1
|
González-García E, Sánchez-Moreiras AM, Vieites-Álvarez Y. Allelopathic potential and chemical profile of wheat, rice and barley against the herbicide-resistant weeds Portulaca oleracea L. and Lolium rigidum Gaud. BMC PLANT BIOLOGY 2025; 25:624. [PMID: 40360996 PMCID: PMC12070564 DOI: 10.1186/s12870-025-06634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Weeds cause low crop productivity and increasing costs, and therefore, different solutions, such as manual weeding or synthetic herbicides, have been suggested to solve this problem. These methods involve high efforts and costs, in addition to being harmful to the environment in the case of herbicides, which also result in increasing resistance mechanisms in weeds. Therefore, this work addresses the use of in vivo allelopathic crops to control surrounding weeds. To carry out the experiments, co-cultivation of wheat, rice and barley with the monocot weed annual ryegrass (Lolium rigidum Gaud.) and the dicot weed common purslane (Portulaca oleracea L.) was conducted without physical contact among crop and weed plants. Germination and growth parameters of weeds, and growth parameters and chemical profile of crops, were analysed after the end of the experiment. RESULTS The three crops tested caused inhibitory effects on the two target weeds, and significant concentrations of benzoxazinoids were found in the plant tissues and/or root exudates of the different crops in response to the presence of weeds. All the crops showed different responses to the treatments. While the growth of rice was stimulated, barley was not affected, and wheat growth experienced inhibition due to the presence of weeds. CONCLUSIONS This study demonstrates the capacity of wheat, rice and barley to inhibit both growth and germination of L. rigidum and P. oleracea. The effects observed could be due to the accumulation and/or exudation of benzoxazinoids such as DIMBOA, DIBOA, BOA or HBOA. Barley and rice are able to sustainably manage both target weeds without disrupting their development, while growth of wheat was affected by the presence of weeds. Based on our results, rice would be the most promising crop, since it has the ability to control weeds, while stimulating the development of rice plants. Nevertheless, more research should be carried out to fully confirm this fact, especially under non-controlled conditions.
Collapse
Affiliation(s)
- Eva González-García
- Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, Vigo, 36310, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Ourense, 32004, Spain
| | - Adela M Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, Vigo, 36310, Spain.
- Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Ourense, 32004, Spain.
| | - Yedra Vieites-Álvarez
- Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, Vigo, 36310, Spain
- Instituto de Agroecoloxía e Alimentación (IAA), Campus Auga, Ourense, 32004, Spain
| |
Collapse
|
2
|
Yedra VÁ, Otero P, Prieto MA, Simal-Gandara J, Reigosa MJ, Sánchez-Moreiras AM, Hussain MI. Testing the role of allelochemicals in different wheat cultivars to sustainably manage weeds. PEST MANAGEMENT SCIENCE 2023; 79:2625-2638. [PMID: 36890109 DOI: 10.1002/ps.7444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Selecting wheat varieties with allelopathic potential or high competitiveness against weeds is a sustainable solution for organic farming to eliminate the use of synthetic herbicides. Wheat is one of the most economically important crops. This study focuses on screening the allelopathic or competitive potential of four wheat cultivars, Maurizio, NS 40S, Adesso and Element, on two weeds of interest due to acquired herbicide resistance, Portulaca oleracea and Lolium rigidum, through germination and growth bioassays and the identification and quantification of benzoxazinoids (BXZs) and polyphenols (phenolic acids and flavonoids). RESULTS The different cultivars showed different abilities to manage surrounding weeds and different capacity to exude or accumulate specialized metabolites in the presence of those weeds. Furthermore, each cultivar behaved differently depending on the weed present in the medium. The most efficient cultivar to control the tested monocot and dicot weeds was Maurizio, as it effectively controlled germination and growth of L. rigidum and P. oleracea while exuding large amounts of benzoxazinones through the roots, especially the hydroxamic acids 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and dihydroxy-2H-1,4-benzoxaxin-3(4H)-one. By contrast, NS 40S, Adesso and Element showed the potential to control the growth of just one of the two weeds through allelopathy or competition. CONCLUSION This study reveals that Maurizio is the most promising wheat cultivar for sustainable weed control, and that the screening of crop varieties with allelopathic potential, which results in the displacement of synthetic herbicides, is an immediate solution in ecological and sustainable agriculture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Vieites-Álvarez Yedra
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Miguel Angel Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Manuel J Reigosa
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo, Spain
| | - Adela M Sánchez-Moreiras
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo, Spain
| | - M Iftikhar Hussain
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Vigo, Spain
| |
Collapse
|
3
|
Pawlowski Â, Ricachenevsky FK, Machado ME, da Silva ER, Zini CA, Soares GLG. Schinus Essential Oils: Chemical Composition by GC×GC-TOFMS and Phytotoxic Effects on Arabidopsis thaliana. Chem Biodivers 2022; 19:e202200541. [PMID: 36259377 DOI: 10.1002/cbdv.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
Schinus essential oils were tentatively identified by GC×GC/TOFMS, which revealed a greater number of compounds than previously reported. Eighty-six, seventy-two, and eighty-eight components were identified in Schinus lentiscifolius, Schinus molle and Schinus terebinthifolius essential oils, respectively. Compound separation due to 2 D selectivity was observed. Phytotoxic effects of Schinus essential oils were assessed on germination and initial growth of Arabidopsis thaliana. All essential oils in all tested quantities (5 μL, 10 μL, 15 μL, 20 μL, and 25 μL) affected germination rate, speed of accumulated germination, and root and shoot length of A. thaliana. Considering the mode of action of the essential oils, no differences were observed on expression of the genes ANP1 and CDK B1;1 in A. thaliana, which was analyzed by RT-qPCR. Results suggest that phytotoxic effects of Schinus essential oils seem to be explained by cellular damage rather than by induction of stress-inducible genes.
