1
|
Bierman TV, Fernandes HP, Choi YH, Seo S, Vrieling K, Macel M, Knegt B, Kodger TE, van Zwieten R, Klinkhamer PGL, Bezemer TM. Sprayable solutions containing sticky rice oil droplets reduce western flower thrips damage and induce changes in Chrysanthemum leaf chemistry. FRONTIERS IN PLANT SCIENCE 2025; 16:1509126. [PMID: 39935947 PMCID: PMC11811490 DOI: 10.3389/fpls.2025.1509126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Thrips are one of the most challenging pests in agricultural crops, including Chrysanthemum. In this study we tested via two plant assays whether solutions containing sticky rice germ oil (RGO) droplets could effectively trap thrips and lower thrips damage on Chrysanthemum. In the first assay, we additionally assessed the metabolomic effects of these RGO droplet sprays and thrips presence on plant chemistry via 1H NMR and headspace GC-MS on multiple timepoints to investigate which plant metabolites were affected by spraying and their potential relation to plant resistance against thrips. In the second assay, we tested the individual RGO solution constituents against thrips. Our results suggested that the adhesive RGO droplets were not effective as a physical trap as only three out of 600 adult thrips were caught at the achieved coverage. However, average thrips damage was still reduced up to 50% and no negative effects on plant growth were observed up to 25 days. Results from the second plant assay indicated that the individual constituents of the solution containing RGO droplets may have direct effects against thrips. Metabolomics analysis of sprayed leaves via headspace GC-MS and 1H NMR indicated that fatty acids and several volatile compounds such as 4(10)-thujene (sabinene), eucalyptol, cis-4-thujanol, and isocaryophyllene were highest on day 10, while sucrose, malic acid, o-Cymene, and 3-Methyl-2-butenoic acid were highest on day 25. Plants with thrips showed higher flavonoid, carbohydrate and glutamine acetic acid levels, and lower fatty acids and malic acid levels. RGO application increased the levels of fatty acids and alcohols present on top of and inside the Chrysanthemum leaves, while decreasing the concentrations of volatile compounds such as eucalyptol, chrysanthenone and eugenol in the Chrysanthemum leaves. Most interestingly, the thrips effect on the plant metabolome was no longer visible in RGO treated plants at the later harvesttime, suggesting that RGO application may overrule or prevent the metabolomic effects of thrips infestation. In conclusion, our study provides new information on how the application of a new plant-based plant protection product affects insect herbivores and alters crop phytochemistry for improved herbivore resistance.
Collapse
Affiliation(s)
- Thijs V. Bierman
- Above-Belowground Interactions, Institute of Biology Leiden, Leiden, Netherlands
| | - Hocelayne P. Fernandes
- Above-Belowground Interactions, Institute of Biology Leiden, Leiden, Netherlands
- Natural Products Laboratory, Institute of Biology Leiden, Leiden, Netherlands
| | - Young H. Choi
- Natural Products Laboratory, Institute of Biology Leiden, Leiden, Netherlands
| | - Sumin Seo
- Natural Products Laboratory, Institute of Biology Leiden, Leiden, Netherlands
| | - Klaas Vrieling
- Above-Belowground Interactions, Institute of Biology Leiden, Leiden, Netherlands
| | - Mirka Macel
- Weerbare Planten, Aeres University of Applied Sciences, Almere, Netherlands
| | - Bram Knegt
- Weerbare Planten, Aeres University of Applied Sciences, Almere, Netherlands
| | - Thomas E. Kodger
- Physical Chemistry and Soft Matter, Agrotechnology & Food Sciences Group, Wageningen University & Research, Wageningen, Netherlands
| | - Ralph van Zwieten
- Physical Chemistry and Soft Matter, Agrotechnology & Food Sciences Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - T. Martijn Bezemer
- Above-Belowground Interactions, Institute of Biology Leiden, Leiden, Netherlands
| |
Collapse
|
2
|
Gupta SK, Mandal A, Ghosh A, Kundu A, Saha S, Singh A, Dutta A. Evaluating the insecticidal potential of alkaloids for the management of Thrips palmi: in vivo and in silico perspectives. Sci Rep 2024; 14:28045. [PMID: 39543116 PMCID: PMC11564808 DOI: 10.1038/s41598-024-77236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Insecticidal potential of seven commonly available alkaloids against melon thrips (Thrips palmi Karny) was investigated through in vivo experiments and the bioactivity was explained via in silico approaches. In vivo screening showed highest mortality of T. plami larvae for reserpine (43%), closely followed by tropinone (41%) after 24 h of incubation. After 48 h, tropinone surpassed reserpine with 83% mortality, indicating its prolonged insecticidal activity. A detailed bioassay of tropinone revealed its LC50 values as 1187.9 and 686.9 µg mL-1 after 24 and 48 h, respectively. While studying the molecular interactions between the alkaloids and four physiologically important target proteins of T. palmi, tropinone demonstrated the highest ligand efficiency and lowest predicted inhibitory constant, particularly when forming complexes with CathB protein. However, binding energy calculations of the docked complexes showed most favorable binding of reserpine with CathB. To clear the ambiguity, considering both binding energy and ligand efficiency as the evaluation parameters, a molecular dynamics study was carried out, which predicted higher stability of CathB-tropinone complex than CathB-reserpine complex in terms of the total energy of the system. These in silico findings aligned well with the in vivo results, confirming tropinone as a promising candidate for effective thrips management programs.
Collapse
Affiliation(s)
- Shyam Kumar Gupta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, 560089, Karnataka, India.
| | - Amalendu Ghosh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anupama Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Downstream Agro-Processing Division, ICAR-National Institute of Secondary Agriculture, Namkum, Ranchi, 834010, Jharkhand, India.
| |
Collapse
|
3
|
Mascellani Bergo A, Leiss K, Havlik J. Twenty Years of 1H NMR Plant Metabolomics: A Way Forward toward Assessment of Plant Metabolites for Constitutive and Inducible Defenses to Biotic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8332-8346. [PMID: 38501393 DOI: 10.1021/acs.jafc.3c09362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Metabolomics has become an important tool in elucidating the complex relationship between a plant genotype and phenotype. For over 20 years, nuclear magnetic resonance (NMR) spectroscopy has been known for its robustness, quantitative capabilities, simplicity, and cost-efficiency. 1H NMR is the method of choice for analyzing a broad range of relatively abundant metabolites, which can be used for both capturing the plant chemical profile at one point in time and understanding the pathways that underpin plant defense. This systematic Review explores how 1H NMR-based plant metabolomics has contributed to understanding the role of various compounds in plant responses to biotic stress, focusing on both primary and secondary metabolites. It clarifies the challenges and advantages of using 1H NMR in plant metabolomics, interprets common trends observed, and suggests guidelines for method development and establishing standard procedures.
Collapse
Affiliation(s)
- Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czechia
| | - Kirsten Leiss
- Business Unit Greenhouse Horticulture, Wageningen University & Research, 2665MV Bleiswijk, Netherlands
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czechia
| |
Collapse
|
4
|
Dillon FM, Panagos C, Gouveia G, Tayyari F, Chludil HD, Edison AS, Zavala JA. Changes in primary metabolite content may affect thrips feeding preference in soybean crops. PHYTOCHEMISTRY 2024; 220:114014. [PMID: 38354875 DOI: 10.1016/j.phytochem.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Past research has characterized the induction of plant defenses in response to chewing insect damage. However, little is known about plant responses to piercing-sucking insects that feed on plant cell-contents like thrips (Caliothrips phaseoli). In this study, we used NMR spectroscopy to measure metabolite changes in response to six days of thrips damage from two field-grown soybean cultivars (cv.), known for their different susceptibility to Caliothrips phaseoli. We observed that thrips damage reduces sucrose concentration in both cultivars, while pinitol, the most abundant leaf soluble carbohydrate, is induced in cv. Charata but not in cv. Williams. Thrips did not show preference for leaves where sucrose or pinitol were externally added, at tested concentration. In addition, we also noted that cv. Charata was less naturally colonized and contained higher levels of trigonelline, tyrosine as well as several compounds that we have not yet identified. We have established that preference-feeding clues are not dependent on the plants major soluble carbohydrates but may depend on other types of compounds or leaf physical characteristics.
Collapse
Affiliation(s)
- Francisco M Dillon
- Universidad de Buenos Aires, Cátedra de Bioquímica, Facultad de Agronomía, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; INBA/CONICET, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Charalampos Panagos
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, USA
| | - Gonçalo Gouveia
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, USA
| | - Fariba Tayyari
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, USA
| | - Hugo D Chludil
- Universidad de Buenos Aires, Cátedra de Química de Biomoléculas, Facultad de Agronomía, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Arthur S Edison
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, USA
| | - Jorge A Zavala
- Universidad de Buenos Aires, Cátedra de Bioquímica, Facultad de Agronomía, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; INBA/CONICET, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina; Universidad de Buenos Aires, Cátedra de Zoología Agrícola, Facultad de Agronomía, Avenida San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Wahyuni DSC, Klinkhamer PGL, Choi YH, Leiss KA. Resistance to Frankliniella occidentalis during Different Plant Life Stages and under Different Environmental Conditions in the Ornamental Gladiolus. PLANTS (BASEL, SWITZERLAND) 2024; 13:687. [PMID: 38475533 DOI: 10.3390/plants13050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
The defense mechanisms of plants evolve as they develop. Previous research has identified chemical defenses against Western flower thrips (WFT) in Gladiolus (Gladiolus hybridus L.). Consequently, our study aimed to explore the consistency of these defense variations against WFT across the various developmental stages of Gladiolus grown under different conditions. Thrips bioassays were conducted on whole plants at three developmental stages, using the Charming Beauty and Robinetta varieties as examples of susceptible and resistant varieties, respectively. Metabolomic profiles of the leaves, buds and flowers before thrips infestation were analyzed. The thrips damage in Charming Beauty was more than 500-fold higher than the damage in Robinetta at all plant development stages. Relative concentrations of triterpenoid saponins and amino acids that were associated with resistance were higher in Robinetta at all plant stages. In Charming Beauty, the leaves exhibited greater damage compared to buds and flowers. The relative concentrations of alanine, valine and threonine were higher in buds and flowers than in leaves. The Metabolomic profiles of the leaves did not change significantly during plant development. In addition, we cultivated plants under different environmental conditions, ensuring consistency in the performance of the two varieties across different growing conditions. In conclusion, the chemical thrips resistance markers, based on the analysis of vegetative plants grown in climate rooms, were consistent over the plant's lifetime and for plants grown under field conditions.
