1
|
Kalantari H, Turner RJ. Structural and antimicrobial properties of synthesized gold nanoparticles using biological and chemical approaches. Front Chem 2024; 12:1482102. [PMID: 39605957 PMCID: PMC11598438 DOI: 10.3389/fchem.2024.1482102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
This study explores the synthesis and characterization of gold nanoparticles (AuNPs) using green and chemical methods, employing ginger extract and curcumin as reducing agents, in comparison to sodium citrate reduction. The biosynthesized AuNPs synthesized with ginger extract exhibited an average hydrodynamic diameter of 15 and 10 nm for curcumin-conjugated AuNPs, while chemically synthesized AuNPs with sodium citrate displayed an average size of 10 nm. Assessments via Zeta potential measurements revealed negative surface charges across all samples, with the curcumin-conjugated AuNPs showing -36.3 mV, ginger extract-synthesized AuNPs showing -31.7 mV, and chemically produced gold nanoparticles having a surface charge of -40.4 mV. Transmission Electron Microscopy (TEM) confirmed spherical morphologies for the synthesized nanoparticles,and it revealed the presence of biomolecules embedded within the nanoparticles synthesized using biological materials, whereas chemically synthesized AuNPs lacked such features. The FTIR spectra of the biosynthesized AuNPs highlighted the presence of phenolic and aromatic compounds from the ginger extract and curcumin, indicating their role in coating the nanoparticles. Gas chromatography-mass spectrometry (GC-MS) analysis identified gingerol as a key component in the ginger extract, contributing to nanoparticle capping. The antimicrobial efficacy of the AuNPs was evaluated against P. aeruginosa, E. coli, and S. aureus, revealing superior activity for curcumin-AuNPs, with ginger-AuNPs also outperforming chemically synthesized counterparts. These findings confirm the advantages of biological approaches, using a plant extract like ginger and pure curcumin suspension, for better size distribution when used as reducing agents, along with improved antimicrobial efficacy compared to chemically produced gold nanoparticles synthesized with sodium citrate. This study also highlight the potential of green-synthesized AuNPs in biomedical applications, due to their enhanced stability from higher surface charge and the repeatability of biological methods.
Collapse
Affiliation(s)
- Hamidreza Kalantari
- Department of Biological Sciences, Microbial Biochemistry Laboratory, University of Calgary, Calgary, NW, Canada
- Department of Microbiology, Islamic Azad University, Tehran, Iran
| | - Raymond J. Turner
- Department of Biological Sciences, Microbial Biochemistry Laboratory, University of Calgary, Calgary, NW, Canada
| |
Collapse
|
2
|
Saud A, Gupta S, Allal A, Preud’homme H, Shomar B, Zaidi SJ. Progress in the Sustainable Development of Biobased (Nano)materials for Application in Water Treatment Technologies. ACS OMEGA 2024; 9:29088-29113. [PMID: 39005778 PMCID: PMC11238215 DOI: 10.1021/acsomega.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 07/16/2024]
Abstract
Water pollution remains a widespread problem, affecting the health and wellbeing of people around the globe. While current advancements in wastewater treatment and desalination show promise, there are still challenges that need to be overcome to make these technologies commercially viable. Nanotechnology plays a pivotal role in water purification and desalination processes today. However, the release of nanoparticles (NPs) into the environment without proper safeguards can lead to both physical and chemical toxicity. Moreover, many methods of NP synthesis are expensive and not environmentally sustainable. The utilization of biomass as a source for the production of NPs has the potential to mitigate issues pertaining to cost, sustainability, and pollution. The utilization of biobased nanomaterials (bio-NMs) sourced from biomass has garnered attention in the field of water purification due to their cost-effectiveness, biocompatibility, and biodegradability. Several research studies have been conducted to efficiently produce NPs (both inorganic and organic) from biomass for applications in wastewater treatment. Biosynthesized materials such as zinc oxide NPs, phytogenic magnetic NPs, biopolymer-coated metal NPs, cellulose nanocrystals, and silver NPs, among others, have demonstrated efficacy in enhancing the process of water purification. The utilization of environmentally friendly NPs presents a viable option for enhancing the efficiency and sustainability of water pollution eradication. The present review delves into the topic of biomass, its origins, and the methods by which it can be transformed into NPs utilizing an environmentally sustainable approach. The present study will examine the utilization of greener NPs in contemporary wastewater and desalination technologies.
Collapse
Affiliation(s)
- Asif Saud
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Soumya Gupta
- Center
for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | - Ahmed Allal
- IPREM-UMR5254,
E2S UPPA, CNRS, 2 avenue Angot, 64053 Pau cedex, France
| | | | - Basem Shomar
- Environmental
Science Center, Qatar University, , P.O. Box 2713, Doha, Qatar
| | - Syed Javaid Zaidi
- UNESCO
Chair on Desalination and Water Treatment, Center for Advanced Materials
(CAM), Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Hedayatipanah M, Gholami L, Farmany A, Alikhani MY, Hooshyarfard A, Hashemiyan FS. Green synthesis of silver nanoparticles and evaluation of their effects on the Porphyromonas gingivalis bacterial biofilm formation. Clin Exp Dent Res 2024; 10:e887. [PMID: 38798089 PMCID: PMC11128748 DOI: 10.1002/cre2.887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the impact of silver nanoparticles (AgNPs) synthesized from propolis on the formation of Porphyromonas gingivalis biofilms. MATERIAL AND METHODS AgNPs were synthesized from propolis, and their inhibitory effect on P. gingivalis biofilm formation was assessed. Different concentrations of AgNPs (0.1%, 0.3%, and 0.5%) were tested to determine the dose-dependent antibacterial activity. RESULTS The results of this study indicated that AgNPs exhibited an inhibitory effect on P. gingivalis biofilm formation. The antibacterial activity of AgNPs was dose-dependent, with concentrations of 0.1%, 0.3%, and 0.5% showing effectiveness. Notably, the concentration of 0.5% demonstrated the most significant anti-biofilm formation activity. CONCLUSION The results of this study suggest that AgNPs synthesized from propolis have potential as an effective option for enhancing periodontal treatment outcomes. The inhibitory effect of AgNPs on P. gingivalis biofilm formation highlights their potential as alternative antimicrobial agents in the management of periodontal diseases.
