1
|
Kim K, Sohn Y, Yeon JH. Anti-ageing activities of nanovesicles derived from Artemisia princeps in human dermal cells and human skin model. JOURNAL OF EXTRACELLULAR BIOLOGY 2025; 4:e70033. [PMID: 40292385 PMCID: PMC12021671 DOI: 10.1002/jex2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/05/2024] [Accepted: 12/26/2024] [Indexed: 04/30/2025]
Abstract
Plant-derived substances are widely used as cosmeceutical and food materials owing to their beneficial properties that promote human health, such as antioxidant, nutritional supply and regenerative potential. In particular, nanovesicles (NVs) from plants contain various biomolecules, including signal proteins, nucleic acids, and metabolites, that participate in cross-kingdom communication. In this study, we isolated NVs from Artemisia princeps (APNVs) based on differential centrifugation and further purification via tangential flow filtration (TFF). Evaluation of the effects of these NVs on the cellular proliferation of fibroblasts clearly indicated their anti-ageing potential for the skin. Specifically, exposure of human dermal fibroblast cells to low concentrations of APNVs (100-200 ng/mL) accelerated cell proliferation over a 7-day period. Treatment with APNVs decreased the senescence level of dermal fibroblast cells, as evidenced by senescence-associated β-galactosidase activity connected with cellular ageing. In the anti-ageing efficacy assessment, inhibition of MMP-1 activity in nanovesicle-treated cells was higher than that induced by the positive control epigallocatechin-3-gallate (EGCG). To validate the inhibitory effect of APNVs on anti-ageing in human skin, three-dimensional, reconstituted human keratinocytes and dermal fibroblasts were cultured with 1000 ng/mL APNVs. Notably, procollagen type I expression was increased in the culture medium following APNVs treatment. Our collective results suggest that APNVs accelerate type I procollagen production through inhibition of MMP-1. In view of the significant anti-ageing potential of APNVs, we recommend their implementation as an active substance in pharmaceutical and functional cosmeceutical products.
Collapse
Affiliation(s)
- Kimin Kim
- Department of Integrative BiosciencesUniversity of Brain EducationCheonanRepublic of Korea
| | - Yehjoo Sohn
- Department of Integrative BiosciencesUniversity of Brain EducationCheonanRepublic of Korea
| | - Ju Hun Yeon
- Department of Integrative BiosciencesUniversity of Brain EducationCheonanRepublic of Korea
- Well‐aging Exobio Inc.CheonanRepublic of Korea
| |
Collapse
|
2
|
Yu Y, Wang L, Hou W, Xue Y, Liu X, Li Y. Identification and validation of aging-related genes in heart failure based on multiple machine learning algorithms. Front Immunol 2024; 15:1367235. [PMID: 38686376 PMCID: PMC11056574 DOI: 10.3389/fimmu.2024.1367235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Background In the face of continued growth in the elderly population, the need to understand and combat age-related cardiac decline becomes even more urgent, requiring us to uncover new pathological and cardioprotective pathways. Methods We obtained the aging-related genes of heart failure through WGCNA and CellAge database. We elucidated the biological functions and signaling pathways involved in heart failure and aging through GO and KEGG enrichment analysis. We used three machine learning algorithms: LASSO, RF and SVM-RFE to further screen the aging-related genes of heart failure, and fitted and verified them through a variety of machine learning algorithms. We searched for drugs to treat age-related heart failure through the DSigDB database. Finally, We use CIBERSORT to complete immune infiltration analysis of aging samples. Results We obtained 57 up-regulated and 195 down-regulated aging-related genes in heart failure through WGCNA and CellAge databases. GO and KEGG enrichment analysis showed that aging-related genes are mainly involved in mechanisms such as Cellular senescence and Cell cycle. We further screened aging-related genes through machine learning and obtained 14 key genes. We verified the results on the test set and 2 external validation sets using 15 machine learning algorithm models and 207 combinations, and the highest accuracy was 0.911. Through screening of the DSigDB database, we believe that rimonabant and lovastatin have the potential to delay aging and protect the heart. The results of immune infiltration analysis showed that there were significant differences between Macrophages M2 and T cells CD8 in aging myocardium. Conclusion We identified aging signature genes and potential therapeutic drugs for heart failure through bioinformatics and multiple machine learning algorithms, providing new ideas for studying the mechanism and treatment of age-related cardiac decline.
Collapse
Affiliation(s)
- Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wangjun Hou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Voronina MV, Frolova AS, Kolesova EP, Kuldyushev NA, Parodi A, Zamyatnin AA. The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy. Int J Mol Sci 2024; 25:4087. [PMID: 38612897 PMCID: PMC11012956 DOI: 10.3390/ijms25074087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Cellular survival hinges on a delicate balance between accumulating damages and repair mechanisms. In this intricate equilibrium, oxidants, currently considered physiological molecules, can compromise vital cellular components, ultimately triggering cell death. On the other hand, cells possess countermeasures, such as autophagy, which degrades and recycles damaged molecules and organelles, restoring homeostasis. Lysosomes and their enzymatic arsenal, including cathepsins, play critical roles in this balance, influencing the cell's fate toward either apoptosis and other mechanisms of regulated cell death or autophagy. However, the interplay between reactive oxygen species (ROS) and cathepsins in these life-or-death pathways transcends a simple cause-and-effect relationship. These elements directly and indirectly influence each other's activities, creating a complex web of interactions. This review delves into the inner workings of regulated cell death and autophagy, highlighting the pivotal role of ROS and cathepsins in these pathways and their intricate interplay.
Collapse
Affiliation(s)
- Maya V. Voronina
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Anastasia S. Frolova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ekaterina P. Kolesova
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Nikita A. Kuldyushev
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Alessandro Parodi
- Research Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sochi, Russia; (M.V.V.); (A.S.F.); (E.P.K.); (N.A.K.); (A.P.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Basanta CDLAC, Bazzi M, Hijazi M, Bessant C, Cutillas PR. Community detection in empirical kinase networks identifies new potential members of signalling pathways. PLoS Comput Biol 2023; 19:e1010459. [PMID: 37352361 PMCID: PMC10325051 DOI: 10.1371/journal.pcbi.1010459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 07/06/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Phosphoproteomics allows one to measure the activity of kinases that drive the fluxes of signal transduction pathways involved in biological processes such as immune function, senescence and cell growth. However, deriving knowledge of signalling network circuitry from these data is challenging due to a scarcity of phosphorylation sites that define kinase-kinase relationships. To address this issue, we previously identified around 6,000 phosphorylation sites as markers of kinase-kinase relationships (that may be conceptualised as network edges), from which empirical cell-model-specific weighted kinase networks may be reconstructed. Here, we assess whether the application of community detection algorithms to such networks can identify new components linked to canonical signalling pathways. Phosphoproteomics data from acute myeloid leukaemia (AML) cells treated separately with PI3K, AKT, MEK and ERK inhibitors were used to reconstruct individual kinase networks. We used modularity maximisation to detect communities in each network, and selected the community containing the main target of the inhibitor used to treat cells. These analyses returned communities that contained known canonical signalling components. Interestingly, in addition to canonical PI3K/AKT/mTOR members, the community assignments returned TTK (also known as MPS1) as a likely component of PI3K/AKT/mTOR signalling. We drew similar insights from an external phosphoproteomics dataset from breast cancer cells treated with rapamycin and oestrogen. We confirmed this observation with wet-lab laboratory experiments showing that TTK phosphorylation was decreased in AML cells treated with AKT and MTOR inhibitors. This study illustrates the application of community detection algorithms to the analysis of empirical kinase networks to uncover new members linked to canonical signalling pathways.
Collapse
Affiliation(s)
- Celia De Los Angeles Colomina Basanta
- Cell signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marya Bazzi
- Warwick Mathematics Institute, University of Warwick, Coventry, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Maruan Hijazi
- Cell signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Conrad Bessant
- The Alan Turing Institute, London, United Kingdom
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Pedro R. Cutillas
- Cell signaling and Proteomics Group, Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
5
|
Osman AG, Avula B, Katragunta K, Ali Z, Chittiboyina AG, Khan IA. Elderberry Extracts: Characterization of the Polyphenolic Chemical Composition, Quality Consistency, Safety, Adulteration, and Attenuation of Oxidative Stress- and Inflammation-Induced Health Disorders. Molecules 2023; 28:molecules28073148. [PMID: 37049909 PMCID: PMC10096080 DOI: 10.3390/molecules28073148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Elderberry is highly reputed for its health-improving effects. Multiple pieces of evidence indicate that the consumption of berries is linked to enhancing human health and preventing or delaying the onset of chronic medical conditions. Compared with other fruit, elderberry is a very rich source of anthocyanins (approximately 80% of the polyphenol content). These polyphenols are the principals that essentially contribute to the high antioxidant and anti-inflammatory capacities and the health benefits of elderberry fruit extract. These health effects include attenuation of cardiovascular, neurodegenerative, and inflammatory disorders, as well as anti-diabetic, anticancer, antiviral, and immuno-stimulatory effects. Sales of elderberry supplements skyrocketed to $320 million over the year 2020, according to an American Botanical Council (ABC) report, which is attributable to the purported immune-enhancing effects of elderberry. In the current review, the chemical composition of the polyphenolic content of the European elderberry (Sambucus nigra) and the American elderberry (Sambucus canadensis), as well as the analytical techniques employed to analyze, characterize, and ascertain the chemical consistency will be addressed. Further, the factors that influence the consistency of the polyphenolic chemical composition, and hence, the consistency of the health benefits of elderberry extracts will be presented. Additionally, adulteration and safety as factors contributing to consistency will be covered. The role of elderberry in enhancing human health alone with the pharmacological basis, the cellular pathways, and the molecular mechanisms underlying the observed health benefits of elderberry fruit extracts will be also reviewed.