Collapse
Affiliation(s)
- Dinar S C Wahyuni
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- Pharmacy Department, Faculty Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kirsten A Leiss
- Business Unit Horticulture, Wageningen University and Research Center, Postbus 20, 2665ZG Bleiswijk, The Netherlands
| |
Collapse
|
6
|
Mulder PP, Mueller-Maatsch JT, Meijer N, Bosch M, Zoet L, Van Der Fels-Klerx H. Effects of dietary exposure to plant toxins on bioaccumulation, survival, and growth of black soldier fly ( Hermetia illucens) larvae and lesser mealworm ( Alphitobius diaperinus). Heliyon 2024; 10:e26523. [PMID: 38404897 PMCID: PMC10884485 DOI: 10.1016/j.heliyon.2024.e26523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
In their natural habitat, insects may bioaccumulate toxins from plants for defence against predators. When insects are accidently raised on feed that is contaminated with toxins from co-harvested herbs, this may pose a health risk when used for human or animal consumption. Plant toxins of particular relevance are the pyrrolizidine alkaloids (PAs), which are genotoxic carcinogens produced by a wide variety of plant species and the tropane alkaloids (TAs) which are produced by a number of Solanaceae species. This study aimed to investigate the transfer of these plant toxins from substrates to black soldier fly larvae (BSFL) and lesser mealworm (LMW). PAs and the TAs atropine and scopolamine were added to insect substrate simulating the presence of different PA- or TA-containing herbs, and BSFL and LMW were grown on these substrates. Bioaccumulation from substrate to insects varied widely among the different plant toxins. Highest bioaccumulation was observed for the PAs europine, rinderine and echinatine. For most PAs and for atropine and scopolamine, bioaccumulation was very low. In the substrate, PA N-oxides were quickly converted to the corresponding tertiary amines. More research is needed to verify the findings of this study at larger scale, and to determine the potential role of the insect and/or substrate microbiome in metabolizing these toxins.
Collapse
Affiliation(s)
- Patrick P.J. Mulder
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Judith T.L. Mueller-Maatsch
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Nathan Meijer
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| | - Marlou Bosch
- Ynsect NL (formerly Protifarm), Harderwijkerweg 141a, 3852 AB Ermelo, the Netherlands
| | - Lisa Zoet
- Bestico, Industrieweg 6, 2651 BE Berkel en Rodenrijs, the Netherlands
| | - H.J. Van Der Fels-Klerx
- Wageningen Food Safety Research (WFSR), Part of Wageningen University and Research, Akkermaalsbos 2, 6708 WB Wageningen, the Netherlands
| |
Collapse
|
7
|
Bulle M, Sheri V, Aileni M, Zhang B. Chloroplast Genome Engineering: A Plausible Approach to Combat Chili Thrips and Other Agronomic Insect Pests of Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:3448. [PMID: 37836188 PMCID: PMC10574609 DOI: 10.3390/plants12193448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The world population's growing demand for food is expected to increase dramatically by 2050. The agronomic productivity for food is severely affected due to biotic and abiotic constraints. At a global level, insect pests alone account for ~20% loss in crop yield every year. Deployment of noxious chemical pesticides to control insect pests always has a threatening effect on human health and environmental sustainability. Consequently, this necessitates for the establishment of innovative, environmentally friendly, cost-effective, and alternative means to mitigate insect pest management strategies. According to a recent study, using chloroplasts engineered with double-strand RNA (dsRNA) is novel successful combinatorial strategy deployed to effectively control the most vexing pest, the western flower thrips (WFT: Frankliniella occidentalis). Such biotechnological avenues allowed us to recapitulate the recent progress of research methods, such as RNAi, CRISPR/Cas, mini chromosomes, and RNA-binding proteins with plastid engineering for a plausible approach to effectively mitigate agronomic insect pests. We further discussed the significance of the maternal inheritance of the chloroplast, which is the major advantage of chloroplast genome engineering.
Collapse
Affiliation(s)
- Mallesham Bulle
- Agri Biotech Foundation, Agricultural University Campus, Rajendranagar, Hyderabad 500030, India
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Mahender Aileni
- Department of Biotechnology, Telangana University, Dichpally, Nizamabad 503322, India;
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| |
Collapse
|
8
|
Rodríguez D, Coy-Barrera E. Overview of Updated Control Tactics for Western Flower Thrips. INSECTS 2023; 14:649. [PMID: 37504655 PMCID: PMC10380671 DOI: 10.3390/insects14070649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Frankliniella occidentalis Pergande (Thysanoptera: Thripidae), broadly known as Western flower thrips (WFT), are currently one of the most critical pests worldwide in field and greenhouse crops, and their management is full of yet unsolved challenges derived from their high reproductive potential, cryptic habit, and ability to disperse. The control of this pest relies widely on chemical control, despite the propensity of the species to develop resistance. However, significant advances have been produced through biological and ethological control. Although there has recently been a remarkable amount of new information regarding the management of this pest worldwide, there is no critical analysis of recent developments and advances in the attractive control tactics for WFT, constituting the present compilation's aim. Hence, this narrative review provides an overview of effective control strategies for managing thrips populations. By understanding the pest's biology, implementing monitoring techniques, accurately identifying the species, and employing appropriate control measures, farmers and researchers can mitigate the WFT impact on agricultural production and promote sustainable pest management practices.
Collapse
Affiliation(s)
- Daniel Rodríguez
- Biological Control Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
9
|
Fattorini R, Egan PA, Rosindell J, Farrell IW, Stevenson PC. Grayanotoxin I variation across tissues and species of Rhododendron suggest pollinator-herbivore defence trade-offs. PHYTOCHEMISTRY 2023; 212:113707. [PMID: 37149121 DOI: 10.1016/j.phytochem.2023.113707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Grayanotoxin I (GTX I) is a major toxin in leaves of Rhododendron species, where it provides a defence against insect and vertebrate herbivores. Surprisingly, it is also present in R. ponticum nectar, and this can hold important implications for plant-pollinator mutualisms. However, knowledge of GTX I distributions across the genus Rhododendron and in different plant materials is currently limited, despite the important ecological function of this toxin. Here we characterise GTX I expression in the leaves, petals, and nectar of seven Rhododendron species. Our results indicated interspecific variation in GTX I concentration across all species. GTX I concentrations were consistently higher in leaves compared to petals and nectar. Our findings provide preliminary evidence for phenotypic correlation between GTX I concentrations in defensive tissues (leaves and petals) and floral rewards (nectar), suggesting that Rhododendron species may commonly experience functional trade-offs between herbivore defence and pollinator attraction.
Collapse
Affiliation(s)
- Róisín Fattorini
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, Alnarp 23053, Sweden
| | - James Rosindell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Iain W Farrell
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE UK
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE UK; Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
10
|
Visschers IGS, Macel M, Peters JL, Sergeeva L, Bruin J, van Dam NM. Exploring Thrips Preference and Resistance in Flowers, Leaves, and Whole Plants of Ten Capsicum Accessions. PLANTS (BASEL, SWITZERLAND) 2023; 12:825. [PMID: 36840173 PMCID: PMC9960883 DOI: 10.3390/plants12040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Capsicum species grown for pepper production suffer severely from thrips damage, urging the identification of natural resistance. Resistance levels are commonly assessed on leaves. However, Capsicum plants are flower-bearing during most of the production season, and thrips also feed on pollen and flower tissues. In order to obtain a comprehensive estimate of elements contributing to thrips resistance, flower tissues should be considered as well. Therefore, we assessed resistance to Frankliniella occidentalis in flowers, leaves, and whole plants of ten Capsicum accessions. Using choice assays, we found that thrips prefer flowers of certain accessions over others. The preference of adult thrips for flowers was positively correlated to trehalose and fructose concentration in anthers as well as to pollen quantity. Resistance measured on leaf discs and thrips population development on whole plants was significantly and positively correlated. Leaf-based resistance thus translates to reduced thrips population development. Results of the flower assays were not significantly correlated with resistance in leaves or on whole plants. This suggests that both leaves and flowers represent a different part of the resistance spectrum and should both be considered for understanding whole plant resistance and the identification of resistant Capsicum varieties.
Collapse
Affiliation(s)
| | - Mirka Macel
- Weerbare Planten, Aeres University of Applied Science, Arboretum West 98, 1325 WB Almere, The Netherlands
| | - Janny L. Peters
- Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan Bruin
- Syngenta, Westeinde 62, 1601 BK Enkhuizen, The Netherlands
| | - Nicole M. van Dam
- Leibniz-Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| |
Collapse
|
11
|
NMR-Based Metabolomics: A New Paradigm to Unravel Defense-Related Metabolites in Insect-Resistant Cotton Variety through Different Multivariate Data Analysis Approaches. Molecules 2023; 28:molecules28041763. [PMID: 36838756 PMCID: PMC9966674 DOI: 10.3390/molecules28041763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 02/16/2023] Open
Abstract
Cotton (Gossypium hirsutum) is an economically important crop and is widely cultivated around the globe. However, the major problem of cotton is its high vulnerability to biotic and abiotic stresses. It has been around three decades since the cotton plant was genetically engineered with genes encoding insecticidal proteins (mainly Cry proteins) with an aim to protect it against insect attack. Several studies have been reported on the impact of these genes on cotton production and fiber quality. However, the metabolites responsible for conferring resistance in genetically modified cotton need to be explored. The current work aims to unveil the key metabolites responsible for insect resistance in Bt cotton and also compare the conventional multivariate analysis methods with deep learning approaches to perform clustering analysis. We aim to unveil the marker compounds which are responsible for inducing insect resistance in cotton plants. For this purpose, we employed 1H-NMR spectroscopy to perform metabolite profiling of Bt and non-Bt cotton varieties, and a total of 42 different metabolites were identified in cotton plants. In cluster analysis, deep learning approaches (linear discriminant analysis (LDA) and neural networks) showed better separation among cotton varieties compared to conventional methods (principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLSDA)). The key metabolites responsible for inter-class separation were terpinolene, α-ketoglutaric acid, aspartic acid, stigmasterol, fructose, maltose, arabinose, xylulose, cinnamic acid, malic acid, valine, nonanoic acid, citrulline, and shikimic acid. The metabolites which regulated differently with the level of significance p < 0.001 amongst different cotton varieties belonged to the tricarboxylic acid cycle (TCA), Shikimic acid, and phenylpropanoid pathways. Our analyses underscore a biosignature of metabolites that might involve in inducing insect resistance in Bt cotton. Moreover, novel evidence from our study could be used in the metabolic engineering of these biological pathways to improve the resilience of Bt cotton against insect/pest attacks. Lastly, our findings are also in complete support of employing deep machine learning algorithms as a useful tool in metabolomics studies.