Collapse
Affiliation(s)
- Morad Hedayatipanah
- Department of Periodontics, Faculty of DentistryHamadan University of Medical SciencesHamadanIran
| | - Leila Gholami
- Department of Periodontics, Faculty of DentistryHamadan University of Medical SciencesHamadanIran
| | - Abbas Farmany
- Dental Implant Research Center, Faculty of DentistryHamadan University of Medical SciencesHamadanIran
| | - Mohammad Yusef Alikhani
- Department of Microbiology, Faculty of Medicine, Infection Disease Research CenterHamadan University of Medical SciencesHamadanIran
| | - Amirarsalan Hooshyarfard
- Department of Periodontics, Dental Material Research Center, Faculty of Dentistry, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Fahime Sadat Hashemiyan
- Department of Periodontics, Faculty of DentistryQazvin University of Medical SciencesQazvinIran
| |
Collapse
|
4
|
Kadir NHA, Murugan N, Khan AA, Sandrasegaran A, Khan AU, Alam M. Evaluation of the cytotoxicity, antioxidant activity, and molecular docking of biogenic zinc oxide nanoparticles derived from pumpkin seeds. Microsc Res Tech 2024; 87:602-615. [PMID: 38018343 DOI: 10.1002/jemt.24437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 μm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 μg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 μg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.
Collapse
Affiliation(s)
- Nurul Huda Abd Kadir
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Navindran Murugan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, SIILAS Campus, Jaipur National University, Jaipur, India
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University Wise, Gyeongju-si, Gyeongbuk, South Korea
| |
Collapse
|
5
|
Khan MM, Matussin SN, Rahman A. Recent development of metal oxides and chalcogenides as antimicrobial agents. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02878-1. [PMID: 37198515 DOI: 10.1007/s00449-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Pathogenic microbes are a major concern in hospitals and other healthcare facilities because they affect the proper performance of medical devices, surgical devices, etc. Due to the antimicrobial resistance or multidrug resistance, combatting these microbial infections has grown to be a significant research area in science and medicine as well as a critical health concern. Antibiotic resistance is where microbes acquire and innately exhibit resistance to antimicrobial agents. Therefore, the development of materials with promising antimicrobial strategy is a necessity. Amongst other available antimicrobial agents, metal oxide and chalcogenide-based materials have shown to be promising antimicrobial agents due to their inherent antimicrobial activity as well as their ability to kill and inhibit the growth of microbes effectively. Moreover, other features including the superior efficacy, low toxicity, tunable structure, and band gap energy has makes metal oxides (i.e. TiO2, ZnO, SnO2 and CeO2 in particular) and chalcogenides (Ag2S, MoS2, and CuS) promising candidates for antimicrobial applications as illustrated by examples discussed in this review.
Collapse
Affiliation(s)
- Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam.
| | - Shaidatul Najihah Matussin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Ashmalina Rahman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| |
Collapse
|
6
|
Karimzadeh Z, Rahimpour E, Jouyban A. A follow-up study on "A sensitive determination of morphine in plasma using AuNPs@UiO-66/PVA hydrogel as an advanced optical scaffold". Heliyon 2023; 9:e15267. [PMID: 37095988 PMCID: PMC10121456 DOI: 10.1016/j.heliyon.2023.e15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/11/2023] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
A double solvent-assisted approach was developed for the preparation of AuNPs@UiO-66 based polyvinyl alcohol hydrogel nanocomposite and evaluated its potential as a nanoprobe for the determination of morphine. The characterization and morphology of the synthesized platform were studied and performance comparison for morphine determination was done between the synthesized scaffold and the reported one in our previous work and discussed in detail. Due to the encapsulation of AuNPs inside UiO-66 in a double solvent-assisted approach, no energy transfer was performed with UiO-66 and finally, morphine could not bind with AuNPs. Given these values, such a hydrogel-based matrix prepared with different methodologies with the same thermal stability demonstrates dissimilar potential toward morphine determination in biological samples.
Collapse
Affiliation(s)
- Zahra Karimzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Corresponding author. Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Mondéjar-López M, López-Jimenez AJ, Ahrazem O, Gómez-Gómez L, Niza E. Chitosan coated - biogenic silver nanoparticles from wheat residues as green antifungal and nanoprimig in wheat seeds. Int J Biol Macromol 2023; 225:964-973. [PMID: 36402386 DOI: 10.1016/j.ijbiomac.2022.11.159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
In this study, chitosan-coated biogenic silver nanoparticles (AgNP-CH) were obtained through green chemistry by recycling wheat crop leaf residues. The nanoparticles were characterized by UV-VIS spectroscopy, and total reflectance-Fourier transform infrared spectroscopy confirmed the nanoparticle formation, and the incorporation of chitosan surrounding silver nanoparticles. The size and morphology of nanoparticles were evaluated by microscopy techniques, showing a size range of 2-10 nm, with spherical shape and narrow distribution. The antifungal assay indicated a higher antimicrobial activity showing values of minimum inhibitory concentrations of 41.7 μg/mL against Fusarium oxysporum, and 208.37 μg/mL for Aspergillus niger, A. versicolor and A. brasiliensis. Finally, non-phytotoxic effects were observed in germination assays at early plant stage of development, and an increase in chlorophyll levels were observed at the doses tested with AgNP-CH. Thus, the use of AgNP-CH could be a potential alternative for the prevention of fungal infections in cereals in the early stages of wheat crop development.
Collapse
Affiliation(s)
- María Mondéjar-López
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Alberto José López-Jimenez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Escuela Técnica Superior de Ingenieros Agrónomos y Montes, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
| | - Enrique Niza
- Instituto Botánico, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, 02071 Albacete, Spain; Facultad de Farmacia, C/ José María Sánchez Ibáñez s/n, 02008 Albacete, Spain.