Collapse
Affiliation(s)
- Ahmed G. Osman
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Bharathi Avula
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Kumar Katragunta
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
6
|
Tian W, Zhang T, Wang X, Zhang J, Ju J, Xu H. Global research trends in atherosclerosis: A bibliometric and visualized study. Front Cardiovasc Med 2022; 9:956482. [PMID: 36082127 PMCID: PMC9445883 DOI: 10.3389/fcvm.2022.956482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIncreasing evidence has spurred a considerable evolution of concepts related to atherosclerosis, prompting the need to provide a comprehensive view of the growing literature. By retrieving publications in the Web of Science Core Collection (WoSCC) of Clarivate Analytics, we conducted a bibliometric analysis of the scientific literature on atherosclerosis to describe the research landscape.MethodsA search was conducted of the WoSCC for articles and reviews serving exclusively as a source of information on atherosclerosis published between 2012 and 2022. Microsoft Excel 2019 was used to chart the annual productivity of research relevant to atherosclerosis. Through CiteSpace and VOSviewer, the most prolific countries or regions, authors, journals, and resource-, intellectual-, and knowledge-sharing in atherosclerosis research, as well as co-citation analysis of references and keywords, were analyzed.ResultsA total of 20,014 publications were retrieved. In terms of publications, the United States remains the most productive country (6,390, 31,93%). The most publications have been contributed by Johns Hopkins Univ (730, 3.65%). ALVARO ALONSO produced the most published works (171, 0.85%). With a betweenness centrality of 0.17, ERIN D MICHOS was the most influential author. The most prolific journal was identified as Atherosclerosis (893, 4.46%). Circulation received the most co-citations (14,939, 2.79%). Keywords with the ongoing strong citation bursts were “nucleotide-binding oligomerization (NOD), Leucine-rich repeat (LRR)-containing protein (NLRP3) inflammasome,” “short-chain fatty acids (SCFAs),” “exosome,” and “homeostasis,” etc.ConclusionThe research on atherosclerosis is driven mostly by North America and Europe. Intensive research has focused on the link between inflammation and atherosclerosis, as well as its complications. Specifically, the NLRP3 inflammasome, interleukin-1β, gut microbiota and SCFAs, exosome, long non-coding RNAs, autophagy, and cellular senescence were described to be hot issues in the field.
Collapse
Affiliation(s)
- Wende Tian
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jianqing Ju
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianqing Ju,
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Hao Xu,
| |
Collapse
|
7
|
Sun Y, Wang X, Liu T, Zhu X, Pan X. The multifaceted role of the SASP in atherosclerosis: from mechanisms to therapeutic opportunities. Cell Biosci 2022; 12:74. [PMID: 35642067 PMCID: PMC9153125 DOI: 10.1186/s13578-022-00815-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The global population of older individuals is growing, and ageing is a key risk factor for atherosclerotic cardiovascular diseases. Abnormal accumulation of senescent cells can cause potentially deleterious effects on the organism with age. As a vital marker of cellular senescence, the senescence-associated secretory phenotype (SASP) is a novel mechanism to link cellular senescence with atherosclerosis. MAIN BODY In this review, we concretely describe the characteristics of the SASP and its regulation mechanisms. Importantly, we provide novel perspectives on how the SASP can promote atherosclerosis. The SASP from different types of senescent cells have vital roles in atherosclerosis progression. As a significant mediator of the harmful effects of senescent cells, it can play a pro-atherogenic role by producing inflammation and immune dysfunction. Furthermore, the SASP can deliver senescence signals to the surrounding vascular cells, gradually contributing to the development of atherosclerosis. Finally, we focus on a variety of novel therapeutic strategies aimed to reduce the burden of atherosclerosis in elderly individuals by targeting senescent cells and inhibiting the regulatory mechanisms of the SASP. CONCLUSION This review systematically summarizes the multiple roles of the SASP in atherosclerosis and can contribute to the exploration of new therapeutic opportunities.
Collapse
Affiliation(s)
- Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tianwei Liu
- Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Cardiovascular protection associated with cilostazol, colchicine and target of rapamycin inhibitors. J Cardiovasc Pharmacol 2022; 80:31-43. [PMID: 35384911 DOI: 10.1097/fjc.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT An alteration in extracellular matrix production by vascular smooth muscle cells is a crucial event in the pathogenesis of vascular diseases such as aging-related, atherosclerosis and allograft vasculopathy. The human target of rapamycin (TOR) is involved in the synthesis of extracellular matrix by vascular smooth muscle cells. TOR inhibitors reduce arterial stiffness, blood pressure, and left ventricle hypertrophy and decrease cardiovascular risk in kidney graft recipients and patients with coronary artery disease and heart allograft vasculopathy. Other drugs that modulate extracellular matrix production such as cilostazol and colchicine have also demonstrated a beneficial cardiovascular effect. Clinical studies have consistently shown that cilostazol confers cardiovascular protection in peripheral vascular disease, coronary artery disease, and cerebrovascular disease. In patients with type 2 diabetes, cilostazol prevents the progression of subclinical coronary atherosclerosis. Colchicine reduces arterial stiffness in patients with Familial Mediterranean Fever and patients with coronary artery disease. Pathophysiological mechanisms underlying the cardioprotective effect of these drugs may be related to interactions between the cytoskeleton, TOR signaling and cyclic AMP synthesis that remain to be fully elucidated. Adult vascular smooth muscle cells exhibit a contractile phenotype and produce little extracellular matrix. Conditions that upregulate extracellular matrix synthesis induce a phenotypic switch toward a synthetic phenotype. TOR inhibition with rapamycin reduces extracellular matrix production by promoting the change to the contractile phenotype. Cilostazol increases the cytosolic level of cyclic AMP, which in turn leads to a reduction in extracellular matrix synthesis. Colchicine is a microtubule-destabilizing agent that may enhance the synthesis of cyclic AMP.
Collapse
|
9
|
Huang WQ, Zou Y, Tian Y, Ma XF, Zhou QY, Li ZY, Gong SX, Wang AP. Mammalian Target of Rapamycin as the Therapeutic Target of Vascular Proliferative Diseases: Past, Present, and Future. J Cardiovasc Pharmacol 2022; 79:444-455. [PMID: 34983907 DOI: 10.1097/fjc.0000000000001208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation. However, the molecular mechanisms linking mTOR to vascular proliferative diseases remain elusive. In our review, we summarize the key roles of the mTOR and the recent discoveries in vascular proliferative diseases, focusing on the therapeutic potential of mTOR inhibitors to target the mTOR signaling pathway for the treatment of vascular proliferative diseases. In this study, we discuss mTOR inhibitors as promising candidates to prevent VSMC-associated vascular proliferative diseases.
Collapse
Affiliation(s)
- Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Yan Zou
- Department of Hand and Foot Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China ; and
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Qin-Yi Zhou
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Zhen-Yu Li
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| |
Collapse
|
10
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|
11
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Senolytics: A Novel Strategy for Neuroprotection in ALS? Int J Mol Sci 2021; 22:ijms222112078. [PMID: 34769512 PMCID: PMC8584291 DOI: 10.3390/ijms222112078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neurodegenerative disease that currently has no cure and has few effective treatments. On a cellular level, ALS manifests through significant changes in the proper function of astrocytes, microglia, motor neurons, and other central nervous system (CNS) cells, leading to excess neuroinflammation and neurodegeneration. Damage to the upper and lower motor neurons results in neural and muscular dysfunction, leading to death most often due to respiratory paralysis. A new therapeutic strategy is targeting glial cells affected by senescence, which contribute to motor neuron degeneration. Whilst this new therapeutic approach holds much promise, it is yet to be trialled in ALS-relevant preclinical models and needs to be designed carefully to ensure selectivity. This review summarizes the pathways involved in ALS-related senescence, as well as known senolytic agents and their mechanisms of action, all of which may inform strategies for ALS-focused drug discovery efforts.
Collapse
|
13
|
WITHDRAWN: LncRNA NEAT1/miR-211-3p/BMF axis is involved in regulating the senescence of HASMCs induced by ionizing radiation. Tissue Cell 2021. [DOI: 10.1016/j.tice.2021.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Nguyen DDN, Zain SM, Kamarulzaman MH, Low TY, Chilian WM, Pan Y, Ting KN, Hamid A, Abdul Kadir A, Pung YF. Intracellular and exosomal microRNAome profiling of human vascular smooth muscle cells during replicative senescence. Am J Physiol Heart Circ Physiol 2021; 321:H770-H783. [PMID: 34506226 DOI: 10.1152/ajpheart.00058.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular aging is highly associated with cardiovascular morbidity and mortality. Although the senescence of vascular smooth muscle cells (VSMCs) has been well established as a major contributor to vascular aging, intracellular and exosomal microRNA (miRNA) signaling pathways in senescent VSMCs have not been fully elucidated. This study aimed to identify the differential expression of intracellular and exosomal miRNA in human VSMCs (hVSMCs) during replicative senescence. To achieve this aim, intracellular and exosomal miRNAs were isolated from hVSMCs and subsequently subjected to whole genome small RNA next-generation sequencing, bioinformatics analyses, and qPCR validation. Three significant findings were obtained. First, senescent hVSMC-derived exosomes tended to cluster together during replicative senescence and the molecular weight of the exosomal protein tumor susceptibility gene 101 (TSG-101) increased relative to the intracellular TSG-101, suggesting potential posttranslational modifications of exosomal TSG-101. Second, there was a significant decrease in both intracellular and exosomal hsa-miR-155-5p expression [n = 3, false discovery rate (FDR) < 0.05], potentially being a cell type-specific biomarker of hVSMCs during replicative senescence. Importantly, hsa-miR-155-5p was found to associate with cell-cycle arrest and elevated oxidative stress. Lastly, miRNAs from the intracellular pool, that is, hsa-miR-664a-3p, hsa-miR-664a-5p, hsa-miR-664b-3p, hsa-miR-4485-3p, hsa-miR-10527-5p, and hsa-miR-12136, and that from the exosomal pool, that is, hsa-miR-7704, were upregulated in hVSMCs during replicative senescence (n = 3, FDR < 0.05). Interestingly, these novel upregulated miRNAs were not functionally well annotated in hVSMCs to date. In conclusion, hVSMC-specific miRNA expression profiles during replicative senescence potentially provide valuable insights into the signaling pathways leading to vascular aging.NEW & NOTEWORTHY This is the first study on intracellular and exosomal miRNA profiling on human vascular smooth muscle cells during replicative senescence. Specific dysregulated sets of miRNAs were identified from human vascular smooth muscle cells. Hsa-miR-155-5p was significantly downregulated in both intracellular and exosomal hVSMCs, suggesting its crucial role in cellular senescence. Hsa-miR-155-5p might be the mediator in linking cellular senescence to vascular aging and atherosclerosis.