Collapse
|
12
|
Liu Y, Wang X, Luo S, Ma L, Zhang W, Xuan S, Wang Y, Zhao J, Shen S, Ma W, Gu A, Chen X. Metabolomic and transcriptomic analyses identify quinic acid protecting eggplant from damage caused by western flower thrips. PEST MANAGEMENT SCIENCE 2022; 78:5113-5123. [PMID: 36053852 DOI: 10.1002/ps.7129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/30/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Western flower thrips are considered the major insect pest of horticultural crops worldwide, causing economic and yield loss to Solanaceae crops. The eggplant (Solanum melongena L.) resistance against thrips remains largely unexplored. This work aims to identify thrips-resistant eggplants and dissect the molecular mechanisms underlying this resistance using the integrated metabolomic and transcriptomic analyses of thrips-resistant and -susceptible cultivars. RESULTS We developed a micro-cage thrips bioassay to identify thrips-resistant eggplant cultivars, and highly resistant cultivars were identified from wild eggplant relatives. Metabolomic profiles of thrips-resistant and -susceptible eggplant were compared using the gas chromatography-mass spectrometry (GC-MS)-based approach, resulting in the identification of a higher amount of quinic acid in thrips-resistant eggplant compared to the thrips-susceptible plant. RNA-sequencing analysis identified differentially expressed genes (DEGs) by comparing genome-wide gene expression changes between thrips-resistant and -susceptible eggplants. Consistent with metabolomic analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs revealed that the starch and sucrose metabolic pathway in which quinic acid is a metabolic by-product was highly enriched. External application of quinic acid enhances the resistance of susceptible eggplant to thrips. CONCLUSION Our results showed that quinic acid plays a key role in the resistance to thrips. These findings highlight a potential application of quinic acid as a biocontrol agent to manage thrips and expand our knowledge to breed thrips-resistant eggplant. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lisong Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Weiwei Zhang
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Aixia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
13
|
Puri S, Sahal D, Sharma U. A conversation between hyphenated spectroscopic techniques and phytometabolites from medicinal plants. ANALYTICAL SCIENCE ADVANCES 2021; 2:579-593. [PMID: 38715860 PMCID: PMC10989556 DOI: 10.1002/ansa.202100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2024]
Abstract
Medicinal plant metabolomics has emerged as a goldmine for the natural product chemists. It provides a pool of bioactive phytoconstituents leading to accelerated novel discoveries and the elucidation of a variety of biosynthetic pathways. Further, it also acts as an innovative tool for herbal medicine's scientific validation and quality assurance. This review highlights different strategies and analytical techniques employed in the practice of metabolomics. Further, it also discusses several other applications and advantages of metabolomics in the area of natural product chemistry. Additional examples of integrating metabolomics with multivariate data analysis techniques for some Indian medicinal plants are also reviewed. Recent technical advances in mass spectrometry-based hyphenated techniques, nuclear magnetic resonance-based techniques, and comprehensive hyphenated technologies for phytometabolite profiling studies have also been reviewed. Mass Spectral Imaging (MSI) has been presented as a highly promising method for high precision in situ spatiotemporal monitoring of phytometabolites. We conclude by introducing GNPS (Global Natural Products Social Molecular Networking) as an emerging platform to make social networks of related molecules, to explore data and to annotate more metabolites, and expand the networks to novel "predictive" metabolites that can be validated.
Collapse
Affiliation(s)
- Shivani Puri
- Chemical Technology Division CSIR‐IHBTPalampurHimachal Pradesh176061India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | - Dinkar Sahal
- Malaria Drug Discovery Research GroupInternational Centre for Genetic Engineering and BiotechnologyNew Delhi110067India
| | - Upendra Sharma
- Chemical Technology Division CSIR‐IHBTPalampurHimachal Pradesh176061India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| |
Collapse
|
14
|
Sardans J, Gargallo‐Garriga A, Urban O, Klem K, Holub P, Janssens IA, Walker TWN, Pesqueda A, Peñuelas J. Ecometabolomics of plant–herbivore and plant–fungi interactions: a synthesis study. Ecosphere 2021. [DOI: 10.1002/ecs2.3736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jordi Sardans
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Albert Gargallo‐Garriga
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Otmar Urban
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Karel Klem
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Petr Holub
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Ivan A. Janssens
- Department of Biology University of Antwerp Wilrijk 2610 Belgium
| | - Tom W. N. Walker
- Department of Environmental Systems Science Institute of Integrative Biology ETH Zürich Zurich 8092 Switzerland
| | - Argus Pesqueda
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
| | - Josep Peñuelas
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| |
Collapse
|
15
|
Wahyuni DSC, Choi YH, Leiss KA, Klinkhamer PGL. Morphological and Chemical Factors Related to Western Flower Thrips Resistance in the Ornamental Gladiolus. PLANTS (BASEL, SWITZERLAND) 2021; 10:1384. [PMID: 34371587 PMCID: PMC8309351 DOI: 10.3390/plants10071384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.
Collapse
Affiliation(s)
- Dinar S. C. Wahyuni
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
- Pharmacy Department, Faculty Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Kirsten A. Leiss
- Business Unit Horticulture, Wageningen University and Research Center, Postbus 20, 2665ZG Bleiswijk, The Netherlands;
| | - Peter G. L. Klinkhamer
- Plant Science and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands;
| |
Collapse
|
16
|
van Haperen P, Voorrips RE, van Kaauwen M, van Eekelen HDLM, de Vos RCH, van Loon JJA, Vosman B. Fine mapping of a thrips resistance QTL in Capsicum and the role of diterpene glycosides in the underlying mechanism. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1557-1573. [PMID: 33609141 PMCID: PMC8081677 DOI: 10.1007/s00122-021-03790-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 05/27/2023]
Abstract
A major thrips resistance QTL in Capsicum was fine-mapped to a region of 0.4 Mbp, and a multidisciplinary approach has been used to study putative underlying mechanisms. Resistance to thrips is an important trait for pepper growers. These insects can cause extensive damage to fruits, flowers and leaves on field and greenhouse grown plants worldwide. Two independent studies in Capsicum identified diterpene glycosides as metabolites that are correlated with thrips resistance. In this study, we fine-mapped a previously defined thrips resistance QTL on chromosome 6, to a region of 0.4 Mbp harbouring 15 genes. Two of these 15 candidate genes showed differences in gene expression upon thrips induction, when comparing plants carrying the resistance allele in homozygous state to plants with the susceptibility allele in homozygous state for the QTL region. Three genes, including the two genes that showed difference in gene expression, contained a SNP that was predicted to lead to changes in protein structure. Therefore, these three genes, i.e. an acid phosphatase 1 (APS1), an organic cation/carnitine transporter 7 (OCT7) and an uncharacterized locus LOC107874801, are the most likely candidates for playing a role in thrips resistance and are a first step in elucidating the genetic basis of thrips resistance in Capsicum. In addition, we show that the diterpene glycoside profiles did not differ between plants with the resistance and susceptibility allele for the chromosome 6 QTL, suggesting that these compounds do not play a role in the resistance conferred by the genes located in the major thrips resistance QTL studied.
Collapse
Affiliation(s)
- Pauline van Haperen
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Martijn van Kaauwen
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | | | - Ric C H de Vos
- Bioscience, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ben Vosman
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
17
|
Xia J, Guo Z, Yang Z, Han H, Wang S, Xu H, Yang X, Yang F, Wu Q, Xie W, Zhou X, Dermauw W, Turlings TCJ, Zhang Y. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 2021; 184:1693-1705.e17. [PMID: 33770502 DOI: 10.1016/j.cell.2021.02.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Plants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses. Here, we show that, through an exceptional horizontal gene transfer event, the whitefly has acquired the plant-derived phenolic glucoside malonyltransferase gene BtPMaT1. This gene enables whiteflies to neutralize phenolic glucosides. This was confirmed by genetically transforming tomato plants to produce small interfering RNAs that silence BtPMaT1, thus impairing the whiteflies' detoxification ability. These findings reveal an evolutionary scenario whereby herbivores harness the genetic toolkit of their host plants to develop resistance to plant defenses and how this can be exploited for crop protection.
Collapse
Affiliation(s)
- Jixing Xia
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolin Han
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haifeng Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengshan Yang
- Key Laboratory of Molecular Biology of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Wannes Dermauw
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, 8920 Merelbeke, Belgium; Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Wei X, Vrieling K, Kim HK, Mulder PPJ, Klinkhamer PGL. Application of methyl jasmonate and salicylic acid lead to contrasting effects on the plant's metabolome and herbivory. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110784. [PMID: 33487359 DOI: 10.1016/j.plantsci.2020.110784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 05/13/2023]
Abstract
Phytohormone applications are used to mimic herbivory and can induce plant defences. This study investigated (i) metabolomic changes in leaf tissues of Jacobaea vulgaris and J. aquatica after methyl jasmonate (MeJA) and salicylic acid (SA) applications and (ii) the effects on a leaf-chewing, a leaf-mining and a piercing-sucking herbivore. MeJA treated leaves showed clearly different metabolomic profiles than control leaves, while the differences in metabolomic profiles between SA treated leaves and control leaves were less clear. More NMR peaks increased than decreased after MeJA treatment while this pattern was reversed after SA treatment. The leaf-chewing (Mamestra brassicae) and the leaf-mining herbivores (Liriomyza trifolii) fed less on MeJA-treated leaves compared to control and SA-treated leaves while they fed equally on the latter two. In J. aquatica but not in J. vulgaris, SA treatment reduced feeding damage by the piercing-sucking herbivore (Frankliniella occidentalis). Based on the herbivory and metabolomic data after phytohormone application, we made speculations as follows: For all three herbivore species, plants with high levels of threonine and citric acid showed less herbivory while plants with high levels of glucose showed more herbivory. Herbivory by thrips was lower on plants with high levels of alanine while it was higher on plants with high levels of 3,5-dicaffeoylquinic acid. The plant compounds that related to feeding of piercing-sucking herbivore were further verified with previous independent experiments.
Collapse
Affiliation(s)
- Xianqin Wei
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China; Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands.
| | - Klaas Vrieling
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Patrick P J Mulder
- RIKILT-Wageningen University & Research, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
19
|
Kirk WDJ, de Kogel WJ, Koschier EH, Teulon DAJ. Semiochemicals for Thrips and Their Use in Pest Management. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:101-119. [PMID: 33417819 DOI: 10.1146/annurev-ento-022020-081531] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thrips (Thysanoptera) are small insects that can cause huge problems in agriculture, horticulture, and forestry through feeding and the transmission of plant viruses. They produce a rich chemical diversity of pheromones and allomones and also respond to a broad range of semiochemicals from plants. These semiochemicals offer many opportunities to develop new approaches to pest management. Aggregation pheromones and plant-derived semiochemicals are already available in commercial products. We review these semiochemicals and consider how we can move away from using them mainly for monitoring to using them for control. We still know very little about the behavioral responses of thrips to semiochemicals, and we show that research in this area is needed to improve the use of semiochemicals in pest management. We also propose that thrips should be used as a model system for semiochemically mediated behaviors of small insects that have limited ability to fly upwind.
