1
|
Anchoo C, Lev A, Simon AJ, Levy S, Mandola A, Frizinsky S, Somekh I, NaserEddin A, Adwan RSA, Toren A, Golan H, Bielorai B, Hutt D, Adam E, Somech R. Outcome of hematopoietic stem cell transplantation for severe combined immunodeficiency and impact of newborn screening on overall survival: A single referral center study. J Allergy Clin Immunol 2025:S0091-6749(25)00118-6. [PMID: 39900265 DOI: 10.1016/j.jaci.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/05/2025]
Abstract
BACKGROUND Hematopoietic stem cell transplantation (HSCT) is a curative treatment for infants with severe combined immunodeficiency (SCID). Different factors determine HSCT success and overall survival (OS). Specifically, prompt diagnosis of SCID, preferably through newborn screening (NBS), is critical. OBJECTIVE We explored variable factors including the impact of NBS that are associated with HSCT outcomes and OS in a multiethnic SCID cohort. METHODS One hundred patients with SCID diagnosed and treated with HSCT at Sheba Medical Center in Israel between 1996 and 2024 were studied. RESULTS We distinguished 3 groups: Palestinians (62%), Israeli Jews (16%), and Israeli non-Jews (22%). The OS rate was 68%, increasing to 84% when excluding mortality in the first month after transplantation. Better outcomes were significantly associated with the use of bone marrow (BM) as a stem cell source (P = .003), the availability of matched related donors (P = .045), and the use of conditioning (P = .0006). As a result of delayed diagnosis, Palestinian patients had more infections, more events of early post-HSCT death, and inferior OS rates compared to other patients. SCID cases identified by NBS demonstrated superior OS (93%) compared to cases identified by clinical presentation (P = .04). Improvement in OS was most significant after the implementation of the NBS program for SCID in Israel (P = .03). CONCLUSION Our study delineates and reinforces specific factors that influence OS after undergoing HSCT for SCID. Importantly, it raises the value of early diagnosis and treatment of affected infants, highlighting the benefit of NBS for SCID in determining the clinical outcome.
Collapse
Affiliation(s)
- Chen Anchoo
- Pediatric Department A, Immunology Service and Lab, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Atar Lev
- Pediatric Department A, Immunology Service and Lab, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Amos J Simon
- Pediatric Department A, Immunology Service and Lab, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Hemato-Immunology Unit, Hematology Lab, Sheba Medical Center, Tel Hashomer, Israel
| | - Shiran Levy
- Pediatric Department A, Immunology Service and Lab, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Amarilla Mandola
- Pediatric Department A, Immunology Service and Lab, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shirly Frizinsky
- Pediatric Department A, Immunology Service and Lab, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ido Somekh
- Pediatric Department A, Immunology Service and Lab, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adeeb NaserEddin
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem (Israel); H. Clinic Specialty Hospital, Ramallah, Palestine
| | - Rabee S A Adwan
- Infectious Diseases Unit, Al-Makassed Hospital, and the Al-Quds University School of Medicine, Jerusalem (Palestine)
| | - Amos Toren
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Hana Golan
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Bella Bielorai
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Daphna Hutt
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Etai Adam
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Raz Somech
- Pediatric Department A, Immunology Service and Lab, Jeffrey Modell Foundation Center, Tel Hashomer, Israel; Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Hoang Nguyen KH, Le NV, Nguyen PH, Nguyen HHT, Hoang DM, Huynh CD. Human immune system: Exploring diversity across individuals and populations. Heliyon 2025; 11:e41836. [PMID: 39911431 PMCID: PMC11795082 DOI: 10.1016/j.heliyon.2025.e41836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
The immune response is an intricate system that involves the complex connection of cellular and molecular components, each with distinct functional specialisations. It has a distinct capacity to adjust and mould the immune response in accordance with specific stimuli, influenced by both genetic and environmental factors. The presence of genetic diversity, particularly across different ethnic and racial groups, significantly contributes to the impact of incidence of diseases, disease susceptibility, autoimmune disorders, and cancer risks in specific regions and certain populations. Environmental factors, including geography and socioeconomic status, further modulate the variety of the immune system responses. These, in turn, affect the susceptibility to infectious diseases and development of autoimmune disorders. Despite the complexity of the relationship, there remains a gap in understanding the specificity of immune indices across races, immune reference ranges among populations, highlighting the need for deeper understanding of immune diversity for personalized approaches in diagnostics and therapeutics. This review systematically organizes these findings, with the goal of emphasizing the potential of targeted interventions to address health disparities and advance translational research, enabling a more comprehensive strategy. This approach promises significant advancements in identifying specific immunological conditions, focusing on personalized interventions, through both genetic and environmental factors.
