1
|
Liu S, Cao H, Wang Z, Zhu J, An X, Zhang L, Song Y. Single-cell transcriptomics reveals extracellular matrix remodeling and collagen dynamics during lactation in sheep mammary gland. Int J Biol Macromol 2025; 312:143669. [PMID: 40319976 DOI: 10.1016/j.ijbiomac.2025.143669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
The mammary gland is a dynamic organ with diverse cell populations that maintain glandular homeostasis, particularly during lactation. However, the cellular architecture and molecular mechanisms underlying lactational remodeling in the sheep mammary gland remain incompletely understood. Given similarities in mammary stromal structure, sheep serve as a valuable model for studying lactational changes relevant to the human breast, which experiences collagen loss and sagging during lactation. Utilizing single-cell transcriptomics (scRNA-seq), we mapped the sheep mammary gland's cellular landscape at postpartum days 60 and 150, identifying seven major cell types, including six distinct epithelial clusters. These clusters revealed differentiation among luminal progenitors, hormone-sensing, and myoepithelial cells across peak and late lactation stages. Transcriptomic analysis highlighted pivotal roles for epithelial integrity and ECM remodeling, with myoepithelial cells centrally involved in these processes. We observed significant collagen remodeling driven by fibroblast-epithelial crosstalk and ECM reorganization during late lactation. Comparative analysis with human mammary epithelial cells showed conserved basal and myoepithelial cell populations, while luminal cells diverged across species. This study provides insights into lactation biology and ECM remodeling, offering a framework to inform future studies on lactational adaptation and its implications for human health.
Collapse
Affiliation(s)
- Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhanhang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Junru Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Thomas S, Roche E, Desai P, Pawlowska N, Bauer D, Gingrich D, Hsu E, Deitchman AN, Aweeka F, Munster PN. Characterizing safety, toxicity, and breast cancer risk reduction using a long-term fulvestrant eluting implant. Sci Rep 2025; 15:3028. [PMID: 39848945 PMCID: PMC11758070 DOI: 10.1038/s41598-024-77186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/21/2024] [Indexed: 01/25/2025] Open
Abstract
For individuals at high risk of developing breast cancer, interventions to mitigate this risk include surgical removal of their breasts and ovaries or five years treatment with the anti-estrogen tamoxifen or aromatase inhibitors. We hypothesized that a silicone based anti-estrogen-eluting implant placed within the breast would provide the risk reduction benefit of hormonal therapy, but without the adverse effects that limit compliance. To this end, we demonstrate that when placed adjacent to mammary tissue in the 7,12-dimethylbenz[a]anthracene-induced rat breast cancer model a fulvestrant-eluting implant delays breast cancer with minimal systemic exposure. Using adult female sheep, surgical placement of fulvestrant-eluting implants was safe and did not elicit significant breast tissue pathology when placed at the base of the udder for directed elution into the mammary tissue. At 30 days of elution, fulvestrant was found to penetrate mammary tissue forming a concentration gradient beyond 15 mm from the implant. Consistent with the small animal rat study, minimal systemic fulvestrant biodistribution was found. Together, these studies provide the proof of principle that a breast indwelling fulvestrant-eluting implant can reduce the risk of breast cancer and limit systemic exposure, while penetrating and distributing through breast tissue.
Collapse
Affiliation(s)
- Scott Thomas
- Division of Hematology and Oncology, University of California, 1450 3rd Street, San Francisco, CA, 94143, USA
| | - Elysia Roche
- Division of Hematology and Oncology, University of California, 1450 3rd Street, San Francisco, CA, 94143, USA
| | - Pujan Desai
- Division of Hematology and Oncology, University of California, 1450 3rd Street, San Francisco, CA, 94143, USA
| | - Nela Pawlowska
- Division of Hematology and Oncology, University of California, 1450 3rd Street, San Francisco, CA, 94143, USA
| | - Diana Bauer
- Laboratory Animal Resource Center, University of California, San Francisco, USA
| | - David Gingrich
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, USA
| | - Emily Hsu
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, USA
| | - Amelia N Deitchman
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, USA
| | - Fran Aweeka
- Drug Research Unit, Department of Clinical Pharmacy, University of California, San Francisco, USA
| | - Pamela N Munster
- Division of Hematology and Oncology, University of California, 1450 3rd Street, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Castro-Navarro I, Pace RM, Williams JE, Pace CDW, Kaur H, Piaskowski J, Aragón A, Rodríguez JM, McGuire MA, Fernandez L, McGuire MK. Immunological composition of human milk before and during subclinical and clinical mastitis. Front Immunol 2025; 15:1532432. [PMID: 39896819 PMCID: PMC11782115 DOI: 10.3389/fimmu.2024.1532432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Mastitis, an inflammatory condition affecting more than 25% of breastfeeding women, is usually associated with reduced milk secretion, pain, and discomfort, which often leads to early cessation of breastfeeding. Although the etiology of mastitis is multifactorial, a pro-inflammatory state of the mammary gland might be a risk factor. However, changes in milk composition, and specifically in the milk immune profile, prior to and during mastitis have not been well described. To help close this research gap, we documented the immune profiles of milk produced by both breasts of 10 women experiencing clinical (CM) and 8 women experiencing subclinical (SCM) mastitis during the week of sign/symptom development as well as the week prior and compared them with milk produced by 14 healthy controls. CM was defined as having signs/symptoms of mastitis, whereas SCM was presumed if the participant did not have signs/symptoms of CM, but her milk had a somatic cell count >400,000 cell/mL and/or sodium-to-potassium (Na/K) ratio >1.0. Concentration of 36 immune factors (including immunoglobulins, cytokines, chemokines, and growth factors) was quantified via immunoassays. Milk produced by women who developed CM had distinct immune profiles the week prior to diagnosis, particularly elevated concentrations of pro-inflammatory cytokine IL-1β and regulatory cytokines IL-2, IL-4 and IL-10. In contrast, immune profiles in milk produced by women with SCM did not differ from that produced by healthy women or those with CM the week prior to mastitis onset. Once mastitis appeared, marked changes in milk's immune profile were observed in both CM and SCM groups. CM was characterized by elevated concentrations of 27 compounds, including pro-inflammatory cytokines (IL-1β, IL-1ra, and TNFα) and chemokines (including IL-8, eotaxin, IP-10, MCP-1, MIP1α, and MIP1β), compared to healthy controls. Milk's immune profile during SCM was intermediate, showing higher levels of IL-6, IFNγ, and MCP-1 compared to healthy controls, suggesting a milder, more controlled immune response compared to CM. Only milk produced by the mastitis-affected breast had altered immune profiles. Further research is needed to determine if these differences in milk's immune profiles can be used to improve mastitis risk prediction prior to onset of symptoms.
Collapse
Affiliation(s)
- Irma Castro-Navarro
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
- College of Nursing, University of South Florida, Tampa, FL, United States
- Microbiomes Institute, University of South Florida, Tampa, FL, United States
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Christina D. W. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Harpreet Kaur
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - Julia Piaskowski
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - Alberto Aragón
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain
| | - Juan M. Rodríguez
- Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Leonides Fernandez
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
4
|
Strickland JM, Leite de Campos J, Gandy J, Mavangira V, Ruegg PL, Sordillo L. A randomized control trial to test the effect of pegbovigrastim treatment at dry-off on plasma and milk oxylipid profiles during early mammary gland involution and the postparturient period. J Dairy Sci 2024; 107:5070-5089. [PMID: 38246537 DOI: 10.3168/jds.2023-23879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
The early period of mammary gland involution is a critical juncture in the lactation cycle that can have significant effects on milk production and mammary gland health. Pegbovigrastim (PEG) administered 1 wk prior and on the day of parturition can enhance immune function and reduce the incidence of mastitis in the early postpartum period. Oxylipids are potent metabolites of polyunsaturated fatty acids (PUFA) and are important mediators of inflammation. The objective of this study was to evaluate effects of PEG given 1 wk before and at the day of dry-off (D0) on concentrations of oxylipids in plasma and milk from 7 d before D0 to 14 d after, as well as the effects during the first 14 d of the subsequent lactation. We hypothesized that both pro- and anti-inflammatory oxylipids would vary based on initiation of mammary gland involution and that pegbovigrastim would affect oxylipid concentrations, particularly those related to leukocytes. A complete randomized blocked design was used to enroll cows into either a PEG treatment group (n = 10) or control group (n = 10; CON). Blood samples were collected -7, -2, -1, 0, 1, 2, 4, 7, and 14 d relative to dry-off and 5, 10, and 14 d postcalving. Samples were analyzed for PUFA and oxylipids in milk and plasma by ultra-performance mass spectrometry and liquid chromatography tandem quadrupole mass spectrometry, respectively. Overall, 30 lipid mediators were measured in both milk and plasma. Repeated measures analyses revealed a significant interaction of treatment by time for milk 8-iso-keto-15-prostaglandin E2, prostaglandin F2α, plasma 8,12-iso-prostaglandin Fα-VI, 11-hydroxyeicosatetraenoic acid, and 12-hydroxyheptadecatienoic acid. The majority of milk PUFA and oxylipids differed significantly during early mammary gland involution and into the early postpartum period. This study demonstrated changes in oxylipids in milk secretions and plasma during early involution, and further investigation may illuminate multiple complex processes and reveal targets for optimization of mammary gland involution.
Collapse
Affiliation(s)
- Jaimie M Strickland
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824.
| | - Juliana Leite de Campos
- College of Agriculture and Natural Resources, Animal Science, Michigan State University, East Lansing, MI 48824
| | - Jeff Gandy
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Vengai Mavangira
- College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pamela L Ruegg
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| | - Lorraine Sordillo
- College of Veterinary Medicine, Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
5
|
Kotlarz K, Mielczarek M, Biecek P, Wojdak-Maksymiec K, Suchocki T, Topolski P, Jagusiak W, Szyda J. An Explainable Deep Learning Classifier of Bovine Mastitis Based on Whole-Genome Sequence Data-Circumventing the p >> n Problem. Int J Mol Sci 2024; 25:4715. [PMID: 38731932 PMCID: PMC11083318 DOI: 10.3390/ijms25094715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The serious drawback underlying the biological annotation of whole-genome sequence data is the p >> n problem, which means that the number of polymorphic variants (p) is much larger than the number of available phenotypic records (n). We propose a way to circumvent the problem by combining a LASSO logistic regression with deep learning to classify cows as susceptible or resistant to mastitis, based on single nucleotide polymorphism (SNP) genotypes. Among several architectures, the one with 204,642 SNPs was selected as the best. This architecture was composed of two layers with, respectively, 7 and 46 units per layer implementing respective drop-out rates of 0.210 and 0.358. The classification of the test data resulted in AUC = 0.750, accuracy = 0.650, sensitivity = 0.600, and specificity = 0.700. Significant SNPs were selected based on the SHapley Additive exPlanation (SHAP). As a final result, one GO term related to the biological process and thirteen GO terms related to molecular function were significantly enriched in the gene set that corresponded to the significant SNPs. Our findings revealed that the optimal approach can correctly predict susceptibility or resistance status for approximately 65% of cows. Genes marked by the most significant SNPs are related to the immune response and protein synthesis.