Collapse
Affiliation(s)
- William D J Kirk
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United Kingdom;
| | | | - Elisabeth H Koschier
- Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - David A J Teulon
- New Zealand Institute for Plant & Food Research, Ltd., Christchurch 8140, New Zealand;
| |
Collapse
|
20
|
Mouden S, Bac-Molenaar JA, Kappers IF, Beerling EAM, Leiss KA. Elicitor Application in Strawberry Results in Long-Term Increase of Plant Resilience Without Yield Loss. FRONTIERS IN PLANT SCIENCE 2021; 12:695908. [PMID: 34276745 PMCID: PMC8282209 DOI: 10.3389/fpls.2021.695908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
For a first step integrating elicitor applications into the current IPM strategy increasing plant resilience against pests, we investigated repeated elicitor treatments in a strawberry everbearer nursery and cropping cycle under glass. During nursery methyl-jasmonate (MeJA), testing induction of defenses with plant bioassays was applied every 3 weeks. Thrips damage and reproduction by spider mites, whitefly and aphids were strongly reduced upon elicitor treatment. Subsequently, we applied MeJA every 3 weeks or based on scouting pests during a whole cropping cycle. Thrips leaf bioassays and LC-MS leaf metabolomics were applied to investigate the induction of defenses. Leaf damage by thrips was lower for both MeJA application schemes compared to the control except for the last weeks. While elicitor treatments after scouting also reduced damage, its effect did not last. Thrips damage decreased from vegetative to mature plants during the cropping cycle. At the end of the nursery phase, plants in the elicitor treatment were smaller. Surprisingly, growth during production was not affected by MeJA application, as were fruit yield and quality. LC-MS leaf metabolomics showed strong induction of vegetative plants decreasing during the maturation of plants toward the end of cultivation. Concurrently, no increase in the JA-inducible marker PPO was observed when measured toward the end of cultivation. Mostly flavonoid and phenolic glycosides known as plant defense compounds were induced upon MeJA application. While induced defense decreased with the maturation of plants, constitutive defense increased as measured in the leaf metabolome of control plants. Our data propose that young, relatively small plant stages lack constitutive defense necessitating an active JA defense response. As plants, mature constitutive defense metabolites seem to accumulate, providing a higher level of basal resistance. Our results have important implications for but are not limited to strawberry cultivation. We demonstrated that repeated elicitor application could be deployed as part of an integrated approach for sustainable crop protection by vertical integration with other management tactics and horizontal integration to control multiple pests concurrently. This approach forms a promising potential for long-term crop protection in greenhouses.
Collapse
Affiliation(s)
- Sanae Mouden
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Johanna A. Bac-Molenaar
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Johanna A. Bac-Molenaar
| | - Iris F. Kappers
- Laboratory of Plant Physiology, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Ellen A. M. Beerling
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kirsten A. Leiss
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
21
|
Chen G, Klinkhamer PGL, Escobar-Bravo R. Constitutive and Inducible Resistance to Thrips Do Not Correlate With Differences in Trichome Density or Enzymatic-Related Defenses in Chrysanthemum. J Chem Ecol 2020; 46:1105-1116. [PMID: 33089352 PMCID: PMC7677159 DOI: 10.1007/s10886-020-01222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Western flower thrips (WFT), Frankliniella occidentalis, is a serious insect pest of Chrysanthemum [Chrysanthemum × morifolium Ramat. (Asteraceae)]. Here we have investigated whether genotypic variation in constitutive and inducible resistance to WFT correlates with phenotypic differences in leaf trichome density and the activity of the defense-related enzyme polyphenol oxidase (PPO) in chrysanthemum. Non-glandular and glandular leaf trichome densities significantly varied among ninety-five chrysanthemum cultivars. Additional analyses in a subset of these cultivars, differing in leaf trichome density, revealed significant variation in PPO activities and resistance to WFT as well. Constitutive levels of trichome densities and PPO activity, however, did not correlate with chrysanthemum resistance to WFT. Further tests showed that exogenous application of the phytohormone jasmonic acid (JA) increased non-glandular trichome densities, PPO activity and chrysanthemum resistance to WFT, and that these effects were cultivar dependent. In addition, no tradeoff between constitutive and inducible resistance to WFT was observed. JA-mediated induction of WFT resistance, however, did not correlate with changes in leaf trichome densities nor PPO activity levels. Taken together, our results suggest that chrysanthemum can display both high levels of constitutive and inducible resistance to WFT, and that leaf trichome density and PPO activity may not play a relevant role in chrysanthemum defenses against WFT.
Collapse
Affiliation(s)
- Gang Chen
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands.
- College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Peter G L Klinkhamer
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Rocío Escobar-Bravo
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|
22
|
Bonasia A, Conversa G, Lazzizera C, Loizzo P, Gambacorta G, Elia A. Evaluation of Garlic Landraces from Foggia Province (Puglia Region; Italy). Foods 2020; 9:E850. [PMID: 32610546 PMCID: PMC7404550 DOI: 10.3390/foods9070850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Interest in local landraces has unfortunately decreased over, the last decades, in which they have been continuously subjected to a high genetic erosion in favour of new modern varieties. Within the Puglia region (S-E Italy), Foggia province was found to be the richest in vegetable landraces. In the present study, six garlic landraces collected from this area have been assessed for their chemical composition (minerals, organic acids, free sugars, volatile, and phenolic compounds) along with their main morpho-biometrical traits. A commercial genotype was also considered as a reference standard. The landraces show a large variability, but in general high morphological standards, high levels of cations and phenols, and low levels of volatile-(S)-compounds in comparison with the commercial genotype and the literature values. 'Aglio di Peschici' and 'Aglio Rosso di Monteleone di Puglia' are very rich in minerals and phenols (mainly ferulic acid and iso-rhamnetin). This increase in knowledge on the chemical properties of these garlic landraces could represent a tool for encouraging the consumption of a food product. At the same time, the consumption of these landraces would stimulate their cultivation and could highly contribute to protection against the risk of erosion of agro-biodiversity by their in situ/on-farm conservation.
Collapse
Affiliation(s)
- Anna Bonasia
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, 71100 Foggia, Italy; (A.B.); (C.L.); (A.E.)
| | - Giulia Conversa
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, 71100 Foggia, Italy; (A.B.); (C.L.); (A.E.)
| | - Corrado Lazzizera
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, 71100 Foggia, Italy; (A.B.); (C.L.); (A.E.)
| | - Pasqua Loizzo
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (P.L.); (G.G.)
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari, 70126 Bari, Italy; (P.L.); (G.G.)
| | - Antonio Elia
- Department of the Science of Agriculture, Food and Environment (SAFE), University of Foggia, 71100 Foggia, Italy; (A.B.); (C.L.); (A.E.)
| |
Collapse
|
23
|
Maciel GPS, Dias-Pini NS, Melo JWS, Lima ÉFB, Lima MGADE, Saraiva WVA. Population dynamics and infestation of Holopothrips fulvus Morgan (Thysanoptera: Phlaeothripidae) in dwarf cashew genotypes. AN ACAD BRAS CIENC 2020; 92 Suppl 1:e20190091. [PMID: 32491137 DOI: 10.1590/0001-3765202020190091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to evaluate the Holopothrips fulvus Morgan (Thysanoptera: Phlaeothripidae) population dynamics and to identify dwarf cashew genotypes less infested by the pest in 2015 and 2016, under field conditions. H. fulvus population evaluations were carried out by monthly observations in the plants and using a score scale varying from 0 to 4. H. fulvus infestation occurred from October to December, and in the cashew genotypes CAP 112/8, CAP 121/1, CAP 131/2, CAP 145/2, CAP 145/7, CAP 128/2, CAP 120/4, CAP 123/6, CAP 130/1, and CAP 157/2 was dependent on the flowering period of the crop in 2015. In 2016, there was dependence in all evaluated genotypes between H. fulvus infestation and the cashew flowering period. In 2015, no significant differences were observed between the evaluated genotypes regarding H. fulvus infestation. In 2016, genotypes CAP 105/5, CAP 143/7, CAP 150/3, CAP 155/2, CAP 158/8, CAP 161/7, CAP 163/8, CAP 31, CAP 71, CAP 92, CAP 113, CAP 120, CAP 155, CAP 165, CAP 106/1, CAP 111/2, CAP 127/3, CAP 157/2, and BRS 226 were less infested. H. fulvus occurs from October to December and we could identify the dwarf cashew genotypes less infested by the pest.
Collapse
|
24
|
Abstract
The major goal in plant metabolomics is to study complex extracts for the purposes of metabolic exploration and natural products discovery. To achieve this goal, plant metabolomics relies on accurate and selective acquisition of all possible chemical information, which includes maximization of the number of detected metabolites and their correct molecular assignment. Nuclear magnetic resonance (NMR) spectroscopy has been recognized as a powerful platform for obtaining the metabolite profiles of plant extracts. In this chapter, we provide a workflow for targeted and untargeted metabolite profiling of plant extracts using both 1D and 2D NMR methods. The protocol includes sample preparation, instrument operation, data processing, multivariate analysis, biomarker elucidation, and metabolite quantitation. It also addresses the annotation of plant metabolite peaks considering NMR's capabilities to cover a broad range of metabolites and elucidate structures for unknown compounds.
Collapse
Affiliation(s)
- Denise Medeiros Selegato
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo, Brazil
| | - Alan Cesar Pilon
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Carnevale Neto
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Reitz SR, Gao Y, Kirk WDJ, Hoddle MS, Leiss KA, Funderburk JE. Invasion Biology, Ecology, and Management of Western Flower Thrips. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:17-37. [PMID: 31536711 DOI: 10.1146/annurev-ento-011019-024947] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Western flower thrips, Frankliniella occidentalis, first arose as an important invasive pest of many crops during the 1970s-1980s. The tremendous growth in international agricultural trade that developed then fostered the invasiveness of western flower thrips. We examine current knowledge regarding the biology of western flower thrips, with an emphasis on characteristics that contribute to its invasiveness and pest status. Efforts to control this pest and the tospoviruses that it vectors with intensive insecticide applications have been unsuccessful and have created significant problems because of the development of resistance to numerous insecticides and associated outbreaks of secondary pests. We synthesize information on effective integrated management approaches for western flower thrips that have developed through research on its biology, behavior, and ecology. We further highlight emerging topics regarding the species status of western flower thrips, as well as its genetics, biology, and ecology that facilitate its use as a model study organism and will guide development of appropriate management practices.
