectasis: reaching 18 years old [relative risk (RR) = 14·2, 95% confidence interval (CI) = 2·7-74·6], history of pneumonia (RR = 3·9, 95% CI = 1·1-13·8) and intravenous immunoglobulin (IVIG) rather than subcutaneous immunoglobulin (SCIG) = (RR = 3·5, 95% CI = 1·2-10·1), while starting immunoglobulin replacement after reaching 2 years of age, gender and recent serum IgG concentration were not associated significantly. Independent of age, patients with bronchiectasis had significantly poorer lung function [predicted forced expiratory volume in 1 s 74% (50-91)] than those without this complication [92% (84-101)] (P < 0·001). We conclude that despite immunoglobulin replacement therapy, many patients with agammaglobulinaemia can develop chronic lung disease and progressive impairment of lung function.
Collapse
Affiliation(s)
- A. Stubbs
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
| | - C. Bangs
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
- UKPIN UKPID Registry TeamUKPINLondonUK
| | - B. Shillitoe
- Department of ImmunologyGreat Northern Children's HospitalNewcastle upon TyneUK
| | - J. D. Edgar
- UKPIN UKPID Registry TeamUKPINLondonUK
- Regional Immunology ServiceThe Royal HospitalsBelfastUK
| | - S. O. Burns
- Department of ImmunologyRoyal Free Hospital, Institute of Immunology and Transplantation, University CollegeLondonUK
| | - M. Thomas
- ImmunologyNHS Greater Glasgow & ClydeGlasgowUK
| | - H. Alachkar
- ImmunologySalford Royal Foundation TrustManchesterUK
| | - M. Buckland
- UKPIN UKPID Registry TeamUKPINLondonUK
- ImmunologySt Bartholomew's HospitalLondonUK
| | | | | | - M. S. Jolles
- Department of ImmunologyUniversity Hospital of WalesCardiffUK
| | - R. Herriot
- ImmunologyAberdeen Royal InfirmaryAberdeenUK
| | - P. D. Arkwright
- Paediatric Allergy and ImmunologyUniversity of ManchesterManchesterManchesterUK
| |
Collapse
|
37
|
Kim JH, Podstawka J, Lou Y, Li L, Lee EKS, Divangahi M, Petri B, Jirik FR, Kelly MM, Yipp BG. Aged polymorphonuclear leukocytes cause fibrotic interstitial lung disease in the absence of regulation by B cells. Nat Immunol 2018; 19:192-201. [PMID: 29335647 DOI: 10.1038/s41590-017-0030-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/07/2017] [Indexed: 12/27/2022]
Abstract
Pulmonary immunity requires tight regulation, as interstitial inflammation can compromise gas exchange and lead to respiratory failure. Here we found a greater number of aged CD11bhiL-selectinloCXCR4+ polymorphonuclear leukocytes (PMNs) in lung vasculature than in the peripheral circulation. Using pulmonary intravital microscopy, we observed lung PMNs physically interacting with B cells via β2 integrins; this initiated neutrophil apoptosis, which led to macrophage-mediated clearance. Genetic deletion of B cells led to the accumulation of aged PMNs in the lungs without systemic inflammation, which caused pathological fibrotic interstitial lung disease that was attenuated by the adoptive transfer of B cells or depletion of PMNs. Thus, the lungs are an intermediary niche in the PMN lifecycle wherein aged PMNs are regulated by B cells, which restrains their potential to cause pulmonary pathology.