| |
Collapse
|
8
|
Das G, Shin HS, Patra JK. Comparative Bio-Potential Effects of Fresh and Boiled Mountain Vegetable (Fern) Extract Mediated Silver Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2022; 11:3575. [PMID: 36559687 PMCID: PMC9786859 DOI: 10.3390/plants11243575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 06/01/2023]
Abstract
This current investigation was designed to synthesize Ag nanoparticles (AgNPs) using both the fresh (Fbf) and boiled (Bbf) Korean mountain vegetable fern (named Gosari) extracts and make a comparative evaluation of its multi-therapeutic potentials. The screening of phytochemicals in the fern extract was undertaken. The synthesized fern-mediated silver nanoparticles are characterized and investigated for their bio-potential like α-glucosidase inhibition, antioxidant, and cytotoxicity prospects. The obtained AgNPs were characterized by the UV-Vis Spectra, SEM, EDS, XRD, FTIR, DLS, Zeta potential analysis, etc. The synthesis of the Fbf-AgNPs was very fast and started within 1 h of the reaction whereas the synthesis of the Bbf-AgNPs synthesis was slow and it started around 18 h of incubation. The UV-Vis spectra displayed the absorption maxima of 424 nm for Fbf-AgNPs and in the case of Bbf-AgNPs, it was shown at 436 nm. The current research results demonstrated that both Fbf-AgNPs and Bbf-AgNPs displayed a strong α-glucosidase inhibition effect with more than 96% effect at 1 µg/mL concentration, but the Bbf-AgNPs displayed a slightly higher effect with IC50 value slightly lower than the Fbf-AgNPs. Both Fbf-AgNPs and Bbf-AgNPs displayed good antioxidant effects concerning the in vitro antioxidant assays. In the case of the cytotoxicity potential assay also, among both the investigated Fbf-AgNPs and Bbf-AgNPs nanoparticles, the Bbf-AgNPs showed stronger effects with lower IC50 value as compared to the Fbf-AgNPs. In conclusion, both the fern-mediated AgNPs displayed promising multi-therapeutic potential and could be beneficial in the cosmetics and pharmaceutical sectors. Though the synthesis process is rapid in Fbf-AgNPs, but it is concluded from the results of all the tested bio-potential assays, Bbf-AgNPs is slightly better than Fbf-AgNPs.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Seoul 10326, Gyeonggi-do, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Seoul 10326, Gyeonggi-do, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Seoul 10326, Gyeonggi-do, Republic of Korea
| |
Collapse
|
9
|
Yadi M, Azizi M, Dianat-Moghadam H, Akbarzadeh A, Abyadeh M, Milani M. Antibacterial activity of green gold and silver nanoparticles using ginger root extract. Bioprocess Biosyst Eng 2022; 45:1905-1917. [PMID: 36269380 DOI: 10.1007/s00449-022-02780-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
Recent studies demonstrated that the speed of synthesis, biocompatibility, and antimicrobial activity of gold (Au) and silver (Ag) metals is enhanced when biosynthesized in nano-sized particles. In the present study, Au- and Ag-based nanoparticles (NPs) were synthesized via a biological process using aqueous Ginger root extract and characterized by various spectroscopic methods. The NPs have hexagonal and spherical shapes. The average particle size for Au and Ag NPs was 20 and 15 nm, respectively. The dynamic light scattering (DLS) technique has shown that the zeta potential values of synthesized NPs were 4.8 and - 7.11 mv, respectively. Gas chromatography-mass spectrometry (GC-MS) analysis of Ginger root extract revealed 25 compounds. The synthesized NPs showed significant activity against Staphylococcus aureus and Escherichia (E). coli in vitro, with IC50 and IC90 values for Au and Ag NPs, respectively, noted to be 7.5 and 7.3 µg/ml and 15 and 15.2 µg/ml for both bacterial strains. The protein leakage level was tremendous and morphological changes occurred in bacteria treated with biosynthesized NPs. These results suggest that the biosynthesized metallic NPs have the suitable potential for application as antibacterial agents with enhanced activities.
Collapse
Affiliation(s)
- Morteza Yadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Abyadeh
- Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Palladium nanospheres incorporated polythiophene nanocomposite: Investigation of potency promising antimicrobial efficacy. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Abdellatif AAH, Abdelfattah A, Bouazzaoui A, Osman SK, Al-Moraya IS, Showail AMS, Alsharidah M, Aboelela A, Al Rugaie O, Faris TM, Tawfeek HM. Silver Nanoparticles Stabilized by Poly (Vinyl Pyrrolidone) with Potential Anticancer Activity towards Prostate Cancer. Bioinorg Chem Appl 2022; 2022:6181448. [PMID: 36248627 PMCID: PMC9553549 DOI: 10.1155/2022/6181448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor (TNF-α) and inflammatory cytokine (IL-6) play a vital role in various cellular incidents such as the proliferation and death of cells during carcinogenesis. Hence, regulation of these biomarkers could be a promising tool for controlling tumor progression using nanoformulations. Silver nanoparticles-poly (vinyl pyrrolidone) (AgNPs-PVP) were prepared using the reduction of silver nitrate and stabilized with PVP. They are characterized through yield percentage, UV-VIS, FT-IR, size, charge, and morphology. The obtained AgNPs were tested for anticancer activity against prostate cancer (PC 3) and human skin fibroblast (HFS) cell lines. Moreover, biomarker-based confirmations like TNF-α and IL-6 were estimated. The synthesized AgNPs-PVP were stable, spherical in shape, with particle sizes of 122.33 ± 17.61 nm, a polydispersity index of 0.49 ± 0.07, and a negative surface charge of -19.23 ± 0.61 mV. In vitro cytotoxicity testing showed the AgNPs-PVP exhibited antiproliferation properties in PC3 in a dose-dependent manner. In addition, when compared to control cells, AgNPs-PVP has lower TNF-α with a significant value ( ∗ p < 0.05); the value reached 16.84 ± 0.71 pg/ml versus 20.81 ± 0.44 pg/ml, respectively. In addition, HSF cells showed a high level of reduction ( ∗∗∗ p < 0.001) in IL-6 production. This study suggested that AgNPs-PVP could be a possible therapeutic agent for human prostate cancer and anti-IL-6 in cancerous and noncancerous cells. Further studies will be performed to investigate the effect of AgNPs-PVP in different types of cancer.