Collapse
Affiliation(s)
- Diem Duong Ngoc Nguyen
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Shamsul Mohd Zain
- The Pharmacogenomics Laboratory, Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - William M Chilian
- Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Yan Pan
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Kang Nee Ting
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Aini Hamid
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Arifah Abdul Kadir
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| |
Collapse
|
15
|
Zhang X, Yuan J, Zhou N, Shen K, Wang Y, Wang K, Zhu H. Omarigliptin Prevents TNF-α-Induced Cellular Senescence in Rat Aorta Vascular Smooth Muscle Cells. Chem Res Toxicol 2021; 34:2024-2031. [PMID: 34382399 DOI: 10.1021/acs.chemrestox.1c00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cellular senescence is one of the most significant factors involved in aging and age-related diseases. Senescence of vascular smooth muscle cells (VSMCs) adversely affects the function of the cardiovascular system and contributes to the development of atherosclerosis, hypertension, and other cardiovascular diseases. Glucagon-like peptide-1 (GLP-1) is an important incretin hormone involved in insulin release and vascular tone. GLP-1 is quickly degraded by the enzyme dipeptidyl peptidase-4 (DPP-4). Omarigliptin is a new DPP-4 inhibitor that has demonstrated anti-inflammatory and antioxidative stress properties. In the present study, we investigated the effects of the selective DPP-4 inhibitor omarigliptin (OMG) on VSMCs exposed to insult from tumor necrosis factor-α (TNF-α), one of the main inflammatory signaling molecules involved in cellular senescence. We found that OMG could suppress TNF-α-induced expression of pro-inflammatory cytokines (interleukin-1β (IL-1β), IL-6, and IL-8) and inhibit oxidative stress by reducing the production of H2O2 and protein carbonyl. OMG ameliorated the increase in senescence-associated β-galactosidase (SA-β-gal) and telomerase activity induced by TNF-α. The plasminogen activator inhibitor-1 (PAI-1)/p53/p21 pathway is a key inducer of cellular senescence. OMG ameliorated the acetylation of p53 at lysine 382 (K382) and subsequent activation of p21 via inhibition of PAI-1. Importantly, our experiments revealed that blockage of silent information-regulator 1 (SIRT1) abolished the inhibitory effects of OMG on p53 acetylation, SA-β-gal activity, and telomerase activity in VSMCs. These results suggest that OMG may have the potential to delay or prevent the progression of age-related cardiovascular diseases by modulating the activity of SIRT1.
Collapse
Affiliation(s)
- Xijun Zhang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Jianjun Yuan
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Nanqian Zhou
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Kaikai Shen
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Yisa Wang
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Ke Wang
- Department of Cardiology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, China
| | - Haohui Zhu
- Department of Ultrasound, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
16
|
Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M, Moshage H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech Ageing Dev 2021; 199:111572. [PMID: 34536446 DOI: 10.1016/j.mad.2021.111572] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Myofibroblasts play an important role in fibrogenesis. Hepatic stellate cells are the main precursors of myofibroblasts. Cellular senescence is the terminal cell fate in which proliferating cells undergo irreversible cell cycle arrest. Senescent hepatic stellate cells were identified in liver fibrosis. Senescent hepatic stellate cells display decreased collagen production and proliferation. Therefore, induction of senescence could be a protective mechanism against progression of liver fibrosis and the concept of therapy-induced senescence has been proposed to treat liver fibrosis. In this review, characteristics of senescent hepatic stellate cells and the essential signaling pathways involved in senescence are reviewed. Furthermore, the potential impact of senescent hepatic stellate cells on other liver cell types are discussed. Senescent cells are cleared by the immune system. The persistence of senescent cells can remodel the microenvironment and interact with inflammatory cells to induce aging-related dysfunction. Therefore, senolytics, a class of compounds that selectively induce death of senescent cells, were introduced as treatment to remove senescent cells and consequently decrease the disadvantageous effects of persisting senescent cells. The effects of senescent hepatic stellate cells in liver fibrosis need further investigation.
Collapse
Affiliation(s)
- Mengfan Zhang
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra Serna-Salas
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Turtushikh Damba
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Michaela Borghesan
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
17
|
Li X, Li T, Hong XY, Liu JJ, Yang XF, Liu GP. Acer Truncatum Seed Oil Alleviates Learning and Memory Impairments of Aging Mice. Front Cell Dev Biol 2021; 9:680386. [PMID: 34055809 PMCID: PMC8160100 DOI: 10.3389/fcell.2021.680386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022] Open
Abstract
Aging, characterized by a time-dependent functional decline of physiological integrity, is the major independent risk factor for many neurodegeneration diseases. Therefore, it’s necessary to look for natural food supplements to extend the healthy lifespan of aging people. We here treated normal aging mice with acer truncatum seed oil, and found that the seed oil significantly improved the learning and memory ability. Proteomics revealed that the seed oil administration changed many proteins expression involving in biological processes, including complement and coagulation cascades, inflammatory response pathway and innate immune response. BDNF/TrkB signaling pathway was also activated by acer truncatum seed oil treatment. And the seed oil administration increased the expression of postsynaptic related proteins including PSD95, GluA1, and NMDAR1, and decreased the mRNA level of inflammatory factors containing IL-1β, TNF-α, and IL-6. These findings suggest that acer truncatum seed oil holds a promise as a therapeutic food supplement for delaying aging with multiple mechanisms.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Li
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Yue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jian Jun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xi Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gong Ping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
18
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
19
|
Liu Y, Yue M, Li Z. FOSL1 promotes tumorigenesis in colorectal carcinoma by mediating the FBXL2/Wnt/β-catenin axis via Smurf1. Pharmacol Res 2021; 165:105405. [PMID: 33450386 DOI: 10.1016/j.phrs.2020.105405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Colorectal carcinoma (CC), one of the most prevalent digestive cancers with high mortality and morbidity globally, still lacks powerful therapies to improve the prognosis. Here, we established that the expression of fos-like antigen-1 (Fosl1) was elevated in CC tissues versus adjacent tissues. Importantly, high Fosl1 expression was related to dismal prognosis among CC patients. Functional assays displayed that Fosl1 increased the viability, epithelial-to-mesenchymal transition (EMT), migration and invasion of CC cells. Additionally, a xenograft assay showed that silencing of Fosl1 in CC cells retarded lung, liver and kidney metastases in vivo. Further investigation demonstrated that Fosl1 was involved in malignant aggressiveness of CC cells by binding to smad ubiquitination regulatory factor 1 (Smurf1). Mechanistically, Smurf1-induced F-Box and leucine rich repeat protein 2 (FBXL2) ubiquitination resulted in its degradation, while FBXL2 disrupted the activation of the Wnt/β-catenin signaling. In summary, Fosl1 plays a pro-metastatic and carcinogenetic role in CC, and we provided forceful evidence that Fosl1 inhibition might act as a prognostic and therapeutic option in CC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Anorectal, the Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, 130021, PR China
| | - Meng Yue
- Department of Colorecal & Anal Surgery, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Ze Li
- Department of Colorectal and Stomach Cancer Surgery-1, Jilin Cancer Hospital, Changchun, Jilin, 130000, PR China.
| |
Collapse
|
20
|
Chen T, Liang Q, Xu J, Zhang Y, Zhang Y, Mo L, Zhang L. MiR-665 Regulates Vascular Smooth Muscle Cell Senescence by Interacting With LncRNA GAS5/SDC1. Front Cell Dev Biol 2021; 9:700006. [PMID: 34386495 PMCID: PMC8353444 DOI: 10.3389/fcell.2021.700006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Vascular aging is considered a special risk factor for cardiovascular diseases, and vascular smooth muscle cells (VSMCs) play a major role in aging-related vascular remodeling and in the pathological process of atherosclerosis. Recent research has reported that long non-coding RNA/microRNA (lncRNA/miRNA) is a critical regulator of cellular senescence. However, the role and mechanism of lncRNA GAS5/miR-665 axis in VSMC senescence remain incompletely understood. Methods: Cellular senescence was evaluated using senescence-associated β-gal activity, the NAD+/NADH ratio, and by immunofluorescence staining of γH2AX immunofluorescence. Differentially expressed miRNAs (DEMs) were identified by miRNA microarray assays and subsequently validated by quantitative real-time PCR (qRT-PCR). A dual luciferase reporter assay was conducted to confirm the binding of lncRNA GAS5 and miR-665 as well as miR-665 and syndecan 1 (SDC1). Serum levels of miR-665, lncRNA GAS5, and SDC1 in 93 subjects were detected by qRT-PCR. The participants were subdivided into control, aging, and early vascular aging (EVA) groups, and their brachial-ankle pulse wave velocity (baPWV) was measured. Results: A total of 20 overlapping DEMs were identified in young and old VSMCs via microarray analysis. MiR-665 showed a significant alteration and, therefore, was selected for further analysis. Upregulation of miR-665 was found in aging VSMCs, and downregulation of miR-665 caused an inhibition of VSMCs senescence. Subsequently, the dual luciferase reporter assay determined the binding site of miR-665 with the 3'-UTR of lncRNA GAS5 and SDC1. Increased expression of lncRNA GAS5 expression inhibited the miR-665 level and VSMC senescence. However, as shown in rescue experiment results, either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of lncRNA GAS5 on VSMC senescence. Finally, compared with that of the control group, miR-665 was highly expressed in serum samples in the aging and EVA groups, especially in the EVA groups. On the contrary, serum levels of lncRNA GAS5 and SDC1 were lower in these two groups. Collectively, in the aging and EVA groups, miR-665 expression was negatively correlated with lncRNA GAS5 and SDC1 expression. Conclusion: miR-665 inhibition functions as a vital modulator of VSMC senescence by negatively regulating SDC1, which is achieved by lncRNA GAS5 that sponges miR-665. Our findings may provide a new treatment strategy for aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tianbin Chen
- Functional Experiment Center, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanan Zhang
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Mo
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Li Zhang
| |
Collapse
|
21
|
Machado-Oliveira G, Ramos C, Marques ARA, Vieira OV. Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis. Cells 2020; 9:E2146. [PMID: 32977446 PMCID: PMC7598292 DOI: 10.3390/cells9102146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is an age-related disorder associated with long-term exposure to cardiovascular risk factors. The asymptomatic progression of atherosclerotic plaques leads to major cardiovascular diseases (CVD), including acute myocardial infarctions or cerebral ischemic strokes in some cases. Senescence, a biological process associated with progressive structural and functional deterioration of cells, tissues and organs, is intricately linked to age-related diseases. Cell senescence involves coordinated modifications in cellular compartments and has been demonstrated to contribute to different stages of atheroma development. Senescence-based therapeutic strategies are currently being pursued to treat and prevent CVD in humans in the near-future. In addition, distinct experimental settings allowed researchers to unravel potential approaches to regulate anti-apoptotic pathways, facilitate excessive senescent cell clearance and eventually reverse atherogenesis to improve cardiovascular function. However, a deeper knowledge is required to fully understand cellular senescence, to clarify senescence and atherogenesis intertwining, allowing researchers to establish more effective treatments and to reduce the cardiovascular disorders' burden. Here, we present an objective review of the key senescence-related alterations of the major intracellular organelles and analyze the role of relevant cell types for senescence and atherogenesis. In this context, we provide an updated analysis of therapeutic approaches, including clinically relevant experiments using senolytic drugs to counteract atherosclerosis.