Collapse
Affiliation(s)
- Stuart R Reitz
- Department of Crop and Soil Science, Oregon State University, Ontario, Oregon 97914, USA;
| | - Yulin Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China;
| | - William D J Kirk
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle Under Lyme, Staffordshire ST5 5BG, United Kingdom;
| | - Mark S Hoddle
- Department of Entomology, University of California, Riverside, California 92521;
| | - Kirsten A Leiss
- Horticulture, Wageningen University and Research, 2665 ZG Bleiswijk, The Netherlands;
| | - Joe E Funderburk
- North Florida Research and Education Center, University of Florida, Quincy, Florida 32351, USA;
| |
Collapse
|
26
|
Chen G, Kim HK, Klinkhamer PG, Escobar-Bravo R. Site-dependent induction of jasmonic acid-associated chemical defenses against western flower thrips in Chrysanthemum. PLANTA 2019; 251:8. [PMID: 31776674 DOI: 10.1007/s00425-019-03292-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Local and systemic induction of JA-associated chemical defenses and resistance to western flower thrips in Chrysanthemum are spatially variable and dependent on the site of the JA application. Plants have evolved numerous inducible defense traits to resist or tolerate herbivory, which can be activated locally at the site of the damage, or systemically through the whole plant. Here we investigated how activation of local and systemic chemical responses upon exogenous application of the phytohormone jasmonic acid (JA) varies along the plant canopy in Chrysanthemum, and how these responses correlate with resistance to thrips. Our results showed that JA application reduced thrips damage per plant when applied to all the plant leaves or when locally applied to apical leaves, but not when only basal leaves were locally treated. Local application of JA to apical leaves resulted in a strong reduction in thrips damage in new leaves developed after the JA application. Yet, activation of a JA-associated defensive protein marker, polyphenol oxidase, was only locally induced. Untargeted metabolomic analysis further showed that JA increased the concentrations of sugars, phenylpropanoids, flavonoids and some amino acids in locally induced basal and apical leaves. However, local application of JA to basal leaves marginally affected the metabolomic profiles of systemic non-treated apical leaves, and vice versa. Our results suggest that JA-mediated activation of systemic chemical defense responses is spatially variable and depends on the site of the application of the hormone in Chrysanthemum.
Collapse
Affiliation(s)
- Gang Chen
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands.
- College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Hye Kyong Kim
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Peter Gl Klinkhamer
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Rocío Escobar-Bravo
- Research Group Plant Ecology and Phytochemistry, Cluster Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
27
|
Afifah EN, Murti RH, Nuringtyas TR. Metabolomics Approach for the Analysis of Resistance of Four Tomato Genotypes ( Solanum Lycopersicum L.) to Root-Knot Nematodes ( Meloidogyne Incognita). Open Life Sci 2019; 14:141-149. [PMID: 33817146 PMCID: PMC7874786 DOI: 10.1515/biol-2019-0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/31/2018] [Indexed: 12/04/2022] Open
Abstract
Metabolomics allows the identification of biochemical markers that have important roles in plant resistance to pests and diseases by which breeders can select plants based on differences in these compounds. This study examines the range of compounds associated with plant defense against nematodes. Resistant tomato genotypes, GM2 and F1 (GM2 × Hawai 7996), and susceptible genotypes, Gondol Putih and Gondol Hijau, were used in this study. Peroxidase activity was measured colorimetrically using a spectrophotometer. 1H-NMR (nuclear magnetic resonance) spectroscopy combined with orthogonal projections to latent structures discriminant analysis was used to analyze the metabolites involved in the tomato-nematode interactions. Identified signals were semi-quantitatively calculated by scaling the intensity of the 1H-NMR to the signals of an internal standard (trimethyl silyl-3-propionic acid) at 0.00 ppm. Resistant plants showed a higher peroxidase activity than susceptible plants. Chemical compounds that differentiated between susceptible and resistant plants were glucose and caffeic acid. Resistant tomatoes were observed to have seven times higher level of glucose than susceptible plants. Glucose is the primary metabolite that acts in the signaling pathways in plant defense mechanisms. Caffeic acid is one of the phenolic compounds alleged to have a negative effect on the nematode.
Collapse
Affiliation(s)
| | - Rudi Hari Murti
- Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta Indonesia
| | | |
Collapse
|
28
|
Schramm S, Köhler N, Rozhon W. Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants. Molecules 2019; 24:E498. [PMID: 30704105 PMCID: PMC6385001 DOI: 10.3390/molecules24030498] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals. Finally, several examples of PA-producing crop plants are discussed.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Nikolai Köhler
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| |
Collapse
|
29
|
Rivas-Ubach A, Liu Y, Steiner AL, Sardans J, Tfaily MM, Kulkarni G, Kim YM, Bourrianne E, Paša-Tolić L, Peñuelas J, Guenther A. Atmo-ecometabolomics: a novel atmospheric particle chemical characterization methodology for ecological research. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:78. [PMID: 30649631 DOI: 10.1007/s10661-019-7205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Aerosol particles play important roles in processes controlling the composition of the atmosphere and function of ecosystems. A better understanding of the composition of aerosol particles is beginning to be recognized as critical for ecological research to further comprehend the link between aerosols and ecosystems. While chemical characterization of aerosols has been practiced in the atmospheric science community, detailed methodology tailored to the needs of ecological research does not exist yet. In this study, we describe an efficient methodology (atmo-ecometabolomics), in step-by-step details, from the sampling to the data analyses, to characterize the chemical composition of aerosol particles, namely atmo-metabolome. This method employs mass spectrometry platforms such as liquid and gas chromatography mass spectrometries (MS) and Fourier transform ion cyclotron resonance MS (FT-ICR-MS). For methodology evaluation, we analyzed aerosol particles collected during two different seasons (spring and summer) in a low-biological-activity ecosystem. Additionally, to further validate our methodology, we analyzed aerosol particles collected in a more biologically active ecosystem during the pollination peaks of three different representative tree species. Our statistical results showed that our sampling and extraction methods are suitable for characterizing the atmo-ecometabolomes in these two distinct ecosystems with any of the analytical platforms. Datasets obtained from each mass spectrometry instrument showed overall significant differences of the atmo-ecometabolomes between spring and summer as well as between the three pollination peak periods. Furthermore, we have identified several metabolites that can be attributed to pollen and other plant-related aerosol particles. We additionally provide a basic guide of the potential use ecometabolomic techniques on different mass spectrometry platforms to accurately analyze the atmo-ecometabolomes for ecological studies. Our method represents an advanced novel approach for future studies in the impact of aerosol particle chemical compositions on ecosystem structure and function and biogeochemistry.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Yina Liu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, 77845, USA
| | - Allison L Steiner
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordi Sardans
- CREAF, Campus UAB, 08913, Cerdanyola del Vallès, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC, Campus UAB, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Malak M Tfaily
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Gourihar Kulkarni
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Eric Bourrianne
- Faculté des Sicences et d'Ingénierie, Université de Toulouse III Paul Sabatier, 31400, Toulouse, France
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Josep Peñuelas
- CREAF, Campus UAB, 08913, Cerdanyola del Vallès, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC, Campus UAB, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Alex Guenther
- Department of Earth System Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
30
|
Lin T, Klinkhamer PGL, Pons TL, Mulder PPJ, Vrieling K. Evolution of Increased Photosynthetic Capacity and Its Underlying Traits in Invasive Jacobaea vulgaris. FRONTIERS IN PLANT SCIENCE 2019; 10:1016. [PMID: 31440269 PMCID: PMC6694182 DOI: 10.3389/fpls.2019.01016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/19/2019] [Indexed: 05/14/2023]
Abstract
The evolution of increased competitive ability (EICA) hypothesis and the shifting defense hypothesis (SDH) predict that evolutionary changes occur in a suite of traits related to defense and growth in invasive plant species as result of the absence of specialist herbivores. We tested how this suite of traits changed due to the absence of specialist herbivores in multiple invasive regions that differ in climatic conditions with native and invasive Jacobaea vulgaris in a controlled environment. We hypothesized that invasive J. vulgaris in all invasive regions have i) a higher plant growth and underlying traits, such as photosynthetic capacity, ii) lower regrowth-related traits, such as carbohydrate storage, and iii) an increased plant qualitative defense, such as pyrrolizidine alkaloids (PAs). Our results show that invasive J. vulgaris genotypes have evolved a higher photosynthetic rate and total PA concentration but a lower investment in root carbohydrates, which supports the SDH hypothesis. All the traits changed consistently and significantly in the same direction in all four invasive regions, indicative of a parallel evolution. Climatic and soil variables did differ between ranges but explained only a very small part of the variation in trait values. The latter suggests that climate and soil changes were not the main selective forces on these traits.
Collapse
Affiliation(s)
- Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
- *Correspondence: Tiantian Lin,
| | - Peter G. L. Klinkhamer
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
| | - Thijs L. Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | | | - Klaas Vrieling
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
31
|
Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, Leiss KA, Klinkhamer PGL. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:315-327. [PMID: 30304528 PMCID: PMC6305188 DOI: 10.1093/jxb/ery347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/26/2018] [Indexed: 05/04/2023]
Abstract
Ultraviolet (UV) radiation can modulate plant defenses against herbivorous arthropods. We investigated how different UV exposure times and irradiance intensities affected tomato (Solanum lycopersicum) resistance to thrips (Frankliniella occidentalis) by assessing UV effects on thrips-associated damage and host-selection, selected metabolite and phytohormone contents, expression of defense-related genes, and trichome density and chemistry, the latter having dual roles in defense and UV protection. Short UV daily exposure times increased thrips resistance in the cultivar 'Moneymaker' but this could not be explained by changes in the contents of selected leaf polyphenols or terpenes, nor by trichome-associated defenses. UV irradiance intensity also affected resistance to thrips. Further analyses using the tomato mutants def-1, impaired in jasmonic acid (JA) biosynthesis, od-2, defective in the production of functional type-VI trichomes, and their wild-type, 'Castlemart', showed that UV enhanced thrips resistance in Moneymaker and od-2, but not in def-1 and Castlemart. UV increased salicylic acid (SA) and JA-isoleucine concentrations, and increased expression of SA- and JA-associated genes in Moneymaker, while inducing expression of JA-defensive genes in od-2. Our results demonstrate that UV-mediated enhancement of tomato resistance to thrips is probably associated with the activation of JA-associated signaling, but not with plant secondary metabolism or trichome-related traits.
Collapse
Affiliation(s)
- Rocío Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Gang Chen
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Leiden, The Netherlands
| |
Collapse
|
32
|
Escobar-Bravo R, Ruijgrok J, Kim HK, Grosser K, Van Dam NM, Klinkhamer PGL, Leiss KA. Light Intensity-Mediated Induction of Trichome-Associated Allelochemicals Increases Resistance Against Thrips in Tomato. PLANT & CELL PHYSIOLOGY 2018; 59:2462-2475. [PMID: 30124946 PMCID: PMC6290487 DOI: 10.1093/pcp/pcy166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/10/2018] [Indexed: 05/20/2023]
Abstract
In cultivated tomato (Solanum lycopersicum), increases in photosynthetically active radiation (PAR) induce type VI leaf glandular trichomes, which are important defensive structures against arthropod herbivores. Yet, how PAR affects the type VI trichome-associated leaf chemistry and its biological significance with respect to other photomorphogenic responses in this agronomically important plant species is unknown. We used the type VI trichome-deficient tomato mutant odorless-2 (od-2) and its wild type to investigate the influence of PAR on trichome-associated chemical defenses against thrips (Frankliniella occidentalis). High PAR increased thrips resistance in wild-type plants, but not in od-2. Furthermore, under high PAR, thrips preferred od-2 over the wild type. Both genotypes increased type VI trichome densities under high PAR. Wild-type plants, however, produced more trichome-associated allelochemicals, i.e. terpenes and phenolics, these being undetectable or barely altered in od-2. High PAR increased leaf number and thickness, and induced profound but similar metabolomic changes in wild-type and od-2 leaves. Enhanced PAR also increased levels of ABA in wild-type and od-2 plants, and of auxin in od-2, while the salicylic acid and jasmonate concentrations were unaltered. However, in both genotypes, high PAR induced the expression of jasmonic acid-responsive defense-related genes. Taken together, our results demonstrate that high PAR-mediated induction of trichome-associated chemical defenses plays a prominent role in tomato-thrips interactions.