Collapse
Affiliation(s)
- Jung Hwan Kim
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John Podstawka
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuefei Lou
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lu Li
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Esther K S Lee
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology, McGill International TB Centre, McGill University Montreal, Montreal, QC, Canada
| | - Björn Petri
- Mouse Phenomics Resource Laboratory, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Margaret M Kelly
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
38
|
Uzunhan Y, Jeny F, Kambouchner M, Didier M, Bouvry D, Nunes H, Bernaudin JF, Valeyre D. The Lung in Dysregulated States of Humoral Immunity. Respiration 2017; 94:389-404. [PMID: 28910817 DOI: 10.1159/000480297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In common variable immunodeficiency, lung manifestations are related to different mechanisms: recurrent pneumonias due to encapsulated bacteria responsible for diffuse bronchiectasis, diffuse infiltrative pneumonia with various patterns, and lymphomas, mostly B cell extranodal non-Hodgkin type. The diagnosis relies on significant serum Ig deficiency and the exclusion of any primary or secondary cause. Histopathology may be needed. Immunoglobulin (IgG) replacement is crucial to prevent infections and bronchiectasis. IgG4-related respiratory disease, often associated with extrapulmonary localizations, presents with solitary nodules or masses, diffuse interstitial lung diseases, bronchiolitis, lymphadenopathy, and pleural or pericardial involvement. Diagnosis relies on international criteria including serum IgG4 dosage and significantly increased IgG4/IgG plasma cells ratio in pathologically suggestive biopsy. Respiratory amyloidosis presents with tracheobronchial, nodular, and cystic or diffuse interstitial lung infiltration. Usually of AL (amyloid light chain) subtype, it may be localized or systemic, primary or secondary to a lymphoproliferative process. Very rare other diseases due to nonamyloid IgG deposits are described. Among the various lung manifestations of dysregulated states of humoral immunity, this article covers only those associated with the common variable immunodeficiency, IgG4-related disease, amyloidosis, and pulmonary light-chain deposition disease. Autoimmune connective-vascular tissue diseases or lymphoproliferative disorders are addressed in other chapters of this issue.
Collapse
|
39
|
Jolles S, Sánchez-Ramón S, Quinti I, Soler-Palacín P, Agostini C, Florkin B, Couderc LJ, Brodszki N, Jones A, Longhurst H, Warnatz K, Haerynck F, Matucci A, de Vries E. Screening protocols to monitor respiratory status in primary immunodeficiency disease: findings from a European survey and subclinical infection working group. Clin Exp Immunol 2017; 190:226-234. [PMID: 28708268 PMCID: PMC5629444 DOI: 10.1111/cei.13012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 02/01/2023] Open
Abstract
Many patients with primary immunodeficiency (PID) who have antibody deficiency develop progressive lung disease due to underlying subclinical infection and inflammation. To understand how these patients are monitored we conducted a retrospective survey based on patient records of 13 PID centres across Europe, regarding the care of 1061 adult and 178 paediatric patients with PID on immunoglobulin (Ig) G replacement. The most common diagnosis was common variable immunodeficiency in adults (75%) and hypogammaglobulinaemia in children (39%). The frequency of clinic visits varied both within and between centres: every 1-12 months for adult patients and every 3-6 months for paediatric patients. Patients diagnosed with lung diseases were more likely to receive pharmaceutical therapies and received a wider range of therapies than patients without lung disease. Variation existed between centres in the frequency with which some clinical and laboratory monitoring tests are performed, including exercise tests, laboratory testing for IgG subclass levels and specific antibodies, and lung function tests such as spirometry. Some tests were carried out more frequently in adults than in children, probably due to difficulties conducting these tests in younger children. The percentage of patients seen regularly by a chest physician, or who had microbiology tests performed following chest and sinus exacerbations, also varied widely between centres. Our survey revealed a great deal of variation across Europe in how frequently patients with PID visit the clinic and how frequently some monitoring tests are carried out. These results highlight the urgent need for consensus guidelines on how to monitor lung complications in PID patients.
Collapse
Affiliation(s)
- S Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - S Sánchez-Ramón
- Department of Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - I Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - P Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Jeffrey Modell Diagnostic and Research Centre, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - C Agostini
- Department of Medicine (DIMED), Clinical Immunology Unit, University of Padua, Italy
| | - B Florkin
- University Department of Pediatrics, CHR Liege, Belgium