Collapse
Affiliation(s)
- Gisela Machado-Oliveira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| | | | | | - Otília V. Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| |
Collapse
|
22
|
Jang HJ, Yang KE, Oh WK, Lee SI, Hwang IH, Ban KT, Yoo HS, Choi JS, Yeo EJ, Jang IS. Nectandrin B-mediated activation of the AMPK pathway prevents cellular senescence in human diploid fibroblasts by reducing intracellular ROS levels. Aging (Albany NY) 2020; 11:3731-3749. [PMID: 31199782 PMCID: PMC6594796 DOI: 10.18632/aging.102013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
Abstract
Nectandrin B (NecB) is a bioactive lignan compound isolated from Myristica fragrans (nutmeg), which functions as an activator of AMP-activated protein kinase (AMPK). Because we recently found that treatment with NecB increased the cell viability of old human diploid fibroblasts (HDFs), the underlying molecular mechanism was investigated. NecB treatment in old HDFs reduced the activity staining of senescence-associated β-galactosidase and the levels of senescence markers, such as the Ser15 phosphorylated p53, caveolin-1, p21waf1, p16ink4a, p27kip1, and cyclin D1. NecB treatment increased that in S phase, indicating a enhancement of cell cycle entry. Interestingly, NecB treatment ameliorated age-dependent activation of AMPK in old HDFs. Moreover, NecB reversed the age-dependent expression and/or activity changes of certain sirtuins (SIRT1-5), and cell survival/death-related proteins. The transcriptional activity of Yin-Yang 1 and the expression of downstream proteins were elevated in NecB-treated old HDFs. In addition, NecB treatment exerted a radical scavenging effect in vitro, reduced cellular ROS levels, and increased antioxidant enzymes in old HDFs. Moreover, NecB-mediated activation of the AMPK pathway reduced intracellular ROS levels. These results suggest that NecB-induced protection against cellular senescence is mediated by ROS-scavenging through activation of AMPK. NecB might be useful in ameliorating age-related diseases and extending human lifespan.
Collapse
Affiliation(s)
- Hyun-Jin Jang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyeong Eun Yang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Song-I Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - In-Hu Hwang
- Neuroscience Research Institute, Korea University College of Medicine, Seoul 136-705, Republic of Korea
| | - Kyung-Tae Ban
- East-West Cancer Center, Daejeon University, Daejeon, 302-120, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Daejeon University, Daejeon, 302-120, Republic of Korea
| | - Jong-Soon Choi
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Eui-Ju Yeo
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Ik-Soon Jang
- Drug & Disease Target Group, Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.,Division of Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
23
|
Liu H, Huang B, Xue S, U KP, Tsang LL, Zhang X, Li G, Jiang X. Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs. Stem Cell Res Ther 2020; 11:279. [PMID: 32660632 PMCID: PMC7359252 DOI: 10.1186/s13287-020-01798-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Stem cell senescence has been proposed as one of the major drivers of aging, and MSC senescence contributes to aging-related diseases. Activation of mTORC1 pathway and heterochromatin organization have been characterized as two characteristics of senescent cells; however, whether mTORC1 pathway interacts with heterochromatin organization and contributes to MSC senescence remains unknown. In this study, we investigated the interaction between heterochromatin organization and mTORC1/p70S6K pathway in stress-induced MSC senescence. Methods The stress-induced senescence models were established in human umbilical cord-derived MSCs by doxorubicin (Dox) or H2O2. Cellular senescence was evaluated by β-Gal activity, upregulation of cell cycle suppressor genes, and expression of SASP. Activation of heterochromatin organization and mTORC1 pathway was determined by Western blot and immunofluorescent staining. A D-galactose (D-Gal)-induced aging model was established in rats to evaluate the crosstalk between heterochromatin and mTORC1 pathway in vivo. Results We found that heterochromatin organization was provoked at the early stage of Dox- or H2O2-induced senescence. Disruption of heterochromatin organization led to robust DNA damage response and exacerbated cellular senescence. Suppression of mTORC1/p70S6K pathway by either rapamycin or p70S6K knockdown promoted heterochromatin organization and ameliorated Dox- or H2O2-induced DNA damage and senescence. In contrast, direct activation of mTORC1 by MHY1485 impaired heterochromatin organization and aggravated stress-induced senescence. Moreover, concomitant activation of mTORC1 pathway and heterochromatin organization was found in D-galactose-induced osteoporosis model in rats. Rapamycin alleviated cellular senescence and promoted heterochromatin organization in BMSCs derived from D-galactose-treated rats. Conclusions Altogether, our study indicates the existence of a complex interplay between the mTORC1/p70S6K pathway and the heterochromatin organization during stress-induced MSC senescence, with important implications for the understanding of aging as well as for its prevention and treatment.
Collapse
Affiliation(s)
- Hailong Liu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Biao Huang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Shaolong Xue
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Kin Pong U
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Xiaohu Zhang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gang Li
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China. .,Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
24
|
Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev 2020; 60:101072. [PMID: 32298812 DOI: 10.1016/j.arr.2020.101072] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD) is the most common disease to increase as life expectancy increases. Most high-profile pharmacological treatments for age-related CVD have led to inefficacious results, implying that novel approaches to treating these pathologies are needed. Emerging data have demonstrated that senescent cardiovascular cells, which are characterized by irreversible cell cycle arrest and a distinct senescence-associated secretory phenotype, accumulate in aged or diseased cardiovascular systems, suggesting that they may impair cardiovascular function. This review discusses the evidence implicating senescent cells in cardiovascular ageing, the onset and progression of CVD, and the molecular mechanisms underlying cardiovascular cell senescence. We also review eradication of senescent cardiovascular cells by small-molecule-drug-mediated apoptosis and immune cell-mediated efferocytosis and toxicity as promising and precisely targeted therapeutics for CVD prevention and treatment.
Collapse
|
25
|
Zhong JY, Cui XJ, Zhan JK, Wang YJ, Li S, Lin X, Xiang QY, Ni YQ, Liu L, Liu YS. LncRNA-ES3 inhibition by Bhlhe40 is involved in high glucose-induced calcification/senescence of vascular smooth muscle cells. Ann N Y Acad Sci 2020; 1474:61-72. [PMID: 32483833 DOI: 10.1111/nyas.14381] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been investigated as novel regulatory molecules involved in diverse biological processes. Our previous study demonstrated that lncRNA-ES3 is associated with the high glucose-induced calcification/senescence of human aortic vascular smooth muscle cells (HA-VSMCs). However, the mechanism of lncRNA-ES3 in vascular calcification/aging remained largely unknown. Here, we report that the expression of basic helix-loop-helix family member e40 (Bhlhe40) was decreased significantly in HA-VSMCs treated with high glucose, whereas the expression of basic leucine zipper transcription factor (BATF) was increased. Overexpression of Bhlhe40 and inhibition of BATF alleviated calcification/senescence of HA-VSMCs, as confirmed by Alizarin Red S staining and the presence of senescence-associated β-galactosidase-positive cells. Moreover, we identified that Bhlhe40 regulates lncRNA-ES3 in HA-VSMCs by binding to the promoter region of the lncRNA-ES3 gene (LINC00458). Upregulation or inhibition of lncRNA-ES3 expression significantly promoted or reduced calcification/senescence of HA-VSMCs, respectively. Additionally, we identified that lncRNA-ES3 functions in this process by suppressing the expression of miR-95-5p, miR-6776-5p, miR-3620-5p, and miR-4747-5p. The results demonstrate that lncRNA-ES3 triggers gene silencing of multiple miRNAs by binding to Bhlhe40, leading to calcification/senescence of VSMCs. Our findings suggest that pharmacological interventions targeting lncRNA-ES3 may be therapeutically beneficial in ameliorating vascular calcification/aging.
Collapse
Affiliation(s)
- Jia-Yu Zhong
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - Xing-Jun Cui
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun-Kun Zhan
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan-Jiao Wang
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiao Lin
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - Qun-Yan Xiang
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu-Qing Ni
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - Le Liu
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Institute of Aging and Age-Related Disease Research, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
26
|
Chen YL, Sheu JJ, Sun CK, Huang TH, Lin YP, Yip HK. MicroRNA-214 modulates the senescence of vascular smooth muscle cells in carotid artery stenosis. Mol Med 2020; 26:46. [PMID: 32410577 PMCID: PMC7227274 DOI: 10.1186/s10020-020-00167-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/16/2020] [Indexed: 11/12/2022] Open
Abstract
Background MicroRNAs control gene expression by post-transcriptional inhibition. Dysregulation of the expressions of miR-199a/214 cluster has been linked to cardiovascular diseases. This study aimed at identifying potential microRNAs related to vascular senescence. Methods Seven candidate microRNAs (miR-19a, −20a, −26b, −106b, − 126, − 214, and − 374) related to cell proliferation were tested for their expressions under CoCl2-induced hypoxia in vascular smooth muscle cells (VSMCs). After identification of miR-214 as the candidate microRNA, telomere integrity impairment and cell cycle arrest were examined in VSMCs by using miR-214 mimic, AntagomiR, and negative controls. To investigate the clinical significance of miR-214 in vascular diseases, its plasma level from patients with carotid artery stenosis (CAS) was assessed by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results CoCl2 treatment for 48 h suppressed cell proliferation and angiogenesis as well as enhanced cell senescence in VSMCs. Besides, miR-214 level was elevated in both intracellular and exosome samples of VSMCs after CoCl2 treatment. Manipulating miR-214 in VSMCs demonstrated that miR-214 not only inhibited angiogenic and proliferative capacities but also promoted senescence through the suppression of quaking. Additionally, circulating miR-214 level was upregulated in CAS patients with high low-density lipoprotein cholesterol (LDL-C) value. Conclusion Our findings suggested that miR-214 plays a role in the modulation of VSMC angiogenesis, proliferation, and senescence with its plasma level being increased in CAS patients with elevated LDL-C value, implying that it may be a vascular senescence marker and a potential therapeutic target for vascular diseases.