Collapse
Affiliation(s)
- Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Qassim 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed Abdelfattah
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Medical Clinic, Hematology, Oncology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Shaaban K. Osman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Issa Saad Al-Moraya
- Clinical Toxicology, College of Medicine Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Forensic Medicine & Toxicology Center, Ministry of Health, Abha, Saudi Arabia
| | - Abdulaziz M. Saleh Showail
- Department of Urology, Khamis Mushait General Hospital, Ministry of Health, Khamis Mushait, Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ashraf Aboelela
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, P.O. Box 991, Al Qassim 51911, Saudi Arabia
| | - Tarek M. Faris
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Soror AFS, Ahmed MW, Hassan AEA, Alharbi M, Alsubhi NH, Al-Quwaie DA, Alrefaei GI, Binothman N, Aljadani M, Qahl SH, Jaber FA, Abdalla H. Evaluation of Green Silver Nanoparticles Fabricated by Spirulina platensis Phycocyanin as Anticancer and Antimicrobial Agents. Life (Basel) 2022; 12:1493. [PMID: 36294927 PMCID: PMC9605328 DOI: 10.3390/life12101493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Green nanotechnology has attracted attention worldwide, especially in treating cancer and drug-resistant section 6 microbes. This work aims to investigate the anticancer activity of green silver nanoparticles synthesized by Spirulina platensis phycocyanin (SPAgNPs) on two cancer cell lines: Lung cancer cell line (A-549) and breast cancer cell line (MCF-7), compared to the normal human lung cell line (A138). We also aimed to investigate the bactericidal activity against Staphylococcus aureus ATCC29737, Bacillus cereus ATCC11778, Escherichia coli ATCC8379, and Klebsiella pneumonia, as well as the fungicidal activity against Candida albicans (ATCC6019) and Aspergillus niger. The obtained SPAgNPs were spherical and crystalline with a size of 30 nm and a net charge of -26.32 mV. Furthermore, they were surrounded by active groups responsible for stability. The SPAgNPs scavenged 85% of the DPPH radical with a relative increase of approximately 30% over the extract. The proliferation of cancer cells using the MTT assay clarified that both cancer cells (A-549 and MCF-7) are regularly inhibited as they grow on different concentrations of SPAgNPs. The maximum inhibitory effect of SPAgNPs (50 ppm) reached 90.99 and 89.51% against A-549 and MCF7, respectively. Regarding antimicrobial activity, no inhibition zones occurred in bacterial or fungal strains at low concentrations of SPAgNPs and the aqueous Spirulina platensis extract. However, at high concentrations, inhibition zones, especially SPAgNPs, were more potent for all tested microorganisms than their positive controls, with particular reference to Staphylococcus aureus, since the inhibition zones were 3.2, 3.8, and 4.3 mm, and Bacillus cereus was 2.37 mm when compared to tetracycline (2.33 mm). SPAgNPs have more potent antifungal activity, especially against Aspergillus niger, compared to their positive controls. We concluded that SPAgNPs are powerful agents against oxidative stress and microbial infection.
Collapse
Affiliation(s)
- Abel-Fattah Salah Soror
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mai Waled Ahmed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Abdalla E. A. Hassan
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mona Alharbi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nouf H. Alsubhi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Diana A. Al-Quwaie
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Najat Binothman
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Majidah Aljadani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Fatima A. Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
13
|
Das G, Shin HS, Patra JK. Key Health Benefits of Korean Ueong Dry Root Extract Combined Silver Nanoparticles. Int J Nanomedicine 2022; 17:4261-4275. [PMID: 36134204 PMCID: PMC9484570 DOI: 10.2147/ijn.s357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/31/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Nowadays, in nanotechnology and material science, biosynthesis of the metal nanoparticle is a promising approach. Methods In the current research, the extract of the Korean Ueong dry root (BdkR), which belongs to the Asteraceae family, was used as a reducing and capping agent, for the green synthesis of the BdkR-Ag nanoparticles in a cost-effective and highly efficient manner. In this study for the reaction measures, UV-Vis spectroscopy was applied. SEM, EDX, FTIR, XRD, mean size distribution, and zeta potential were used for the characterization of the green synthesized BdkR-AgNPs. In the beginning, the primary phytochemical screening of BdkR extract was estimated and the cytotoxicity, antidiabetic, antioxidant, and antibacterial activities of the green synthesized BdkR-AgNPs were evaluated. Results According to the results, the BdkR extract is rich in various phytochemicals and the generated AgNPs were crystalline in nature. The surface plasmon resonance value of the BdkR-AgNPs was 444 nm confirming the synthesis of AgNPs. The BdkR-AgNPs displayed four clear diffraction peaks at 2 theta angles (38.22); (46.15); (64.88); (76.83), respectively, which are equivalent to (111), (200), (220) and (311). The obtained nanoparticles have a zeta potential of -17.0 mV. Furthermore, the generated BdkR-AgNPs exhibited considerable antidiabetic effect in terms of the inhibition of α-glucosidase with a maximum inhibition value of 95.41% at 5.0 µg/mL and more than 86% inhibition at 2.5 µg/mL and the estimated IC50 value was found to be 0.653 µg/mL. Further, it also displayed a significant cytotoxicity activity against the HepG2 cancer cell lines at 10 µg/mL and 100 µg/mL concentrations with 86% and 88% of inhibition, respectively. Besides this, the synthesized AgNPs also displayed promising antioxidant activities in terms of the DPPH (IC50 value - 56.26 µg/mL), ABTS (IC50 value - 171.43 µg/mL) and reducing power (IC0.5 value - 227.42 µg/mL). Discussion The multipotential effects of the synthesized BdkR-AgNPs might be attributed to the presence of the bioactive compounds in the BdkR extract that acted as the capping and reducing agent in the synthesis process. The green synthesized BdkR-AgNPs exhibited promising bioactive potential for their future applications in the food and biomedical field.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University‐Seoul, Gyeonggi‐do, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| |
Collapse
|
14
|
Jannathul Firdhouse M, Lalitha P. Biogenic green synthesis of gold nanoparticles and their applications – A review of promising properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
El-Gendy AO, Nawaf KT, Ahmed E, Samir A, Hamblin MR, Hassan M, Mohamed T. Preparation of zinc oxide nanoparticles using laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112540. [PMID: 35973287 DOI: 10.1016/j.jphotobiol.2022.112540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The unusual physical, chemical, and biological features of nanoparticles have sparked considerable attention in the ophthalmological applications. This study reports the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) using laser-ablation at 100 mJ with different ablation times. The synthesized ZnONPs were spherical with an average size of 10.2 nm or 9.8 nm for laser ablation times of 20 and 30 min, respectively. The ZnONPs were screened for their antimicrobial activity against ophthalmological bacteria, methicillin-resistant S. aureus (MRSA) and Pseudomonas aeruginosa. The significant decrease in bacterial growth was observed after treatment with ZnONPs in combination with 400 nm femtosecond laser irradiation. ZnONPs were investigated for their antioxidant activity and biocompatibility towards retinal epithelial cells (ARPE-19). ZnONPs showed moderate antioxidant and free radical scavenging activity. ZnONPs prepared with an ablation time of 20 min were safer and more biocompatible than those prepared with an ablation time of 30 min, which were toxic to ARPE-19 cells with LC50 (11.3 μg/mL) and LC90 (18.3 μg/mL). In this study, laser ablation technique was used to create ZnONPs, and it was proposed that ZnONPs could have laser-activated antimicrobial activity for ophthalmological applications.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khalid T Nawaf