| | - L-J Couderc
- Respiratory Diseases Department, Hôpital FOCH, University Versailles-St Quentin, Suresnes, France
| | - N Brodszki
- The Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - A Jones
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - H Longhurst
- Department of Immunology, Barts and The London National Health Service Trust, London, UK
| | - K Warnatz
- Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - F Haerynck
- Center for Primary Immunodeficiency, Department of Paediatric Immunology and Pulmonology, Jeffrey Modell Diagnostic and Research Centre, Ghent University Hospital, Belgium
| | - A Matucci
- Department of Biomedicine, Immunoallergology Unit, AOU Craeggi, University of Florence, Italy
| | - E de Vries
- Jeroen Bosch Academy, Jeroen Bosch Hospital, 's-Hertogenbosch, the Netherlands.,Tranzo, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
40
|
Predictors of granulomatous lymphocytic interstitial lung disease in common variable immunodeficiency. Ann Allergy Asthma Immunol 2017; 118:614-620. [PMID: 28254202 DOI: 10.1016/j.anai.2017.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/31/2016] [Accepted: 01/05/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND A subset of patients with common variable immunodeficiency (CVID) develop granulomatous lymphocytic interstitial lung disease (GLILD), which is associated with early mortality. OBJECTIVE To determine a set of clinical and/or laboratory parameters that correlate with GLILD. METHODS A retrospective, nested case-control (patients with CVID diagnosed with GLILD compared with patients with CVID without a diagnosis of GLILD) medical record review was undertaken at Mayo Clinic, Rochester, MN. Network and univariate analysis was used to identify clinical and laboratory parameters at the time of diagnosis that are associated with GLILD. RESULTS Twenty-six cases with radiologic evidence of GLILD were included in this study. Eighteen cases (69%) cases had coexistent splenomegaly with lower IgA levels (P = .04) compared with the controls. Patients with low IgA levels (<13 mg/dL) also had percentage expansion of low CD21 B cells (CD21low >5%) (P = .007). Univariate analysis revealed that splenomegaly (odds ratio [OR], 17.3; 95% confidence interval [CI], 3.9-74.5), history of immune thrombocytopenic purpura (ITP) or autoimmune hemolytic anemia (AIHA) (OR, 4.8; 95% CI, 1.1-20.2), low IgA level (OR, 3.6; 95% CI, 1.2-11.9), and percentage expansion of CD21low (OR, 5.8; 95% CI, 1.6-24.7) were independently associated with GLILD. Logistic regression analysis revealed that splenomegaly, history of ITP or AIHA, low IgA level, and percentage expansion of CD21low B cells are highly sensitive in predicting presence of GLILD (area under the receiver operating curve of 0.86). CONCLUSION Presence of splenomegaly, history of ITP or AIHA, low serum IgA level, and percentage expansion of CD21low B cells may be useful to identify a group of patients at high risk for development of GLILD.
Collapse
|
41
|
Humoral primary immunodeficiency diseases: clinical overview and chest high-resolution computed tomography (HRCT) features in the adult population. Clin Radiol 2017; 72:534-542. [PMID: 28433201 DOI: 10.1016/j.crad.2017.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 12/27/2022]
Abstract
Humoral primary immunodeficiency diseases (hPIDs) are a heterogeneous group of hereditary disorders resulting in abnormal susceptibility to infections of the sinopulmonary tract. Some of these conditions (e.g., common variable immunodeficiency disorders [CVID]) imply a number of non-infectious thoracic complications such as non-infectious airway disorders, diffuse lung parenchymal diseases, and neoplasms. Chest high-resolution computed tomography (HRCT) is a key imaging tool to characterise and quantify the extent of underlying thoracic involvement, as well as to direct and monitor treatment. The aims of this review are to provide a brief clinical overview of hPIDs and describe the related chest HRCT imaging features in the adult population, with a special focus on CVID and its complications.
Collapse
|
42
|
Berbers RM, Nierkens S, van Laar JM, Bogaert D, Leavis HL. Microbial Dysbiosis in Common Variable Immune Deficiencies: Evidence, Causes, and Consequences. Trends Immunol 2017; 38:206-216. [DOI: 10.1016/j.it.2016.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
|
43
|
Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, Goodlad JR, Farmer G, Steele CL, Leahy TR, Doffinger R, Baxendale H, Bernatoniene J, Edgar JDM, Longhurst HJ, Ehl S, Speckmann C, Grimbacher B, Sediva A, Milota T, Faust SN, Williams AP, Hayman G, Kucuk ZY, Hague R, French P, Brooker R, Forsyth P, Herriot R, Cancrini C, Palma P, Ariganello P, Conlon N, Feighery C, Gavin PJ, Jones A, Imai K, Ibrahim MAA, Markelj G, Abinun M, Rieux-Laucat F, Latour S, Pellier I, Fischer A, Touzot F, Casanova JL, Durandy A, Burns SO, Savic S, Kumararatne DS, Moshous D, Kracker S, Vanhaesebroeck B, Okkenhaug K, Picard C, Nejentsev S, Condliffe AM, Cant AJ. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study. J Allergy Clin Immunol 2017; 139:597-606.e4. [PMID: 27555459 PMCID: PMC5292996 DOI: 10.1016/j.jaci.2016.06.021] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.