Collapse
Affiliation(s)
| | - Nghi Vinh Le
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | | - Hien Hau Thi Nguyen
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam
| | - Duy Mai Hoang
- College of Health Sciences, VinUniversity, Hanoi, Viet Nam
| | | |
Collapse
|
3
|
Zhang L, Feng L, Shi H, Niu W, Wang Y, Bu B, Liu Y, Bao X, Song W, Jin H, Sun Y. Preimplantation genetic testing for four families with severe combined immunodeficiency: Three unaffected livebirths. Orphanet J Rare Dis 2025; 20:14. [PMID: 39789600 PMCID: PMC11720562 DOI: 10.1186/s13023-024-03525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
PURPOSE Severe combined immunodeficiency (SCID) is a set of rare monogenic inherited diseases that together represent the most severe form of the primary immunodeficiency disease phenotype. Preimplantation genetic testing for monogenic defects (PGT-M) is an effective reproductive technology strategy to prevent disease-causing gene mutations from being transmitted to offspring. The aim of this study was to report the use of PGT-M strategy based on karyomapping in four families to avoid the birth of SCID children. METHODS Four couples underwent the PGT-M strategy due to SCID. The strategy of PGT-M started with a biopsy of the trophectoderm cells of embryos, and the whole genome was amplified by multiple replacement amplification (MDA). Then, the single nucleotide polymorphisms (SNPs) in the region upstream and downstream of the mutation site were subsequently identified via karyomapping, and the results were analyzed via SNPs linkage analysis. The aneuploids of the embryos were identified simultaneously. Finally, prenatal amniocentesis was used to verify the validity of the PGT-M results. RESULTS We identified three novel variants (case1: IL2RG c.720_726delGAGCCAC; case 3: RAG2 c.770 C > T; and case 4: LIG4 c.1347 A > T). All four couples with SCID pathogenic gene mutations were subjected to karyomapping linkage analysis, and embryos with the pathogenic gene mutation were successfully identified. Euploid blastocysts without pathogenic alleles were transplanted, and healthy offspring were ultimately born. Prenatal diagnosis also confirmed the validity of our results. CONCLUSION This study revealed that karyomapping is an efficient approach for identifying SCID. Through PGT-M with karyomapping linkage analysis, healthy babies were born to families carrying mutations in the SCID pathogenic gene.
Collapse
Affiliation(s)
- Lingyun Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lei Feng
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Shi
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yanchi Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bei Bu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yidong Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao Bao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wenyan Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haixia Jin
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Engineering Laboratory of Preimplantation Genetic Diagnosis and Screening, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Karaatmaca B, Cagdas D, Esenboga S, Erman B, Tan C, Turul Ozgur T, Boztug K, van der Burg M, Sanal O, Tezcan I. Heterogeneity in RAG1 and RAG2 deficiency: 35 cases from a single-centre. Clin Exp Immunol 2024; 215:160-176. [PMID: 37724703 PMCID: PMC10847812 DOI: 10.1093/cei/uxad110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
Recombination activating genes (RAG)1 and RAG2 deficiency leads to combined T/B-cell deficiency with varying clinical presentations. This study aimed to define the clinical/laboratory spectrum of RAG1 and RAG2 deficiency. We retrospectively reviewed the clinical/laboratory data of 35 patients, grouped them as severe combined immunodeficiency (SCID), Omenn syndrome (OS), and delayed-onset combined immunodeficiency (CID) and reported nine novel mutations. The male/female ratio was 23/12. Median age of clinical manifestations was 1 months (mo) (0.5-2), 2 mo (1.25-5), and 14 mo (3.63-27), age at diagnosis was 4 mo (3-6), 4.5 mo (2.5-9.75), and 27 mo (14.5-70) in SCID (n = 25; 71.4%), OS (n = 5; 14.3%), and CID (n = 5; 14.3%) patients, respectively. Common clinical manifestations were recurrent sinopulmonary infections 82.9%, oral moniliasis 62.9%, diarrhea 51.4%, and eczema/dermatitis 42.9%. Autoimmune features were present in 31.4% of the patients; 80% were in CID patients. Lymphopenia was present in 92% of SCID, 80% of OS, and 80% of CID patients. All SCID and CID patients had low T (CD3, CD4, and CD8), low B, and increased NK cell numbers. Twenty-eight patients underwent hematopoietic stem cell transplantation (HSCT), whereas seven patients died before HSCT. Median age at HSCT was 7 mo (4-13.5). Survival differed in groups; maximum in SCID patients who had an HLA-matched family donor, minimum in OS. Totally 19 (54.3%) patients survived. Early molecular genetic studies will give both individualized therapy options, and a survival advantage because of timely diagnosis and treatment. Further improvement in therapeutic outcomes will be possible if clinicians gain time for HSCT.