Collapse
Affiliation(s)
- Roc�o Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Jasmijn Ruijgrok
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Katharina Grosser
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Nicole M Van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv), Halle-Gena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Dornburger-Str. 159, Jena, Germany
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, Sylviusweg 72, BE Leiden, The Netherlands
| |
Collapse
|
33
|
Chen G, Klinkhamer PGL, Escobar-Bravo R, Leiss KA. Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: Implications for thrips resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:87-98. [PMID: 30348331 DOI: 10.1016/j.plantsci.2018.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 05/08/2023]
Abstract
Variation in the induction of plant defenses along the plant canopy can determine distribution and colonization of arthropod herbivores within the plant. In tomato, type VI glandular trichomes, which are epidermal defensive structures, and their derived volatiles are induced by the phytohormone jasmonic acid (JA). How JA-mediated induction of these trichome-associated chemical defenses depends on the leaf developmental stage and correlates with resistance against herbivory is unknown. We showed that application of JA reduced thrips-associated damage, however the amplitude of this response was reduced in the fully developed leaves compared to those still developing. Although JA increased type-VI trichome densities in all leaf developmental stages, as well as JA-inducible defensive proteins, these increases were stronger in developing leaves. Remarkably, the concentration of trichome-derived volatiles was induced by JA to a larger degree in developing leaves than in fully developed leaves. In fully developed leaves, the increase in trichome-derived volatiles was explained by an enhanced production per trichome, while in developing leaves this was mainly caused by increases in type-VI trichome densities. Together, we showed that JA-mediated induction of trichome density and chemistry depends on leaf development stage, and it might explain the degree of thrips-associated leaf damage in tomato.
Collapse
Affiliation(s)
- Gang Chen
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands.
| | - Peter G L Klinkhamer
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Rocío Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| | - Kirsten A Leiss
- Plant Sciences and Natural Products, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333BE, Leiden, The Netherlands
| |
Collapse
|
34
|
Liu X, Vrieling K, Klinkhamer PGL. Phytochemical Background Mediates Effects of Pyrrolizidine Alkaloids on Western Flower Thrips. J Chem Ecol 2018; 45:116-127. [PMID: 30221331 PMCID: PMC6469620 DOI: 10.1007/s10886-018-1009-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/23/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
Abstract
Plants produce an extremely diverse array of metabolites that mediate many aspects of plant-environment interactions. In the context of plant-herbivore interactions, it is as yet poorly understood how natural backgrounds shape the bioactivity of individual metabolites. We tested the effects of a methanol extract of Jacobaea plants and five fractions derived from this extract, on survival of western flower thrips (WFT). When added to an artificial diet, the five fractions all resulted in a higher WFT survival rate than the methanol extract. In addition, their expected combined effect on survival, assuming no interaction between them, was lower than that of the methanol extract. The bioactivity was restored when the fractions were combined again in their original proportion. These results strongly suggest synergistic interactions among the fractions on WFT survival rates. We then tested the effects of two pyrrolizidine alkaloids (PAs), free base retrorsine and retrorsine N-oxide, alone and in combination with the five shoot fractions on WFT survival. The magnitude of the effects of the two PAs depended on the fraction to which they were added. In general, free base retrorsine was more potent than retrorsine N-oxide, but this was contingent on the fraction to which these compounds were added. Our results support the commonly held, though seldom tested, notion that the efficacy of plant metabolites with respect to plant defence is dependent on their phytochemical background. It also shows that the assessment of bioactivity cannot be decoupled from the natural chemical background in which these metabolites occur.
Collapse
Affiliation(s)
- Xiaojie Liu
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300, RA, Leiden, The Netherlands. .,Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China.
| | - Klaas Vrieling
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300, RA, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
35
|
Undas AK, Weihrauch F, Lutz A, van Tol R, Delatte T, Verstappen F, Bouwmeester H. The Use of Metabolomics to Elucidate Resistance Markers against Damson-Hop Aphid. J Chem Ecol 2018; 44:711-726. [PMID: 29978430 PMCID: PMC6096525 DOI: 10.1007/s10886-018-0980-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
Phorodon humuli (Damson-hop aphid) is one of the major pests of hops in the northern hemisphere. It causes significant yield losses and reduces hop quality and economic value. Damson-hop aphid is currently controlled with insecticides, but the number of approved pesticides is steadily decreasing. In addition, the use of insecticides almost inevitably results in the development of resistant aphid genotypes. An integrated approach to pest management in hop cultivation is therefore badly needed in order to break this cycle and to prevent the selection of strains resistant to the few remaining registered insecticides. The backbone of such an integrated strategy is the breeding of hop cultivars that are resistant to Damson-hop aphid. However, up to date mechanisms of hops resistance towards Damson-hop aphids have not yet been unraveled. In the experiments presented here, we used metabolite profiling followed by multivariate analysis and show that metabolites responsible for hop aroma and flavor (sesquiterpenes) in the cones can also be found in the leaves, long before the hop cones develop, and may play a role in resistance against aphids. In addition, aphid feeding induced a change in the metabolome of all hop genotypes particularly an increase in a number of oxidized compounds, which suggests this may be part of a resistance mechanism.
Collapse
Affiliation(s)
- Anna K Undas
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
- RIKILT, Wageningen University & Research, Akkermaalsboss 2, 6708, WB, Wageningen, The Netherlands
| | - Florian Weihrauch
- Bavarian State Research Center for Agriculture (LfL), Institute for Crop Science and Plant Breeding, Hop Research Center Huell, Wolnzach, Germany
| | - Anton Lutz
- Bavarian State Research Center for Agriculture (LfL), Institute for Crop Science and Plant Breeding, Hop Research Center Huell, Wolnzach, Germany
| | - Rob van Tol
- Wageningen Plant Research, Biointeractions and Plant Health, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Thierry Delatte
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands.
| | - Francel Verstappen
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
- Swammerdam Institute for Life Sciences, Plant Hormone Biology group, University of Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Wang WW, Zheng C, Hao WJ, Ma CL, Ma JQ, Ni DJ, Chen L. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis. PLoS One 2018; 13:e0201670. [PMID: 30067831 PMCID: PMC6070272 DOI: 10.1371/journal.pone.0201670] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022] Open
Abstract
Tea plant (Camellia sinensis (L) O. Kuntze) respond to herbivore attack through large changes in defense related metabolism and gene expression. Ectropis oblique (Prout) is one of the most devastating insects that feed on tea leaves and tender buds, which can cause severe production loss and deteriorate the quality of tea. To elucidate the biochemicals and molecular mechanism of defense against tea geometrid (TG), transcriptome and metabolome of TG interaction with susceptible (SG) and resistance (RG) tea genotypes were analyzed by using UPLC-Q-TOF-MS, GC-MS, and RNA-seq technologies. This revealed that jasmonic acid was highly induced in RG, following a plethora of secondary metabolites involved in defense against TG could be induced by jasmonic acid signaling pathway. However, the constitutively present of salicylic acid in SG might be a suppressor of jasmonate signaling and thus misdirect tea plants against TG. Furthermore, flavonoids and terpenoids biosynthesis pathways were highly activated in RG to constitute the chemical barrier on TG feeding behavior. In contrast, fructose and theanine, which can act as feeding stimulants were observed to highly accumulate in SG. Being present in the major hub, 39 transcription factors or protein kinases among putative candidates were identified as master regulators from protein-protein interaction network analysis. Together, the current study provides a comprehensive gene expression and metabolite profiles, which can shed new insights into the molecular mechanism of tea defense against TG. The candidate genes and specific metabolites identified in the present study can serve as a valuable resource for unraveling the possible defense mechanism of plants against various biotic stresses.
Collapse
Affiliation(s)
- Wei-Wei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chao Zheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Wan-Jun Hao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chun-Lei Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - De-Jiang Ni
- Key Laboratory of Horticulture Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- * E-mail: (LC); (DJN)
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- * E-mail: (LC); (DJN)
| |
Collapse
|
37
|
Visschers IGS, Van Dam NM, Peters JL. Quantification of Thrips Damage Using Ilastik and ImageJ Fiji. Bio Protoc 2018; 8:e2806. [PMID: 34286023 PMCID: PMC8275258 DOI: 10.21769/bioprotoc.2806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 11/02/2022] Open
Abstract
Quantification of insect damage is an essential measurement for identifying resistance in plants. In screening for host plant resistance against thrips, the total damaged leaf area is used as a criterion to determine resistance levels. Here we present an objective novel method for analyzing thrips damage on leaf disc using the freely available software programs Ilastik and ImageJ. The protocol was developed in order to screen over 40 Capsicum lines for resistance against Frankliniella occidentalis (Western Flower Thrips) and Thrips tabaci (Onion thrips).
Collapse
Affiliation(s)
- Isabella G. S. Visschers
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Nicole M. Van Dam
- Department of Molecular Interaction Ecology, Institute for Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Ecology, Dornburger-Str. 159, 07743 Jena, Germany
| | - Janny L. Peters
- Department of Molecular Plant Physiology, Institute for Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
38
|
Steenbergen M, Abd-El-Haliem A, Bleeker P, Dicke M, Escobar-Bravo R, Cheng G, Haring MA, Kant MR, Kappers I, Klinkhamer PGL, Leiss KA, Legarrea S, Macel M, Mouden S, Pieterse CMJ, Sarde SJ, Schuurink RC, De Vos M, Van Wees SCM, Broekgaarden C. Thrips advisor: exploiting thrips-induced defences to combat pests on crops. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1837-1848. [PMID: 29490080 DOI: 10.1093/jxb/ery060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants have developed diverse defence mechanisms to ward off herbivorous pests. However, agriculture still faces estimated crop yield losses ranging from 25% to 40% annually. These losses arise not only because of direct feeding damage, but also because many pests serve as vectors of plant viruses. Herbivorous thrips (Thysanoptera) are important pests of vegetable and ornamental crops worldwide, and encompass virtually all general problems of pests: they are highly polyphagous, hard to control because of their complex lifestyle, and they are vectors of destructive viruses. Currently, control management of thrips mainly relies on the use of chemical pesticides. However, thrips rapidly develop resistance to these pesticides. With the rising demand for more sustainable, safer, and healthier food production systems, we urgently need to pinpoint the gaps in knowledge of plant defences against thrips to enable the future development of novel control methods. In this review, we summarize the current, rather scarce, knowledge of thrips-induced plant responses and the role of phytohormonal signalling and chemical defences in these responses. We describe concrete opportunities for breeding resistance against pests such as thrips as a prototype approach for next-generation resistance breeding.