Collapse
Affiliation(s)
- Tanya I Coulter
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland; Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Anita Chandra
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom; Lymphocyte Signalling & Development, Babraham Institute, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chris M Bacon
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom; Northern England Haemato-Oncology Diagnostic Service, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Judith Babar
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - James Curtis
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nick Screaton
- Department of Radiology, Papworth Hospital NHS Foundation Trust, Papworth Everard Hospital, Cambridge, United Kingdom
| | - John R Goodlad
- Department of Pathology, Western General Hospital, Edinburgh, United Kingdom
| | | | | | - Timothy Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom; National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Helen Baxendale
- Papworth Hospital NHS trust, Papworth Everard, Cambridge, United Kingdom
| | - Jolanta Bernatoniene
- Department of Infectious Disease and Immunology, University Hospitals Bristol NHS Foundation Trust, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - J David M Edgar
- Regional Immunology Service, The Royal Hospitals, Belfast, United Kingdom
| | | | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany; Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Anna Sediva
- Institute of Immunology, University Hospital Motol, Prague, Czech Republic
| | - Tomas Milota
- Institute of Immunology, University Hospital Motol, Prague, Czech Republic
| | - Saul N Faust
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Anthony P Williams
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Grant Hayman
- Department of Immunology, Epsom & St Helier University Hospitals NHS Trust, Surrey, United Kingdom
| | - Zeynep Yesim Kucuk
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rosie Hague
- Department of Royal Hospital for Children, Glasgow, United Kingdom
| | - Paul French
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Richard Brooker
- Royal Aberdeen Childrens' Hospital, Aberdeen, United Kingdom
| | | | - Richard Herriot
- Royal Aberdeen Childrens' Hospital, Aberdeen, United Kingdom
| | - Caterina Cancrini
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Palma
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Paola Ariganello
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Niall Conlon
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland
| | - Conleth Feighery
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland
| | - Patrick J Gavin
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Alison Jones
- Department of Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mohammad A A Ibrahim
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Medicine, Division of Asthma, Allergy & Lung Biology, Department of Immunological Medicine, London, United Kingdom
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center, Ljubljana, Slovenia
| | - Mario Abinun
- Department of Paediatric Immunology, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Frédéric Rieux-Laucat
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Sylvain Latour
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Isabelle Pellier
- Unité d'Onco-hémato-immunologie Pédiatrique, CHU Angers, Angers, France; Centre de Référence Déficits Immunitaires Héréditaires, AP-HP, Paris, France; Inserm UMR 892, Angers, France; CNRS UMR 6299, Angers, France
| | - Alain Fischer
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Collège de France, Paris, France
| | - Fabien Touzot
- Départment de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Jean-Laurent Casanova
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Children's Hospital, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, Chevy Chase, Md
| | - Anne Durandy
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - D S Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France
| | - Sven Kracker
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | | | - Klaus Okkenhaug
- Lymphocyte Signalling & Development, Babraham Institute, Cambridge, United Kingdom
| | - Capucine Picard
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Centre de Référence Déficits Immunitaires Héréditaires, AP-HP, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Children's Hospital, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Andrew James Cant
- Department of Paediatric Immunology, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
44
|
Abstract
Although primary immunodeficiencies typically present with recurrent, chronic, or severe infections, autoimmune manifestations frequently accompany these disorders and may be the initial clinical manifestations. The presence of 2 or more autoimmune disorders, unusual severe atopic disease, or a combination of these disorders should lead a clinician to consider primary immunodeficiency disorders.
Collapse
Affiliation(s)
- John M Routes
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Children's Clinics Building, Suite B440, 9000 West Wisconsin Avenue, Milwaukee, WI 53226-4874, USA.