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Anbar Health Department, Anbar province, Ministry of Health, Iraq
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Samir
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mansour Hassan
- Faculty of Medicine, Department of Ophthalmology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
16
|
Qu J, Yang J, Chen M, Zhai A. Anti-human gastric cancer study of gold nanoparticles synthesized using Alhagi maurorum. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Prasad A, Khatua A, Mohanta YK, Saravanan M, Meena R, Ghosh I. Low-dose exposure to phytosynthesized gold nanoparticles combined with glutamine deprivation enhances cell death in the cancer cell line HeLa via oxidative stress-mediated mitochondrial dysfunction and G0/G1 cell cycle arrest. NANOSCALE 2022; 14:10399-10417. [PMID: 35819245 DOI: 10.1039/d2nr02150a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer cells use nutrients like D-glucose (Glc) and L-glutamine (Q) more efficiently for their development. This increased nutritional dependency of malignant cells has been commonly employed in various in vitro and in vivo models of anticancer therapies. This study utilized a combination of a low dose (25 μg mL-1) of S2, a phytosynthesized gold nanoparticle (AuNP) that was previously proven to be non-toxic, and deprivation of extracellular glutamine as an anticancer strategy in the human cervical cancer cell line HeLa. We discovered that 24 h Q deprivation led to a less significant decrease in the viability of HeLa cells while a low dose of S2 caused a non-significant reduction in the viability of HeLa cells. However, combining these two treatments resulted in highly significant inhibition of cell growth, as measured by the MTT test and morphological examination. Glutamine starvation in HeLa cells was found to induce cellular uptake of S2 via clathrin-mediated endocytosis, thus facilitating the improved antitumor effects of the combined treatment. Flow cytometry-based assays using fluorescent probes H2DCFDA and MitoSOX Red confirmed that this combination therapy involved the development of oxidative stress conditions owing to a surplus of cytosolic reactive oxygen species (cytoROS) and mitochondrial superoxide (mtSOX) generation. Furthermore, the investigated combinatorial treatment also indicated mitochondrial inactivity and disintegration, as evidenced by the drop in the mitochondrial membrane potential (Δψm) and the decrease in the mitochondrial mass (mtMass) in a flow-cytometric assay utilizing the probes. Tetramethylrhodamine ethyl ester and MitoTracker Green FM, respectively. Cell cycle arrest in the G0/G1 phase, induction of cell death via apoptosis/necrosis, and inhibition of migration capacities of HeLa cells were also seen after the combined treatment. Thus, this research provides insight into a new combinatorial approach for reducing the dose of nanoparticles and increasing their efficacy to better inhibit the growth of human cervical cancer cells by leveraging their extracellular glutamine dependence.
Collapse
Affiliation(s)
- Abhinav Prasad
- Biochemistry and Environmental Toxicology Laboratory, Lab#103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ashapurna Khatua
- Nanotoxicology Laboratory, Lab#312, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences University of Science and Technology Meghalaya, Ri-Bhoi-793101, India.
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India.
| | - Ramovatar Meena
- Nanotoxicology Laboratory, Lab#312, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology Laboratory, Lab#103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
18
|
Yilmaz MT, İspirli H, Taylan O, Balubaid M, Dertli E. Facile biomimetic synthesis of AgNPs using aqueous extract of Helichrysum arenarium: characterization and antimicrobial activity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mustafa Tahsin Yilmaz
- Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Humeyra İspirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Osman Taylan
- Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Balubaid
- Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enes Dertli
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department, Yıldız Technical University, İstanbul, Turkey
| |
Collapse
|
19
|
Wanjari AK, Patil MP, Chaudhari UE, Gulhane VN, Kim GD, Kiddane AT. Bactericidal and photocatalytic degradation of methyl orange of silver-silver chloride nanoparticles synthesized using aqueous phyto-extract. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2056552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Atul K. Wanjari
- Department of Chemistry, Mahatma Fule Art’s, Commerce and Sitaramji Chaudhari Science College, Warud, Sant Gadge Baba Amravati University, Amravati, India
| | | | - Umesh E. Chaudhari
- Department of Chemistry, Mahatma Fule Art’s, Commerce and Sitaramji Chaudhari Science College, Warud, Sant Gadge Baba Amravati University, Amravati, India
| | - Vaibhav N. Gulhane
- Department of Chemistry, Mahatma Fule Art’s, Commerce and Sitaramji Chaudhari Science College, Warud, Sant Gadge Baba Amravati University, Amravati, India
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea
- School of Marine and Fisheries Life Science, College of Natural Science, Pukyong National University, Busan, Republic of Korea
| | - Anley T. Kiddane
- Lab of Cell Signaling, Department of Microbiology, College of Natural Science, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
20
|
Cytotoxic Activity and Antibiofilm Efficacy of Biosynthesized Silver Nanoparticles against Methicillin-Resistant Staphylococcus aureus Strains Colonizing Cell Phones. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:9410024. [PMID: 35368519 PMCID: PMC8975669 DOI: 10.1155/2022/9410024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/27/2022] [Accepted: 03/03/2022] [Indexed: 11/20/2022]
Abstract
The interest for green synthesis of metallic nanoparticles (NPs) has acquired particular attention due to its low toxicity and economic feasibility compared with chemical or physical process. Here we carried out an extracellular synthesis approach of silver nanoparticles (AgNPs) using dried orange peel extract. Characterization studies revealed the synthesis of 25–30 nm AgNPs with distinct morphology as observed in transmission electron microscopes. Dynamic light scattering spectroscopy and Fourier transform infrared spectroscopy analyses further characterized nanoparticles confirming their stability and the presence of functional groups. The biological properties of biosynthesized AgNPs were subsequently investigated. Our results revealed anticancer activity of biogenic silver NPs against the B16 melanoma cell line with an IC50 value of 25 µg/ml. Additionally, the developed AgNPs displayed a considerable antagonistic activity against methicillin-resistant Staphylococcus aureus (MRSA) strains colonizing cell phones, with inhibition zones between 12 and 14 mm and minimum inhibitory concentration values between 1.56 and 12.5 µg/ml. Furthermore, the AgNPs exhibited potent antibiofilm activity against MRSA strains with the percent biofilm disruption reaching 80%. Our results highlighted the efficacy of biosynthesized AgNPs against bacterial biofilms and pointed to the exploration of orange peels as a natural and cost-effective strategy.