Collapse
Affiliation(s)
- Krzysztof Kotlarz
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland; (K.K.); (M.M.); (T.S.)
- University Cancer Diagnostic Center, Poznan University of Medical Science, 61-701 Poznan, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland; (K.K.); (M.M.); (T.S.)
- University Cancer Diagnostic Center, Poznan University of Medical Science, 61-701 Poznan, Poland
| | - Przemysław Biecek
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland;
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Katarzyna Wojdak-Maksymiec
- Department of Genetics and Animal Breeding, West Pomeranian University of Technology, Aleja Piastow 45, 70-311 Szczecin, Poland;
| | - Tomasz Suchocki
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland; (K.K.); (M.M.); (T.S.)
- University Cancer Diagnostic Center, Poznan University of Medical Science, 61-701 Poznan, Poland
| | - Piotr Topolski
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (P.T.); (W.J.)
| | - Wojciech Jagusiak
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland; (P.T.); (W.J.)
- Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland; (K.K.); (M.M.); (T.S.)
- University Cancer Diagnostic Center, Poznan University of Medical Science, 61-701 Poznan, Poland
| |
Collapse
|
6
|
Henry S, Lewis SM, Cyrill SL, Callaway MK, Chatterjee D, Hanasoge Somasundara AV, Jones G, He XY, Caligiuri G, Ciccone MF, Diaz IA, Biswas AA, Hernandez E, Ha T, Wilkinson JE, Egeblad M, Tuveson DA, Dos Santos CO. Host response during unresolved urinary tract infection alters female mammary tissue homeostasis through collagen deposition and TIMP1. Nat Commun 2024; 15:3282. [PMID: 38627380 PMCID: PMC11021735 DOI: 10.1038/s41467-024-47462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Exposure to pathogens throughout a lifetime influences immunity and organ function. Here, we explore how the systemic host-response to bacterial urinary tract infection (UTI) induces tissue-specific alterations to the mammary gland. Utilizing a combination of histological tissue analysis, single cell transcriptomics, and flow cytometry, we identify that mammary tissue from UTI-bearing mice displays collagen deposition, enlarged ductal structures, ductal hyperplasia with atypical epithelial transcriptomes and altered immune composition. Bacterial cells are absent in the mammary tissue and blood of UTI-bearing mice, therefore, alterations to the distal mammary tissue are mediated by the systemic host response to local infection. Furthermore, broad spectrum antibiotic treatment resolves the infection and restores mammary cellular and tissue homeostasis. Systemically, unresolved UTI correlates with increased plasma levels of the metalloproteinase inhibitor, TIMP1, which controls extracellular matrix remodeling and neutrophil function. Treatment of nulliparous and post-lactation UTI-bearing female mice with a TIMP1 neutralizing antibody, restores mammary tissue normal homeostasis, thus providing evidence for a link between the systemic host response during UTI and mammary gland alterations.
Collapse
Affiliation(s)
- Samantha Henry
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, USA
| | - Steven Macauley Lewis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Stony Brook University, Graduate Program in Genetics, Stony Brook, NY, USA
| | | | | | | | | | - Gina Jones
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Xue-Yan He
- Department of Cell Biology and Physiology. School of Medicine in St. Louis. Washington University, St. Louis, MO, USA
| | | | | | | | - Amelia Aumalika Biswas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- SUNY Downstate Health Sciences University, Neural and Behavior Science, Brooklyn, NY, USA
| | | | - Taehoon Ha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - John Erby Wilkinson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Mikala Egeblad
- Department of Cell Biology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
7
|
Chen K, Hu B, Ren J, Deng X, Li Q, Zhang R, Zhang Y, Shen G, Liu S, Zhang J, Lu P. Enhanced protein-metabolite correlation analysis: To investigate the association between Staphylococcus aureus mastitis and metabolic immune pathways. FASEB J 2024; 38:e23587. [PMID: 38568835 DOI: 10.1096/fj.202302242rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Mastitis is a disease characterized by congestion, swelling, and inflammation of the mammary gland and usually caused by infection with pathogenic microorganisms. Furthermore, the development of mastitis is closely linked to the exogenous pathway of the gastrointestinal tract. However, the regulatory mechanisms governing the gut-metabolism-mammary axis remain incompletely understood. The present study revealed alterations in the gut microbiota of mastitis rats characterized by an increased abundance of the Proteobacteria phylum. Plasma analysis revealed significantly higher levels of L-isoleucine and cholic acid along with 7-ketodeoxycholic acid. Mammary tissue showed elevated levels of arachidonic acid metabolites and norlithocholic acid. Proteomic analysis showed increased levels of IFIH1, Tnfaip8l2, IRGM, and IRF5 in mastitis rats, which suggests that mastitis triggers an inflammatory response and immune stress. Follistatin (Fst) and progesterone receptor (Pgr) were significantly downregulated, raising the risk of breast cancer. Extracellular matrix (ECM) receptors and focal adhesion signaling pathways were downregulated, while blood-milk barrier integrity was disrupted. Analysis of protein-metabolic network regulation revealed that necroptosis, protein digestion and absorption, and arachidonic acid metabolism were the principal regulatory pathways involved in the development of mastitis. In short, the onset of mastitis leads to changes in the microbiota and alterations in the metabolic profiles of various biological samples, including colonic contents, plasma, and mammary tissue. Key manifestations include disturbances in bile acid metabolism, amino acid metabolism, and arachidonic acid metabolism. At the same time, the integrity of the blood-milk barrier is compromised while inflammation is promoted, thereby reducing cell adhesion in the mammary glands. These findings contribute to a more comprehensive understanding of the metabolic status of mastitis and provide new insights into its impact on the immune system.
Collapse
Affiliation(s)
- Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyuan Ren
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Qing Li
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yuanyuan Zhang
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Gengyu Shen
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jiacheng Zhang
- Department of Hepatobiliary, Pancreatic and Liver Transplantation Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Thomas S, Roche E, Desai P, Pawlowska N, Bauer D, Gingrich D, Hsu E, Deitchman AN, Aweeka F, Munster PN. A long-term fulvestrant eluting implant is safe, non-toxic, and reduces the risk of breast cancer in in vivo models. RESEARCH SQUARE 2023:rs.3.rs-3459372. [PMID: 37961240 PMCID: PMC10635313 DOI: 10.21203/rs.3.rs-3459372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
For individuals at high risk of developing breast cancer, interventions to mitigate this risk include surgical removal of their breasts and ovaries or five years treatment with the anti-estrogen tamoxifen or aromatase inhibitors. We hypothesized that a silicone based anti-estrogen-eluting implant placed within the breast would provide the risk reduction benefit of hormonal therapy, but without the adverse effects that limit compliance. To this end, we demonstrate that when placed adjacent to mammary tissue in the DMBA-induced rat breast cancer model a fulvestrant-eluting implant delays breast cancer with minimal systemic exposure. Using adult female sheep, fulvestrant-eluting implants were found to be safe and non-toxic when placed at the base of the udder for directed elution into the mammary tissue. At 30 days of elution, fulvestrant was found to penetrate mammary tissue forming a concentration gradient beyond 15 mm from the implant. Consistent with the small animal rat study, minimal systemic fulvestrant biodistribution was found. Together, these studies provide the proof of principle that a breast indwelling fulvestrant-eluting implant can reduce the risk of breast cancer and limit systemic exposure, while penetrating and distributing through breast tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emily Hsu
- University of California, San Francisco
| | | | | | | |
Collapse
|
9
|
Sriyanti C, Siregar TN, Mudatsir M, Gani A, Hasan DI, Sutriana A. Antibacterial and anti-inflammatory activities of Nothopanax scutellarium, Moringa oleifera and Piper betle extracts on staphylococcal mastitis animal model. NARRA J 2023; 3:e176. [PMID: 38454978 PMCID: PMC10919737 DOI: 10.52225/narra.v3i2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/07/2023] [Indexed: 03/09/2024]
Abstract
Inappropriate and prolonged administration of antibiotics in mastitis could cause resistance and herbal treatment might could be one alternative treatment. Nothopanax scutellarium, Moringa oleifera, and Piper betle are medicinal plants that contain various active compounds, including antibacterial and anti-inflammatory agents, but their potential in treating mastitis is minimum. The aim of this study was to assess the effectiveness of those plants against mastitis in rabbit model induced by Staphylococcus aureus. A total of 25 lactating rabbits (Oryctolagus cuniculus) weighing 3.0±0.4 kg were grouped into five groups: healthy control; mastitis control, and three treatment groups (Nothopanax scutellarium, Moringa oleifera, and Piper betle). Except the negative control, all animals were inoculated with 0.15 mL of S. aureus containing 1.5x107 colony forming unit (CFU)/mL on eight days after giving birth. The extract was administered orally after four hours Staphylococcus aureus inoculation at a dose of 50 mg/kg body weight, twice a day for five consecutive days. The number of bacteria in the milk and the level of serum interleukin 6 (IL-6) were measured and histopathological examination of mammary gland tissues were analyzed. The log number of total plate count of Staphylococcus aureus indicated that all extract groups had significant lower of bacterial logs compared to mastitis control (all comparisons had p<0.05) with the lowest was found in Piper betle group, followed by Nothopanax scutellarium and Moringa oleifera groups. The enzyme-linked immunosorbent assay (ELISA) results showed that all ethanolic extract groups had significantly lower levels of IL-6 compared to the mastitis control (all comparisons had p<0.05). The histopathology assessment suggested that extract groups had lower infiltration of inflammatory cells such as lymphocytes and macrophages in alveoli compared to the mastitis control group. In conclusion, all three extracts contained antibacterial and anti-inflammatory activities and Piper betle had the most effective in reducing bacterial growth and IL-6 level compared to others.