| | - James W Verbsky
- Department of Pediatrics, Children's Corporate Center, Children's Research Institute, Medical College of Wisconsin, Suite C465, 9000 West Wisconsin Avenue, Milwaukee, WI 53226-4874, USA
| |
Collapse
|
45
|
Perez-Rovira A, Kuo W, Petersen J, Tiddens HAWM, de Bruijne M. Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis. Med Phys 2016; 43:5736. [DOI: 10.1118/1.4963214] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
46
|
Lau CY, Mihalek AD, Wang J, Dodd LE, Perkins K, Price S, Webster S, Pittaluga S, Folio LR, Rao VK, Olivier KN. Pulmonary Manifestations of the Autoimmune Lymphoproliferative Syndrome. A Retrospective Study of a Unique Patient Cohort. Ann Am Thorac Soc 2016; 13:1279-88. [PMID: 27268092 PMCID: PMC5021079 DOI: 10.1513/annalsats.201601-079oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Patients with autoimmune lymphoproliferative syndrome (ALPS), a disorder of impaired lymphocyte apoptosis, often undergo radiographic chest imaging to evaluate the presence and progression of lymphadenopathy. These images often lead to parenchymal and interstitial lung findings of unclear clinical significance. OBJECTIVES To characterize the pulmonary findings associated with ALPS and to determine if lung abnormalities present on computed tomographic (CT) imaging of the chest correlate with infection or functional status. METHODS Patients with lung abnormalities observed on chest CT scans were retrospectively identified from the largest known ALPS cohort. Lung computed tomography findings were characterized and correlated with medical records, bronchoalveolar lavage, biopsy, and lung function. MEASUREMENTS AND MAIN RESULTS CT images of the chest were available for 234 (92%) of 255 of the patients with ALPS. Among patients with a chest CT scan, 18 (8%) had lung abnormalities on at least one CT scan. Fourteen (78%) of those 18 were classified as having ALPS with undetermined genetic defect. Most patients (n = 16 [89%]) with lung lesions were asymptomatic. However, two (11%) of them had associated dyspnea and/or desaturation on room air. Immunosuppressive treatment was administered for lung disease in nine (50%) cases, and all were followed for clinical outcomes. CONCLUSIONS Patients with ALPS can develop chest radiographic findings with protean manifestations that may mimic pulmonary infection. Management of patients with ALPS with incidental lung lesions identified by CT imaging should be guided by clinical correlation. Symptomatic patients may benefit from chest CT imaging and lesion biopsy to exclude infection and guide administration of immunosuppressive therapy.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- Collaborative Clinical Research Branch, Division of Clinical Research
| | - Andrew D. Mihalek
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia; and
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Jing Wang
- Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., and
| | - Lori E. Dodd
- Biostatistics Research Branch, Division of Clinical Research, and
| | - Katie Perkins
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Susan Price
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sharon Webster
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Les R. Folio
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - V. Koneti Rao
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth N. Olivier
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
47
|
Tashtoush B, Memarpour R, Ramirez J, Bejarano P, Mehta J. Granulomatous-lymphocytic interstitial lung disease as the first manifestation of common variable immunodeficiency. CLINICAL RESPIRATORY JOURNAL 2016; 12:337-343. [PMID: 27243233 DOI: 10.1111/crj.12511] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 05/29/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is one of the most common primary immunodeficiencies, which is characterized by reduced serum immunoglobulin levels and B-lymphocyte dysfunction. There are many clinical manifestations of this disease, the most common of which are recurrent respiratory tract infections. Among the most recently recognized autoimmune manifestation of CVID is a disease described as granulomatous-lymphocytic interstitial lung disease (GLILD), where CVID coexists with a small airway lymphoproliferative disorder, mimicking follicular bronchiolitis, or lymphocytic interstitial pneumonitis (LIP) on histology specimens. We herein describe the clinical and radiological features of GLILD in a 55-year-old woman where the diagnosis of CVID was actively pursued and eventually confirmed after her lung biopsy showed characteristic features of GLILD. The patient had dramatic response to treatment with IVIG and corticosteroids for 3 months followed by Mycophenolate mofetil for maintenance therapy.
Collapse
Affiliation(s)
- Basheer Tashtoush
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, Florida
| | - Roya Memarpour
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, Florida
| | - Jose Ramirez
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, Florida
| | - Pablo Bejarano
- Department of Pathology, Cleveland Clinic Florida, Weston, Florida
| | - Jinesh Mehta
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Florida, Weston, Florida
| |
Collapse
|
48
|
Pathria M, Urbine D, Zumberg MS, Guarderas J. Management of granulomatous lymphocytic interstitial lung disease in a patient with common variable immune deficiency. BMJ Case Rep 2016; 2016:bcr-2016-215624. [PMID: 27335365 DOI: 10.1136/bcr-2016-215624] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A 61-year-old woman presented with longstanding cough and progressive dyspnoea. She underwent an extensive evaluation and was diagnosed with common variable immunodeficiency (CVID) with granulomatous lymphocytic interstitial lung disease (GLILD). She was initially treated with subcutaneous immunoglobulin therapy, having declined intravenous immunoglobulin (IVIG) therapy. She also declined treatment with oral glucocorticoids. Over several months, she became increasingly symptomatic and developed increased pulmonary infiltrates, pleural effusions, mediastinal adenopathy, splenomegaly, pancytopenia and ascites. An interdisciplinary team composed of an immunologist, pulmonologist and haematologist deliberated over a therapeutic management approach. The patient received a recently reported immunotherapy regimen with azathioprine and rituximab. The therapy led to rapid improvement of her constitutional and respiratory symptoms, with clinical and radiographic improvement in her interstitial lung disease, lymphadenopathy, pleural effusions and ascites. This case report reviews the literature surrounding the diagnosis and management of GLILD.