Collapse
Affiliation(s)
- Betul Karaatmaca
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Department of Pediatric Allergy and Immunology, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Deniz Cagdas
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboga
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Baran Erman
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Tuba Turul Ozgur
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Ozden Sanal
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
| | - Ilhan Tezcan
- Hacettepe University School of Medicine, Department of Pediatrics, Division of Pediatric Immunology, Ankara, Turkey
- Section of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Braams M, Pike-Overzet K, Staal FJT. The recombinase activating genes: architects of immune diversity during lymphocyte development. Front Immunol 2023; 14:1210818. [PMID: 37497222 PMCID: PMC10367010 DOI: 10.3389/fimmu.2023.1210818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
The mature lymphocyte population of a healthy individual has the remarkable ability to recognise an immense variety of antigens. Instead of encoding a unique gene for each potential antigen receptor, evolution has used gene rearrangements, also known as variable, diversity, and joining gene segment (V(D)J) recombination. This process is critical for lymphocyte development and relies on recombination-activating genes-1 (RAG1) and RAG2, here collectively referred to as RAG. RAG serves as powerful genome editing tools for lymphocytes and is strictly regulated to prevent dysregulation. However, in the case of dysregulation, RAG has been implicated in cases of cancer, autoimmunity and severe combined immunodeficiency (SCID). This review examines functional protein domains and motifs of RAG, describes advances in our understanding of the function and (dys)regulation of RAG, discuss new therapeutic options, such as gene therapy, for RAG deficiencies, and explore in vitro and in vivo methods for determining RAG activity and target specificity.
Collapse
Affiliation(s)
- Merijn Braams
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Centre, Leiden, Netherlands
- Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Leiden University Medical Centre, Leiden, Netherlands
- Department of Paediatrics, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
6
|
Al-Mousa H, Barbouche MR. Genetics of Inborn Errors of Immunity in highly consanguineous Middle Eastern and North African populations. Semin Immunol 2023; 67:101763. [PMID: 37075586 DOI: 10.1016/j.smim.2023.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Consanguineous marriages in Middle Eastern and North African (MENA) countries are deeply-rooted tradition and highly prevalent resulting into increased prevalence of autosomal recessive diseases including Inborn Errors of Immunity (IEIs). Molecular genetic testing is an important diagnostic tool for IEIs since it provides a definite diagnosis, genotype-phenotype correlation, and guide therapy. In this review, we will discuss the current state and challenges of genomic and variome studies in MENA region populations, as well as the importance of funding advanced genome projects. In addition, we will review the MENA underlying molecular genetic defects of over 2457 patients published with the common IEIs, where autosomal recessive mode of inheritance accounts for 76% of cases with increased prevalence of combined immunodeficiency diseases (50%). The efforts made in the last three decades in terms of international collaboration and of in situ capacity building in MENA region countries led to the discovery of more than 150 novel genes involved in IEIs. Expanding sequencing studies within the MENA will undoubtedly be a unique asset for the IEI genetics which can advance research, and support precise genomic diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hamoud Al-Mousa
- Section of Allergy and Immunology, Department of Pediatrics, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mohamed-Ridha Barbouche
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
7
|
Pavel-Dinu M, Borna S, Bacchetta R. Rare immune diseases paving the road for genome editing-based precision medicine. Front Genome Ed 2023; 5:1114996. [PMID: 36846437 PMCID: PMC9945114 DOI: 10.3389/fgeed.2023.1114996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) genome editing platform heralds a new era of gene therapy. Innovative treatments for life-threatening monogenic diseases of the blood and immune system are transitioning from semi-random gene addition to precise modification of defective genes. As these therapies enter first-in-human clinical trials, their long-term safety and efficacy will inform the future generation of genome editing-based medicine. Here we discuss the significance of Inborn Errors of Immunity as disease prototypes for establishing and advancing precision medicine. We will review the feasibility of clustered regularly interspaced short palindromic repeats-based genome editing platforms to modify the DNA sequence of primary cells and describe two emerging genome editing approaches to treat RAG2 deficiency, a primary immunodeficiency, and FOXP3 deficiency, a primary immune regulatory disorder.
Collapse
Affiliation(s)
- Mara Pavel-Dinu
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Simon Borna
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
| | - Rosa Bacchetta
- Division of Hematology-Oncology-Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford Medical School, Palo Alto, CA, United States
- Center for Definitive and Curative Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
8
|
Zhang X, Kang X, Yang M, Cai Z, Song Y, Zhou X, Cao J, Wang C, Huang K, Peng Y, He J, Xiao Z. A variant of RAG1 gene identified in severe combined immunodeficiency: a case report. BMC Pediatr 2023; 23:56. [PMID: 36732712 PMCID: PMC9896705 DOI: 10.1186/s12887-022-03822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The recombination-activating gene 1 (RAG1) protein is essential for the V (variable)-D (diversity)-J (joining) recombination process. Mutations in RAG1 have been reported to be associated with several types of immune disorders. Typical clinical features driven by RAG1 variants include persistent infections, severe lymphopenia, and decreased immunoglobulin levels . CASE PRESENTATION In this study, a 2-month-24-days-old infant with recurrent fever was admitted to our hospital with multiple infections and absence of T and B lymphocytes. The infant was diagnosed with severe combined immunodeficiency (SCID). A homozygous variation c.2147G>A (NM_000448.2: exonme2: c.2147G>A (p.Arg716Gln)) was identified in the RAG1 gene using whole-exome sequencing and Sanger sequencing. The predicted 3D structure of variant RAG1 indicated altered protein stability. Additionally, decreased expression of variant RAG1 gene was detected at both the mRNA and protein levels. CONCLUSIONS Our study identified a novel homozygous variant in RAG1 gene that causes SCID. This finding expands the variant spectrum of RAG1 in SCID and provides further evidence for the clinical diagnosis of SCID.