Collapse
Affiliation(s)
- Cut Sriyanti
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Midwifery, Health Polytechnic of Aceh Ministry of Health, Aceh Besar, Indonesia
| | - Tongku N. Siregar
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mudatsir Mudatsir
- Department of Microbiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Azhari Gani
- Department of Internal Medicine, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Denny I. Hasan
- Laboratory of Pathology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Amalia Sutriana
- Laboratory of Pharmacology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
10
|
Hughes K. Studying Mammary Physiology and Pathology in Domestic Species Benefits Both Humans and Animals. J Mammary Gland Biol Neoplasia 2023; 28:18. [PMID: 37450225 PMCID: PMC10348960 DOI: 10.1007/s10911-023-09547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
11
|
Guo W, Fu S, Liu J, Zhu Y. Editorial: The mechanism of metabolic immune microenvironment, inflammation and blood milk barrier in mastitis. Front Immunol 2023; 14:1213826. [PMID: 37325642 PMCID: PMC10267439 DOI: 10.3389/fimmu.2023.1213826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yi Zhu
- Children Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Guo H, Li J, Wang Y, Cao X, Lv X, Yang Z, Chen Z. Progress in Research on Key Factors Regulating Lactation Initiation in the Mammary Glands of Dairy Cows. Genes (Basel) 2023; 14:1163. [PMID: 37372344 DOI: 10.3390/genes14061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Lactation initiation refers to a functional change in the mammary organ from a non-lactating state to a lactating state, and a series of cytological changes in the mammary epithelium from a non-secreting state to a secreting state. Like the development of the mammary gland, it is regulated by many factors (including hormones, cytokines, signaling molecules, and proteases). In most non-pregnant animals, a certain degree of lactation also occurs after exposure to specific stimuli, promoting the development of their mammary glands. These specific stimuli can be divided into two categories: before and after parturition. The former inhibits lactation and decreases activity, and the latter promotes lactation and increases activity. Here we present a review of recent progress in research on the key factors of lactation initiation to provide a powerful rationale for the study of the lactation initiation process and mammary gland development.
Collapse
Affiliation(s)
- Haoyue Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huanshan Group, Qingdao 266000, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Huanshan Group, Qingdao 266000, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
13
|
Praja RN, Yudhana A, Saputro AL, Hamonangan JM. The first study on antimicrobial resistance of Staphylococcus aureus isolated from raw goat milk associated with subclinical mastitis in Siliragung Subdistrict, East Java, Indonesia. Vet World 2023; 16:786-791. [PMID: 37235151 PMCID: PMC10206972 DOI: 10.14202/vetworld.2023.786-791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 05/28/2023] Open
Abstract
Background and Aim Raw goat milk is a highly nutritious dairy product and a suitable medium for the growth of antimicrobial-resistant Staphylococcus aureus, the leading cause of subclinical mastitis. This study aimed to investigate the resistance status of S. aureus which isolated from goat milk associated with subclinical mastitis cases in Siliragung Subdistrict, Banyuwangi District, East Java, Indonesia. Materials and Methods The S. aureus isolates were recovered from 258 raw goat milk samples from seven different dairy goat farms. Preliminary screening of subclinical mastitis using the California mastitis test, then samples with score +3 and +4 were taken for further isolation and identification, followed by a biochemical test to determine the S. aureus. Moreover, the bacteria susceptibility test against several antimicrobials was done using the disk diffusion method. Results Based on our findings, a total of 66 (25.58%) raw goat milk samples were tested positive for S. aureus, of which 36.36% were identified as multidrug-resistant. Moreover, S. aureus were also identified as resistant to penicillin (81.82%), ampicillin (65.15%), erythromycin (50.52%), and gentamicin (36.09%). Conclusion The prevalence of S. aureus isolated from raw goat milk associated with subclinical mastitis in Siliragung Subdistrict, Banyuwangi District, Indonesia, was recorded at 25.58%. Moreover, 36.36% of S. aureus isolates were categorized as resistant to three or more classes of antibiotics. The biosafety and biosecurity procedures during the milking process should be strengthened in dairy goat farms to prevent the transmission of antimicrobial resistance among animals, humans, and environments.
Collapse
Affiliation(s)
- Ratih Novita Praja
- Veterinary Medicine Study Program, Department of Health and Life Sciences, School of Health and Life Sciences, Universitas Airlangga, Wijaya Kusuma Street 113, Banyuwangi, East Java, Indonesia
- Department of Veterinary Science, Division of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo Street, Surabaya, East Java, Indonesia
| | - Aditya Yudhana
- Veterinary Medicine Study Program, Department of Health and Life Sciences, School of Health and Life Sciences, Universitas Airlangga, Wijaya Kusuma Street 113, Banyuwangi, East Java, Indonesia
- Department of Veterinary Science, Division of Veterinary Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo Street, Surabaya, East Java, Indonesia
| | - Amung Logam Saputro
- Veterinary Medicine Study Program, Department of Health and Life Sciences, School of Health and Life Sciences, Universitas Airlangga, Wijaya Kusuma Street 113, Banyuwangi, East Java, Indonesia
- Department of Veterinary Science, Division of Veterinary Clinic, Faculty of Veterinary Medicine, Universitas Airlangga, Kampus C Mulyorejo Street, Surabaya, East Java, Indonesia
| | - Jonathan Mark Hamonangan
- Veterinary Medicine Study Program, School of Health and Life Sciences, Universitas Airlangga, Wijaya Kusuma Street 113, Banyuwangi, East Java, Indonesia
| |
Collapse
|
14
|
Fur removal promotes an earlier expression of involution-related genes in mammary gland of lactating mice. J Comp Physiol B 2023; 193:171-192. [PMID: 36650338 PMCID: PMC9992052 DOI: 10.1007/s00360-023-01474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Peak lactation occurs when milk production is at its highest. The factors limiting peak lactation performance have been subject of intense debate. Milk production at peak lactation appears limited by the capacity of lactating females to dissipate body heat generated as a by-product of processing food and producing milk. As a result, manipulations that enhance capacity to dissipate body heat (such as fur removal) increase peak milk production. We investigated the potential correlates of shaving-induced increases in peak milk production in laboratory mice. By transcriptomic profiling of the mammary gland, we searched for the mechanisms underlying experimentally increased milk production and its consequences for mother-young conflict over weaning, manifested by advanced or delayed involution of mammary gland. We demonstrated that shaving-induced increases in milk production were paradoxically linked to reduced expression of some milk synthesis-related genes. Moreover, the mammary glands of shaved mice had a gene expression profile indicative of earlier involution relative to unshaved mice. Once provided with enhanced capacity to dissipate body heat, shaved mice were likely to rear their young to independence faster than unshaved mothers.
Collapse
|
15
|
Brajnik Z, Ogorevc J. Candidate genes for mastitis resistance in dairy cattle: a data integration approach. J Anim Sci Biotechnol 2023; 14:10. [PMID: 36759924 PMCID: PMC9912691 DOI: 10.1186/s40104-022-00821-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammation of the mammary tissue (mastitis) is one of the most detrimental health conditions in dairy ruminants and is considered the most economically important infectious disease of the dairy sector. Improving mastitis resistance is becoming an important goal in dairy ruminant breeding programmes. However, mastitis resistance is a complex trait and identification of mastitis-associated alleles in livestock is difficult. Currently, the only applicable approach to identify candidate loci for complex traits in large farm animals is to combine different information that supports the functionality of the identified genomic regions with respect to a complex trait. METHODS To identify the most promising candidate loci for mastitis resistance we integrated heterogeneous data from multiple sources and compiled the information into a comprehensive database of mastitis-associated candidate loci. Mastitis-associated candidate genes reported in association, expression, and mouse model studies were collected by searching the relevant literature and databases. The collected data were integrated into a single database, screened for overlaps, and used for gene set enrichment analysis. RESULTS The database contains candidate genes from association and expression studies and relevant transgenic mouse models. The 2448 collected candidate loci are evenly distributed across bovine chromosomes. Data integration and analysis revealed overlaps between different studies and/or with mastitis-associated QTL, revealing promising candidate genes for mastitis resistance. CONCLUSION Mastitis resistance is a complex trait influenced by numerous alleles. Based on the number of independent studies, we were able to prioritise candidate genes and propose a list of the 22 most promising. To our knowledge this is the most comprehensive database of mastitis associated candidate genes and could be helpful in selecting genes for functional validation studies.
Collapse
Affiliation(s)
- Zala Brajnik
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230 Slovenia
| | - Jernej Ogorevc
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230, Slovenia.