Collapse
Affiliation(s)
- Ângela Pawlowski
- Programa de Pós-Graduação em Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.,Laboratório de Evolução, Ecologia Química e Quimiotaxonomia (LEEQTAX), Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501970, Porto Alegre, RS, Brazil
| | - Felipe Klein Ricachenevsky
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisabete Machado
- Laboratório de Química Analítica Ambiental e Oleoquímica (LAAO), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Brazil
| | - Eliane Regina da Silva
- Programa de Pós-Graduação em Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.,Laboratório de Evolução, Ecologia Química e Quimiotaxonomia (LEEQTAX), Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501970, Porto Alegre, RS, Brazil
| | - Cláudia Alcaraz Zini
- Laboratório de Química Analítica Ambiental e Oleoquímica (LAAO), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Brazil
| | - Geraldo Luiz Gonçalves Soares
- Programa de Pós-Graduação em Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil.,Laboratório de Evolução, Ecologia Química e Quimiotaxonomia (LEEQTAX), Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501970, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Hussain MI, Vieites-Álvarez Y, Otero P, Prieto MA, Simal-Gandara J, Reigosa MJ, Sánchez-Moreiras AM. Weed pressure determines the chemical profile of wheat (Triticum aestivum L.) and its allelochemicals potential. PEST MANAGEMENT SCIENCE 2022; 78:1605-1619. [PMID: 34994056 DOI: 10.1002/ps.6779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Common purslane (Portulaca oleracea) and annual ryegrass (Lolium rigidum) are important infesting weeds of field crops. Herbicides are mostly used for weed suppression, while their environmental toxicity and resistance in weeds against them demand considering alternative options, such as the use of allelopathic crops for weed management. Wheat is an important allelopathic crop and present research focused on the identification and quantification of benzoxazinoids (BXZs) and polyphenols (phenolic acids and flavonoids) of the wheat accession 'Ursita' and to screen its allelopathic impact on P. oleracea and Lolium rigidum through equal-compartment-agar (ECA) method. RESULTS Weed germination, radicle length, biomass and photosynthetic pigments were altered following co-growth of weeds with Ursita for 10-day. Root exudates from Ursita reduced (29-60%) the seedling growth and photosynthetic pigments of Lolium rigidum depending on co-culture conditions of planting density. Weed pressure caused significant increase in the production of phenolic acids (vanillic, ferulic, syringic and p-coumaric acids) and root exudation of BXZs, in particular benzoxazolin-2-one (BOA), 2-hydroxy-7-methoxy-1,4-benzoxazin-3-one (HMBOA), 2-hydroxy-1,4-benzoxazin3-one (HBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) in wheat tissues (shoots, roots) and exudate in root rhizosphere agar medium in response to co-cultivation with Lolium rigidum and P. oleracea, depending on weed/crop density. CONCLUSION The work revealed that Ursita is allelopathic in nature and can be used in breeding programs to enhance its allelopathic activity. Meanwhile, there are opportunities to explore allelopathic effect of wheat cultivars to control P. oleracea and Lolium rigidum under field conditions. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Yedra Vieites-Álvarez
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Paz Otero
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, Universidade de Vigo-Ourense Campus, Ourense, Spain
| | - Manuel J Reigosa
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Adela M Sánchez-Moreiras
- Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
5
|
Laschke L, Schütz V, Schackow O, Sicker D, Hennig L, Hofmann D, Dörmann P, Schulz M. Survival of Plants During Short-Term BOA-OH Exposure: ROS Related Gene Expression and Detoxification Reactions Are Accompanied With Fast Membrane Lipid Repair in Root Tips. J Chem Ecol 2022; 48:219-239. [PMID: 34988771 PMCID: PMC8881443 DOI: 10.1007/s10886-021-01337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
For the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10-30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30-60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.
Collapse
Affiliation(s)
- Laura Laschke
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Vadim Schütz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Oliver Schackow
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Dieter Sicker
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Lothar Hennig
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peter Dörmann
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Niharika, Singh NB, Khare S, Singh A, Yadav V, Yadav RK. Kinetin modulates physiological and biochemical attributes of Vigna radiata L. seedlings exposed to 2-benzoxazolinone stress. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00734-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Sánchez-Moreiras AM, Graña E, Reigosa MJ, Araniti F. Imaging of Chlorophyll a Fluorescence in Natural Compound-Induced Stress Detection. FRONTIERS IN PLANT SCIENCE 2020; 11:583590. [PMID: 33408728 PMCID: PMC7779684 DOI: 10.3389/fpls.2020.583590] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/19/2020] [Indexed: 05/06/2023]
Abstract
Imaging of chlorophyll a fluorescence (CFI) represents an easy, precise, fast and non-invasive technique that can be successfully used for discriminating plant response to phytotoxic stress with reproducible results and without damaging the plants. The spatio-temporal analyses of the fluorescence images can give information about damage evolution, secondary effects and plant defense response. In the last years, some studies about plant natural compounds-induced phytotoxicity have introduced imaging techniques to measure fluorescence, although the analysis of the image as a whole is often missed. In this paper we, therefore, evaluated the advantages of monitoring fluorescence images, presenting the physiological interpretation of different possible combinations of the most relevant parameters linked to fluorescence emission and the images obtained.
Collapse
Affiliation(s)
- Adela M. Sánchez-Moreiras
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
- CITACA, Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain
| | - Elisa Graña
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
- CITACA, Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain
| | - Fabrizio Araniti
- Department AGRARIA, University “Mediterranea” of Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
8
|
Ladhari A, Andolfi A, DellaGreca M. Physiological and Oxidative Stress Responses of Lettuce to Cleomside A: A Thiohydroximate, as a New Allelochemical from Cleome arabica L. Molecules 2020; 25:E4461. [PMID: 32998390 PMCID: PMC7582273 DOI: 10.3390/molecules25194461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 11/16/2022] Open
Abstract
The inclination toward natural products have led the onset for the discovery of new bioactive metabolites that could be targeted for specific therapeutic or agronomic applications. This study aimed to isolate bioactive compounds from Cleome arabica L., and subsequently determine the unexplored mechanism of action of the newly identified compounds on Lactuca sativa L. Chemical investigation of the ethyl acetate fraction of methanolic silique extract of C. arabica afforded seven secondary metabolites belonging to different classes such as flavonoids, triterpene, and a new thiohydroximate derivative, named cleomside A. Among phytotoxic assays, the growth of lettuce was totally inhibited by cleomside A compared to the other identified compounds. This effect was associated with the increased levels of electrolyte leakage, malondialdehyde, and hydrogen peroxide indicating disruption of membrane integrity and induction of oxidative stress. Activities of the antioxidant enzymes SOD, CAT, and APX were also elevated, thereby demonstrating the enhanced generation of reactive oxygen species upon identified allelochemical exposure. Thus, the changes caused by cleomside A described herein can contribute to better understanding the allelochemical actions of thiohydroximate and the potential use of these substances in the production of natural herbicides compared to the other identified flavonoids and triterpene.
Collapse
Affiliation(s)
- Afef Ladhari
- Laboratoire GREEN-TEAM (LR17AGR01), Institut National Agronomique de Tunisie (INAT), Universite de Carthage, 43 Avenue Charles Nicolle, Tunis 1082, Tunisia
- Dipartimento di Scienze Chimiche, Università Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Napoli, Italy; (A.A.); (M.D.)
| | - Anna Andolfi
- Dipartimento di Scienze Chimiche, Università Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Napoli, Italy; (A.A.); (M.D.)