Collapse
Affiliation(s)
- Xinping Zhang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Xiayan Kang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Meiyu Yang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Zili Cai
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Yulei Song
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Xiong Zhou
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Jianshe Cao
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Chengjuan Wang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Kang Huang
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Yani Peng
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Jie He
- grid.440223.30000 0004 1772 5147Department of Pediatric Intensive Care Unit of Hunan Children’s Hospital, Changsha, Hunan People’s Republic of China
| | - Zhenghui Xiao
- Department of Pediatric Intensive Care Unit of Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Sadeghalvad M, Rezaei N. Immunodeficiencies. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
Olbrich P, Ortiz Aljaro P, Freeman AF. Eosinophilia Associated With Immune Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1140-1153. [PMID: 35227935 DOI: 10.1016/j.jaip.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The differential diagnosis of eosinophilia is broad and includes infections, malignancies, and atopy as well as inborn errors of immunity (IEI). Certain types of IEIs are known to be associated with elevated numbers of eosinophils and frequently elevated serum IgE, whereas for others the degree and frequency of eosinophilia are less established. The molecular defects underlying IEI are heterogeneous and affect different pathways, which highlights the complex regulations of this cell population within the immune system. In this review, we list and discuss clinical manifestations and therapies of immune deficiency or immune dysregulation disorders associated with peripheral blood or tissue eosinophilia with or without raised IgE levels. We present illustrative case vignettes for the most common entities and propose a diagnostic algorithm aiming to help physicians systematically to evaluate patients with eosinophilia and suspicion of an underlying IEI.
Collapse
Affiliation(s)
- Peter Olbrich
- Sección Infectología, Reumatología e Inmunología Pediátrica, UGC de Pediatría, Hospital Universitario Virgen del Rocío, Seville, Spain; Laboratorio de Alteraciones Congénitas de la Inmunidad, Laboratorio 205, Instituto de Biomedicina de Sevilla, Seville, Spain; Departamento de Farmacología, Pediatría y Radiología, Facultad de Medicina, Universidad de Sevilla, Spain.
| | - Pilar Ortiz Aljaro
- Servicio de Inmunología, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Seville, Spain
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md
| |
Collapse
|
11
|
Cuperus E, Bygum A, Boeckmann L, Bodemer C, Bolling MC, Caproni M, Diociaiuti A, Emmert S, Fischer J, Gostynski A, Guez S, van Gijn ME, Hannulla-Jouppi K, Has C, Hernández-Martín A, Martinez AE, Mazereeuw-Hautier J, Medvecz M, Neri I, Sigurdsson V, Suessmuth K, Traupe H, Oji V, Pasmans SGMA. Proposal for a 6-step-approach for differential diagnosis of neonatal erythroderma. J Eur Acad Dermatol Venereol 2022; 36:973-986. [PMID: 35238435 PMCID: PMC9310754 DOI: 10.1111/jdv.18043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/15/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022]
Abstract
The broad differential diagnosis of neonatal erythroderma often poses a diagnostic challenge. Mortality of neonatal erythroderma is high due to complications of the erythroderma itself and the occasionally severe and life-threatening underlying disease. Early correct recognition of the underlying cause leads to better treatment and prognosis. Currently, neonatal erythroderma is approached by a case by case basis. The purpose of this scoping review was to develop a diagnostic approach in neonatal erythroderma. After a systematic literature search in Embase (January 1990 - May 2020, 74 cases of neonatal erythroderma were identified, and 50+ diagnoses could be extracted. Main causes were the ichthyoses (40%) and primary immunodeficiencies (35%). Congenital erythroderma was present in 64% (47/74) of the cases, predominantly with congenital ichthyosis (11/11; 100%), Netherton syndrome (12/14, 86%), and Omenn syndrome (11/23, 48%). Time until diagnosis ranged from 102 days to 116 days for cases of non-congenital erythroderma and congenital erythroderma respectively. Among the 74 identified cases a total of 17 patients (23%) died within a mean of 158 days and were related to Omenn syndrome (35%), graft versus host disease (67%), and Netherton syndrome (18%). Disease history and physical examination are summarized in this paper. Age of onset and a collodion membrane can help to narrow the differential diagnoses. Investigations of blood, histology, hair analysis, genetic analysis and clinical imaging are summarized and discussed. A standard blood investigation is proposed and the need for skin biopsies with Lympho-Epithelial Kazal-Type related Inhibitor-staining is highlighted. Overall, this review shows that diagnostic procedures narrow the differential diagnosis in neonatal erythroderma. A 6-step flowchart for the diagnostic approach for neonatal erythroderma during the first month of life is proposed. The approach was made with the support of expert leaders from international multidisciplinary collaborations in the European Reference Network Skin-subthematic group Ichthyosis.