| |
Collapse
|
16
|
Zhao C, Hu X, Bao L, Wu K, Zhao Y, Xiang K, Li S, Wang Y, Qiu M, Feng L, Meng X, Zhang N, Fu Y. Gut dysbiosis induces the development of mastitis through a reduction in host anti-inflammatory enzyme activity by endotoxemia. MICROBIOME 2022; 10:205. [PMID: 36451232 PMCID: PMC9714159 DOI: 10.1186/s40168-022-01402-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/24/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND Mounting experimental evidence has shown that the gut microbiota plays a significant role in the pathogenesis of mastitis, and clinical investigations have found that the occurrence of mastitis is correlated with ruminal dysbiosis. However, the underlying mechanism by which the ruminal microbiota participates in the development of mastitis remains unknown. RESULTS In the present study, we found that cows with clinical mastitis had marked systemic inflammation, which was associated with significant ruminal dysbiosis, especially enriched Proteobacteria in the rumen. Ruminal microbiota transplantation from mastitis cows (M-RMT) to mice induced mastitis symptoms in recipient mice along with increased mammary proinflammatory signature activation of the TLR4-cGAS-STING-NF-κB/NLRP3 pathways. M-RMT also induced mucosal inflammation and impaired intestinal barrier integrity, leading to increased endotoxemia and systemic inflammation. Moreover, we showed that M-RMT mirrored ruminal microbiota disruption in the gut of recipient mice, as evidenced by enriched Proteobacteria and similar bacterial functions, which were correlated with most proinflammatory parameters and serum lipopolysaccharide (LPS) levels in mice. Recurrent low-grade LPS treatment mirrored gut dysbiosis-induced endotoxemia and caused severe mastitis in mice. Furthermore, we found that gut dysbiosis-derived LPS reduced host alkaline phosphatase activity by activating neuraminidase (Neu), which facilitates low-grade LPS exposure and E. coli-induced mastitis in mice. Conversely, treatment with calf intestinal alkaline phosphatase or the Neu inhibitor zanamivir alleviated low-grade LPS exposure and E. coli-induced mastitis in mice. CONCLUSIONS Our results suggest that ruminal dysbiosis-derived low-grade endotoxemia can cause mastitis and aggravate pathogen-induced mastitis by impairing host anti-inflammatory enzymes, which implies that regulating the ruminal or gut microbiota to prevent low-grade systemic inflammation is a potential strategy for mastitis intervention. Video Abstract.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Shuang Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiangyue Meng
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| |
Collapse
|
17
|
Feng F, Jiao P, Wang J, Li Y, Bao B, Luoreng Z, Wang X. Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells 2022; 11:cells11223642. [PMID: 36429069 PMCID: PMC9688074 DOI: 10.3390/cells11223642] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are recently discovered genetic regulatory molecules that regulate immune responses and are closely associated with the occurrence and development of various diseases, including inflammation, in humans and animals. Under specific physiological conditions, lncRNA expression varies at the cell or tissue level, and lncRNAs can bind to specific miRNAs, target mRNAs, and target proteins to participate in certain processes, such as cell differentiation and inflammatory responses, via the corresponding signaling pathways. This review article summarizes the regulatory role of lncRNAs in macrophage polarization, dendritic cell differentiation, T cell differentiation, and endothelial and epithelial inflammation. In addition, it describes the molecular mechanism of lncRNAs in acute kidney injury, hepatitis, inflammatory injury of the lung, osteoarthritis, mastitis, and neuroinflammation to provide a reference for the molecular regulatory network as well as the genetic diagnosis and treatment of inflammatory diseases in humans and animals.
Collapse
Affiliation(s)
- Fen Feng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jinpeng Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yanxia Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Binwu Bao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| |
Collapse
|
18
|
Akhtar M, Naqvi SUAS, Liu Q, Pan H, Ma Z, Kong N, Chen Y, Shi D, Kulyar MFEA, Khan JA, Liu H. Short Chain Fatty Acids (SCFAs) Are the Potential Immunomodulatory Metabolites in Controlling Staphylococcus aureus-Mediated Mastitis. Nutrients 2022; 14:3687. [PMID: 36145063 PMCID: PMC9503071 DOI: 10.3390/nu14183687] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Mastitis is an emerging health concern in animals. An increased incidence of mastitis in dairy cows has been reported in the last few years across the world. It is estimated that up to 20% of cows are suffering from mastitis, causing incompetency in the mucosal immunity and resulting in excessive global economic losses in the dairy industry. Staphylococcus aureus (S. aureus) has been reported as the most common bacterial pathogen of mastitis at clinical and sub-clinical levels. Antibiotics, including penicillin, macrolides, lincomycin, cephalosporins, tetracyclines, chloramphenicol, and methicillin, were used to cure S. aureus-induced mastitis. However, S. aureus is resistant to most antibiotics, and methicillin-resistant S. aureus (MRSA) especially has emerged as a critical health concern. MRSA impairs immune homeostasis leaving the host more susceptible to other infections. Thus, exploring an alternative to antibiotics has become an immediate requirement of the current decade. Short chain fatty acids (SCFAs) are the potent bioactive metabolites produced by host gut microbiota through fermentation and play a crucial role in host/pathogen interaction and could be applied as a potential therapeutic agent against mastitis. The purpose of this review is to summarize the potential mechanism by which SCFAs alleviate mastitis, providing the theoretical reference for the usage of SCFAs in preventing or curing mastitis.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jawaria Ali Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Pathology of the Mammary Gland in Sheep and Goats. J Comp Pathol 2022; 193:37-49. [DOI: 10.1016/j.jcpa.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
|
20
|
Rutagwera DG, Molès JP, Kankasa C, Mwiya M, Tuaillon E, Peries M, Nagot N, Van de Perre P, Tylleskär T. Recurrent Severe Subclinical Mastitis and the Risk of HIV Transmission Through Breastfeeding. Front Immunol 2022; 13:822076. [PMID: 35309352 PMCID: PMC8931278 DOI: 10.3389/fimmu.2022.822076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
Subclinical mastitis (SCM) is an important risk factor of postnatal HIV-1 transmission that is still poorly understood. A longitudinal sub-study of the ANRS12174 trial including 270 breastfeeding mothers in Lusaka, Zambia measured sodium (Na+) and potassium (K+) in archived paired breast milk samples collected at week 14, 26 and 38 postpartum to determine cumulative incidence of SCM and the effects of recurrent severe SCM on HIV-1 shedding in breast milk. A nested retrospective cohort study including 112 mothers was also done to determine longitudinal effects of SCM on four pro-inflammatory cytokines; IL6, IL8, IP10 and RANTES. The cumulative incidence for any SCM (Na+/K+ ratio > 0.6) and severe SCM (Na+/K+ ratio > 1) were 58.6% (95%CI: 52.7 – 64.5) and 27.8% (95%CI: 22.5 – 33.1), respectively. In majority of affected mothers (51.4%) severe SCM was recurrent. Both breasts were involved in 11.1%, 33.3% and 70% of the mothers with a single episode, 2 and 3 episodes respectively. In affected breasts, an episode of severe SCM resulted in steep upregulation of the four cytokines considered (IL8, IP10, RANTES and IL6) compared to: before and after the episode; contralateral unaffected breasts; and SCM negative control mothers. Recurrent severe SCM significantly increased the odds of shedding cell-free HIV-1 in breast milk (OR: 5.2; 95%CI: 1.7 – 15.6) whereas single episode of severe SCM did not (OR: 1.8; 95%CI: 0.8 – 4.2). A Na+/K+ ratio > 1 indicative of severe SCM is an excellent indicator of breast inflammation characterized by a steep, localized and temporal upregulation of several pro-inflammatory cytokines that favor HIV-1 shedding in mature breast milk and may facilitate postnatal HIV-1 transmission through breastfeeding.
Collapse
Affiliation(s)
- David Gatsinzi Rutagwera
- Centre for International Health, University of Bergen, Bergen, Norway
- Children's Hospital, University Teaching Hospitals, School of Medicine, University of Zambia, Lusaka, Zambia
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, INSERM, Université des Antilles, Etablissement français du Sang, Montpellier, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, INSERM, Université des Antilles, Etablissement français du Sang, Montpellier, France
| | - Chipepo Kankasa
- Children's Hospital, University Teaching Hospitals, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Mwiya Mwiya
- Children's Hospital, University Teaching Hospitals, School of Medicine, University of Zambia, Lusaka, Zambia
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, INSERM, Université des Antilles, Etablissement français du Sang, Montpellier, France
| | - Marianne Peries
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, INSERM, Université des Antilles, Etablissement français du Sang, Montpellier, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, INSERM, Université des Antilles, Etablissement français du Sang, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, Université de Montpellier, INSERM, Université des Antilles, Etablissement français du Sang, Montpellier, France
| | | |
Collapse
|
21
|
Giagu A, Penati M, Traini S, Dore S, Addis MF. Milk proteins as mastitis markers in dairy ruminants - a systematic review. Vet Res Commun 2022; 46:329-351. [PMID: 35195874 PMCID: PMC9165246 DOI: 10.1007/s11259-022-09901-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Abstract
Mastitis is one of the most impacting diseases in dairy farming, and its sensitive and specific detection is therefore of the greatest importance. The clinical evaluation of udder and mammary secretions is typically combined with the milk Somatic Cell Count (SCC) and often accompanied by its bacteriological culture to identify the causative microorganism. In a constant search for improvement, several non-enzymatic milk proteins, including milk amyloid A (M-SAA), haptoglobin (HP), cathelicidin (CATH), and lactoferrin (LF), have been investigated as alternative biomarkers of mastitis for their relationship with mammary gland inflammation, and immunoassay techniques have been developed for detection with varying degrees of success. To provide a general overview of their implementation in the different dairy species, we carried out a systematic review of the scientific literature using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Our review question falls within the type “Diagnostic test accuracy questions” and aims at answering the diagnostic question: “Which are the diagnostic performances of mastitis protein biomarkers investigated by immunoassays in ruminant milk?”. Based on 13 keywords combined into 42 searches, 523 manuscripts were extracted from three scientific databases. Of these, 33 passed the duplicate removal, title, abstract, and full-text screening for conformity to the review question and document type: 78.8% investigated cows, 12.1% sheep, 9.1% goats, and 6.1% buffaloes (some included more than one dairy species). The most frequently mentioned protein was M-SAA (48.5%), followed by HP (27.3%), CATH (24.2%) and LF (21.2%). However, the large amount of heterogeneity among studies in terms of animal selection criteria (45.5%), index test (87.9%), and standard reference test (27.3%) resulted in a collection of data not amenable to meta-analysis, a common finding illustrating how important it is for case definitions and other criteria to be standardized between studies. Therefore, results are presented according to the SWiM (Synthesis Without Meta-analysis) guidelines. We summarize the main findings reported in the 33 selected articles for the different markers and report their results in form of comparative tables including sample selection criteria, marker values, and diagnostic performances, where available. Finally, we report the study limitations and bias assessment findings.