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli ‘Federico II’, 80138 Naples, Italy
| | - Marina DellaGreca
- Dipartimento di Scienze Chimiche, Università Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 4, 80126 Napoli, Italy; (A.A.); (M.D.)
| |
Collapse
|
9
|
Hussain MI, El-Sheikh MA, Reigosa MJ. Allelopathic Potential of Aqueous Extract from Acacia melanoxylon R. Br. on Lactuca sativa. PLANTS 2020; 9:plants9091228. [PMID: 32961867 PMCID: PMC7570383 DOI: 10.3390/plants9091228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
Abstract
We studied the polyphenol (phenolic compounds and flavonoids) composition and allelopathic effects of Acacia melanoxylon R. Br. aerial foliage aqueous extract (0%, 25%, 50%, 75% and 100%) on the seedling growth and plant biomass of the general biotest species, lettuce (Lactuca sativa). Mean leaf fresh weight, leaf dry weight, root fresh weight and root dry weight were decreased following exposure to Acacia aerial foliage, flowers aqueous extract (AFE) and phyllodes aqueous extract (APE) after 6 days. The reduction in plant dry biomass was more than 50% following treatment with AFE. The decrease in mean root length was approximately 37.7% and 29.20% following treatment with Acacia flowers extract (AFE) at 75% and 100% concentration, respectively. Root dry weight of L. sativa was reduced by both flowers and phyllodes extract. The reduction of protein contents in lettuce leaves following Acacia foliage extract proved that both AFE and APE exhibit polyphenols that causes the toxicity which led to decrease in leaf protein contents. High-Performance Liquid Chromatography (HPLC) was employed to analyze the A. melanoxylon flowers and phyllodes. A total of 13 compounds (accounting for most abundant compounds in flowers and phyllodes) include different flavonoids and phenolic compounds. The phytochemical compounds detected were: Gallic acid, protocatechuic acid, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillic acid, syringic acid, p-coumaric acid, and ferulic acid. The major flavonoid compounds identified include rutin, luteolin, apigenin, and catechin. Allelopathic effects of flower and phyllodes extracts from A. melanoxylon may be due to the presence of above compounds identified by HPLC analysis.
Collapse
Affiliation(s)
- M. Iftikhar Hussain
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Mohamed A. El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Manuel J. Reigosa
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, E-36310 Vigo, Spain;
| |
Collapse
|
10
|
Maver M, Miras-Moreno B, Lucini L, Trevisan M, Pii Y, Cesco S, Mimmo T. New insights in the allelopathic traits of different barley genotypes: Middle Eastern and Tibetan wild-relative accessions vs. cultivated modern barley. PLoS One 2020; 15:e0231976. [PMID: 32324789 PMCID: PMC7179892 DOI: 10.1371/journal.pone.0231976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/03/2020] [Indexed: 11/26/2022] Open
Abstract
The two alkaloids gramine and hordenine have been known for playing a role in the allelopathic ability in barley (Hordeum vulgare L.). These allelochemicals can be both found in leaves and roots in some barley cultivars whereas in others one seems to exclude the other. In this study eighteen accessions of barley from the Middle-East area, one accession from Tibet and the modern spring cultivar Barke, already used as parental donor in a nested associated mapping (NAM) population, were screened for their gramine, hordenine and N-methyltyramine (the direct precursor of hordenine) content in leaves, roots and exudates. Moreover, the toxicity of the three allelochemicals on root growth inhibition on lettuce (Lactuca sativa L.) was evaluated. Results of this study showed the preferential production of gramine and hordenine in leaves and roots, respectively, in the nineteen barley accessions. On the other hand, in the modern barley cultivar Barke, the highest content of hordenine in roots and the general lack of gramine suggests a favored biosynthesis of the former. Gramine was not detected in the root exudates. In additions, different metabolomic profiles were observed in wild relatives compared to modern barley genotypes. The results also showed the phytotoxic effects of the three compounds on root growth of lettuce seedlings, with a reduction in root length and an increase of root surface area and diameter. In conclusion, this study highlighted the impact of the domestication effects on the production and distribution of the two allelopathic alkaloids gramine and hordenine in barley.
Collapse
Affiliation(s)
- Mauro Maver
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
- * E-mail:
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
11
|
The Trichoderma viride F-00612 consortium tolerates 2-amino-3H-phenoxazin-3-one and degrades nitrated benzo[d]oxazol-2(3H)-one. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00300-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractNumerous allelopathic plant secondary metabolites impact plant–microorganism interactions by injuring plant-associated beneficial bacteria and fungi. Fungi belonging to the genus Trichoderma positively influence crops, including benzoxazinone-containing maize. However, benzoxazinones and their downstream metabolites such as benzoxazolinone and phenoxazinones are often fungitoxic. Specimen Trichoderma viride F-00612 was found to be insensitive to 100-µM phenoxazinone and 500-µM benzoxazolinone. Screening of 46 additional specimens of ascomycetes revealed insensitivity to phenoxazinones among fungi that cause disease in benzoxazinone-producing cereal crops, whereas many other ascomycetes were highly sensitive. In contrast, most of the screened fungi were insensitive to benzoxazolinone. T. viride F-00612 was associated with bacteria and, thus, existed as a consortium. By contrast, Enterobacter species and Acinetobacter calcoaceticus were prominent in the original specimen, and Bacillus species predominated after antibiotic application. Prolonged cultivation of T. viride F-00612 in liquid medium and on Czapek agar in the presence of < 100 µM phenoxazinone and < 500 µM benzoxazolinone resulted in a massive loss of bacteria accompanied by impacted fungal growth in the presence of phenoxazinone. The original consortium was actively involved in implementing metabolic sequences for the degradation and detoxification of nitrated benzoxazolinone derivatives. The 2-aminophenol was rapidly converted into acetamidophenol, but benzoxazolinone, methoxylated benzoxazolinone, and picolinic acid remained unchanged. Excluding phenoxazinone, none of the tested compounds markedly impaired fungal growth in liquid culture. In conclusion, members of the T. viride F-00612 consortium may contribute to the ability to manage benzoxazinone downstream products and facilitate BOA-6-OH degradation via nitration.
Collapse
|
12
|
Lupini A, Araniti F, Mauceri A, Princi MP, Sorgonà A, Sunseri F, Varanini Z, Abenavoli MR. Coumarin enhances nitrate uptake in maize roots through modulation of plasma membrane H + -ATPase activity. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:390-398. [PMID: 29181876 DOI: 10.1111/plb.12674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Coumarin is one of the simplest plant secondary metabolites, widely distributed in the plant kingdom, affecting root form and function, including anatomy, morphology and nutrient uptake. Although, some plant responses to coumarin have been described, comprehensive knowledge of the physiological and molecular mechanisms is lacking. Maize seedlings exposed to different coumarin concentrations, alone or in combination with 200 μm nitrate (NO3- ), were analysed, through a physiological and molecular approach, to elucidate action of coumarin on net NO3- uptake rate (NNUR). In detail, the time course of NNUR, plasma membrane (PM) H+ -ATPase activity, proton pumping and related gene expression (ZmNPF6.3, ZmNRT2.1, ZmNAR2.1, ZmHA3 and ZmHA4) were evaluated. Coumarin alone did not affect nitrate uptake, PM H+ -ATPase activity or transcript levels of ZmNRT2.1 and ZmHA3. In contrast, coumarin alone increased ZmNPF6.3, ZmNAR2.1 and ZmHA4 expression in response to abiotic stress. When coumarin and NO3- were concurrently added to the nutrient solution, a significant increase in the NNUR, PM H+ -ATPase activity, together with ZmNAR2.1:ZmNRT2.1 and ZmHA4 expression was observed, suggesting that coumarin affected the inducible component of the high affinity transport system (iHATS), and this effect appeared to be mediated by nitrate. Moreover, results with vanadate, an inhibitor of the PM H+ -ATPase, suggested that this enzyme could be the main target of coumarin. Surprisingly, coumarin did not affect PM H+ -ATPase activity by direct contact with plasma membrane vesicles isolated from maize roots, indicating its possible elicitor role in gene transcription.