Collapse
Affiliation(s)
- E Cuperus
- Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Department of Dermatology, Center of Pediatric Dermatology, The Netherlands
| | - A Bygum
- University of Southern Denmark, Clinical Institute, Denmark & Odense University Hospital, Department of Clinical Genetics, Denmark
| | - L Boeckmann
- University Medical Center Rostock. Clinic and Policlinic for Dermatology and Venereology. Rostock, Germany
| | - C Bodemer
- Department of Dermatology, Reference Center for Genodermatoses (MAGEC), Necker-Enfants Malades Hospital (AP-HP5), Paris-Centre University, Imagine Institute, INSERM, Paris, France
| | - M C Bolling
- University of Groningen, University Medical Center Groningen, Department of Dermatology, Groningen, the Netherlands
| | - M Caproni
- Department of Health Sciences, Section of Dermatology, USL Toscana Centro, Rare Diseases Unit, University of Florence, Florence, Italy
| | - A Diociaiuti
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - S Emmert
- University Medical Center Rostock. Clinic and Policlinic for Dermatology and Venereology. Rostock, Germany
| | - J Fischer
- Institute of Human Genetics, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| | - A Gostynski
- Department of Dermatology, Maastricht University Medical Center, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - S Guez
- Pediatrics Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - M E van Gijn
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - K Hannulla-Jouppi
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Central Hospital, HUS, Helsinki, Finland
| | - C Has
- Department of Dermatology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - A E Martinez
- Pediatric Dermatology, NHS Foundation Trust, Great Ormond Street, London, UK
| | - J Mazereeuw-Hautier
- Dermatology Department, Reference Center for Rare Skin Diseases, Toulouse, France
| | - M Medvecz
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - I Neri
- Dermatology - IRCCS Policlinico di Sant'Orsola - Department of Experimental, Diagnostic and Specialty Medicine (DIMES) Alma Mater, Studiorum University of Bologna, Bologna, Italy
| | - V Sigurdsson
- University Medical Center Utrecht and Utrecht University, Department of Dermatology, Utrecht, The Netherlands
| | - K Suessmuth
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - H Traupe
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - V Oji
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - S G M A Pasmans
- Erasmus MC University Medical Center Rotterdam-Sophia Children's Hospital, Department of Dermatology, Center of Pediatric Dermatology, The Netherlands
| |
Collapse
|
12
|
Cifaldi C, Rivalta B, Amodio D, Mattia A, Pacillo L, Di Cesare S, Chiriaco M, Ursu GM, Cotugno N, Giancotta C, Manno EC, Santilli V, Zangari P, Federica G, Palumbo G, Merli P, Palma P, Rossi P, Di Matteo G, Locatelli F, Finocchi A, Cancrini C. Clinical, Immunological, and Molecular Variability of RAG Deficiency: A Retrospective Analysis of 22 RAG Patients. J Clin Immunol 2022; 42:130-145. [PMID: 34664192 PMCID: PMC8821501 DOI: 10.1007/s10875-021-01130-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/29/2021] [Indexed: 11/05/2022]
Abstract
PURPOSE We described clinical, immunological, and molecular characterization within a cohort of 22 RAG patients focused on the possible correlation between clinical and genetic data. METHODS Immunological and genetic features were investigated by multiparametric flow cytometry and by Sanger or next generation sequencing (NGS) as appropriate. RESULTS Patients represented a broad spectrum of RAG deficiencies: SCID, OS, LS/AS, and CID. Three novel mutations in RAG1 gene and one in RAG2 were reported. The primary symptom at presentation was infections (81.8%). Infections and autoimmunity occurred together in the majority of cases (63.6%). Fifteen out of 22 (68.2%) patients presented autoimmune or inflammatory manifestations. Five patients experienced severe autoimmune cytopenia refractory to different lines of therapy. Total lymphocytes count was reduced or almost lacking in SCID group and higher in OS patients. B lymphocytes were variably detected in LS/AS and CID groups. Eighteen patients underwent HSCT permitting definitive control of autoimmune/hyperinflammatory manifestations in twelve of them (80%). CONCLUSION We reinforce the notion that different clinical phenotype can be found in patients with identical mutations even within the same family. Infections may influence genotype-phenotype correlation and function as trigger for immune dysregulation or autoimmune manifestations. Severe and early autoimmune refractory cytopenia is frequent and could be the first symptom of onset. Prompt recognition of RAG deficiency in patients with early onset of autoimmune/hyperinflammatory manifestations could contribute to the choice of a timely and specific treatment preventing the onset of other complications.