Collapse
Affiliation(s)
- Mohini Pathria
- Department of Internal Medicine, University of Florida, Gainesville, Florida, USA
| | - Daniel Urbine
- Department of Internal Medicine, University of Florida, Gainesville, Florida, USA
| | - Marc Stuart Zumberg
- Department of Internal Medicine, University of Florida, Gainesville, Florida, USA
| | - Juan Guarderas
- Department of Internal Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
49
|
Bonilla FA, Barlan I, Chapel H, Costa-Carvalho BT, Cunningham-Rundles C, de la Morena MT, Espinosa-Rosales FJ, Hammarström L, Nonoyama S, Quinti I, Routes JM, Tang MLK, Warnatz K. International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2016; 4:38-59. [PMID: 26563668 PMCID: PMC4869529 DOI: 10.1016/j.jaip.2015.07.025] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 06/24/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
Abstract
The International Collaboration in Asthma, Allergy and Immunology initiated an international coalition among the American Academy of Allergy, Asthma & Immunology; the European Academy of Allergy and Clinical Immunology; the World Allergy Organization; and the American College of Allergy, Asthma & Immunology on common variable immunodeficiency. An author group was formed and then divided into individual committees. Within the committee, teams of authors were subgrouped to generate content for specific sections of the document. Content was derived from literature searches, relevant published guidelines, and clinical experience. After a draft of the document was assembled, it was collectively reviewed and revised by the authors. Where evidence was lacking or conflicting, the information presented represents the consensus expert opinion of the group. The full document was then independently reviewed by 5 international experts in the field, none of whom was among the authors of the original. The comments of these reviewers were incorporated before submission for publication.
Collapse
Affiliation(s)
| | - Isil Barlan
- Marmara University Pendik Education and Research Hospital, Istanbul, Turkey
| | - Helen Chapel
- John Radcliffe Hospital and University of Oxford, Oxford, United Kingdom
| | | | | | - M Teresa de la Morena
- Children's Medical Center and University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | - John M Routes
- Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, Wis
| | - Mimi L K Tang
- Royal Children's Hospital and Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia
| | - Klaus Warnatz
- University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
50
|
Janssen WJM, Nierkens S, Sanders EA, Boes M, van Montfrans JM. Antigen-specific IgA titres after 23-valent pneumococcal vaccine indicate transient antibody deficiency disease in children. Vaccine 2015; 33:6320-6. [PMID: 26413880 DOI: 10.1016/j.vaccine.2015.09.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/01/2015] [Accepted: 09/15/2015] [Indexed: 02/01/2023]
Abstract
Paediatric patients with antibody deficiency may either be delayed in development of humoral immunity or may be persistently deficient in antibody production. To differentiate between these entities, we examined the 23-valent pneumococcal polysaccharide (PnPS) vaccine-induced IgM-, IgG- and IgA antibody responses in a cohort of 66 children with recurrent respiratory tract infections. Individual serum titres against 11 pneumococcal serotypes were measured by Luminex. The cohort contained 33 antibody deficiency patients, 17 transient antibody deficiency patients and 16 patients without antibody deficiency diagnosis (control group). Transient antibody deficiency patients produced consistently higher levels of PnPS-specific IgA responses than antibody deficiency patients. Decreased IgA responses to serotypes 1, 5, 7F and 18C were most discriminative to stratify transient antibody deficiency patients from antibody deficiency patients with persistent disease. We conclude that measuring PnPS-specific IgA responses may predict the disease course in young children diagnosed with antibody deficiency and suggest confirmation of these data in a prospective setting.
Collapse
Affiliation(s)
- Willemijn J M Janssen
- Department of Pediatric Immunology and Infectious Diseases/Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3508 AB Utrecht, The Netherlands
| | - Stefan Nierkens
- Department of Medical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Elisabeth A Sanders
- Department of Pediatric Immunology and Infectious Diseases/Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3508 AB Utrecht, The Netherlands; Department of Medical Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatric Immunology and Infectious Diseases/Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3508 AB Utrecht, The Netherlands
| | - Joris M van Montfrans
- Department of Pediatric Immunology and Infectious Diseases/Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center, Lundlaan 6, 3508 AB Utrecht, The Netherlands.
| |
Collapse
|