Collapse
|
21
|
Antiproliferative potentials of chitin and chitosan encapsulated gold nanoparticles derived from unhatched Artemia cysts. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Sahu A, Singh P, Singh P, Singh Gahlot AP, Mehrotra R. Simple and rapid biogenic synthesis of colloidal silver and gold nanoparticles using Aegle marmelos fruit for SERS detection of DNA. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aman Sahu
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Pankaj Singh
- Department of Physics, Deshbandhu College, University of Delhi, New Delhi, India
| | | | - Ranjana Mehrotra
- Physico Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
23
|
Tarassoli Z, Najjar R, Amani A. One-pot biosynthesis of silver nanoparticles using green tea plant extract/rosemary oil and investigation of their antibacterial activity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zohreh Tarassoli
- Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Reza Najjar
- Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Amir Amani
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Shabestarian H, Tabrizi MH, Es-Haghi A, Khadem F. The Brassica Napus Extract (BNE)-Loaded PLGA Nanoparticles as an Early Necroptosis and Late Apoptosis Inducer in Human MCF-7 Breast Cancer Cells. Nutr Cancer 2021; 74:2540-2549. [PMID: 34844492 DOI: 10.1080/01635581.2021.2008986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Loading of the Brassica napus extract (BNE) on PLGA nanoparticle (BNE-PNP) and study its necroptotic activity in human MCF7-breast cancer cells. Double emulsion solvent evaporation methods were used for synthesis of BNE-PNP and DLS, SEM, and surface Zeta-potential analysis were applied for defining the physicochemical properties of BNE-PNP. The cytotoxic impact of BNE-PNP nanoparticles was analyzed by MTT assay and expression of apoptotic (P53 and Cas-3) and necrotic (TNF-α) gene markers were measured by qPCR to evaluate the BNE-PNP-induced cell death type. The stable (-36.07 mV) BNE-PNP were synthesized at 71.07 nm dimension. They significantly decrease the count of metabolically active MCF7 cells (IC50: 170.94 µg/ml after 48 h). The BNE-PNP induced an early programmed necrotic (necroptosis) and late apoptotic death on the MCF7 cancer cells by up-regulating all the P53/TNF-α and Cas-3 gene expression, respectively. The BNE-PNP dose-dependently induced an early cell-selective necroptotic death. Since the necroptotic death is known as a biocompatible cellular death induction, the BNE-PNP have the potential to be used as a safe efficient anticancer compound.
Collapse
Affiliation(s)
- Hanieh Shabestarian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
25
|
Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly(ε-caprolactone) towards antimicrobial coatings. Enzyme Microb Technol 2021; 150:109888. [PMID: 34489041 DOI: 10.1016/j.enzmictec.2021.109888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Owing to the probiotic origin, lipases-derived from the Lactobacilli sp. are considered to be promising biomaterials for in vivo applications. On a different note, poly(ε-caprolactone) (PCL)-an FDA-approved polymer for implantable applications-lacks inherent antimicrobial property, because of which suitable modifications are required to render it with bactericidal activity. Here, we employ Lactobacillus amylovorous derived lipase to surface derivatize the PCL films with silver that is a highly efficient inorganic broad-spectrum antimicrobial substance. Two different surface functionalization strategies have been employed over the alkaline hydrolyzed PCL films towards this purpose: In the first strategy, lipase-capped silver nanoparticles (Ag NPs) have been synthesized in a first step, which have been covalently immobilized over the activated carboxylic groups on the PCL film surface in a subsequent step. In the second strategy, the lipase was covalently immobilized over the activated carboxylic groups of the PCL film surface in the first step, over which silver was deposited in the second step using the dip-coating method. While the characterization study using X-ray photoelectron spectroscopy (XPS) has revealed the successful derivatization of silver over the PCL film, the surface characterization using field-emission scanning electron microscopy (FE-SEM) study has shown a distinct morphological change with higher silver loading in both strategies. The antimicrobial studies employing E. coli have revealed 100 % inhibition in the bacterial growth in 4-6 h with the Ag NPs-immobilized PCL films as opposed to >8 h with those prepared through the dip-coating method. Additionally, the cytotoxicity assay using mouse fibroblast cells has shown that the PCL films immobilized with lipase-capped Ag NPs exhibit high cell compatibility, similar to that of pristine PCL film, and thereby making it suitable for in vivo applications.
Collapse
|
26
|
Bang TH, Park BS, Kang HM, Kim JH, Kim IR. Polydatin, a Glycoside of Resveratrol, Induces Apoptosis and Inhibits Metastasis Oral Squamous Cell Carcinoma Cells In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14090902. [PMID: 34577602 PMCID: PMC8468100 DOI: 10.3390/ph14090902] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/07/2023] Open
Abstract
Although various methods, such as surgery and chemotherapy, are applied to the treatment of OSCC, there are problems, such as functional and aesthetic limitations of the mouth and face, drug side effects, and lymph node metastasis. Many researchers are making efforts to develop new therapeutic agents from plant-derived substances to overcome the side effects that occur in oral cancer treatment. Polydatin is known as a natural precursor of resveratrol, and research on its efficacy is being actively conducted recently. Therefore, we investigated whether polydatin can induce apoptosis and whether it affects cell migration and invasion through the regulation of EMT-related factors in OSCC. Polydatin decreased the survival and proliferation rates of CAL27 and Ca9-22 cells, and induced the release of cytochrome c, a factor related to apoptosis, and fragmentation of procaspase-3 and PARP. Another form of cell death, autophagy, was observed in polydatin-treated cells. In addition, polydatin inhibits cell migration and invasion, and it has been shown to occur through increased expression of E-cadherin, an EMT related factor, and decreased expression of N-cadherin and Slug and Snail proteins and genes. These findings suggest that polydatin is a potential oral cancer treatment.