Collapse
Affiliation(s)
- Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Algeri Mattia
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Silvia Di Cesare
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Maria Chiriaco
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Giorgiana Madalina Ursu
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Nicola Cotugno
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Emma C Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paola Zangari
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Galaverna Federica
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giuseppe Palumbo
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Palma
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Paolo Rossi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Gigliola Di Matteo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Scientific Institute for Research and Healthcare, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy.
- Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.
| |
Collapse
|
13
|
Tengsujaritkul M, Suratannon N, Ittiwut C, Ittiwut R, Chatchatee P, Suphapeetiporn K, Shotelersuk V. Phenotypic heterogeneity and genotypic spectrum of inborn errors of immunity identified through whole exome sequencing in a Thai patient cohort. Pediatr Allergy Immunol 2022; 33:e13701. [PMID: 34796988 DOI: 10.1111/pai.13701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Inborn errors of immunity (IEI) comprise more than 400 rare diseases with potential life-threatening conditions. Clinical manifestations and genetic defects are heterogeneous and diverse among populations. Here, we aimed to characterize the clinical, immunologic, and genetic features of Thai pediatric patients with IEI. The use of whole-exome sequencing (WES) in diagnosis and clinical decision making was also assessed. METHODS Thirty six unrelated patients with clinical and laboratory findings consistent with IEI were recruited from January 2010 to December 2020. WES was performed to identify the underlying genetic defects. RESULTS The median age of disease onset was 4 months (range: 1 month to 13 years), and 24 were male (66.7%). Recurrent sinopulmonary tract infection was the most common clinical presentation followed by septicemia and severe pneumonia. Using WES, we successfully identified the underlying genetic defects in 18 patients (50%). Of the 20 variants identified, six have not been previously described (30%). According to the International Union of Immunological Societies (IUIS), 38.9% of these detected cases (7/18) were found to harbor variants associated with genes in combined immunodeficiencies with associated or syndromic features (Class II). CONCLUSION The diagnostic yield of WES in this patient cohort was 50%. Six novel genetic variants in IEI genes were identified. The clinical usefulness of WES in IEI was demonstrated, emphasizing it as an effective diagnostic strategy in these genetically heterogeneous disorders.
Collapse
Affiliation(s)
- Maliwan Tengsujaritkul
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.,Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Narissara Suratannon
- Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, the Thai Red Cross Society, Bangkok, Thailand
| | - Chupong Ittiwut
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.,Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapa Ittiwut
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.,Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Pantipa Chatchatee
- Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, the Thai Red Cross Society, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.,Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Chulalongkorn University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand.,Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Poyraz A, Cansever M, Muderris I, Patiroglu T. Neonatal Lymphopenia Screening Is Important For Early Diagnosis of Severe Combined Immunodeficiency. Am J Perinatol 2021; 40:748-752. [PMID: 34116583 DOI: 10.1055/s-0041-1731044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE T-cell receptor excision circles are expensive for neonatal severe combined immunodeficiency screening in developing countries. We aimed to detect immunodeficiencies presenting with lymphopenia to enable screening in the general population and to improve awareness regarding lymphopenia among clinicians. STUDY DESIGN This study was conducted prospectively. In all newborns included, complete blood count from umbilical cord blood samples was recorded. Absolute lymphopenia was defined as absolute lymphocyte count <3,000/mm3 in umbilical cord blood sample. Complete blood count was repeated at month 1 in cases found to have lymphopenia. RESULTS Overall, 2,000 newborns were included in the study. Absolute lymphopenia was detected in 42 newborns (2.1%), while lymphocyte count was >3,000/mm3 in 1,958 newborns (97.9%). Two infants with persisted lymphopenia at the end of the first month; therefore, further evaluations such as lymphocyte subsets for severe combined immunodeficiency (SCID) were done. In the first infant, the lymphocyte subgroups were detected as compatible with T (-), B (-), natural killer cells (NK) (+) SCID phenotype RAG defect. Sanger sequencing revealed that NM_000448 c.2209C > T (p.R737C) homozygous mutation of RAG1 gene. In the other infant, the lymphocyte subgroups were found as considered with T (-), B (+) NK (-) SCID phenotype JAK3 defect. Both patients underwent hematopoietic stem cell transplantation from human leukocyte antigen-matched family member. CONCLUSION Absolute lymphopenia by complete blood count is a more simpler, relatively noninvasive and inexpensive screening methodfor detection of SCID in newborns compared with T-cell receptor excision circles technique. KEY POINTS · Our study was conducted with a much smaller number of study groups compared with the previous ones.. · However, SCID was found at a higher rate compared with other studies.. · Our study for this disease that is common in our country where consanguineous marriages are common.