Collapse
Affiliation(s)
- A Lupini
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - F Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - A Mauceri
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - M P Princi
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - A Sorgonà
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - F Sunseri
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Z Varanini
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - M R Abenavoli
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| |
Collapse
|
13
|
Schulz M, Sicker D, Schackow O, Hennig L, Yurkov A, Siebers M, Hofmann D, Disko U, Ganimede C, Mondani L, Tabaglio V, Marocco A. Interspecies-cooperations of abutilon theophrasti with root colonizing microorganisms disarm BOA-OH allelochemicals. PLANT SIGNALING & BEHAVIOR 2017; 12:e1358843. [PMID: 28786736 PMCID: PMC5616163 DOI: 10.1080/15592324.2017.1358843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
A facultative, microbial micro-community colonizing roots of Abutilon theophrasti Medik. supports the plant in detoxifying hydroxylated benzoxazolinones. The root micro-community is composed of several fungi and bacteria with Actinomucor elegans as a dominant species. The yeast Papiliotrema baii and the bacterium Pantoea ananatis are actively involved in the detoxification of hydroxylated benzoxazolinones by generating H2O2. At the root surface, laccases, peroxidases and polyphenol oxidases cooperate for initiating polymerization reactions, whereby enzyme combinations seem to differ depending on the hydroxylation position of BOA-OHs. A glucosyltransferase, able to glucosylate the natural benzoxazolinone detoxification intermediates BOA-5- and BOA-6-OH, is thought to reduce oxidative overshoots by damping BOA-OH induced H2O2 generation. Due to this detoxification network, growth of Abutilon theophrasti seedlings is not suppressed by BOA-OHs. Polymer coats have no negative influence. Alternatively, quickly degradable 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one can be produced by the micro-community member Pantoea ananatis at the root surfaces. The results indicate that Abutilon theophrasti has evolved an efficient strategy by recruiting soil microorganisms with special abilities for different detoxification reactions which are variable and may be triggered by the allelochemical´s structure and by environmental conditions.
Collapse
Affiliation(s)
- Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Dieter Sicker
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Oliver Schackow
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Lothar Hennig
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Andrey Yurkov
- DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Meike Siebers
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Diana Hofmann
- IBG-3: Agrossphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Disko
- IBG-3: Agrossphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Cristina Ganimede
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Letizia Mondani
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
14
|
Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. CHEMOECOLOGY 2016. [DOI: 10.1007/s00049-016-0225-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Jose CM, Brandão Torres LM, Torres MAMG, Shirasuna RT, Farias DA, dos Santos NA, Grombone-Guaratini MT. Phytotoxic effects of phenolic acids from Merostachys riedeliana, a native and overabundant Brazilian bamboo. CHEMOECOLOGY 2016. [DOI: 10.1007/s00049-016-0224-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Graña E, Díaz-Tielas C, López-González D, Martínez-Peñalver A, Reigosa MJ, Sánchez-Moreiras AM. The plant secondary metabolite citral alters water status and prevents seed formation in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:423-32. [PMID: 26587965 DOI: 10.1111/plb.12418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/13/2015] [Indexed: 05/22/2023]
Abstract
Based on previous results, which showed that the secondary metabolite citral causes disturbances to plant water status, the present study is focused on demonstrating and detailing these effects on the water-related parameters of Arabidopsis thaliana adult plants, and their impact on plant fitness. Clear evidence of effects on water status and fitness were observed: plants treated with 1200 and 2400 μm citral showed decreased RWC, reduced Ψs , increased Ψw and reduced stomatal opening, even 7 days after the beginning of the experiment. Plant protection signals, such as leaf rolling or increased anthocyanin content, were also detected in these plants. In contrast, 14 days after beginning the treatment, treated plants showed signs of citral-related damage. Moreover, the reproductive success of treated plants was critically compromised, with prematurely withered flowers and no silique or seed development. This effect of citral on fitness of adult plants suggests a promising application of this natural compound in weed management by reducing the weed seed bank in the soil.
Collapse
Affiliation(s)
- E Graña
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - C Díaz-Tielas
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - D López-González
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - A Martínez-Peñalver
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | - M J Reigosa
- Department of Plant Biology and Soil Science, University of Vigo, Vigo, Spain
| | | |
Collapse
|
17
|
Schulz M, Filary B, Kühn S, Colby T, Harzen A, Schmidt J, Sicker D, Hennig L, Hofmann D, Disko U, Anders N. Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L. PLANT SIGNALING & BEHAVIOR 2016; 11:e1119962. [PMID: 26645909 PMCID: PMC4871689 DOI: 10.1080/15592324.2015.1119962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe(2+) ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis.
Collapse
Affiliation(s)
- Margot Schulz
- IMBIO Institut für Biotechnologie der Pflanzen, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Barbara Filary
- IMBIO Institut für Biotechnologie der Pflanzen, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Sabine Kühn
- IMBIO Institut für Biotechnologie der Pflanzen, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Thomas Colby
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
- Max Planck Institute for Biology of Aging, Joseph-Stelzmann Str. 9b, 50931 Köln, Germany
| | - Anne Harzen
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Jürgen Schmidt
- IMBIO Institut für Biotechnologie der Pflanzen, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Dieter Sicker
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lothar Hennig
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrossphäre, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Disko
- IBG-3: Agrossphäre, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Nico Anders
- AVT-Enzyme Process Technology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
18
|
Krasuska U, Andrzejczak O, Staszek P, Bogatek R, Gniazdowska A. Canavanine Alters ROS/RNS Level and Leads to Post-translational Modification of Proteins in Roots of Tomato Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:840. [PMID: 27379131 PMCID: PMC4905978 DOI: 10.3389/fpls.2016.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/27/2016] [Indexed: 05/09/2023]
Abstract
Canavanine (CAN), a structural analog of arginine (Arg), is used as a selective inhibitor of inducible NOS in mammals. CAN is incorporated into proteins' structure in the place of Arg, leading to the formation of aberrant compounds. This non-protein amino acid is found in legumes, e.g., Canavalia ensiformis (L.) DC. or Sutherlandia frutescens (L.) R.Br. and acts as a strong toxin against herbivores or plants. Tomato (Solanum lycopersicum L.) seedlings were treated for 24-72 h with CAN (10 or 50 μM) inhibiting root growth by 50 or 100%, without lethal effect. We determined ROS level/production in root extracts, fluorescence of DAF-FM and APF derivatives corresponding to RNS level in roots of tomato seedlings and linked CAN-induced restriction of root growth to the post-translational modifications (PTMs) of proteins: carbonylation and nitration. Both PTMs are stable markers of nitro-oxidative stress, regarded as the plant's secondary response to phytotoxins. CAN enhanced H2O2 content and superoxide radicals generation in extracts of tomato roots and stimulated formation of protein carbonyl groups. An elevated level of carbonylated proteins was characteristic for the plants after 72 h of the culture, mainly for the roots exposed to 10 μM CAN. The proteolytic activity was stimulated by tested non-protein amino acid. CAN treatment led to decline of fluorescence of DAF-FM derivatives, and transiently stimulated fluorescence of APF derivatives. Short-term exposure of tomato seedlings to CAN lowered the protein nitration level. Activity of peroxidase, polyamine oxidase and NADPH oxidase, enzymes acting as modulators of H2O2 concentration and governing root architecture and growth were determined. Activities of all enzymes were stimulated by CAN, but no strict CAN concentration dependence was observed. We conclude, that although CAN treatment led to a decline in the nitric oxide level, PTMs observed in roots of plants exposed to CAN are linked rather to the formation of carbonyl groups than to nitration, and are detected particularly after 24 h. Thus, oxidative stress and oxidative modifications of proteins seems to be of significant importance in the rapid response of plants to CAN.