Collapse
Affiliation(s)
- Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Jiunn-Jye Sheu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan.,Division of thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Hospital, I-Shou University School of Medicine for International Students, Kaohsiung, 82445, Taiwan
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Yuan-Ping Lin
- Department of health and Beauty, Shu-Zen Junior College of Medicine and Management, Kaohsiung, 82144, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan. .,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan. .,Department of Nursing, Asia University, Taichung, 41354, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, 361028, Fujian, China.
| |
Collapse
|
27
|
Cui XJ, Lin X, Zhong JY, Li S, He JY, Ni YQ, Zhan JK, Liu YS. Adiponectin attenuates the premature senescence of vascular smooth muscle cells induced by high glucose through mTOR signaling pathway. Aging Med (Milton) 2020; 3:178-187. [PMID: 33103038 PMCID: PMC7574635 DOI: 10.1002/agm2.12106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Objective Cardiovascular diseases and vascular aging are common in patients with diabetes. High glucose is a major cause of vascular aging and cardiovascular diseases. Premature senescence of vascular smooth muscle cells (VSMCs) is one of the main contributors to vascular aging. Adiponectin has been demonstrated to have an anti‐aging effect. The present study explored the mechanisms by which adiponectin protects VSMCs against high‐glucose‐induced senescence. Methods Senescence‐associated β‐galactosidase (SA‐β‐gal) staining was used to detect senescence cells. Western blot was used for measuring protein levels. Flow cytometry was carried out to detect the cell cycle and telomeric repeat amplification protocol (TRAP)–polymerase chain reaction (PCR) silver staining was selected to measure the telomerase activity. Results Premature senescence of VSMCs was induced by high glucose (30 mM) in a time‐dependent manner, which was verified by an increased number of senescence cells, p21 and p53 expression, as well as the decreased proliferation index. High glucose reduced telomerase activity of VSMCs via inhibition of the AMPK/TSC2/mTOR/S6K1 pathway and activation of the PI3K/Akt/mTOR/S6K1 pathway, while adiponectin treatment significantly increased telomerase activity of VSMCs through activation of AMPK/TSC2/mTOR/S6K1 signaling and inhibition of PI3K/Akt/mTOR/S6K1 signaling. Conclusion Adiponectin attenuated the high‐glucose‐induced premature senescence of VSMCs via increasing telomerase activity of VSMCs, which was achieved by activation of AMPK/TSC2/mTOR/S6K1 signaling and inhibition of PI3K/Akt/mTOR/S6K1 signaling.
Collapse
Affiliation(s)
- Xing-Jun Cui
- Department of Geriatrics Institute of Aging and Geriatrics The Second Xiang-ya Hospital Central South University Changsha China
| | - Xiao Lin
- Department of Geriatrics Institute of Aging and Geriatrics The Second Xiang-ya Hospital Central South University Changsha China
| | - Jia-Yu Zhong
- Department of Geriatrics Institute of Aging and Geriatrics The Second Xiang-ya Hospital Central South University Changsha China
| | - Shuang Li
- Department of Geriatrics Institute of Aging and Geriatrics The Second Xiang-ya Hospital Central South University Changsha China
| | - Jie-Yu He
- Department of Geriatrics Institute of Aging and Geriatrics The Second Xiang-ya Hospital Central South University Changsha China
| | - Yu-Qing Ni
- Department of Geriatrics Institute of Aging and Geriatrics The Second Xiang-ya Hospital Central South University Changsha China
| | - Jun-Kun Zhan
- Department of Geriatrics Institute of Aging and Geriatrics The Second Xiang-ya Hospital Central South University Changsha China
| | - You-Shuo Liu
- Department of Geriatrics Institute of Aging and Geriatrics The Second Xiang-ya Hospital Central South University Changsha China
| |
Collapse
|
28
|
Ni YQ, Lin X, Zhan JK, Liu YS. Roles and Functions of Exosomal Non-coding RNAs in Vascular Aging. Aging Dis 2020; 11:164-178. [PMID: 32010490 PMCID: PMC6961769 DOI: 10.14336/ad.2019.0402] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is a progressive loss of physiological integrity and functionality process which increases susceptibility and mortality to diseases. Vascular aging is a specific type of organic aging. The structure and function changes of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cause of vascular aging, which could influence the threshold, process, and severity of vascular related diseases. Accumulating evidences demonstrate that exosomes serve as novel intercellular information communicator between cell to cell by delivering variety biologically active cargos, especially exosomal non-coding RNAs (ncRNAs), which are associated with most of aging-related biological and functional disorders. In this review, we will summerize the emerging roles and mechanisms of exosomal ncRNAs in vascular aging and vascular aging related diseases, focusing on the role of exosomal miRNAs and lncRNAs in regulating the functions of ECs and VSMCs. Moreover, the relationship between the ECs and VSMCs linked by exosomes, the potential diagnostic and therapeutic application of exosomes in vascular aging and the clinical evaluation and treatment of vascular aging and vascular aging related diseases will also be discussed.
Collapse
Affiliation(s)
| | | | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
29
|
Rudzińska M, Parodi A, Balakireva AV, Chepikova OE, Venanzi FM, Zamyatnin AA. Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants (Basel) 2020; 9:antiox9020094. [PMID: 31979201 PMCID: PMC7071036 DOI: 10.3390/antiox9020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Different molecular signaling pathways, biological processes, and intercellular communication mechanisms control longevity and are affected during cellular senescence. Recent data have suggested that organelle communication, as well as genomic and metabolic dysfunctions, contribute to this phenomenon. Oxidative stress plays a critical role by inducing structural modifications to biological molecules while affecting their function and catabolism and eventually contributing to the onset of age-related dysfunctions. In this scenario, proteins are not adequately degraded and accumulate in the cell cytoplasm as toxic aggregates, increasing cell senescence progression. In particular, carbonylation, defined as a chemical reaction that covalently and irreversibly modifies proteins with carbonyl groups, is considered to be a significant indicator of protein oxidative stress and aging. Here, we emphasize the role and dysregulation of the molecular pathways controlling cell metabolism and proteostasis, the complexity of the mechanisms that occur during aging, and their association with various age-related disorders. The last segment of the review details current knowledge on protein carbonylation as a biomarker of cellular senescence in the development of diagnostics and therapeutics for age-related dysfunctions.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Olga E. Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Franco M. Venanzi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74956229843
| |
Collapse
|
30
|
Zhang Y, Liang Q, Zhang Y, Hong L, Lei D, Zhang L. Olmesartan alleviates bleomycin-mediated vascular smooth muscle cell senescence via the miR-665/SDC1 axis. Am J Transl Res 2020; 12:5205-5220. [PMID: 33042414 PMCID: PMC7540088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/01/2020] [Indexed: 12/08/2022]
Abstract
Olmesartan (OMST) is a new angiotensin II receptor antagonist recently approved by the FDA to treat cardiovascular diseases. We investigated the molecular mechanisms by which OMST regulates vascular senescence. In the present study, bleomycin (BLM) was used to induce senescence in vascular smooth muscle cells (VSMCs); after which, the cells were treated with OMST. The effects of OMST on BLM-mediated cell senescence were evaluated using cell adhesion, NAD+/NADH, and Annevin V/PI double staining assays, as well as by immunofluorescence staining of γH2AX, Edu flow cytometry, and evaluations of senescence-associated β-gal activity. Differentially expressed microRNAs (DEMs) were identified by miRNA microarray assays, and subsequently validated by quantitative real time PCR. Bisulfite sequencing PCR (BSP) was used to detect the methylation status of the miR-665 promoter. The target genes of miR-665 were predicted and confirmed using luciferase reporter assays. We found that miR-665 was upregulated in VSMCs in response to BLM-induced cellular senescence. BSP studies revealed that CpG sites in the promoter region of the miR-665 gene underwent extensive demethylation during BLM-induced cellular senescence, and there was a concomitant up-regulation of miR-665 expression. SDC1 mRNA was identified as a direct target of miR-665. Either miR-665 overexpression or SDC1 knockdown significantly reversed the effects of OMST on BLM-induced VSMC senescence. Moreover, SDC1 overexpression partially reversed the changes that occurred in cells with BLM-induced senescence caused by miR-665 overexpression. Our findings suggest that the miR-665/SDC1 axis functions as a vital modulator of VSMC senescence, and may represent a novel biological target for treating atherosclerosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Yanan Zhang
- College of Veterinary Medicine, Northeast Agricultural University Harbin 150030, China
| | - Lei Hong
- Department of Cardiology, Long Gang Central Hospital of Shenzhen Shenzhen 518116, Guangdong, China
| | - Da Lei
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University Guangzhou 510080, Guangdong, China
| |
Collapse
|
31
|
Schaub T, Gürgen D, Maus D, Lange C, Tarabykin V, Dragun D, Hegner B. mTORC1 and mTORC2 Differentially Regulate Cell Fate Programs to Coordinate Osteoblastic Differentiation in Mesenchymal Stromal Cells. Sci Rep 2019; 9:20071. [PMID: 31882658 PMCID: PMC6934532 DOI: 10.1038/s41598-019-56237-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Vascular regeneration depends on intact function of progenitors of vascular smooth muscle cells such as pericytes and their circulating counterparts, mesenchymal stromal cells (MSC). Deregulated MSC differentiation and maladaptive cell fate programs associated with age and metabolic diseases may exacerbate arteriosclerosis due to excessive transformation to osteoblast-like calcifying cells. Targeting mTOR, a central controller of differentiation and cell fates, could offer novel therapeutic perspectives. In a cell culture model for osteoblastic differentiation of pluripotent human MSC we found distinct roles for mTORC1 and mTORC2 in the regulation of differentiation towards calcifying osteoblasts via cell fate programs in a temporally-controlled sequence. Activation of mTORC1 with induction of cellular senescence and apoptosis were hallmarks of transition to a calcifying phenotype. Inhibition of mTORC1 with Rapamycin elicited reciprocal activation of mTORC2, enhanced autophagy and recruited anti-apoptotic signals, conferring protection from calcification. Pharmacologic and genetic negative interference with mTORC2 function or autophagy both abolished regenerative programs but induced cellular senescence, apoptosis, and calcification. Overexpression of the mTORC2 constituent rictor revealed that enhanced mTORC2 signaling without altered mTORC1 function was sufficient to inhibit calcification. Studies in mice reproduced the in vitro effects of mTOR modulation with Rapamycin on cell fates in vascular cells in vivo. Amplification of mTORC2 signaling promotes protective cell fates including autophagy to counteract osteoblast differentiation and calcification of MSC, representing a novel mTORC2 function. Regenerative approaches aimed at modulating mTOR network activation patterns hold promise for delaying age-related vascular diseases and treatment of accelerated arteriosclerosis in chronic metabolic conditions.