Collapse
Affiliation(s)
- Merel Steenbergen
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, , TB Utrecht, The Netherlands
| | - Ahmed Abd-El-Haliem
- Department of Plant Physiology, University of Amsterdam, Science Park, XH Amsterdam, The Netherlands
| | - Petra Bleeker
- Department of Plant Physiology, University of Amsterdam, Science Park, XH Amsterdam, The Netherlands
- Enza Zaden BV, AA Enkhuizen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Rocio Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gang Cheng
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Michel A Haring
- Department of Plant Physiology, University of Amsterdam, Science Park, XH Amsterdam, The Netherlands
| | - Merijn R Kant
- Molecular & Chemical Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, The Netherlands
| | - Iris Kappers
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Peter G L Klinkhamer
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Kirsten A Leiss
- Wageningen UR Greenhouse Horticulture, Bleiswijk, The Netherlands
| | - Saioa Legarrea
- Molecular & Chemical Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, GE Amsterdam, The Netherlands
| | - Mirka Macel
- Molecular Interactions Ecology, Radboud University, NL Nijmegen, The Netherlands
| | - Sanae Mouden
- Plant Sciences and Natural Products, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, , TB Utrecht, The Netherlands
| | - Sandeep J Sarde
- Laboratory of Entomology, Wageningen University and Research, Wageningen, The Netherlands
| | - Robert C Schuurink
- Department of Plant Physiology, University of Amsterdam, Science Park, XH Amsterdam, The Netherlands
| | | | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, , TB Utrecht, The Netherlands
| | - Colette Broekgaarden
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, , TB Utrecht, The Netherlands
| |
Collapse
|
39
|
Chen G, Escobar-Bravo R, Kim HK, Leiss KA, Klinkhamer PGL. Induced Resistance Against Western Flower Thrips by the Pseudomonas syringae-Derived Defense Elicitors in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1417. [PMID: 30344528 PMCID: PMC6182256 DOI: 10.3389/fpls.2018.01417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 05/04/2023]
Abstract
Western flower thrips (WFT) Frankliniella occidentalis (Pergande) is a key agricultural pest of cultivated tomatoes. Induced host plant resistance by activating jasmonic acid (JA) signaling pathway constitutes a promising method for WFT control. The phytotoxin coronatine (COR), produced by Pseudomonas syringae pv. tomato DC3000 (Pst), mimics the plant hormone JA-Isoleucine and can promote resistance against herbivorous arthropods. Here we determined the effect of Pst and COR on tomato resistance against WFT, induction of JA and salicylic acid (SA) associated defenses, and plant chemistry. Additionally, we investigated the presence of other components in Pst-derived and filtered culture medium, and their interactive effect with COR on tomato resistance to WFT. Our results showed that infiltration of COR or Pst reduced WFT feeding damage in tomato plants. COR and Pst induced the expression of JA-associated gene and protein marker. COR also induced expression of a SA-related responsive gene, although at much less magnitude. Activation of JA defenses in COR and Pst infiltrated plants did not affect density of type VI leaf trichomes, which are defenses reported to be induced by JA. An untargeted metabolomic analysis showed that both treatments induced strong changes in infiltrated leaves, but leaf responses to COR or Pst slightly differed. Application of the Pst-derived and filtered culture medium, containing COR but not viable Pst, also increased tomato resistance against WFT confirming that the induction of tomato defenses does not require a living Pst population to be present in the plant. Infiltration of tomato plants with low concentrations of COR in diluted Pst-derived and filtered culture medium reduced WFT feeding damage in a greater magnitude than infiltration with an equivalent amount of pure COR indicating that other elicitors are present in the medium. This was confirmed by the fact that the medium from a COR-mutant of Pst also strongly reduced silver damage. In conclusion, our results indicate that induction of JA defenses by COR, Pst infection, the medium of Pst and the medium of a Pst COR- mutant increased resistance against WFT. This was not mediated by the reinforcement of leaf trichome densities, but rather the induction of chemical defenses.
Collapse
Affiliation(s)
- Gang Chen
- Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, Netherlands
- *Correspondence: Gang Chen,
| | - Rocío Escobar-Bravo
- Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Kirsten A. Leiss
- Business Unit Horticulture, Wageningen University and Research Center, Bleiswijk, Netherlands
| | - Peter G. L. Klinkhamer
- Plant Science and Natural Products, Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
40
|
Abstract
Viruses transmitted by whiteflies are predominantly classified as having either persistent circulative or semipersistent transmission, and the majority of studies have addressed transmission of viruses in the genera Begomovirus (family Geminiviridae) and Crinivirus (family Closteroviridae), respectively. Early studies on vector transmission primarily addressed individual aspects of transmission; however, with the breadth of new technology now available, an increasingly greater number of studies involve coordinated research that is beginning to assemble a more complete picture of how whiteflies and viruses have coevolved to facilitate transmission. In particular the integration of gene expression and metabolomic studies into broader research topics is providing knowledge of changes within the whitefly vector in response to the presence of viruses that would have been impossible to identify previously. Examples include comparative studies on the response of Bemisia tabaci to begomovirus and crinivirus infection of common host plants, evolution of whitefly endosymbiont relationships, and opportunities to evaluate responses to specific transmission-related events. Integration of metabolomics, as well as the application of electrical penetration graphing, can lead to an ability to monitor the changes that occur in vector insects associated with specific aspects of virus transmission. Through gaining more complete knowledge of the mechanisms behind whitefly transmission of viruses new control strategies will undoubtedly emerge for control of whiteflies and the viruses they transmit.
Collapse
|
41
|
Liu X, Klinkhamer PGL, Vrieling K. The effect of structurally related metabolites on insect herbivores: A case study on pyrrolizidine alkaloids and western flower thrips. PHYTOCHEMISTRY 2017; 138:93-103. [PMID: 28267991 DOI: 10.1016/j.phytochem.2017.02.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 05/20/2023]
Abstract
Plant specialised metabolites (SMs) are very diverse in terms of both their number and chemical structures with more than 200,000 estimated compounds. This chemical diversity occurs not only among different groups of compounds but also within the groups themselves. In the context of plant-insect interactions, the chemical diversity within a class of structurally related metabolites is generally also related to their bioactivity. In this study, we tested firstly whether individual SMs within the group of pyrrolizidine alkaloids (PAs) differ in their effects on insect herbivores (western flower thrips, Frankliniella occidentalis). Secondly, we tested combinations of PA N-oxides to determine whether they are more active than their individual components. We also evaluated the bioactivity of six PA free bases and their corresponding N-oxides. At concentrations similar to that in plants, several PAs reduced thrip's survival but the effect also differed strongly among PAs. In general, PA free bases caused a lower survival than their corresponding N-oxides. Among the tested PA free bases, we found jacobine and retrorsine to be the most active against second instar larvae of thrips, followed by erucifoline and seneciphylline, while senecionine and monocrotaline did not exhibit significant dose-dependent effects on thrip's survival. In the case of PA N-oxides, we found that only senecionine N-oxide and jacobine N-oxide reduced thrip's survival, although the effect of senecionine N-oxide was weak. Combinations of PA N-oxides showed no synergistic effects. These findings indicate the differences observed in the effect of structurally related SMs on insect herbivores. It is of limited value to study the bioactivity of combined groups, such as PAs, without taking their composition into account.
Collapse
Affiliation(s)
- Xiaojie Liu
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands.
| | - Peter G L Klinkhamer
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| | - Klaas Vrieling
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, PO Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
42
|
Mouden S, Sarmiento KF, Klinkhamer PGL, Leiss KA. Integrated pest management in western flower thrips: past, present and future. PEST MANAGEMENT SCIENCE 2017; 73:813-822. [PMID: 28127901 PMCID: PMC5396260 DOI: 10.1002/ps.4531] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/18/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Western flower thrips (WFT) is one of the most economically important pest insects of many crops worldwide. Recent EU legislation has caused a dramatic shift in pest management strategies, pushing for tactics that are less reliable on chemicals. The development of alternative strategies is therefore an issue of increasing urgency. This paper reviews the main control tactics in integrated pest management (IPM) of WFT, with the focus on biological control and host plant resistance as areas of major progress. Knowledge gaps are identified and innovative approaches emphasised, highlighting the advances in 'omics' technologies. Successful programmes are most likely generated when preventive and therapeutic strategies with mutually beneficial, cost-effective and environmentally sound foundations are incorporated. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sanae Mouden
- Research Group Plant Ecology and PhytochemistryInstitute of Biology, Leiden UniversityThe Netherlands
| | - Kryss Facun Sarmiento
- Research Group Plant Ecology and PhytochemistryInstitute of Biology, Leiden UniversityThe Netherlands
| | - Peter GL Klinkhamer
- Research Group Plant Ecology and PhytochemistryInstitute of Biology, Leiden UniversityThe Netherlands
| | - Kirsten A Leiss
- Research Group Plant Ecology and PhytochemistryInstitute of Biology, Leiden UniversityThe Netherlands
| |
Collapse
|
43
|
Escobar-Bravo R, Klinkhamer PGL, Leiss KA. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. FRONTIERS IN PLANT SCIENCE 2017; 8:278. [PMID: 28303147 PMCID: PMC5332372 DOI: 10.3389/fpls.2017.00278] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/15/2017] [Indexed: 05/06/2023]
Abstract
Ultraviolet-B (UV-B) light plays a crucial role in plant-herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests.
Collapse
Affiliation(s)
- Rocio Escobar-Bravo
- Plant Sciences and Natural Products, Institute of Biology of Leiden, Leiden UniversityLeiden, Netherlands
| | | | | |
Collapse
|
44
|
Escobar-Bravo R, Klinkhamer PG, Leiss KA. Induction of Jasmonic Acid-Associated Defenses by Thrips Alters Host Suitability for Conspecifics and Correlates with Increased Trichome Densities in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:622-634. [PMID: 28158865 PMCID: PMC5444573 DOI: 10.1093/pcp/pcx014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/20/2017] [Indexed: 05/04/2023]
Abstract
Plant defenses inducible by herbivorous arthropods can determine performance of subsequent feeding herbivores. We investigated how infestation of tomato (Solanum lycopersicum) plants with the Western flower thrips (Frankliniella occidentalis) alters host plant suitability and foraging decisions of their conspecifics. We explored the role of delayed-induced jasmonic acid (JA)-mediated plant defense responses in thrips preference by using the tomato mutant def-1, impaired in JA biosynthesis. In particular, we investigated the effect of thrips infestation on trichome-associated tomato defenses. The results showed that when offered a choice, thrips preferred non-infested plants over infested wild-type plants, while no differences were observed in def-1. Exogenous application of methyl jasmonate restored the repellency effect in def-1. Gene expression analysis showed induction of the JA defense signaling pathway in wild-type plants, while activating the ethylene signaling pathway in both genotypes. Activation of JA defenses led to increases in type-VI leaf glandular trichome densities in the wild type, augmenting the production of trichome-associated volatiles, i.e. terpenes. Our study revealed that plant-mediated intraspecific interactions between thrips are determined by JA-mediated defenses in tomato. We report that insects can alter not only trichome densities but also the allelochemicals produced therein, and that this response might depend on the magnitude and/or type of the induction.