Collapse
|
19
|
Ciniglia C, Mastrobuoni F, Scortichini M, Petriccione M. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:926-37. [PMID: 25736610 DOI: 10.1007/s10646-015-1435-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 05/09/2023]
Abstract
The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.
Collapse
Affiliation(s)
- Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technology Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy
| | | | | | | |
Collapse
|
20
|
Parizotto AV, Bubna GA, Marchiosi R, Soares AR, Ferrarese MDLL, Ferrarese-Filho O. Benzoxazolin-2(3H)-one inhibits soybean growth and alters the monomeric composition of lignin. PLANT SIGNALING & BEHAVIOR 2015; 10:e989059. [PMID: 25826260 PMCID: PMC4622921 DOI: 10.4161/15592324.2014.989059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 05/14/2023]
Abstract
The effects of the allelochemical benzoxazolin-2-(3H)-one (BOA) were evaluated on growth, lignin content and its monomers p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) in roots, stems and leaves of soybean. BOA decreased the lengths and fresh weights of roots and stems, and the fresh weights and areas of leaves. Reductions in the growth were accompanied by enhanced lignin content in all tissues. In roots, the allelochemical increased the content of H, G and S monomers as well as the overall amount of lignin (referred to as the sum of H+G+S), but did not alter the S/G ratio. In stems and leaves, BOA increased the H, G, S and H+G+S contents while decreasing the S/G ratio. In brief, BOA-induced inhibition of soybean may be due to excessive production of monomers that increase the degree of polymerization of lignin, limit cell expansion, solidify the cell wall and restrict plant growth.
Collapse
Affiliation(s)
| | - Gisele Adriana Bubna
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, Brazil
| | - Rogério Marchiosi
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, Brazil
| | - Anderson Ricardo Soares
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, Brazil
| | | | - Osvaldo Ferrarese-Filho
- Laboratory of Plant Biochemistry; Department of Biochemistry; State University of Maringá; Maringá, Brazil
| |
Collapse
|
21
|
Kia SH, Schulz M, Ayah E, Schouten A, Müllenborn C, Paetz C, Schneider B, Hofmann D, Disko U, Tabaglio V, Marocco A. Abutilon theophrasti’s Defense Against the Allelochemical Benzoxazolin-2(3H)-One: Support by Actinomucor elegans. J Chem Ecol 2014; 40:1286-98. [DOI: 10.1007/s10886-014-0529-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 01/06/2023]
|
22
|
Zhang Y, Tao Y, Sun G, Wang L. Effects of di-n-butyl phthalate on the physiology and ultrastructure of cucumber seedling roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6662-70. [PMID: 24573460 PMCID: PMC4021170 DOI: 10.1007/s11356-014-2580-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/20/2014] [Indexed: 05/22/2023]
Abstract
Agricultural pollution caused by the use of plastic sheetings has been documented to be a widespread problem in most of the major crop-planting regions of the world. In order to better understand the phytotoxic mechanisms induced by phthalic acid esters involved with this problem, Cucumber sativus L. cv Jinyan No. 4 were sown in pots to the three-leaf-stage in the presence of di-n-butyl phthalate (DBP; 0, 30, 50, 100, and 200 mg L(-1)) for 1, 3, 5, or 7 days. Physiology, biochemistry, and ultrastructure of seedling roots were examined. The results indicated that activities of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)) were stimulated at low-DBP treatments and decreased under higher levels (>100 mg L(-1)) compared to the controls. On the other hand, SOD and POD provided a better defense against DBP-induced oxidative damage in the roots of cucumber seeding, compared to CAT. The productions of both malondialdehyde (MDA) and proline (Pro) were promoted under DBP stress. Visible impact on the cytoderm, mitochondrion, and vacuole was detected, possibly as a consequence of free radical generation. These results suggested that activation of the antioxidant system by DBP led to the formation of reactive oxygen species that resulted in cellular damage.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Yue Tao
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Guoqiang Sun
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| | - Lei Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin, 150030 People’s Republic of China
| |
Collapse
|
23
|
Benzoxazinoids in rye allelopathy - from discovery to application in sustainable weed control and organic farming. J Chem Ecol 2013; 39:154-74. [PMID: 23385365 DOI: 10.1007/s10886-013-0235-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/03/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
The allelopathic potency of rye (Secale cereale L.) is due mainly to the presence of phytotoxic benzoxazinones-compounds whose biosynthesis is developmentally regulated, with the highest accumulation in young tissue and a dependency on cultivar and environmental influences. Benzoxazinones can be released from residues of greenhouse-grown rye at levels between 12 and 20 kg/ha, with lower amounts exuded by living plants. In soil, benzoxazinones are subject to a cascade of transformation reactions, and levels in the range 0.5-5 kg/ha have been reported. Starting with the accumulation of less toxic benzoxazolinones, the transformation reactions in soil primarily lead to the production of phenoxazinones, acetamides, and malonamic acids. These reactions are associated with microbial activity in the soil. In addition to benzoxazinones, benzoxazolin-2(3H)-one (BOA) has been investigated for phytotoxic effects in weeds and crops. Exposure to BOA affects transcriptome, proteome, and metabolome patterns of the seedlings, inhibits germination and growth, and can induce death of sensitive species. Differences in the sensitivity of cultivars and ecotypes are due to different species-dependent strategies that have evolved to cope with BOA. These strategies include the rapid activation of detoxification reactions and extrusion of detoxified compounds. In contrast to sensitive ecotypes, tolerant ecotypes are less affected by exposure to BOA. Like the original compounds BOA and MBOA, all exuded detoxification products are converted to phenoxazinones, which can be degraded by several specialized fungi via the Fenton reaction. Because of their selectivity, specific activity, and presumably limited persistence in the soil, benzoxazinoids or rye residues are suitable means for weed control. In fact, rye is one of the best cool season cover crops and widely used because of its excellent weed suppressive potential. Breeding of benzoxazinoid resistant crops and of rye with high benzoxazinoid contents, as well as a better understanding of the soil persistence of phenoxazinones, of the weed resistance against benzoxazinoids, and of how allelopathic interactions are influenced by cultural practices, would provide the means to include allelopathic rye varieties in organic cropping systems for weed control.