Collapse
Affiliation(s)
- Anna Giagu
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
- Istituto Zooprofilattico Sperimentale della Sardegna, Centro di Referenza Nazionale per le Mastopatie degli Ovini e dei Caprini, Sassari, Italy
- ARES Sardegna, ASL, Nuoro, Italy
| | - Martina Penati
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università di Milano, Lodi, Italy
| | - Sara Traini
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università di Milano, Lodi, Italy
| | - Simone Dore
- Istituto Zooprofilattico Sperimentale della Sardegna, Centro di Referenza Nazionale per le Mastopatie degli Ovini e dei Caprini, Sassari, Italy
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università di Milano, Lodi, Italy.
| |
Collapse
|
22
|
Casey T, Suarez-Trujillo AM, McCabe C, Beckett L, Klopp R, Brito L, Rocha Malacco VM, Hilger S, Donkin SS, Boerman J, Plaut K. Transcriptome analysis reveals disruption of circadian rhythms in late gestation dairy cows may increase risk for fatty liver and reduced mammary remodeling. Physiol Genomics 2021; 53:441-455. [PMID: 34643103 DOI: 10.1152/physiolgenomics.00028.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Circadian disruption increased insulin resistance and decreased mammary development in late gestation, nonlactating (dry) cows. The objective was to measure the effect of circadian disruption on transcriptomes of the liver and mammary gland. At 35 days before expected calving (BEC), multiparous dry cows were assigned to either control (CON) or phase-shifted treatments (PS). CON was exposed to 16-h light and 8-h dark. PS was exposed to 16-h light to 8-h dark, but phase of the light-dark cycle was shifted 6 h every 3 days. On day 21 BEC, liver and mammary were biopsied. RNA was isolated (n = 6 CON, n = 6 PS per tissue), and libraries were prepared and sequenced using paired-end reads. Reads mapping to bovine genome averaged 27 ± 2 million and aligned to 14,222 protein-coding genes in liver and 15,480 in mammary analysis. In the liver, 834 genes, and in the mammary gland, 862 genes were different (nominal P < 0.05) between PS and CON. In the liver, genes upregulated in PS functioned in cholesterol biosynthesis, endoplasmic reticulum stress, wound healing, and inflammation. Genes downregulated in liver function in cholesterol efflux. In the mammary gland, genes upregulated functioned in mRNA processing and transcription and downregulated genes encoded extracellular matrix proteins and proteases, cathepsins and lysosomal proteases, lipid transporters, and regulated oxidative phosphorylation. Increased cholesterol synthesis and decreased efflux suggest that circadian disruption potentially increases the risk of fatty liver in cows. Decreased remodeling and lipid transport in mammary may decrease milk production capacity during lactation.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Conor McCabe
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Linda Beckett
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Rebecca Klopp
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Luiz Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | | | - Susan Hilger
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Jacquelyn Boerman
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
23
|
Takashima M, Lalonde C, Olszanski LA, Zhao FQ. Localized and Systemic Inflammatory Mediators in a Murine Acute Mastitis Model. J Inflamm Res 2021; 14:4053-4067. [PMID: 34456581 PMCID: PMC8387587 DOI: 10.2147/jir.s313799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Milk depression is the major driver of economic loss due to mastitis in dairy animals. The aim of this study was to identify potential mediators of milk depression by investigating the local and systemic changes in gene expression or cytokine production during endotoxin challenge of the mammary gland in a mouse model. Methods The left and right sides of the 4th pair of mouse mammary glands were alternatively injected with either lipopolysaccharide (LPS, Escherichia coli 055: B5, 50 μL of 0.4 mg/mL) or sterile PBS through the teat meatus 3 days postpartum (n = 9). The 4th glands were individually collected 12 h after LPS injection and analyzed to identify gene expression changes by RNA sequencing and real-time PCR, and the plasma was collected before and after LPS challenge and analyzed to determine the levels of 32 cytokines. Results Transcriptome analysis showed that in addition to strong pro-inflammatory responses, which included granulocyte and monocyte migration and cytokine production and signaling, the LPS-treated glands exhibited strong ubiquitin-mediated and immune-mediated proteasome activation and an increase in nitric oxide-mediated oxidative stress. Furthermore, LPS induced a down-regulation in vesicle membrane, vesicle-mediated trafficking, and metabolic processes of amino acids and other organic molecules in the mammary gland. Of the 32 cytokines analyzed, the levels of 24 (mainly IL-6, G-CSF, MCP-1, RANTES, MIG, MIP-1b, KC, MIP-2, IP-10, and TNFα) were increased or tended to increase in the blood after LPS treatment, and only the levels of IL-9 were decreased. In the mammary gland after LPS challenge, the levels of IL-5, IL-6, IP-10, LIF, MCP-1, MIP-2, and TNFα were significantly increased, and the levels of INFΥ, IL-2, IL-4, IL-10, and IL-12 (p40) were decreased. Discussion These observations provide potential markers and targets for further studies on the prevention and treatment of gram-negative bacteria-induced mastitis.
Collapse
Affiliation(s)
- Miyuki Takashima
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA.,Wakunaga Pharmaceutical Co. Ltd, Osaka, 532-0003, Japan
| | - Christian Lalonde
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Laura Ashley Olszanski
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Feng-Qi Zhao
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
24
|
Nagy D, Gillis CMC, Davies K, Fowden AL, Rees P, Wills JW, Hughes K. Developing ovine mammary terminal duct lobular units have a dynamic mucosal and stromal immune microenvironment. Commun Biol 2021; 4:993. [PMID: 34417554 PMCID: PMC8379191 DOI: 10.1038/s42003-021-02502-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/27/2021] [Indexed: 11/29/2022] Open
Abstract
The human breast and ovine mammary gland undergo striking levels of postnatal development, leading to formation of terminal duct lobular units (TDLUs). Here we interrogate aspects of sheep TDLU growth as a model of breast development and to increase understanding of ovine mammogenesis. The distributions of epithelial nuclear Ki67 positivity differ significantly between younger and older lambs. Ki67 expression is polarised to the leading edge of the developing TDLUs. Intraepithelial ductal macrophages exhibit periodicity and considerably increased density in lambs approaching puberty. Stromal macrophages are more abundant centrally than peripherally. Intraepithelial T lymphocytes are more numerous in older lambs. Stromal hotspots of Ki67 expression colocalize with immune cell aggregates that exhibit distinct organisation consistent with tertiary lymphoid structures. The lamb mammary gland thus exhibits a dynamic mucosal and stromal immune microenvironment and constitutes a valuable model system that provides new insights into postnatal breast development.
Collapse
Affiliation(s)
- Dorottya Nagy
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Equine Clinic, Department of Companion Animals and Equids, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Clare M C Gillis
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Katie Davies
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Abigail L Fowden
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Paul Rees
- College of Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Swansea, UK
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John W Wills
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
25
|
Abstract
An understanding of the anatomy, histology, and development of the equine mammary gland underpins study of the pathology of diseases including galactorrhoea, agalactia, mastitis, and mammary tumour development. This review examines the prenatal development of the equine mammary gland and the striking degree to which the tissue undergoes postnatal development associated with the reproductive cycle. The gland is characterised by epithelial structures arranged in terminal duct lobular units, similar to those of the human breast, supported by distinct zones of intra- and interlobular collagenous stroma. Mastitis and mammary carcinomas are two of the most frequently described equine mammary pathologies and have an overlap in associated clinical signs. Mastitis is most frequently associated with bacterial aetiologies, particularly Streptococcus spp., and knowledge of the process of post-lactational regression can be applied to preventative husbandry strategies. Equine mammary tumours are rare and carry a poor prognosis in many cases. Recent studies have used mammosphere assays to reveal novel insights into the identification and potential behaviour of mammary stem/progenitor cell populations. These suggest that mammospheres derived from equine cells have different growth dynamics compared to those from other species. In parallel with studying the equine mammary gland in order to advance knowledge of equine mammary disease at the interface of basic and clinical science, there is a need to better understand equine lactational biology. This is driven in part by the recognition of the potential value of horse and donkey milk for human consumption, particularly donkey milk in children with 'Cow Milk Protein Allergy'.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Rodrigues CH, Araújo EAG, Almeida RP, Nascimento TP, Silva MM, Abbas G, Nunes FD, Lins E, Lira-Nogueira MCB, Falcão JSA, Fontes A, Porto ALF, Pereira G, Santos BS. Silver nanoprisms as plasmonic enhancers applied in the photodynamic inactivation of Staphylococcus aureus isolated from bubaline mastitis. Photodiagnosis Photodyn Ther 2021; 34:102315. [PMID: 33932564 DOI: 10.1016/j.pdpdt.2021.102315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/04/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Mastitis is a bacterial infection that affects all lactating mammals, and in dairy cattle, it leads to a reduction in their milk production and, in worse cases, it may lead to animal death. One viable therapeutic modality for overcoming bacterial resistance can be photodynamic inactivation (PDI), a therapeutic modality for bacterial infection treatment. One of the main factors that can lead to an efficient PDI process is the association of metallic nanoparticles in the close vicinity of photosensitizers, which has shown promising results due to localized surface plasmon resonance phenomena. In this work, methylene blue (MB) molecules were associated with Ag prismatic nanoplatelets (AgNPrs) to use as PDI photosensitizer against Staphylococcus aureus isolated from bubaline mastitis. The optical plasmonic activity of AgNPrs was tuned to the MB absorption region (600-700 nm) by inducing their growth into prismatic shapes by a seed-mediated procedure, using poly (sodium 4-styrene sulfonate) as the surfactant. A simulation on the plasmonic properties of the nanoprisms, applying particle size within the dimensions determined by TEM image analysis (d = 32 ± 6 nm), showed a 30 % increase of the incident field on the prismatic tips. Photodynamic results showed that the electrostatic AgNPr-MB conjugates promoted enhancement (ca. 15 %) of the reactive oxygen species production. Besides, PDI mediated by AgNPrs-MB led to the complete inactivation of the mastitis S. aureus strain after 6 min inactivation, in contrast to PDI mediated by MB, which reduced less than a 0.5 bacterial log. Thus, the results show this plasmonic enhanced photodynamic tool's potential to be applied in the inactivation of multi-resistant bacterial strains.