Collapse
|
45
|
Liu X, Vrieling K, Klinkhamer PG. Interactions between Plant Metabolites Affect Herbivores: A Study with Pyrrolizidine Alkaloids and Chlorogenic Acid. FRONTIERS IN PLANT SCIENCE 2017; 8:903. [PMID: 28611815 PMCID: PMC5447715 DOI: 10.3389/fpls.2017.00903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/15/2017] [Indexed: 05/04/2023]
Abstract
The high structural diversity of plant metabolites suggests that interactions among them should be common. We investigated the effects of single metabolites and combinations of plant metabolites on insect herbivores. In particular we studied the interacting effects of pyrrolizidine alkaloid (PAs), and chlorogenic acid (CGA), on a generalist herbivore, Frankliniella occidentalis. We studied both the predominantly occurring PA N-oxides and the less frequent PA free bases. We found antagonistic effects between CGA and PA free bases on thrips mortality. In contrast PA N-oxides showed synergistic interactions with CGA. PA free bases caused a higher thrips mortality than PA N-oxides while the reverse was through for PAs in combination with CGA. Our results provide an explanation for the predominate storage of PA N-oxides in plants. We propose that antagonistic interactions represent a constraint on the accumulation of plant metabolites, as we found here for Jacobaea vulgaris. The results show that the bioactivity of a given metabolite is not merely dependent upon the amount and chemical structure of that metabolite, but also on the co-occurrence metabolites in, e.g., plant cells, tissues and organs. The significance of this study is beyond the concerns of the two specific groups tested here. The current study is one of the few studies so far that experimentally support the general conception that the interactions among plant metabolites are of great importance to plant-environment interactions.
Collapse
|
46
|
Mouden S, Klinkhamer PGL, Choi YH, Leiss KA. Towards eco-friendly crop protection: natural deep eutectic solvents and defensive secondary metabolites. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2017; 16:935-951. [PMID: 29167631 PMCID: PMC5674125 DOI: 10.1007/s11101-017-9502-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/15/2017] [Indexed: 05/04/2023]
Abstract
With mounting concerns over health and environmental effects of pesticides, the search for environmentally acceptable substitutes has amplified. Plant secondary metabolites appear in the horizon as an attractive solution for green crop protection. This paper reviews the need for changes in the techniques and compounds that, until recently, have been the mainstay for dealing with pest insects. Here we describe and discuss main strategies for selecting plant-derived metabolites as candidates for sustainable agriculture. The second part surveys ten important insecticidal compounds, with special emphasis on those involved in human health. Many of these insecticidal metabolites, however, are crystalline solids with limited solubility which might potentially hamper commercial formulation. As such, we introduce the concept of natural deep eutectic solvents for enhancing solubility and stability of such compounds. The concept, principles and examples of green pest control discussed here offer a new suite of environmental-friendly tools designed to promote and adopt sustainable agriculture.
Collapse
Affiliation(s)
- Sanae Mouden
- Research Group Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Peter G. L. Klinkhamer
- Research Group Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Kirsten A. Leiss
- Research Group Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
47
|
Scott-Brown AS, Gregory T, Farrell IW, Stevenson PC. Leaf trichomes and foliar chemistry mediate defence against glasshouse thrips; Heliothrips haemorrhoidalis (Bouché) in Rhododendron simsii. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1170-1182. [PMID: 32480536 DOI: 10.1071/fp16045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/10/2016] [Indexed: 06/11/2023]
Abstract
Herbivore defence mechanisms are a costly diversion of resources away from growth and reproduction. Thus time-limited and tissue specific expression in critical plant parts is more efficient as defined by optimal defence theory. Surprisingly little is known about Rhododendron herbivore defence but it may be mediated by combined chemical and physical mechanisms. Rhododendron simsii Planch. survives cyclic infestations of a leaf-feeding thrips, Heliothrips haemorrhoidalis (Bouché), which severely damage mature leaves but avoid terminal young leaves suggesting specific, localised defence expression. We examined correlations between the distribution of thrips and feeding damage with density of trichomes and the concentration of the diterpenoid, grayanotoxin I, a compound implicated in but not previously reported to mediate invertebrate defence in Rhododendron. Our data show that as leaves matured the number of thrips and area of feeding damage increased as trichome density and grayanotoxin I concentration decreased, this inverse correlation suggesting trichomes and grayanotoxin I mediate defence in younger leaf tissue. Grayanotoxin I was tested against H. haemorrhoidalis and was toxic to immature life stages and repellent to the adult thrips, reducing numbers of first instars emerging on leaves when applied at ecologically relevant concentrations. This work demonstrates that the pattern of defensive traits in foliage of a species of Rhododendron is key to its ability to tolerate cyclic infestations of a generalist herbivore, effectively conserving vital tissues required for growth and reproduction.
Collapse
Affiliation(s)
- Alison S Scott-Brown
- Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Tom Gregory
- UCL Institute of Archaeology, 31-34 Gordon Square, London, WC1H 0PY, UK
| | - Iain W Farrell
- Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| | - Philip C Stevenson
- Department of Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
| |
Collapse
|
48
|
Rivas-Ubach A, Sardans J, Hódar JA, Garcia-Porta J, Guenther A, Oravec M, Urban O, Peñuelas J. Similar local, but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:484-494. [PMID: 26642818 DOI: 10.1111/plb.12422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant-herbivore relationships at element and molecular levels have focused on the elemental composition or/and certain molecular compounds or specific families of defence metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and avoid those with higher levels of defence compounds. We performed stoichiometric and metabolomics, both local and systemic, analyses in two subspecies of Pinus sylvestris under attack from caterpillars of the pine processionary moth, an important pest in the Mediterranean Basin. Both pine subspecies responded locally to folivory mainly by increasing relative concentrations of terpenes and some phenolics. Systemic responses differed between pine subspecies, and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Our results support the hypothesis that foliar nutrient concentrations are not a key factor for plant selection by adult female processionary moths for oviposition, since folivory was not associated with any of the elements analysed. Phenolic compounds generally did not increase in the attacked trees, questioning the suggestion of induction of phenolics following folivory attack and the anti-feeding properties of phenolics. Herbivory attack produced a general systemic shift in pines, in both primary and secondary metabolism, which was less intense and chemically different from the local responses. Local pine responses were similar between pine subspecies, while systemic responses were more distant.
Collapse
Affiliation(s)
- A Rivas-Ubach
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain
- Cerdanyola del Vallès, CREAF, Catalonia, Spain
| | - J Sardans
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain
- Cerdanyola del Vallès, CREAF, Catalonia, Spain
| | - J A Hódar
- Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - J Garcia-Porta
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - A Guenther
- Department of Earth System Science, University of California, Irvine, CA, USA
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - M Oravec
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - O Urban
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - J Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, Catalonia, Spain
- Cerdanyola del Vallès, CREAF, Catalonia, Spain
| |
Collapse
|
49
|
Wei X, Vrieling K, Mulder PPJ, Klinkhamer PGL. Testing the generalist-specialist dilemma: the role of pyrrolizidine alkaloids in resistance to invertebrate herbivores in Jacobaea species. J Chem Ecol 2015; 41:159-67. [PMID: 25666592 PMCID: PMC4351440 DOI: 10.1007/s10886-015-0551-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/12/2014] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
Abstract
Plants produce a diversity of secondary metabolites (SMs) to protect them from generalist herbivores. On the other hand, specialist herbivores use SMs for host plant recognition, feeding and oviposition cues, and even sequester SMs for their own defense. Therefore, plants are assumed to face an evolutionary dilemma stemming from the contrasting effects of generalist and specialist herbivores on SMs. To test this hypothesis, bioassays were performed with F2 hybrids from Jacobaea species segregating for their pyrrolizidine alkaloids (PAs), using a specialist flea beetle (Longitarsus jacobaeae) and a generalist slug (Deroceras invadens). Our study demonstrated that while slug feeding damage was negatively correlated with the concentration of total PAs and that of senecionine-like PAs, flea beetle feeding damage was not affected by PAs. It was positively correlated though, with leaf fresh weight. The generalist slug was deterred by senecionine-like PAs but the specialist flea beetle was adapted to PAs in its host plant. Testing other herbivores in the same plant system, it was observed that the egg number of the specialist cinnabar moth was positively correlated with jacobine-like PAs, while the silver damage of generalist thrips was negatively correlated with senecionine- and jacobine-like PAs, and the pupae number of generalist leaf miner was negatively correlated with otosenine-like PAs. Therefore, while the specialist herbivores showed no correlation whatsoever with PA concentration, the generalist herbivores all showed a negative correlation with at least one type of PA. We concluded that the generalist herbivores were deterred by different structural groups of PAs while the specialist herbivores were attracted or adapted to PAs in its host plants.
Collapse
Affiliation(s)
- Xianqin Wei
- Plant Ecology and Phytochemistry, Institute of Biology, Leiden University, Sylviusweg 72, P.O. Box 9505, 2300 RA, Leiden, The Netherlands,
| | | | | | | |
Collapse
|
50
|
Barah P, Bones AM. Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:479-93. [PMID: 25538257 DOI: 10.1093/jxb/eru489] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biggest challenge for modern biology is to integrate multidisciplinary approaches towards understanding the organizational and functional complexity of biological systems at different hierarchies, starting from the subcellular molecular mechanisms (microscopic) to the functional interactions of ecological communities (macroscopic). The plant-insect interaction is a good model for this purpose with the availability of an enormous amount of information at the molecular and the ecosystem levels. Changing global climatic conditions are abruptly resetting plant-insect interactions. Integration of discretely located heterogeneous information from the ecosystem to genes and pathways will be an advantage to understand the complexity of plant-insect interactions. This review will present the recent developments in omics-based high-throughput experimental approaches, with particular emphasis on studying plant defence responses against insect attack. The review highlights the importance of using integrative systems approaches to study plant-insect interactions from the macroscopic to the microscopic level. We analyse the current efforts in generating, integrating and modelling multiomics data to understand plant-insect interaction at a systems level. As a future prospect, we highlight the growing interest in utilizing the synthetic biology platform for engineering insect-resistant plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), N 7491 Trondheim, Norway
| | - Atle M Bones
- Cell Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology (NTNU), N 7491 Trondheim, Norway
| |
Collapse
|