Collapse
|
24
|
Artemisia scoparia essential oil inhibited root growth involves reactive oxygen species (ROS)-mediated disruption of oxidative metabolism: In vivo ROS detection and alterations in antioxidant enzymes. BIOCHEM SYST ECOL 2012. [DOI: 10.1016/j.bse.2012.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Schulz M, Marocco A, Tabaglio V. BOA Detoxification of Four Summer Weeds during Germination and Seedling Growth. J Chem Ecol 2012; 38:933-46. [DOI: 10.1007/s10886-012-0136-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/16/2012] [Accepted: 05/04/2012] [Indexed: 12/25/2022]
|
26
|
Hussain MI, Reigosa MJ. A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:1290-8. [PMID: 22000052 DOI: 10.1016/j.plaphy.2011.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/15/2011] [Indexed: 05/20/2023]
Abstract
This study investigated the effects of cinnamic acid (CA) on growth, biochemical and physiological responses of Lactuca sativa L. CA (0.1, 0.5, 1.0 and 1.5 mM) treatments decreased plant height, root length, leaf and root fresh weight, but it did not affect the leaf water status. CA treatment (1.5 mM) significantly reduced F(v), F(m), photochemical efficiency of PSII (F(v)/F(m)) and quantum yield of PSII (ΦPSII) photochemistry in L. sativa. The photochemical fluorescence quenching (qP) and non-photochemical quenching (NPQ) were reduced after treatment with 1.5 mM CA. Fraction of photon energy absorbed by PS II antennae trapped by "open" PS II reaction centers (P) was reduced by CA (1.5 mM) while, portion of absorbed photon energy thermally dissipated (D) and photon energy absorbed by PSII antennae and trapped by "closed" PSII reaction centers (E) was increased. Carbon isotope composition ratios (δ(13)C) was less negative (-27.10) in CA (1.5 mM) treated plants as compared to control (-27.61). Carbon isotope discrimination (Δ(13)C) and ratio of intercellular CO(2) concentration (ci/ca) from leaf to air were also less in CA treated plants. CA (1.5 mM) also decreased the leaf protein contents of L. sativa as compared to control.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
| | | |
Collapse
|
27
|
Hussain MI, Reigosa MJ. Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4533-45. [PMID: 21659663 PMCID: PMC3170549 DOI: 10.1093/jxb/err161] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/31/2011] [Accepted: 04/26/2011] [Indexed: 05/04/2023]
Abstract
In this study, the effect of two allelochemicals, benzoxazolin-2(3H)-one (BOA) and cinnamic acid (CA), on different physiological and morphological characteristics of 1-month-old C(3) plant species (Dactylis glomerata, Lolium perenne, and Rumex acetosa) was analysed. BOA inhibited the shoot length of D. glomerata, L. perenne, and R. acetosa by 49%, 19%, and 19% of the control. The root length of D. glomerata, L. perenne, and R. acetosa growing in the presence of 1.5 mM BOA and CA was decreased compared with the control. Both allelochemicals (BOA, CA) inhibited leaf osmotic potential (LOP) in L. perenne and D. glomerata. In L. perenne, F(v)/F(m) decreased after treatment with BOA (1.5 mM) while CA (1.5 mM) also significantly reduced F(v)/F(m) in L. perenne. Both allelochemicals decreased ΦPSII in D. glomerata and L. perenne within 24 h of treatment, while in R. acetosa, ΦPSII levels decreased by 72 h following treatment with BOA and CA. There was a decrease in qP and NPQ on the first, fourth, fifth, and sixth days after treatment with BOA in D. glomerata, while both allelochemicals reduced the qP level in R. acetosa. There was a gradual decrease in the fraction of light absorbed by PSII allocated to PSII photochemistry (P) in R. acetosa treated with BOA and CA. The P values in D. glomerata were reduced by both allelochemicals and the portion of absorbed photon energy that was thermally dissipated (D) in D. glomerata and L. perenne was decreased by BOA and CA. Photon energy absorbed by PSII antennae and trapped by 'closed' PSII reaction centres (E) was decreased after CA exposure in D. glomerata. BOA and CA (1.5 mM concentration) decreased the leaf protein contents in all three perennial species. This study provides new understanding of the physiological and biochemical mechanisms of action of BOA and CA in one perennial dicotyledon and two perennial grasses. The acquisition of such knowledge may ultimately provide a rational and scientific basis for the design of safe and effective herbicides.
Collapse
Affiliation(s)
- M Iftikhar Hussain
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende, E-36310, Vigo, España.
| | | |
Collapse
|
28
|
Sánchez-Moreiras AM, Martínez-Peñalver A, Reigosa MJ. Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:863-70. [PMID: 21237530 DOI: 10.1016/j.jplph.2010.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 05/22/2023]
Abstract
Measurements of chlorophyll a fluorescence, nutrient and trace elements, total protein content and malonyldialdehyde in leaves of Arabidopsis thaliana between 1 and 192 h after treatment with 0, 1 or 3 mM 2-3H-benzoxazolinone (BOA), together with imaging of chlorophyll a fluorescence and of the distributions of hydrogen peroxide and superoxide anion, suggested that the primary phytotoxic action of BOA is the induction of premature senescence, and that oxidative stress is a secondary effect that sets in a day or two later.
Collapse
Affiliation(s)
- Adela M Sánchez-Moreiras
- Dept. of Plant Biology and Soil Science, Faculty of Biology, University of Vigo Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain.
| | | | | |
Collapse
|
29
|
Sánchez-Moreiras AM, Oliveros-Bastidas A, Reigosa MJ. Reduced photosynthetic activity is directly correlated with 2-(3H)-benzoxazolinone accumulation in lettuce leaves. J Chem Ecol 2010; 36:205-9. [PMID: 20143137 DOI: 10.1007/s10886-010-9750-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/02/2009] [Accepted: 01/03/2010] [Indexed: 10/19/2022]
Abstract
2-(3H)-benzoxazolinone (BOA) is a secondary plant metabolite previously found to inhibit plant growth and development. The phytotoxic activity of BOA has been extensively demonstrated over the last years. However, the relation of BOA phytotoxicity with BOA accumulation in plant leaves has not been thoroughly investigated. In this work, BOA phytotoxicity on photosynthesis (PhiPSII and Pn) of lettuce (Lactuca sativa L. cv. Great Lakes) was studied, and these results were correlated with BOA quantities in the leaves. BOA-treated plants showed reduced photosynthesis rate 6 h after the beginning of the treatment, and the efficiency of photosystem II started to be affected 10 h after treatment. These results were correlated with an increasing concentration of BOA in leaves that starts 6 h after treatment and shows a maximum at 96 h.