Collapse
Affiliation(s)
- Aykut Poyraz
- Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Murat Cansever
- Division of Allergy and Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Ipek Muderris
- Department of Gynecology and Obstetrics, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Turkan Patiroglu
- Division of Hematology and Oncology, Immunology, Department of Pediatrics, Erciyes University, School of Medicine, Kayseri, Turkey
| |
Collapse
|
15
|
Bosticardo M, Pala F, Notarangelo LD. RAG deficiencies: Recent advances in disease pathogenesis and novel therapeutic approaches. Eur J Immunol 2021; 51:1028-1038. [PMID: 33682138 PMCID: PMC8325549 DOI: 10.1002/eji.202048880] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
The RAG1 and RAG2 proteins initiate the process of V(D)J recombination and therefore play an essential role in adaptive immunity. While null mutations in the RAG genes cause severe combined immune deficiency with lack of T and B cells (T- B- SCID) and susceptibility to life-threatening, early-onset infections, studies in humans and mice have demonstrated that hypomorphic RAG mutations are associated with defects of central and peripheral tolerance resulting in immune dysregulation. In this review, we provide an overview of the extended spectrum of RAG deficiencies and their associated clinical and immunological phenotypes in humans. We discuss recent advances in the mechanisms that control RAG expression and function, the effects of perturbed RAG activity on lymphoid development and immune homeostasis, and propose novel approaches to correct this group of disorders.
Collapse
Affiliation(s)
- Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Exploring genetic defects in adults who were clinically diagnosed as severe combined immune deficiency during infancy. Immunol Res 2021; 69:145-152. [PMID: 33599911 DOI: 10.1007/s12026-021-09179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Genetic diagnostic tools including whole-exome sequencing (WES) have advanced our understanding in human diseases and become common practice in diagnosing patients with suspected primary immune deficiencies. Establishing a genetic diagnosis is of paramount importance for tailoring adequate therapeutic regimens, including identifying the need for hematopoietic stem cell transplantation (HSCT) and genetic-based therapies. Here, we genetically studied two adult patients who were clinically diagnosed during infancy with severe combined immune deficiency (SCID). Two unrelated patients, both of consanguineous kindred, underwent WES in adulthood, 2 decades after their initial clinical manifestations. Upon clinical presentation, immunological workup was performed, which led to a diagnosis of SCID. The patients presented during infancy with failure to thrive, generalized erythematous rash, and recurrent gastrointestinal and respiratory tract infections, including episodes of Pneumocystis pneumonia infection and Candida albicans fungemia. Hypogammaglobulinemia and T-cell lymphopenia were detected. Both patients were treated with a 10/10 HLA matched sibling donor unconditioned HSCT. Retrospective genetic workup revealed homozygous bi-allelic mutations in IL7RA in one patient and in RAG2 in the other. Our study exemplifies the impact of retrospectively establishing a genetic diagnosis. Pinpointing the genetic cause raises several issues including optimized surveillance and treatment, understanding disease mechanisms and outcomes, future family planning, and social and psychological considerations.
Collapse
|
17
|
Sharapova SO, Skomska-Pawliszak M, Rodina YA, Wolska-Kuśnierz B, Dabrowska-Leonik N, Mikołuć B, Pashchenko OE, Pasic S, Freiberger T, Milota T, Formánková R, Szaflarska A, Siedlar M, Avčin T, Markelj G, Ciznar P, Kalwak K, Kołtan S, Jackowska T, Drabko K, Gagro A, Pac M, Naumova E, Kandilarova S, Babol-Pokora K, Varabyou DS, Barendregt BH, Raykina EV, Varlamova TV, Pavlova AV, Grombirikova H, Debeljak M, Mersiyanova IV, Bondarenko AV, Chernyshova LI, Kostyuchenko LV, Guseva MN, Rascon J, Muleviciene A, Preiksaitiene E, Geier CB, Leiss-Piller A, Yamazaki Y, Kawai T, Walter JE, Kondratenko IV, Šedivá A, van der Burg M, Kuzmenko NB, Notarangelo LD, Bernatowska E, Aleinikova OV. The Clinical and Genetic Spectrum of 82 Patients With RAG Deficiency Including a c.256_257delAA Founder Variant in Slavic Countries. Front Immunol 2020; 11:900. [PMID: 32655540 PMCID: PMC7325958 DOI: 10.3389/fimmu.2020.00900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Variants in recombination-activating genes (RAG) are common genetic causes of autosomal recessive forms of combined immunodeficiencies (CID) ranging from severe combined immunodeficiency (SCID), Omenn syndrome (OS), leaky SCID, and CID with granulomas and/or autoimmunity (CID-G/AI), and even milder presentation with antibody deficiency. Objective: We aim to estimate the incidence, clinical presentation, genetic variability, and treatment outcome with geographic distribution of patients with the RAG defects in populations inhabiting South, West, and East Slavic countries. Methods: Demographic, clinical, and laboratory data were collected from RAG-deficient patients of Slavic origin via chart review, retrospectively. Recombinase activity was determined in vitro by flow cytometry-based assay. Results: Based on the clinical and immunologic phenotype, our cohort of 82 patients from 68 families represented a wide spectrum of RAG deficiencies, including SCID (n = 20), OS (n = 37), and LS/CID (n = 25) phenotypes. Sixty-seven (81.7%) patients carried RAG1 and 15 patients (18.3%) carried RAG2 biallelic variants. We estimate that the minimal