Collapse
Affiliation(s)
- Cláudio H Rodrigues
- Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Evanísia A G Araújo
- Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Rômulo P Almeida
- Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Thiago P Nascimento
- Morphology and Animal Physiology Department, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Marllyn M Silva
- Academic Center of Vitória, Federal University of Pernambuco, Vitória, PE, Brazil
| | - Ghulam Abbas
- Department of Physics, Riphah International University Faisalabad Campus, Pakistan
| | - Frederico D Nunes
- Nuclear Engineering Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Emery Lins
- Electronic and Systems Department, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Juliana S A Falcão
- Education and Health Center, Federal University of Campina Grande, Cuité, PB, Brazil
| | - Adriana Fontes
- Biophysics and Radiobiology Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ana L F Porto
- Morphology and Animal Physiology Department, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Goreti Pereira
- Fundamental Chemistry Department, Federal University of Pernambuco, Recife, PE, Brazil
| | - Beate S Santos
- Pharmaceutical Sciences Department, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
27
|
Ge BJ, Zhao P, Li HT, Sang R, Wang M, Zhou HY, Zhang XM. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-κB/MAPKs pathways in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113595. [PMID: 33212175 DOI: 10.1016/j.jep.2020.113595] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine, Taraxacum mongolicum has been widely used for the prevention and treatment of a variety of inflammatory and infectious diseases, and also clinically used as a remedy for mastitis. However, the scientific rationale and mechanism behind its use on mastitis in vivo are still unclear. AIM OF THE STUDY This study aimed to investigate the protective effect and potential mechanism of Taraxacum mongolicum Hand.-Mazz. (T. mongolicum) on mastitis infected by Staphylococcus aureus (S. aureus). MATERIALS AND METHODS Female ICR mice were given intragastrically 2.5, 5 and 10 g/kg of T. mongolicum extract twice per day for 6 consecutive days, and infected with S. aureus via teat canal to induce mastitis. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) levels were determined by ELISA. Myeloperoxidase (MPO) activity and distribution were measured by reagent kit and immunohistochemistry. Histopathological changes of mammary gland tissues were observed by H&E staining. Toll-like receptor 2 (TLR2) expression, phosphorylations of related proteins in nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) signaling pathways were detected by western blot. RESULTS T. mongolicum decreased TNF-α, IL-6 and IL-1β levels, and reduced MPO activity and distribution in sera and mammary glands with S. aureus-infected mastitis. In addition, T. mongolicum effectively attenuated histopathological damages and cell necrosis of mammary gland tissues infected by S. aureus. Moreover, T. mongolicum inhibited the expression of TLR2, and the phosphorylations of inhibitor κBα (IκBα), p65, p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) proteins in mammary glands with S. aureus-infected mastitis. CONCLUSIONS This study suggests that T. mongolicum protects against S. aureus-infected mastitis by exerting anti-inflammatory role, which is attributed to the inhibition of TLR2-NF-κB/MAPKs pathways.
Collapse
Affiliation(s)
- Bing-Jie Ge
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Peng Zhao
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Hai-Tao Li
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China; Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Juye Street, Changchun, Jilin 132109, China.
| | - Rui Sang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Meng Wang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Hong-Yuan Zhou
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| | - Xue-Mei Zhang
- Agricultural College of Yanbian University, Gongyuan Street, Yanji, Jilin, 133002, China.
| |
Collapse
|
28
|
|
29
|
Adverse effects of LPS on membrane proteins in lactating bovine mammary epithelial cells. Cell Tissue Res 2021; 384:435-448. [PMID: 33433684 DOI: 10.1007/s00441-020-03344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023]
Abstract
Mastitis causes a decrease in milk yield and abnormalities in milk components from dairy cows. Escherichia coli and the E. coli lipopolysaccharide (LPS) cell wall component directly downregulate milk production in bovine mammary epithelial cells (BMECs). However, the detailed mechanism by which this occurs in BMECs remains unclear. Various membrane proteins, such as immune sensors (Toll-like receptors, TLR), nutrient transporters (glucose transporter and aquaporin), and tight junction proteins (claudin and occludin) are involved in the onset of mastitis or milk production in BMECs. In this study, we investigated the influence of LPS on membrane proteins using an in vitro culture model. This mastitis model demonstrated a loss of glucose transporter-1 and aquaporin-3 at lateral membranes and a decrease in milk production in response to LPS treatment. LPS disrupted the tight junction barrier and caused compositional changes in localization of claudin-3 and claudin-4, although tight junctions were maintained to separate the apical membrane domains and the basolateral membrane domains. LPS did not significantly affect the expression level and subcellular localization of epidermal growth factor receptor in lactating BMECs with no detectable changes in MEK1/2-ERK1/2 signaling. In contrast, NFκB was concurrently activated with temporal translocation of TLR-4 in the apical membranes, whereas TLR-2 was not significantly influenced by LPS treatment. These findings indicate the importance of investigating the subcellular localization of membrane proteins to understand the molecular mechanism of LPS in milk production in mastitis.
Collapse
|
30
|
McGuire MK, Seppo A, Goga A, Buonsenso D, Collado MC, Donovan SM, Müller JA, Ofman G, Monroy-Valle M, O'Connor DL, Pace RM, Van de Perre P. Best Practices for Human Milk Collection for COVID-19 Research. Breastfeed Med 2021; 16:29-38. [PMID: 33393841 PMCID: PMC7826442 DOI: 10.1089/bfm.2020.0296] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to providing life-giving nutrients and other substances to the breastfed infant, human milk can also represent a vehicle of pathogen transfer. As such, when an infectious disease outbreak, epidemic, or pandemic occurs-particularly when it is associated with a novel pathogen-the question will naturally arise as to whether the pathogen can be transmitted through breastfeeding. Until high-quality data are generated to answer this question, abandonment of breastfeeding due to uncertainty can result. The COVID-19 pandemic, which was in full swing at the time this document was written, is an excellent example of this scenario. During these times of uncertainty, it is critical for investigators conducting research to assess the possible transmission of pathogens through milk, whether by transfer through the mammary gland or contamination from respiratory droplets, skin, breast pumps, and milk containers, and/or close contact between mother and infant. To promote the most rigorous science, it is critical to outline optimal methods for milk collection, handling, storage, and analysis in these situations, and investigators should openly share their methods in published materials. Otherwise, the risks of inconsistent test results from preanalytical and analytical variation, false positives, and false negatives are unacceptably high and the ability to provide public health guidance poor. In this study, we provide "best practices" for collecting human milk samples for COVID-19 research with the intention that this will also be a useful guide for future pandemics.
Collapse
Affiliation(s)
- Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Antti Seppo
- Division of Allergy and Immunology, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ameena Goga
- Health Systems Research Unit, South African Medical Research Council, Cape Town, South Africa.,HIV Prevention Research Unit, South African Medical Research Council, Cape Town, South Africa.,Department of Pediatrics and Child Health, University of Pretoria, Pretoria, South Africa
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.,Global Health Research Institute, Università Cattolica del Sacro Cuore, Rome, Italia
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Gaston Ofman
- College of Medicine, Section of Neonatal-Perinatal Medicine, Oklahoma City, Oklahoma, USA
| | - Michele Monroy-Valle
- Unidad de Investigación en Seguridad Alimentaria y Nutricional, Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala, Guatemala City, Guatemala.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto and Translational Medicine Program, The Hospital for Sick Children, Toronto, Canada
| | - Ryan M Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, USA
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement Franc¸ais du Sang, CHU Montpellier, Montpellier, France
| |
Collapse
|
31
|
Hughes K. Comparative mammary gland postnatal development and tumourigenesis in the sheep, cow, cat and rabbit: Exploring the menagerie. Semin Cell Dev Biol 2020; 114:186-195. [PMID: 33082118 DOI: 10.1016/j.semcdb.2020.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Sheep, cows, cats, and rabbits are kept by humans for agricultural purposes and as companion animals. Much of the mammary research in these species has focussed on mastitis in the case of ruminants and rabbits, and mammary tumourigenesis in cats and rabbits. However, similarities with the human breast suggest that these species may be currently underutilised as valuable comparative models of breast development and disease. The mammary gland undergoes cyclical postnatal development that will be considered here in the context of these non-traditional model species, with a focus on the mammary microenvironment at different postnatal developmental stages. The second part of this review will consider mammary tumour development. Ruminants are thought to be relatively 'resistant' to mammary tumourigenesis, likely due to multiple factors including functional properties of ruminant mammary stem/progenitor cells, diet, and/or the fact that production animals undergo a first parity soon after puberty. By contrast, unneutered female cats and rabbits have a propensity to develop mammary neoplasms, and subsets of these may constitute valuable comparative models of breast cancer.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
32
|
Guzmán-Rodríguez JJ, León-Galván MF, Barboza-Corona JE, Valencia-Posadas M, Loeza-Lara PD, Sánchez-Ceja M, Ochoa-Zarzosa A, López-Meza JE, Gutiérrez-Chávez AJ. Analysis of virulence traits of Staphylococcus aureus isolated from bovine mastitis in semi-intensive and family dairy farms. J Vet Sci 2020; 21:e77. [PMID: 33016022 PMCID: PMC7533384 DOI: 10.4142/jvs.2020.21.e77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Staphylococcus aureus is one of the main microorganisms that causes bovine mastitis, and its well-known virulence characteristics and interactions with the environment are used to aid the design of more efficient therapies. OBJECTIVES To determine whether the virulence traits, such as antibiotic resistance and biofilm-forming and internalization abilities, of S. aureus isolated from bovine mastitis are related to dairy production system types. METHODS The study was performed in the Mexican states of Guanajuato and Michoacan. Semi-intensive dairy farms (SIDFs) and family dairy farms (FDFs) (454 and 363 cows, respectively) were included. The 194 milk samples from mastitis affected quarters were collected and 92 strains of S. aureus were isolated and identified by biochemical and molecular tests. Antibiotic resistance, biofilm and internalization assays were performed on 30 randomly selected isolated strains to determine virulence traits, and these strains were equally allocated to the 2 dairy production systems. RESULTS All 30 selected strains displayed a high degree of resistance (50%-91.7%) to the antibiotics tested, but no significant difference was found between SIDF and FDF isolates. S. aureus strains from SIDFs had an average biofilm forming capacity of up to 36% (18.9%-53.1%), while S. aureus strains from FDFs registered an average of up to 53% (31.5%-77.8%) (p > 0.05). Internalization assays revealed a higher frequency of internalization capacity for strains isolated from FDFs (33.3%) than for those isolated from SIDFs (6.7%) (p > 0.05). fnbpA gen was detected in 46.6% of FDF strains and 33.3% of SIDF strains, and this difference was significant (p < 0.05). CONCLUSIONS Our findings show that the virulence traits of S. aureus isolates analyzed in this study, depend significantly on several factors, such as phenotype, genotype, and environmental conditions, which are significantly related to dairy production system type and daily management practices.