Collapse
Affiliation(s)
- Adela M Sánchez-Moreiras
- Facultade de Bioloxía, Departamento de Bioloxía Vexetal e Ciencia do Solo, Universidade de Vigo, Campus As Lagoas, Marcosende, 36310, Vigo, Spain.
| | | | | |
Collapse
|
30
|
Macías FA, Marín D, Oliveros-Bastidas A, Molinillo JMG. Rediscovering the bioactivity and ecological role of 1,4-benzoxazinones. Nat Prod Rep 2009; 26:478-89. [PMID: 19642418 DOI: 10.1039/b700682a] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compounds of the (2H)-1,4-benzoxazin-3(4H)-one class have attracted the attention of phytochemists since the first isolation of 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA). Extensive research has been carried out on the isolation and synthesis of these materials as well as on the dynamics of their degradation in different systems. This has led to the discovery of a wide variety of compounds that are of high interest from the point of view of phytotoxic, antifungal, antimicrobial, and antifeedant effects among others. The potential application of benzoxazinones and their derivatives as leads for natural herbicide models is a topic of current interest. Furthermore, the importance of degradation on the ecological behaviour of benzoxazinone-producing plants is also being realised, and proposals concerning the role of the degradation products in chemical defence mechanisms have been put forward. There is also increasing interest in the improvement of analytical methodologies, and ecotoxicologic effects, toxicity on target and non-target organisms, and degradation kinetics are also being addressed. The development of new phytotoxicity bioassay techniques represents one of the most important breakthroughs in this respect. Moreover, benzoxazinones and some of their derivatives have been employed in the development of pharmaceuticals. The versatility of the benzoxazinone skeleton, in addition to its relative chemical simplicity and accessibility, makes these chemicals amongst the most promising sources of bioactive compounds that are natural in origin.
Collapse
Affiliation(s)
- Francisco A Macías
- Grupo de Alelopatía, Departamento de Química Orgánica, Universidad de Cádiz, Avda. Repiúlica Saharaui, s/n 11510 Puerto Real, Cádiz, Spain.
| | | | | | | |
Collapse
|
31
|
Sánchez-Moreiras AM, Pedrol N, González L, Reigosa MJ. 2-3H-Benzoxazolinone (BOA) induces loss of salt tolerance in salt-adapted plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:582-90. [PMID: 19538396 DOI: 10.1111/j.1438-8677.2008.00144.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In order to test the stress hypothesis of allelopathy of Reigosa et al. (1999, 2002), the combined action of a well-established allelochemical compound (2-3H-benzoxazolinone, BOA) and a common abiotic stress (salt stress) were investigated in lettuce (Lactuca sativa L.). In a previous study (Baerson et al. 2005), we demonstrated that the primary effects of BOA are related to the expression of genes involved in detoxification and stress responses, which might serve to simultaneously alleviate biotic and abiotic stresses. Through analysis of the same physiological and biochemical parameters previously studied for BOA alone (Sánchez-Moreiras & Reigosa 2005), we observed specific effects of salt stress alone, as well as for the two stresses together (BOA and salt). This paper demonstrates that plants showing tolerance to salt stress (reduced stomatal density, increased proline content, higher K(+) concentration, etc.) become salt sensitive (markedly low Psiw values, high putrescine content, increased lipid peroxidation, etc.) when simultaneously treated with the allelochemical BOA. We also report additional information on the mechanisms of action of BOA, and general stress responses in this plant species.
Collapse
Affiliation(s)
- A M Sánchez-Moreiras
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende, Vigo, Spain.
| | | | | | | |
Collapse
|
32
|
Lara-Núñez A, Sánchez-Nieto S, Luisa Anaya A, Cruz-Ortega R. Phytotoxic effects of Sicyos deppei (Cucurbitaceae) in germinating tomato seeds. PHYSIOLOGIA PLANTARUM 2009; 136:180-192. [PMID: 19453504 DOI: 10.1111/j.1399-3054.2009.01228.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The phytotoxic effect of allelochemicals is referred to as allelochemical stress and it is considered a biotic stress. Sicyos deppei G. Don (Cucurbitaceae) is an allelopathic weed that causes phytotoxicity in Lycopersicon esculentum, delaying seed germination and severely inhibiting radicle growth. This paper reports in in vitro conditions, the effects of the aqueous leachate of S. deppei-throughout tomato germination times-on (1) the dynamics of starch and sugars metabolism, (2) activity and expression of the cell wall enzymes involved in endosperm weakening that allows the protrusion of the radicle, and (3) whether abscisic acid (ABA) is involved in this altered metabolic processes. Results showed that S. deppei leachate on tomato seed germination mainly caused: (1) delay in starch degradation as well as in sucrose hydrolysis; (2) lower activity of sucrose phosphate synthase, cell wall invertase, and alpha-amylase; being sucrose phosphate synthase (SPS) gene expression down-regulated, and the last two up regulated; (3) also, lower activity of endo beta-mannanase, beta-1,3 glucanase, alpha-galactosidase, and exo-polygalacturonase with altered gene expression; and (4) higher content of ABA during all times of germination. The phytotoxic effect of S. deppei aqueous leachate is because of the sum of many metabolic processes affected during tomato seed germination that finally is evidenced by a strong inhibition of radicle growth.
Collapse
Affiliation(s)
- Aurora Lara-Núñez
- Laboratorio de Alelopatía. Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-275, México D.F., 04510, Mexico
| | | | | | | |
Collapse
|
33
|
Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia. J Chem Ecol 2009; 35:488-94. [PMID: 19352774 DOI: 10.1007/s10886-009-9615-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/20/2009] [Accepted: 03/11/2009] [Indexed: 01/24/2023]
Abstract
Apple replant is a widespread agricultural problem documented in all of the major fruit-growing regions of the world. In order to better understand the phytotoxic mechanisms induced by allelochemicals involved with this problem, Malus prunifolia plants were grown hydroponically to the six-leaf-stage in the presence of phthalic acid (0 or 1 mM) for 5, 10, or 15 days. Apple plants were evaluated for: shoot and root length, fresh and dry weight, malondialdehyde (MDA) content, hydrogen peroxide (H(2)O(2)) content, superoxide radical (O(2) (*-)) generation rate, and antioxidant enzyme activities. Shoot and root lengths and fresh and dry weights of M. prunifolia decreased in plants exposed to phthalic acid. MDA and H(2)O(2) content increased in phthalic acid-treated plants as did the generation rate of O(2) (*-) in M. prunifolia roots. The activities of superoxide dismutase (EC 1.15.1.1), peroxidase (EC 1.11.1.7), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), glutathione reductase (EC 1.6.4.2), dehydroascorbate reductase (EC 1.8.5.1), and monodehydroascorbate reductase (EC 1.6.5.4) increased in phthalic acid-stressed roots compared with control roots. These results suggest that activation of the antioxidant system by phthalic acid led to the formation of reactive oxygen species that resulted in cellular damage and the decrease of M. prunifolia growth.