Collapse
Affiliation(s)
- Theres Schaub
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dennis Gürgen
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité University Hospital, Berlin, Germany
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, Berlin, Germany
| | - Deborah Maus
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Junior Research Group 2: Metabolism of Microbial Pathogens, Robert Koch Institute, Berlin, Germany
| | - Claudia Lange
- Clinic for Stem Cell Transplantation, Department of Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Duska Dragun
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Center for Cardiovascular Research (CCR), Charité University Hospital, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| | - Björn Hegner
- Clinic for Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Center for Cardiovascular Research (CCR), Charité University Hospital, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Vivantes Ida Wolff Hospital for Geriatric Medicine, Berlin, Germany
| |
Collapse
|
32
|
New Insights for Cellular and Molecular Mechanisms of Aging and Aging-Related Diseases: Herbal Medicine as Potential Therapeutic Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4598167. [PMID: 31915506 PMCID: PMC6930799 DOI: 10.1155/2019/4598167] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/28/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
Aging is a progressive disease affecting around 900 million people worldwide, and in recent years, the mechanism of aging and aging-related diseases has been well studied. Treatments for aging-related diseases have also made progress. For the long-term treatment of aging-related diseases, herbal medicine is particularly suitable for drug discovery. In this review, we discuss cellular and molecular mechanisms of aging and aging-related diseases, including oxidative stress, inflammatory response, autophagy and exosome interactions, mitochondrial injury, and telomerase damage, and summarize commonly used herbals and compounds concerned with the development of aging-related diseases, including Ginkgo biloba, ginseng, Panax notoginseng, Radix astragali, Lycium barbarum, Rhodiola rosea, Angelica sinensis, Ligusticum chuanxiong, resveratrol, curcumin, and flavonoids. We also summarize key randomized controlled trials of herbal medicine for aging-related diseases during the past ten years. Adverse reactions of herbs were also described. It is expected to provide new insights for slowing aging and treating aging-related diseases with herbal medicine.
Collapse
|
33
|
Matte A, Federti E, Winter M, Koerner A, Harmeier A, Mazer N, Tomka T, Di Paolo ML, De Falco L, Andolfo I, Beneduce E, Iolascon A, Macias-Garcia A, Chen JJ, Janin A, Lebouef C, Turrini F, Brugnara C, De Franceschi L. Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of β-thalassemia. JCI Insight 2019; 4:130111. [PMID: 31593554 DOI: 10.1172/jci.insight.130111] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
Anemia of β-thalassemia is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis. We provide evidence that bitopertin, a glycine transport inhibitor administered orally, improves anemia, reduces hemolysis, diminishes ineffective erythropoiesis, and increases red cell survival in a mouse model of β-thalassemia (Hbbth3/+ mice). Bitopertin ameliorates erythroid oxidant damage, as indicated by a reduction in membrane-associated free α-globin chain aggregates, in reactive oxygen species cellular content, in membrane-bound hemichromes, and in heme-regulated inhibitor activation and eIF2α phosphorylation. The improvement of β-thalassemic ineffective erythropoiesis is associated with diminished mTOR activation and Rab5, Lamp1, and p62 accumulation, indicating an improved autophagy. Bitopertin also upregulates liver hepcidin and diminishes liver iron overload. The hematologic improvements achieved by bitopertin are blunted by the concomitant administration of the iron chelator deferiprone, suggesting that an excessive restriction of iron availability might negate the beneficial effects of bitopertin. These data provide important and clinically relevant insights into glycine restriction and reduced heme synthesis strategies for the treatment of β-thalassemia.
Collapse
Affiliation(s)
- Alessandro Matte
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Enrica Federti
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Michael Winter
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Annette Koerner
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anja Harmeier
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Norman Mazer
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Tomas Tomka
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Luigia De Falco
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and CEINGE, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and CEINGE, Naples, Italy
| | - Elisabetta Beneduce
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University Federico II and CEINGE, Naples, Italy
| | - Alejandra Macias-Garcia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jane-Jane Chen
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Anne Janin
- INSERM, U1165, Paris, France.,Université Paris 7 - Denis Diderot, Paris, France.,AP-HP, Hôpital Saint-Louis, Paris, France
| | - Christhophe Lebouef
- INSERM, U1165, Paris, France.,Université Paris 7 - Denis Diderot, Paris, France.,AP-HP, Hôpital Saint-Louis, Paris, France
| | - Franco Turrini
- Department of Oncology, University of Torino, Torino, Italy
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lucia De Franceschi
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
34
|
Grootaert MOJ, Moulis M, Roth L, Martinet W, Vindis C, Bennett MR, De Meyer GRY. Vascular smooth muscle cell death, autophagy and senescence in atherosclerosis. Cardiovasc Res 2019; 114:622-634. [PMID: 29360955 DOI: 10.1093/cvr/cvy007] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
In the present review, we describe the causes and consequences of loss of vascular smooth muscle cells (VSMCs) or their function in advanced atherosclerotic plaques and discuss possible mechanisms such as cell death or senescence, and induction of autophagy to promote cell survival. We also highlight the potential use of pharmacological modulators of these processes to limit plaque progression and/or improve plaque stability. VSMCs play a pivotal role in atherogenesis. Loss of VSMCs via initiation of cell death leads to fibrous cap thinning and promotes necrotic core formation and calcification. VSMC apoptosis is induced by pro-inflammatory cytokines, oxidized low density lipoprotein, high levels of nitric oxide and mechanical injury. Apoptotic VSMCs are characterized by a thickened basal lamina surrounding the cytoplasmic remnants of the VSMC. Inefficient clearance of apoptotic VSMCs results in secondary necrosis and subsequent inflammation. A critical determinant in the VSMC stress response and phenotypic switching is autophagy, which is activated by various stimuli, including reactive oxygen and lipid species, cytokines, growth factors and metabolic stress. Successful autophagy stimulates VSMC survival, whereas reduced autophagy promotes age-related changes in the vasculature. Recently, an interesting link between autophagy and VSMC senescence has been uncovered. Defective VSMC autophagy accelerates not only the development of stress-induced premature senescence but also atherogenesis, albeit without worsening plaque stability. VSMC senescence in atherosclerosis is likely a result of replicative senescence and/or stress-induced premature senescence in response to DNA damaging and/or oxidative stress-inducing stimuli. The finding that VSMC senescence can promote atherosclerosis further illustrates that normal, adequate VSMC function is crucial in protecting the vessel wall against atherosclerosis.
Collapse
Affiliation(s)
- Mandy O J Grootaert
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Manon Moulis
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases and University Paul Sabatier, F-31342 Toulouse, France
| | - Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Cécile Vindis
- INSERM, UMR-1048, Institute of Metabolic and Cardiovascular Diseases and University Paul Sabatier, F-31342 Toulouse, France
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
35
|
Boichuck M, Zorea J, Elkabets M, Wolfson M, Fraifeld VE. c-Met as a new marker of cellular senescence. Aging (Albany NY) 2019; 11:2889-2897. [PMID: 31085799 PMCID: PMC6535066 DOI: 10.18632/aging.101961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/04/2019] [Indexed: 05/09/2023]
Abstract
Here, we reported for the first time an increased expression of c-Met protein in primary cultures of human dermal and pulmonary fibroblasts of late passages. This suggests that c-Met could serve as an early marker of cellular senescence (CS). The levels of c-Met-related signaling proteins phospho-Akt and Stat3 were also increased in (pre)senescent fibroblasts. Considering the anti-apoptotic activity of Akt and the involvement of Stat3 in mediating the effects of proinflammatory cytokines, the findings of this study indicate that c-Met could contribute through its downstream targets or partners to at least two major phenotypical features of CS - resistance to apoptosis and senescence-associated secretory phenotype.
Collapse
Affiliation(s)
- Maria Boichuck
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Vadim E. Fraifeld
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
36
|
Tan P, Guo YH, Zhan JK, Long LM, Xu ML, Ye L, Ma XY, Cui XJ, Wang HQ. LncRNA-ANRIL inhibits cell senescence of vascular smooth muscle cells by regulating miR-181a/Sirt1. Biochem Cell Biol 2019; 97:571-580. [PMID: 30789795 DOI: 10.1139/bcb-2018-0126] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cardiovascular disease is one of the major threats to human life and health, and vascular aging is an important cause of its occurrence. Antisense non-coding RNA in the INK4 locus (ANRIL) is a kind of long non-coding RNA (lncRNA) that plays important roles in cell senescence. However, the role and mechanism of ANRIL in senescence of vascular smooth muscle cells (VSMCs) are unclear. METHODS Cell viability and cell cycle were evaluated using an MTT assay and flow cytometry analysis, respectively. Senescence-associated (SA)-β-galactosidase (gal) staining was used to determine cell senescence. Dual luciferase reporter assays were conducted to confirm the binding of ANRIL and miR-181a, as well as miR-181a and Sirt1. The expression of ANRIL, miR-181a, and Sirt1 was determined using qRT-PCR and protein levels of SA-β-gal and p53-p21 pathway-related proteins were evaluated by Western blotting. RESULTS ANRIL and Sirt1 were down-regulated, whereas miR-181a was up-regulated in aging VSMCs. In young and aging VSMCs, over-expression of ANRIL could down-regulate miR-181a and up-regulate Sirt1. MTT and SA-β-gal staining assays showed that over-expression of ANRIL and inhibition of miR-181a promoted cell viability and inhibited VSMC senescence. The dual-luciferase reporter assay determined that miR-181a directly targets ANRIL and the 3'-UTR of Sirt1. Furthermore, over-expression of ANRIL inhibited cell cycle arrest and the p53-p21 pathway. CONCLUSION ANRIL promotes cell viability and inhibits senescence in VSMCs, possibly by regulating miR-181a/Sirt1, and alleviating cell cycle arrest by inhibiting the p53-p21 pathway. This study provides novel insights for the role of ANRIL in the development of cell senescence.