Collapse
Affiliation(s)
- Jaquelina J Guzmán-Rodríguez
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
| | - Ma Fabiola León-Galván
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
- Life Science Division, Department of Food, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
| | - José E Barboza-Corona
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
- Life Science Division, Department of Food, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
| | - Mauricio Valencia-Posadas
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
- Life Science Division, Department of Veterinary Medicine and Zootechnics, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
| | - Pedro D Loeza-Lara
- Department of Food Genomics, University of La Cienega of the State of Michoacan de Ocampo, 59103 Sahuayo, Michoacan, Mexico
| | - Mónica Sánchez-Ceja
- Department of Food Genomics, University of La Cienega of the State of Michoacan de Ocampo, 59103 Sahuayo, Michoacan, Mexico
| | - Alejandra Ochoa-Zarzosa
- Multidisciplinary Center for Biotechnology Studies, Faculty of Veterinary Medicine and Zootechnics, Universidad Michoacana de San Nicolas de Hidalgo, 58893 Morelia, Michoacán, Mexico
| | - Joel E López-Meza
- Multidisciplinary Center for Biotechnology Studies, Faculty of Veterinary Medicine and Zootechnics, Universidad Michoacana de San Nicolas de Hidalgo, 58893 Morelia, Michoacán, Mexico
| | - Abner J Gutiérrez-Chávez
- Life Science Division, Postgraduate Program in Bioscience, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico
- Life Science Division, Department of Veterinary Medicine and Zootechnics, Irapuato-Salamanca Campus, University of Guanajuato, 36500 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
33
|
Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K. Regulatory Effects of Soy Isoflavones and Their Metabolites in Milk Production via Different Ways in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5847-5853. [PMID: 32379443 DOI: 10.1021/acs.jafc.0c01288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Soy products contain abundant genistein and daidzein isoflavones. Orally ingested soy isoflavones are partially metabolized to isoflavan by enteric bacteria. Their levels in the blood increase after soy products are eaten. In this study, we investigated the influence of genistein, daidzein, and equol by intraperitoneal administration in lactating mice. Genistein decreased the secretion of α- and β-casein and downregulated the gene expression of Csn1, Csn2, Csn3, and Wap while inactivating the signal transducer and activator of transcription 5 (STAT5) and ERK1/2. In contrast, equol increased Csn1-3 expression while inactivating STAT3. Daidzein did not show inhibitory effects on milk production. The effects of genistein and equol were also confirmed in lactating mammary epithelial cells (MECs), which were cultured in the presence of soy isoflavones and equol at physiological concentrations for 7 days. These findings indicate that genistein, daidzein, and equol influence milk production in MECs in vivo and in vitro in distinctly different ways.
Collapse
Affiliation(s)
- Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Norihiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589 Sapporo, Japan
| |
Collapse
|
34
|
Kaihoko Y, Tsugami Y, Suzuki N, Suzuki T, Nishimura T, Kobayashi K. Distinct expression patterns of aquaporin 3 and 5 in ductal and alveolar epithelial cells in mouse mammary glands before and after parturition. Cell Tissue Res 2020; 380:513-526. [PMID: 31953689 DOI: 10.1007/s00441-020-03168-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Milk osmolarity maintains an isotonic status for suckling infants during lactation. However, it remains unclear how the water content in milk is regulated in lactating mammary glands. In lactating mammary alveoli and ducts, mammary epithelial cells (MECs) are in direct contact with milk. In this study, we focus on two types of water channels, aquaporin 3 (AQP3) and AQP5, in alveolar and ductal MECs before and after parturition. AQP3 showed diffuse localization in the cytoplasm of ductal MECs but concentrated localization in the basolateral membrane of alveolar MECs during the late pregnancy and lactation periods. Translocation of AQP5 from the cytoplasm toward the apical membrane occurred in ductal MECs immediately before parturition. Subsequently, we examined the hormonal influences on the expression of AQP3 and AQP5 in cultured MECs in vitro. Progesterone and estrogen distinctly increased AQP3 and AQP5 in cultured MECs, respectively. Cotreatment with prolactin and dexamethasone significantly decreased both AQP3 and AQP5. Prolactin also facilitated the translocation of AQP5 into the apical membrane of MECs. In cultured MECs, AQP3 was homogeneously expressed in MECs, whereas AQP5 showed different expression levels between MECs regardless of the hormonal treatment. Different activation states of the prolactin/STAT5 pathway were also observed between ductal and alveolar MECs. These findings suggest that the expression pattern of AQP3 and AQP5 is distinctly regulated by lactogenic hormones in alveolar and ductal MECs before and after parturition. AQP5 expressed in ductal MECs may function as a water channel to regulate milk osmolarity in mice.
Collapse
Affiliation(s)
- Yoshiki Kaihoko
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Yusaku Tsugami
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Norihiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takahiro Suzuki
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, Sapporo, 060-8589, Japan.
| |
Collapse
|
35
|
Hardwick LJA, Phythian CJ, Fowden AL, Hughes K. Size of supernumerary teats in sheep correlates with complexity of the anatomy and microenvironment. J Anat 2020; 236:954-962. [PMID: 31898326 DOI: 10.1111/joa.13149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022] Open
Abstract
Supernumerary nipples or teats (polythelia) are congenital accessory structures that may develop at any location along the milk line and have been implicated in the pathogenesis of mastitis. We describe the anatomy and histology of 27 spontaneously occurring supernumerary teats from 16 sheep, delineating two groups of teats - simple and anatomically complex - according to the complexity of the anatomy and microenvironment. Anatomically complex supernumerary teats exhibited significantly increased length and barrel diameter compared with simple supernumerary teats. A teat canal and/or teat cistern was present in anatomically complex teats, with smooth muscle fibres forming a variably well-organised encircling teat sphincter. Complex supernumerary teats also exhibited immune cell infiltrates similar to those of normal teats, including lymphoid follicle-like structures at the folds of the teat cistern-teat canal junction, and macrophages that infiltrated the peri-cisternal glandular tissue. One complex supernumerary teat exhibited teat end hyperkeratosis. These anatomical and histological features allow inference that supernumerary teats may be susceptible to bacterial ingress through the teat canal and we hypothesise that this may be more likely in those teats with less well-organised encircling smooth muscle. The teat cistern of anatomically complex teats may also constitute a focus of milk accumulation and thus a possible nidus for bacterial infection, potentially predisposing to mastitis. We suggest that size of the supernumerary teat, and relationship to the main teats, particularly in the case of 'cluster teats', should be considerations if surgical removal is contemplated.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Clare J Phythian
- Faculty of Veterinary Medicine, Institute of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway
| | - Abigail L Fowden
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Katsafadou AI, Politis AP, Mavrogianni VS, Barbagianni MS, Vasileiou NGC, Fthenakis GC, Fragkou IA. Mammary Defences and Immunity against Mastitis in Sheep. Animals (Basel) 2019; 9:E726. [PMID: 31561433 PMCID: PMC6826578 DOI: 10.3390/ani9100726] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022] Open
Abstract
The objectives of this review paper are to present udder defences, including teat of the udder, mammary epithelial cells, leucocytes, immunoglobulins, complement system and chemical antibacterial agents, to describe cooperation and interactions between them and to elaborate on potentials regarding their significance in mammary immunisation strategies. The teat of the udder provides initial protection to the mammary gland. The mammary epithelial cells synthesise antibacterial proteins and the leucocytes produce various inflammation mediators (cytokines or chemokines), phagocytose bacteria and recognise antigenic structures. In the mammary gland, four immunoglobulins (IgG1, IgG2, IgM and IgA) have important roles against bacterial pathogens. The complement system is a collection of proteins, participating in the inflammatory process through various pathways. Other components contributing to humoral mammary defence include lactoferrin, lysozyme and the lactoperoxidase/myeloperoxidase systems, as well as oligosaccharides, gangliosides, reactive oxygen species, acute phase proteins (e.g., haptoglobin and serum amyloid A), ribonucleases and a wide range of antimicrobial peptides. Management practices, genetic variations and nutrition can influence mammary defences and should be taken into account in the formulation of prevention strategies against ovine mastitis.
Collapse
|
37
|
Castro I, Alba C, Aparicio M, Arroyo R, Jiménez L, Fernández L, Arias R, Rodríguez JM. Metataxonomic and immunological analysis of milk from ewes with or without a history of mastitis. J Dairy Sci 2019; 102:9298-9311. [PMID: 31421883 DOI: 10.3168/jds.2019-16403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/18/2019] [Indexed: 01/16/2023]
Abstract
Mastitis is a highly prevalent condition that has a great impact on milk production and animal welfare, and often requires substantial management efforts. For this reason, it is generally considered an important threat to the dairy industry. Many microbial, host, and environmental factors can protect against, predispose to, or influence the development of mastitis. The objective of this work was to characterize the milk microbiota of Manchega ewes, and to compare samples from animals with and without a history of mastitis. We analyzed milk samples from 36 ewes belonging to 2 different farms (18 ewes from each farm) using culture-dependent and culture-independent techniques. We also analyzed several immune compounds to investigate associations of mastitis with 3 main variables: farm; history of mastitis or no mastitis; and parity number. Both culture-dependent and culture-independent techniques showed that ewe milk harbored a site-specific complex microbiota and microbiome. Staphylococcus epidermidis was the main species driving the difference between farm A (where it was the dominant species) and B (where it was not). In contrast, samples from farm B were characterized by the presence of a wide spectrum of other coagulase-negative staphylococci. Some of these species have already been associated with subclinical intramammary infections in ruminants. Of the 10 immune compounds assayed in this study, 3 were related to a history of mastitis [IL-8, IFN-γ, and IFN-gamma-induced protein 10 (IP-10)]. Increases in IL-8 concentrations in milk seemed to be a feature of subclinical mastitis in sheep, and in this study, this immune factor was detected only in samples from ewes with some episodes of mastitis and from the group with the highest somatic cell count. We also observed a positive correlation between the samples with the highest somatic cell count and IFN-γ and IP-10 levels. Our results suggest that these 3 compounds could be used as biomarkers for the negative selection of mastitis-prone animals, particularly when somatic cell count is very high.
Collapse
Affiliation(s)
- Irma Castro
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Claudio Alba
- Departmental Section of Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marina Aparicio
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Jiménez
- CERSYRA, Regional Institute of Agrifood and Forestry Research and Development of Castilla La Mancha, 13300 Valdepeñas, Spain
| | - Leónides Fernández
- Departmental Section of Food Technology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ramón Arias
- CERSYRA, Regional Institute of Agrifood and Forestry Research and Development of Castilla La Mancha, 13300 Valdepeñas, Spain.