Collapse
Affiliation(s)
- Tae-Hyun Bang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (T.-H.B.); (B.-S.P.); (H.-M.K.)
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (T.-H.B.); (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Hae-Mi Kang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (T.-H.B.); (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Jung-Han Kim
- Department of Oral and Maxillofacial Surgery, Medical Center, Dong-A University, Daesingongwon-ro, 26, Seo-gu, Busan 49201, Korea;
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, 49, Mulguem-eup, Yangsan-si 50612, Korea; (T.-H.B.); (B.-S.P.); (H.-M.K.)
- Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Correspondence: ; Tel.: +82-51-510-8552
| |
Collapse
|
27
|
Sharma D, Kumar N, Devki, Tiwari S, Mehrotra T, Pervaiz N, Kumar R, Ledwani L. Cytotoxic potential of Rheum emodi capped silver nanoparticles and In silico study of human CDK-4/6 proteins with hydroxyanthraquinones. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Biogenic Synthesis of Silver Nanoparticles with Bitter Leaf (Vernonia amygdalina) Aqueous Extract and Its Effects on Testosterone-Induced Benign Prostatic Hyperplasia (BPH) in Wistar Rat. CHEMISTRY AFRICA 2021. [DOI: 10.1007/s42250-021-00272-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Liu X, Chen JL, Yang WY, Qian YC, Pan JY, Zhu CN, Liu L, Ou WB, Zhao HX, Zhang DP. Biosynthesis of silver nanoparticles with antimicrobial and anticancer properties using two novel yeasts. Sci Rep 2021; 11:15795. [PMID: 34349183 PMCID: PMC8338994 DOI: 10.1038/s41598-021-95262-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023] Open
Abstract
AgNPs are nanomaterials with many potential biomedical applications. In this study, the two novel yeast strains HX-YS and LPP-12Y capable of producing biological silver nanoparticles were isolated. Sequencing of ribosomal DNA-ITS fragments, as well as partial D1/D2 regions of 26S rDNA indicated that the strains are related to species from the genus Metschnikowia. The BioAgNPs produced by HX-YS and LPP-12Y at pH 5.0-6.0 and 26 °C ranged in size from 50 to 500 nm. The antibacterial activities of yeast BioAgNPs against five pathogenic bacteria were determined. The highest antibacterial effect was observed on P. aeruginosa, with additional obvious effects on E. coli ATCC8099 and S. aureus ATCC10231. Additionally, the BioAgNPs showed antiproliferative effects on lung cancer cell lines H1975 and A579, with low toxicity in Beas 2B normal lung cells. Therefore, the AgNPs biosynthesized by HX-YS and LPP-12Y may have potential applications in the treatment of bacterial infections and cancer.
Collapse
Affiliation(s)
- Xin Liu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Biomass Energy Engineering Research Centre, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia-Le Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wen-Yu Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yu-Cheng Qian
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jing-Yu Pan
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chen-Nianci Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Li Liu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wen-Bin Ou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hong-Xin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Dian-Peng Zhang
- Institute of Plant and Environmental Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
30
|
Kasinathan K, Marimuthu K, Murugesan B, Samayanan S, Cai Y, Rathinam C. Facile synthesis of highly biologically active chitosan functionalized 2D WS2 nanocomposite anchored with palladium nanoparticles for antibacterial and anticancer activity: In-vitro biomedical evaluation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Naidi SN, Harunsani MH, Tan AL, Khan MM. Green-synthesized CeO 2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. J Mater Chem B 2021; 9:5599-5620. [PMID: 34161404 DOI: 10.1039/d1tb00248a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerium oxide nanoparticles (CeO2 NPs) are a sought-after material in numerous fields due to their potential applications such as in catalysis, cancer therapy, photocatalytic degradation of pollutants, sensors, polishing agents. Green synthesis usually involves the production of CeO2 assisted by organic extracts obtained from plants, leaves, flowers, bacteria, algae, food, fruits, etc. The phytochemicals present in the organic extracts adhere to the NPs and act as reducing and/or oxidizing agents and capping agents to stabilize the NPs, modify the particle size, morphology and band gap energy of the as-synthesized materials, which would be advantageous for numerous applications. This review focuses on the green extract-mediated synthesis of CeO2 NPs and discusses the effects on CeO2 NPs of various synthesis methods that have been reported. Several photocatalytic, antimicrobial, antioxidant and cytotoxicity applications have been evaluated, compared and discussed. Future prospects are also suggested.
Collapse
Affiliation(s)
- Siti Najihah Naidi
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Mohammad Hilni Harunsani
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
32
|
Kakakhel MA, Wu F, Feng H, Hassan Z, Ali I, Saif I, Zaheer Ud Din S, Wang W. Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microsc Res Tech 2021; 84:1765-1774. [PMID: 33694296 DOI: 10.1002/jemt.23733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023]
Abstract
Possible high biodeterioration of the microorganisms due to their metabolic pathway and activities on stone materials causes solemn problems in cultural heritage. Different kinds of laboratory-scale methods have been used for the reduction of microbial growth, that is, chemical, mechanical, and physical, which are cost-effective and not ecofriendly. In the current study, an ecofriendly approach utilizing silver nanoparticles were synthesized using sheep blood serum. Transmission electron microscopy results have confirmed the spherical and well dispersed silver nanoparticles with an average size of 32.49 nm, while energy dispersive X-ray has shown the abundance of silver nanoparticles. The efficiency against bacterial species was verified through laboratory-scale testing. The strong antibacterial activity was confirmed when B-AgNPs was tested against different bacterial species isolated from the Beishiku Cave Temple. The largest zone of inhibition was measured 26.48 ± 0.14 mm against Sphingomonas sp. while the smallest zone of inhibition measured was 9.70 ± 0.27 mm against Massilia sp. Moreover, these ecofriendly B-AgNPs were tested for daily based dose in different concentrations (0.03, 0.06, and 0.09 mg/L) against common carp fish for a long exposure (20 days) and 6.5% fatality was found. The highest lethal concentration (LC50 ) for fish (0.61 ± 0.09 mg/L). No doubt, the laboratory scale applications have revealed the best results with minute toxicity in fish. Therefore, sheep serum should be continued to synthesize silver nanoparticles on a large scale. A strict monitoring system should be developed for the synthesis and application of AgNPs.