Collapse
Affiliation(s)
- Pan Tan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Yong-Hong Guo
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Jun-Kun Zhan
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Li-Min Long
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Mei-Li Xu
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Ling Ye
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Xin-Yu Ma
- Department of Anesthesiology, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Xing-Jun Cui
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| | - Hai-Qin Wang
- Department of Geriatrics, the Second Xiangya Hospital of Central South University, Changsha 410011, P.R. China
| |
Collapse
|
37
|
Tan P, Wang H, Zhan J, Ma X, Cui X, Wang Y, Wang Y, Zhong J, Liu Y. Rapamycin‑induced miR‑30a downregulation inhibits senescence of VSMCs by targeting Beclin1. Int J Mol Med 2019; 43:1311-1320. [PMID: 30747228 PMCID: PMC6365076 DOI: 10.3892/ijmm.2019.4074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/16/2019] [Indexed: 12/27/2022] Open
Abstract
Vascular senescence is considered to be an independent risk factor for cardiovascular diseases. The present study aimed to investigate the effects of rapamycin on miR‑30a and its relationship with autophagy and senescence in vascular smooth muscle cells (VSMCs). Young and aging VSMCs were treated with rapamycin or transfected with miR‑30a mimics. Measurement of cellular senescence was conducted using senescence‑associated (SA)‑β‑Galactosidase (gal) staining. Dual luciferase reporter assay was used to confirm binding for miR‑30a and Beclin1. The expression levels of miR‑30a and Beclin1 were determined with reverse transcription‑quantitative polymerase chain reaction analysis. Autophagy‑related protein levels were determined using immunofluorescence or western blot assays. The results demonstrated that rapamycin treatment significantly decreased miR‑30a expression and increased Beclin1 expression in both young and aging cells, as well as promoted autophagy in VSMCs. In addition, rapamycin inhibited senescence in VSMCs and could also alleviate the aging VSMC cycle arrest. Dual luciferase reporter assay confirmed that miR‑30a could directly bind the 3'untranslated region of Beclin1 and inhibit its expression. Furthermore, miR‑30a inhibited autophagy and promoted senescence of VSMCs. In conclusion, the present results indicated that rapamycin could inhibit the senescence of VSMCs by downregulating miR‑30a, which resulted in upregulation of Beclin1 and activation of autophagy. The current study is the first to demonstrate an inhibitory role of rapamycin on VSMC senescence and might provide novel insights and potential new molecular targets in senescence treatment.
Collapse
Affiliation(s)
- Pan Tan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Haiqin Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Junkun Zhan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinyu Ma
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xingjun Cui
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yanjiao Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yi Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiayu Zhong
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Youshuo Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
38
|
Lin X, Zhan JK, Zhong JY, Wang YJ, Wang Y, Li S, He JY, Tan P, Chen YY, Liu XB, Cui XJ, Liu YS. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs. Aging (Albany NY) 2019; 11:523-535. [PMID: 30654331 PMCID: PMC6366973 DOI: 10.18632/aging.101758] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022]
Abstract
Vascular calcification/aging is common in diabetes and is associated with increased morbidity and mortality of patients. MiR-34c-5p, not miR-34c-3p, was suppressed significantly in calcification/senescence of human aorta vascular smooth muscle cells (HA-VSMCs) induced by high glucose, which was proven by the formation of mineralized nodules and staining of senescence associated-β-galactosidase staining (SA β-gal) positive cells. Overexpression of miR-34c-5p alleviated calcification/senescence of HA-VSMCs, whereas inhibition of miR-34c-5p received the opposite results. Bcl-2 modifying factor (BMF) was a functional target of miR-34c-5p and it was involved in the process of calcification/senescence of HA-VSMCs. Besides, lncRNA-ES3 acted as a competing endogenous RNAs (ceRNA) of miR-34c-5p to enhance BMF expression. Further, lncRNA-ES3 inhibited miR-34c-5p expression by direct interaction and its knockdown suppressed the calcification/senescence of HA-VSMCs. Our results showed for the first time that the calcification/senescence of VSMCs was regulated by lncRNA-ES3 /miR-34c-5p/BMF axis.
Collapse
Affiliation(s)
- Xiao Lin
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Equal contribution
| | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Equal contribution
| | - Jia-Yu Zhong
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yan-Jiao Wang
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yi Wang
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shuang Li
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jie-Yu He
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Pan Tan
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yi-Yin Chen
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xue-Bin Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xing-Jun Cui
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
39
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
40
|
Li S, Zhan JK, Wang YJ, Lin X, Zhong JY, Wang Y, Tan P, He JY, Cui XJ, Chen YY, Huang W, Liu YS. Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. Cell Biosci 2019; 9:1. [PMID: 30622695 PMCID: PMC6317223 DOI: 10.1186/s13578-018-0263-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Background To determine whether and how exosomes from human umbilical vein endothelial cells (HUVEC-Exos) regulates vascular smooth muscle cells (VSMCs) calcification/senescence in high glucose condition. Methods HUVEC-Exos were isolated from normal glucose (NG) and high glucose (HG) stimulated HUVECs (NG/HG-HUVEC-Exos) by super speed centrifugation. HUVEC-Exos were identified by transmission electron microscopy and Western blot of CD63. Protein profile in HUVEC-Exos was examined to screen the candidate molecules that mediate HUVEC-Exos function. VSMCs were incubated with HUVEC-Exos. A series of functional assays in vitro were performed to assess the effects of HUVEC-Exos on the calcification/senescence of VSMCs. The role of the candidate protein in HUVEC-Exos-induced VSMCs dysfunction was assessed. Results Exosomes isolated from HG-HUVEC-Exos induced calcification/senescence in VSMCs as assessed by Alizarin Red Staining, senescence-associated β-galactosidase (SA-β-gal) staining, and the expression of ALP and p21. HG-HUVEC-Exos significantly increased LDH activity, as well as the product of lipid peroxidation (MDA content), and decreased oxidative stress marker activity, as compared with NG-HUVEC-Exos. Moreover, mechanism studies showed that mitochondrial membrane potential and the expression levels of mitochondrial function related protein HADHA and Cox-4 were significantly decreased in HG-HUVEC-Exos compared to controls. Proteomic analysis showed that HG-HUVEC-Exos consisted of higher level of versican (VCAN), as compared with NG-HUVEC-Exos. Observation under laser confocal microscopy revealed that most green fluorescence of VCAN could overlap with the red fluorescence came from mitochondria, indicating VCAN is mainly localized to the mitochondria of VSMCs. Knockdown of VCAN with siRNA in HUVECs, inhibited HG-HUVEC-Exos-induced mitochondrial dysfunction and calcification/senescence of VSMCs. Conclusions Our data indicate an intracellular role for VCAN in VSMCs. VCAN participates in hyperglycemia-induced calcification/senescence via modulation of mitochondrial function in VSMCs. Electronic supplementary material The online version of this article (10.1186/s13578-018-0263-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuang Li
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Jun-Kun Zhan
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Yan-Jiao Wang
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Xiao Lin
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Jia-Yu Zhong
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Yi Wang
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Pan Tan
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Jie-Yu He
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Xing-Jun Cui
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Yi-Yin Chen
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - Wu Huang
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| | - You-Shuo Liu
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011 Hunan People's Republic of China
| |
Collapse
|
41
|
Wang M, Wang Z, Yang C, Liu L, Jiang N. Protein 14-3-3ε Regulates Cell Proliferation and Casein Synthesis via PI3K-mTOR Pathway in Dairy Cow Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12000-12008. [PMID: 30375228 DOI: 10.1021/acs.jafc.8b04590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell proliferation and casein synthesis of dairy cow mammary epithelial cells (DCMECs) are regulated by many factors. This research aimed to investigate the effect of 14-3-3ε on cell proliferation and casein synthesis in DCMECs and to reveal the underlying mechanism. Overexpressing or inhibiting 14-3-3ε demonstrated that cell proliferation; casein synthesis; expression of mTOR, p-mTOR, S6K1, and p-S6K1; and lysosomal localization of mTOR were all up-regulated by 14-3-3ε overexpressing and down-regulated by 14-3-3ε inhibiting. In addition, inhibiting mTOR demonstrated that the up-regulation of cell proliferation and casein synthesis in response to 14-3-3ε overexpressing was removed by inhibiting mTOR. Furthermore, the regulatory mechanism of 14-3-3ε was analyzed by coimmunoprecipitation, and we found that 14-3-3ε could interact with PI3K and activate mTORC1 pathway via PI3K. In addition, DCMECs were treated with insulin and prolactin, and the result showed that the cell proliferation and the expression of CSN2 and 14-3-3ε were all up-regulated by these hormones. In conclusion, the current research showed that 14-3-3ε is an important positive regulatory factor for cell proliferation and casein synthesis in DCMECs, as it up-regulates cell proliferation and casein synthesis via activating PI3K-mTOR pathway.
Collapse
Affiliation(s)
- Mengyu Wang
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
| | - Zekun Wang
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
| | - Chao Yang
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
| | - Liu Liu
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
| | - Nan Jiang
- College of Life Science and Technology , Dalian University, Dalian Economic Technological Development Zone , Dalian , Liaoning 116622 , China
- Institute of Animal Husbandry and Veterinary , Tibet Autonomous Regional Academy of Agricultural Sciences , Lhasa , Tibet 850000 , China
| |
Collapse
|
42
|
Zhan JK, Wang YJ, Li S, Wang Y, Tan P, He JY, Chen YY, Deng HQ, Huang W, Lin X, Liu YS. AMPK/TSC2/mTOR pathway regulates replicative senescence of human vascular smooth muscle cells. Exp Ther Med 2018; 16:4853-4858. [PMID: 30542441 DOI: 10.3892/etm.2018.6767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/19/2017] [Indexed: 12/23/2022] Open
Abstract
Age-associated diseases, including vascular diseases, are on the rise with the increase in the aging population. However, the mechanisms of aging and age-associated vascular dysfunction remain to be fully elucidated. Replicative senescence of vascular smooth muscle cells (VSMCs) contributes to aging as well as age-associated vascular diseases. Rapamycin may delay aging-associated diseases via inhibition of the mammalian target of rapamycin (mTOR), but its role in VSMC aging has remained elusive. The present study investigated the involvement of mTOR signaling in replicative senescence of VSMCs. Replicative senescence was induced in human VSMCs by extended passages and identified by assessing the cell morphology, senescence-associated β-galactosidase activity, and p53 and p21 protein expression. Protein expression and phosphorylation were determined by western blot analysis. Significant senescence of VSMCs was observed in cells subjected to extended passaging (until passage 15). Significant decreases in adenosine monophosphate-activated protein kinase (AMPK)/tuberous sclerosis complex 2 (TSC2) phosphorylation, but significant increases in mTOR/ribosomal protein S6 kinase 1 (S6K1) phosphorylation, were observed in cells with replicative senescence compared with those in young cells. Pre-treatment of VSMCs with AMPK activator and mTOR inhibitor delayed replicative senescence and reversed changes in AMPKα, TSC2, mTOR and S6K1 phosphorylation in senescent VSMCs. The AMPK/TSC2/mTOR/S6K1 signaling axis was found to have an important role in regulating replicative senescence of human VSMCs.