Collapse
|
34
|
Sánchez-Moreiras AM, de la Peña TC, Reigosa MJ. The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. PHYTOCHEMISTRY 2008; 69:2172-9. [PMID: 18597799 DOI: 10.1016/j.phytochem.2008.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/21/2008] [Accepted: 05/21/2008] [Indexed: 05/08/2023]
Abstract
Benzoxazolin-2(3H)-one (BOA) is a natural plant product that is phytotoxic to target plant species, inhibiting germination and growth and causing oxidative damage. We investigated its effects on the root meristems of seedlings of lettuce (Lactuca sativa) by means of light and transmission electron microscopy, flow cytometry, and conventional determination of mitotic index. Flow cytometry analyses and mitotic index showed a retard of cell cycle in BOA-treated meristems with selective activity at G2/M checkpoint.
Collapse
Affiliation(s)
- Adela M Sánchez-Moreiras
- Department of Plant Biology and Soil Science, University of Vigo, Campus Lagoas-Marcosende s/n, E-36310 Vigo, Spain.
| | | | | |
Collapse
|
35
|
Cruz-Ortega R, Lara-Núñez A, Anaya AL. Allelochemical stress can trigger oxidative damage in receptor plants: mode of action of phytotoxicity. PLANT SIGNALING & BEHAVIOR 2007; 2:269-70. [PMID: 19704677 PMCID: PMC2634146 DOI: 10.4161/psb.2.4.3895] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 05/07/2023]
Abstract
Plants can interact with other plants through the release of chemical compounds or allelochemicals. These compounds released by donor plants influence germination, growth, development, and establishment of receptor plants; having an important role on the pattern of vegetation, i.e as invasive strategy, and on crop productivity. This phytotoxic or negative effect of the released allelochemicals (allelochemical stress) is caused by modifying or altering diverse metabolic processes, having many molecular targets in the receptor plants. Recently, using an aggressive and allelopathic plant Sicyos deppei as the donor plant, and Lycopersicon esculentum as the receptor plant, we showed that the allelochemicals released by S. deppei caused oxidative damage through an increase in reactive oxygen species (ROS) and activation or modification of antioxidant enzymes. Based on this study, we proposed that oxidative stress is one of the mechanisms, among others, by which an allelopathic plant causes phytotoxicity to other plants.
Collapse
Affiliation(s)
- Rocio Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional; Instituto de Ecologia; Universidad Nacional Autónoma de México; Circuito Exterior Universitario; Ciudad Universitaria, México
| | - Aurora Lara-Núñez
- Laboratorio de Alelopatía, Departamento de Ecología Funcional; Instituto de Ecologia; Universidad Nacional Autónoma de México; Circuito Exterior Universitario; Ciudad Universitaria, México
| | - Ana Luisa Anaya
- Laboratorio de Alelopatía, Departamento de Ecología Funcional; Instituto de Ecologia; Universidad Nacional Autónoma de México; Circuito Exterior Universitario; Ciudad Universitaria, México
| |
Collapse
|
36
|
Batish DR, Singh HP, Setia N, Kaur S, Kohli RK. 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:819-27. [PMID: 17107811 DOI: 10.1016/j.plaphy.2006.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 10/09/2006] [Indexed: 05/12/2023]
Abstract
2-Benzoxazolinone (BOA), a well-known allelochemical with strong phytotoxicity, is a potential herbicidal candidate. The aim of the present study was to determine whether phytotoxicity of BOA is due to induction of oxidative stress caused by generation of reactive oxygen species (ROS) and the changes in levels of antioxidant enzymes induced in response to BOA. Effect of BOA was studied on electrolyte leakage, lipid peroxidation (LP), hydrogen peroxide (H(2)O(2)) generation, proline (PRO) accumulation, and activities of antioxidant enzymes-superoxide dismutase (SOD, 1.15.1.1), ascorbate peroxidase (APX, 1.11.1.11), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6) and glutathione reductase (GR, 1.6.4.2) in Phaseolus aureus (mung bean). BOA significantly enhanced malondialdehyde (MDA) content, a product of LP, in both leaves and roots of mung bean. The amount of H(2)O(2), a product of oxidative stress, and endogenous PRO increased many-fold in response to BOA. Accumulation of PRO, MDA and H(2)O(2) indicates the cellular damage in the target tissue caused by ROS generated by BOA. In response to BOA, there was a significant increase in the activities of scavenging enzymes SOD, APX, GPX, CAT, and GR in root and leaf tissue of mung bean. At 5 mM BOA, GR activity in roots showed a nearly 22-fold increase over that in control. The present study concludes that BOA induces oxidative stress in mung bean through generation of ROS and upregulation of activities of various scavenging enzymes.
Collapse
Affiliation(s)
- D R Batish
- Department of Botany, Panjab University, Chandigarh 160014, India
| | | | | | | | | |
Collapse
|
37
|
Lara-Nuñez A, Romero-Romero T, Ventura JL, Blancas V, Anaya AL, Cruz-Ortega R. Allelochemical stress causes inhibition of growth and oxidative damage in Lycopersicon esculentum Mill. PLANT, CELL & ENVIRONMENT 2006; 29:2009-16. [PMID: 17081237 DOI: 10.1111/j.1365-3040.2006.01575.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aim of this study was to analyse the effect of allelochemical stress on Lycopersicon esculentum growth. Our results showed that allelochemical stress caused by Sicyos deppei aqueous leachate inhibited root growth but not germination, and produced an imbalance in the oxidative status of cells in both ungerminated seeds and in primary roots. We observed changes in activity of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), glutathione reductase (GR) and the plasma membrane NADPH oxidase, as well as in the levels of H(2)O(2) and O(2) (*-) in seeds at 12 and 24 h, and in primary roots at 48 and 72 h of treatment, which could account for the oxidative imbalance. There were changes in levels of expression of the mentioned enzymes, but without a correlation with their respective activities. Higher levels of membrane lipid peroxidation were observed in primary roots at 48 and 72 h of treatment. No effect on the expression of metacaspase and the PR1 was observed as indicators of cell death or induction of plant defence. This paper contributes to the understanding of plant-plant interactions through the phytotoxic allelochemicals released in an aqueous leachate of the weed S. deppei, which cause a negative effect on other plants.
Collapse
Affiliation(s)
- Aurora Lara-Nuñez
- Departmento de Ecología Funcional, Instituto de Ecologia, Universidad Nacioanl Autónoma de México, Circuito Exterior, Ciudad Universitaria, México
| | | | | | | | | | | |
Collapse
|