annual incidence of RAG deficiency in Slavic countries varies between 1 in 180,000 and 1 in 300,000 live births, and it may vary secondary to health care disparities in these regions. In our cohort, 70% (n = 47) of patients with RAG1 variants carried p.K86Vfs*33 (c.256_257delAA) allele, either in homozygous (n = 18, 27%) or in compound heterozygous (n = 29, 43%) form. The majority (77%) of patients with homozygous RAG1 p.K86Vfs*33 variant originated from Vistula watershed area in Central and Eastern Poland, and compound heterozygote cases were distributed among all Slavic countries except Bulgaria. Clinical and immunological presentation of homozygous RAG1 p.K86Vfs*33 cases was highly diverse (SCID, OS, and AS/CID) suggestive of strong influence of additional genetic and/or epigenetic factors in shaping the final phenotype. Conclusion: We propose that RAG1 p.K86Vfs*33 is a founder variant originating from the Vistula watershed region in Poland, which may explain a high proportion of homozygous cases from Central and Eastern Poland and the presence of the variant in all Slavs. Our studies in this cohort of RAG1 founder variants confirm that clinical and immunological phenotypes only partially depend on the underlying genetic defect. As access to HSCT is improving among RAG-deficient patients in Eastern Europe, we anticipate improvements in survival.
Collapse
Affiliation(s)
- Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Region, Belarus
| | | | - Yulia A. Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Bozena Mikołuć
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Olga E. Pashchenko
- Immunology Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Srdjan Pasic
- Pediatric Immunology, Medical Faculty, Mother and Child Health Institute, University of Belgrade, Belgrade, Serbia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomáš Milota
- Department of Immunology, University Hospital Motol, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Renata Formánková
- Department of Pediatric Hematology and Oncology, University Hospital Motol, Prague, Czechia
- Faculty of Medicine, Charles University, Prague, Czechia
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Clinical Immunology, University Children's Hospital, Krakow, Poland
| | - Tadej Avčin
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gašper Markelj
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Ciznar
- Pediatric Department, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Krzysztof Kalwak
- Department of Pediatric Hematology/Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
- Nicolaus Copernicus University in Torun, Torun, Poland
| | - Teresa Jackowska
- Department of Pediatrics, Medical Center of Postgraduate Education, Warsaw, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Alenka Gagro
- Department of Pediatrics, School of Medicine, Zagreb Children's Hospital, University of Zagreb, Zagreb, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Małgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Elissaveta Naumova
- Department of Clinical Immunology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Snezhina Kandilarova
- Department of Clinical Immunology, University Hospital Alexandrovska, Sofia, Bulgaria
| | - Katarzyna Babol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Dzmitry S. Varabyou
- Department of Geographical Ecology, Belarusian State University, Minsk, Belarus
| | - Barbara H. Barendregt
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena V. Raykina
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Tatiana V. Varlamova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna V. Pavlova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Hana Grombirikova
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Maruša Debeljak
- University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Irina V. Mersiyanova
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasiia V. Bondarenko
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Liudmyla I. Chernyshova
- Department of Pediatric Infectious Diseases and Pediatric Immunology, Shupyk National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Larysa V. Kostyuchenko
- Pediatric Department, West-Ukrainian Specialized Children's Medical Center, Lviv, Ukraine
| | - Marina N. Guseva
- Consulting Center of Pediatric Medical Academy, St. Petersburg, Russia
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University, Vilnius, Lithuania
| | - Audrone Muleviciene
- Center for Pediatric Oncology and Hematology, Vilnius University, Vilnius, Lithuania
| | - Egle Preiksaitiene
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University, Vilnius, Lithuania
| | | | | | - Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jolan E. Walter
- University of South Florida at Johns Hopkins All Children's Hospital, Saint Petersburg, FL, United States
- Massachusetts General Hospital for Children, Boston, MA, United States
| | - Irina V. Kondratenko
- Department of Clinical Immunology, Russian Clinical Children's Hospital by Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna Šedivá
- Department of Immunology, University Hospital Motol, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pediatric, Laboratory for Pediatric Immunology, Willem Alexander Children's Hospital, LUMC, Leiden, Netherlands
| | - Natalia B. Kuzmenko
- Department of Epidemiology and Monitoring of Primary Immunodeficiencies, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ewa Bernatowska
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Olga V. Aleinikova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk Region, Belarus
| |
Collapse
|