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
38
|
Li T, Gao J, Zhao X, Ma Y. Digital gene expression analyses of mammary glands from meat ewes naturally infected with clinical mastitis. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181604. [PMID: 31417691 PMCID: PMC6689637 DOI: 10.1098/rsos.181604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/04/2019] [Indexed: 05/06/2023]
Abstract
Clinical mastitis in sheep has gravely restrained production performance for a long time. Knowledge of mechanisms of its pathogenesis and resistance in meat sheep mammary gland with clinical mastitis are not yet understood, especially for clinical mastitis caused by natural infection. In this work, RNA-sequencing was firstly used to screen the differentially expressed genes (DEGs) in clinical mastitic mammary tissues (CMMTs) when compared with healthy mammary tissues (HMTs) from meat sheep flocks. We identified 420 DEGs including 316 upregulated and 104 downregulated genes in CMMTs. Gene ontology annotation revealed these DEGs were mainly engaged in immune response and inflammation response. Pathway enrichment showed they were primarily enriched in pathways relevant to inflammation, immune response and metabolism. Alternative splicing analysis showed most common differential splicing genes in CMMTs and HMTs were implicated in immune response. Immunostaining for three immune response-related proteins encoded by DEGs were mainly observed in mammary epithelium from both CMMTs and HMTs, and their positive signals were more intensive in CMMTs than those in HMTs. These findings provide experimental basis and reference for further researching the molecular genetic mechanisms, particularly immune defence mechanisms, of sheep mammary gland during clinical mastitis.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Jianfeng Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
39
|
Wang H, Wang X, Li X, Wang Q, Qing S, Zhang Y, Gao MQ. A novel long non-coding RNA regulates the immune response in MAC-T cells and contributes to bovine mastitis. FEBS J 2019; 286:1780-1795. [PMID: 30771271 DOI: 10.1111/febs.14783] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/21/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
The long non-coding RNAs (lncRNAs) are known to transcriptionally regulate a wide spectrum of diseases. Here, we screened for potentially functional lncRNAs in a mammary epithelial cell model of bovine mastitis by RNA-Seq technology and identified a class of previously undetected mastitis-related lncRNAs. A novel lncRNA was widely expressed in a variety of bovine tissues with diverse relative abundance and had a relatively low expression in mammary tissue. Given its predicted target gene is TUBA1C, we name it lncRNA-TUB. We found a higher expression of lncRNA-TUB in mammary epithelial cells that received a proinflammatory stimulus compared to normal cells. Knockout of lncRNA-TUB by the CRISPR/Cas9 system revealed that it plays crucial roles in the morphological shape, proliferation, migration and β-casein secretion of mammary epithelial cells. In addition, lncRNA-TUB mediates Escherichia coli-induced inflammatory factor secretion and Staphylococcus aureus adhesion to epithelial cells. Our results suggest that the lncRNAs identified here function in bovine mastitis, and that lncRNA-TUB affects the basic biological characteristics and functions of bovine mammary epithelial cells in inflammatory conditions, providing valuable insights into the mechanisms of bovine mastitis.
Collapse
Affiliation(s)
- Hao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xixi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xueru Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qianwen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Suzhu Qing
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ming-Qing Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
Hu X, Zhang N, Fu Y. Role of Liver X Receptor in Mastitis Therapy and Regulation of Milk Fat Synthesis. J Mammary Gland Biol Neoplasia 2019; 24:73-83. [PMID: 30066175 DOI: 10.1007/s10911-018-9403-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/04/2018] [Indexed: 02/03/2023] Open
Abstract
Mastitis is important disease that causes huge economic losses in the dairy industry. In recent years, antibiotic therapy has become the primary treatment for mastitis, however, due to drug residue in milk and food safety factors, we lack safe and effective drugs for treating mastitis. Therefore, new targets and drugs are urgently needed to control mastitis. LXRα, one of the main members of the nuclear receptor superfamily, is reported to play important roles in metabolism, infection and immunity. Activation of LXRα could inhibit LPS-induced mastitis. Furthermore, LXRα is reported to enhance milk fat production, thus, LXRα may serve as a new target for mastitis therapy and regulation of milk fat synthesis. This review summarizes the effects of LXRα in regulating milk fat synthesis and treatment of mastitis and highlights the potential agonists involved in both issues.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Cattle
- Dairying
- Escherichia coli/isolation & purification
- Escherichia coli/pathogenicity
- Female
- Global Burden of Disease
- Humans
- Immunity, Innate
- Lactation/metabolism
- Lipid Metabolism
- Liver X Receptors/agonists
- Liver X Receptors/metabolism
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/microbiology
- Mammary Glands, Animal/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/immunology
- Mammary Glands, Human/microbiology
- Mammary Glands, Human/pathology
- Mastitis/drug therapy
- Mastitis/immunology
- Mastitis/microbiology
- Mastitis, Bovine/drug therapy
- Mastitis, Bovine/epidemiology
- Mastitis, Bovine/immunology
- Mastitis, Bovine/microbiology
- Membrane Microdomains/metabolism
- Milk/metabolism
- Prevalence
- Receptors, Pattern Recognition/metabolism
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, People's Republic of China.
| |
Collapse
|
41
|
Côté-Gravel J, Malouin F. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci 2018; 102:4727-4740. [PMID: 30580940 DOI: 10.3168/jds.2018-15272] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/07/2018] [Indexed: 12/25/2022]
Abstract
Bovine mastitis affects animal health and welfare and milk production and quality, and it challenges the economic success of dairy farms. Staphylococcus aureus is one of the most commonly found pathogens in clinical mastitis but it also causes subclinical, persistent, and difficult-to-treat intramammary infections. Because of the failure of conventional antibiotic treatments and increasing pressure and concern from experts and consumers over the use of antibiotics in the dairy industry, many attempts have been made over the years to develop a vaccine for the prevention and control of Staph. aureus intramammary infections. Still, no commercially available vaccine formulation demonstrates sufficient protection and cost-effective potential. Multiple factors account for the lack of protection, including inadequate vaccine targets, high diversity among mastitis-provoking strains, cow-to-cow variation in immune response, and a failure to elicit an immune response that is appropriate for protection against a highly complex pathogen. The purpose of this review is to summarize key concepts related to the pathogenesis of Staph. aureus, and its interaction with the host, as well as to describe recent vaccine development strategies for prevention and control of Staph. aureus mastitis.
Collapse
Affiliation(s)
- Julie Côté-Gravel
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1.
| |
Collapse
|
42
|
Mercati F, Maranesi M, Dall'Aglio C, Petrucci L, Pasquariello R, Tardella FM, De Felice E, Scocco P. Apelin System in Mammary Gland of Sheep Reared in Semi-Natural Pastures of the Central Apennines. Animals (Basel) 2018; 8:E223. [PMID: 30486490 PMCID: PMC6315652 DOI: 10.3390/ani8120223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 01/04/2023] Open
Abstract
Sheep are the most bred species in the Central Italy Apennine using the natural pastures as a trophic resource and grazing activity is fundamental to maintain the grassland biodiversity: this goal can be reached only ensuring an economical sustainability to the farmers. This study aimed to investigate the apelin/apelin receptor system in ovine mammary gland and to evaluate the differences induced by food supplementation, in order to shed light on this system function. A flock of 15 Comisana x Appenninica adult dry ewes were free to graze from June until pasture maximum flowering (MxF). From this period to pasture maximum dryness (MxD), in addition to grazing, the experimental group (Exp) was supplemented with 600 g/day/head of cereals. Apelin and apelin receptor were assessed by Real-Time PCR and immunohistochemistry on the mammary glands of subjects pertaining to MxF, MxD and Exp groups. They were detected in alveolar and ductal epithelial cells. The pasture maximum flowering group showed significant differences in apelin expression compared with experimental and MxD groups. Apelin receptor expression significantly differed among the three groups. The reduced apelin receptor expression and immunoreactivity levels during parenchyma involution enables us to hypothesize that apelin receptor plays a modulating role in the system control.
Collapse
Affiliation(s)
- Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Linda Petrucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Rolando Pasquariello
- Animal Reproduction and Biotechnology Laboratory, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1683 Campus delivery, Fort Collins, CO 80523, USA.
| | - Federico Maria Tardella
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy.
| |
Collapse
|
43
|
Hughes K, Watson CJ. The Multifaceted Role of STAT3 in Mammary Gland Involution and Breast Cancer. Int J Mol Sci 2018; 19:ijms19061695. [PMID: 29875329 PMCID: PMC6032292 DOI: 10.3390/ijms19061695] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
Since seminal descriptions of signal transducer and activator of transcription 3 (STAT3) as a signal transducer and transcriptional regulator, which is most usually activated by phosphorylation of a specific tyrosine residue, a staggering wealth of research has delineated the key role of this transcription factor as a mediator of mammary gland postlactational regression (involution), and paradoxically, a pro-survival factor in breast cancer and some breast cancer cell lines. STAT3 is a critical regulator of lysosomal-mediated programmed cell death (LM-PCD) during mammary gland involution, where uptake of milk fat globules, and consequent high levels of free fatty acids, cause permeabilisation of lysosomal vesicle membranes, in turn leading to cathepsin protease leakage and cell death. A recent proteomic screen of STAT3-induced changes in lysosomal membrane protein components has highlighted wide-ranging effects of STAT3, which may coordinate LM-PCD via the stimulation of endocytosis, intracellular trafficking, and lysosome biogenesis. In parallel, STAT3 regulates the acute phase response during the first phase of involution, and it contributes to shaping the pro-tumourigenic 'wound healing' signature of the gland during the second phase of this process. STAT3 activation during involution is important across species, although some differences exist in the progression of involution in dairy cows. In breast cancer, a number of upstream regulators can lead to STAT3 activation and the effects of phosphorylation of STAT3 are equally wide-ranging. Recent studies have implicated microRNAs in some regulatory pathways. In this review, we will examine the multifaceted role of STAT3 in mammary gland involution and tumourigenesis, incorporating a review of these fundamental processes in tandem with a discussion of recent developments in this field.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|