Collapse
Affiliation(s)
- Mian Adnan Kakakhel
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fasi Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.,National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu, 736200, China
| | - Huyuan Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zubair Hassan
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Ihsan Ali
- College of Life Science, Northwest University, Xi'an, Shaanxi Province, 710069, China
| | - Irfan Saif
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Syed Zaheer Ud Din
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wanfu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.,National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Department of Conservation Research, Dunhuang Academy, Dunhuang, Gansu, 736200, China
| |
Collapse
|
33
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
34
|
|
35
|
Ranjbar M, Kiani M, Khakdan F. Mentha mozaffarianii mediated biogenic zinc nanoparticles target selected cancer cell lines and microbial pathogens. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Shahin Lefteh M, Sourinejad I, Ghasemi Z. Avicennia marina mediated synthesis of TiO2 nanoparticles: its antibacterial potential against some aquatic pathogens. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1852431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mina Shahin Lefteh
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Iman Sourinejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
- Department of Modern Technologies, Mangrove Forest Research Center, University of Hormozgan, Bandar Abbas, Iran
| | - Zahra Ghasemi
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| |
Collapse
|
37
|
Das G, Shin HS, Patra JK. Comparative Assessment of Antioxidant, Anti-Diabetic and Cytotoxic Effects of Three Peel/Shell Food Waste Extract-Mediated Silver Nanoparticles. Int J Nanomedicine 2020; 15:9075-9088. [PMID: 33235452 PMCID: PMC7680163 DOI: 10.2147/ijn.s277625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022] Open
Abstract
Background The natural food waste peels/shells discarded as waste materials are ample sources of natural bioactive compounds. The natural food waste mediated silver (Ag) nanoparticle (NPs) synthesis will be advantageous over chemical synthesis. Materials and Methods Using the various phytochemical-rich ripe P. americana peel (PAP), fresh Beta vulgaris peel (BVP), and rawArachis hypogaea shell (AHS) extracts, the bio-synthesis of PAP-AgNPs, BVP-AgNPs, and AHS-AgNPs, respectively, were carried out and its characterization was completed by standard procedures. The three biosynthesized AgNP's multiple biological effects were accomplished by evaluating their cytotoxicity, antidiabetic, and antioxidant effects. Results The biosynthesis of the three generated Ag nanoparticles was confirmed through UV-vis spectrum analysis while the X-ray diffraction outlines revealed the generated AgNPs nature. The morphological structure and elemental information of the three AgNPs were obtained through SEM (scanning electron microscopy) and EDX (energy-dispersive X-ray) study. Multiple biological assays exhibited that the three generated AgNPs have significant cytotoxic, antidiabetic, and moderate antioxidant activity. In a comparative analysis, the PAP-AgNPs displayed higher anticancer potential than BVP and AHS-AgNPs, whereas AHS-AgNPs exhibited a higher antidiabetic effect with the lowest IC50 value (1.68 µg/mL) than PAP and BVP AgNPs. All three generated AgNPs displayed moderate antioxidant effects, among them BVP-AgNPs were more effective than PAP and AHS AgNPs. More than two effects of the three biosynthesized AgNPs specifies that they have ample perspective in therapeutic applications in pharmaceutical and other related industries in controlling cancer and diabetes.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| |
Collapse
|
38
|
Biological Selenium Nano-particles Modify Immune Responses of Macrophages Exposed to Bladder Tumor Antigens. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01920-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Eco-Friendly Formulation of Selenium Nanoparticles and Its Functional Characterization against Breast Cancer and Normal Cells. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Rajput S, Kumar D, Agrawal V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. PLANT CELL REPORTS 2020; 39:921-939. [PMID: 32300886 DOI: 10.1007/s00299-020-02539-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 05/27/2023]
Abstract
Atropa acuminata aqueous leaf extract biosynthesized silver nanoparticles showed strong antioxidant, anticancerous (HeLa cells) and anti-inflammatory activities. Besides, this bio syn-AgNP also proved effective against mosquito vectors causing malaria, dengue and filariasis. Present study highlights eco-friendly and sustainable approach for the synthesis of silver nanoparticles (AgNP) using aqueous leaf extract of A. acuminata, a critically endangered medicinal herb. The addition of 1 mM silver nitrate to aqueous leaf extract resulted in the synthesis of AgNP when solution was heated at 60 °C for 30 min at pH 7. Absorption band at 428 nm, as shown by UV-Vis spectroscopy confirmed the synthesis of AgNP. XRD patterns revealed the crystalline nature of AgNP and TEM analysis showed that most of the nanoparticles were spherical in shape. Zeta potential of AgNP was found to be - 33.5 mV which confirmed their high stability. FT-IR investigations confirmed the presence of different functional groups involved in the reduction and capping of AgNP. The synthesized AgNP showed effective DPPH (IC50-16.08 µg/mL), H2O2 (IC50-25.40 µg/mL), and superoxide (IC50-21.12 µg/mL) radical scavenging activities. These plant-AgNP showed significant inhibition of albumin denaturation (IC50-12.98 µg/mL) and antiproteinase activity (IC50-18.401 µg/mL). Besides, biosynthesized AgNP were found to have strong inhibitory effect against a cervical cancer (HeLa) cell line (IC50-5.418 µg/mL) as well as larvicidal activity against 3rd instar larvae of Anopheles stephensi (LC50-18.9 ppm, LC90-40.18 ppm), Aedes aegypti (LC50-12.395 ppm, LC90-36.34 ppm) and Culex quinquefasciatus (LC50-17.76 ppm, LC90-30.82 ppm) and were found to be non-toxic against normal cell line (HEK 293), and a non-target organism (Mesocyclops thermocyclopoides). This is the first report on the synthesis of AgNP using aqueous leaf extract of A. acuminata, validating their strong therapeutic potential.
Collapse
Affiliation(s)
- Shubhra Rajput
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, New Delhi, 110007, India
| | - Dinesh Kumar
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, New Delhi, 110007, India
- National Institute of Malaria Research, Dwarka, 110077, Delhi, India
| | - Veena Agrawal
- Medicinal Plant Biotechnology Lab, Department of Botany, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
41
|
Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01794-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|