Collapse
Affiliation(s)
- Jun-Kun Zhan
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan-Jiao Wang
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Shuang Li
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yi Wang
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Pan Tan
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Je-Yu He
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yi-Yin Chen
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Hui-Qian Deng
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Wu Huang
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiao Lin
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| | - You-Shuo Liu
- Geriatric Department, The Second Xiangya Hospital, Institute of Aging and Geriatrics, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
43
|
Shao Y, Chong L, Lin P, Li H, Zhu L, Wu Q, Li C. MicroRNA-133a alleviates airway remodeling in asthtama through PI3K/AKT/mTOR signaling pathway by targeting IGF1R. J Cell Physiol 2018; 234:4068-4080. [PMID: 30146725 DOI: 10.1002/jcp.27201] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/16/2018] [Indexed: 12/28/2022]
Abstract
Asthma is characterized by chronic inflammation, and long-term chronic inflammation leads to airway remodeling. But the potential regulatory mechanism of airway remodeling is not clearly understood, and there is still no effective way to prevent airway remodeling. Present studies have confirmed the role of microRNAs (miRNAs) in the development of disease, which is known as suppressing translation or degradation of messenger RNA (mRNA) at the posttranscriptional stage. In this study, we described the role of miRNA-133a in asthma and demonstrated it in regulating airway remodeling of asthma through the phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway by targeting IGF-1 receptor (IGF1R). IGF1R helps in mediating the intracellular signaling cascades. Asthmatic mice models were established by sensitization and Ovalbumin challenge. Adenovirus transfer vector carrying miR-133a or miR-133a sponge sequence was used to build the overexpression or downexpression of miR-133a modeling. Real-time polymerase chain reaction and Western blot were used to determine the alterations in the expression of miR-133a and mRNAs and their corresponding proteins. Results showed that miR-133a was downregulated in asthma. Upregulation of miR-133a expression in airway smooth muscle cells in vivo and in vitro could inhibit the activation of PI3K/AKT/mTOR pathway, and reduce the expression of α-smooth muscle actin (α-SMA), indicating that airway remodeling was inhibited. Functional studies based on luciferase reporter revealed miR-133a as a direct target of IGF1R mRNA. In conclusion, these data suggested that miR-133a regulated the expression of α-SMA through PI3K/AKT/mTOR signaling by targeting IGF1R. miR-133a plays a key role in airway remodeling of asthma and may serve as a potential therapeutic target for managing asthmatic airway remodeling.
Collapse
Affiliation(s)
- Youyou Shao
- Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lei Chong
- Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Institute of Pediatrics, National Key Clinical Specialty of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peng Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Li
- Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Zhu
- Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiuping Wu
- Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changchong Li
- Discipline of Pediatric Respiratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
44
|
Burgos-Ramos E, Canelles S, Rodríguez A, Frago LM, Gómez-Ambrosi J, Chowen JA, Frühbeck G, Argente J, Barrios V. The increase in fiber size in male rat gastrocnemius after chronic central leptin infusion is related to activation of insulin signaling. Mol Cell Endocrinol 2018; 470:48-59. [PMID: 28962893 DOI: 10.1016/j.mce.2017.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 01/20/2023]
Abstract
Insulin potentiates leptin effects on muscle accrual and glucose homeostasis. However, the relationship between leptin's central effects on peripheral insulin sensitivity and the associated structural changes remain unclear. We hypothesized that central leptin infusion modifies muscle size through activation of insulin signaling. Muscle insulin signaling, enzymes of fatty acid metabolism, mitochondrial respiratory chain complexes, proliferating cell nuclear antigen (PCNA) and fiber area were analyzed in the gastrocnemius of chronic central infused (L), pair-fed (PF) and control rats. PCNA-positive nuclei, fiber area, GLUT4 and glycogen levels and activation of Akt and mechanistic target of rapamycin were increased in L, with no changes in PF. Acetyl-CoA carboxylase-β mRNA levels and non-esterified fatty acid and triglyceride content were reduced and carnitine palmitoyltransferase-1b expression and mitochondrial complexes augmented in L. These results suggest that leptin promotes an increase in muscle size associated with improved insulin signaling favored by lipid profile.
Collapse
Affiliation(s)
- Emma Burgos-Ramos
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Área de Bioquímica, Facultad de Ciencias Ambientales y Bioquímica, Universidad Castilla-La Mancha, E-45071, Toledo, Spain
| | - Sandra Canelles
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Amaia Rodríguez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, E-31008, Pamplona, Spain
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, E-28009, Madrid, Spain; IMDEA Food Institute, CEI UAM + CSIC, E-28049, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, E-28009, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28009, Madrid, Spain.
| |
Collapse
|
45
|
Maciel-Barón LÁ, Moreno-Blas D, Morales-Rosales SL, González-Puertos VY, López-Díazguerrero NE, Torres C, Castro-Obregón S, Königsberg M. Cellular Senescence, Neurological Function, and Redox State. Antioxid Redox Signal 2018; 28:1704-1723. [PMID: 28467755 DOI: 10.1089/ars.2017.7112] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Cellular senescence, characterized by permanent cell cycle arrest, has been extensively studied in mitotic cells such as fibroblasts. However, senescent cells have also been observed in the brain. Even though it is recognized that cellular energetic metabolism and redox homeostasis are perturbed in the aged brain and neurodegenerative diseases (NDDs), it is still unknown which alterations in the overall physiology can stimulate cellular senescence induction and their relationship with the former events. Recent Advances: Recent findings have shown that during prolonged inflammatory and pathologic events, the blood-brain barrier could be compromised and immune cells might enter the brain; this fact along with the brain's high oxygen dependence might result in oxidative damage to macromolecules and therefore senescence induction. Thus, cellular senescence in different brain cell types is revised here. CRITICAL ISSUES Most information related to cellular senescence in the brain has been obtained from research in glial cells since it has been assumed that the senescent phenotype is a feature exclusive to mitotic cells. Nevertheless, neurons with senescence hallmarks have been observed in old mouse brains. Therefore, although this is a controversial topic in the field, here we summarize and integrate the observations from several studies and propose that neurons indeed senesce. FUTURE DIRECTIONS It is still unknown which alterations in the overall metabolism can stimulate senescence induction in the aged brain, what are the mechanisms and signaling pathways, and what is their relationship to NDD development. The understanding of these processes will expose new targets to intervene age-associated pathologies.-Antioxid. Redox Signal. 28, 1704-1723.
Collapse
Affiliation(s)
- Luis Ángel Maciel-Barón
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Daniel Moreno-Blas
- 2 Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México, México
| | - Sandra Lizbeth Morales-Rosales
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Viridiana Yazmín González-Puertos
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Norma Edith López-Díazguerrero
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| | - Claudio Torres
- 3 Department of Pathology and Laboratory Medicine, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Susana Castro-Obregón
- 2 Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Ciudad de México, México
| | - Mina Königsberg
- 1 División de Ciencias Biológicas y de la Salud, Department Ciencias de la Salud, Universidad Autónoma Metropolitana Iztapalapa , Iztapalapa, México
| |
Collapse
|
46
|
Peng S, Xu LW, Che XY, Xiao QQ, Pu J, Shao Q, He B. Atorvastatin Inhibits Inflammatory Response, Attenuates Lipid Deposition, and Improves the Stability of Vulnerable Atherosclerotic Plaques by Modulating Autophagy. Front Pharmacol 2018; 9:438. [PMID: 29773990 PMCID: PMC5943597 DOI: 10.3389/fphar.2018.00438] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/13/2018] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis is a chronic disease comprising intima malfunction and arterial inflammation. Recent studies have demonstrated that autophagy could inhibit inflammatory response in atherosclerosis and exert subsequent atheroprotective effects. Our previous study also demonstrated the role of autophagy in the inhibition of inflammation by atorvastatin in vitro. Therefore, in the present study, we aimed to determine whether atorvastatin could upregulate autophagy to inhibit inflammatory cytokines secretion, lipid accumulation, and improve vulnerable plaque stability, both in vitro and in vivo. First, we established a vulnerable atherosclerotic plaque mouse model through partial ligation of left common carotid artery and left renal artery to explore the effect of atorvastatin on vulnerable plaques. The results showed that atorvastatin could enhance the stability of vulnerable atherosclerotic plaques and reduce the lesion area in the aorta. Atorvastatin could also inhibit NLRP3 inflammasome activation and inflammatory cytokines, such as IL-1β, TNF-α, and IL-18 secretion in vivo. Atorvastatin treatment upregulated the expression of autophagy-related protein microtubule-associated protein light chain (LC3B) and downregulated the expression of SQSTM1/p62, which suggested that autophagy was activated in vulnerable plaques. Transmission electron microscopy further demonstrated the atorvastatin-induced increase in autophagy activity in vulnerable atherosclerotic plaques. We employed oxidized low-density lipoprotein (ox-LDL) to stimulate RAW264.7 cells with atorvastatin, which showed that atorvastatin could attenuate lipid deposition, ameliorate inflammation, inhibit NLRP3 inflammasome activation, and enhance autophagy in vitro. All these beneficial effects were abolished by 3-methyladenine treatment, an autophagy inhibitor. Atorvastatin also significantly inhibited the phosphorylation of mTOR, which strongly suggested the involvement of the mTOR pathway. Our study proposed a new role for atorvastatin as an autophagy inducer to exert anti-inflammatory and atheroprotective effects, to stabilize vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Shi Peng
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long-Wei Xu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Yu Che
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Qing Xiao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Shao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ben He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Liu K, Fang C, Shen Y, Liu Z, Zhang M, Ma B, Pang X. Hypoxia-inducible factor 1a induces phenotype switch of human aortic vascular smooth muscle cell through PI3K/AKT/AEG-1 signaling. Oncotarget 2018; 8:33343-33352. [PMID: 28415624 PMCID: PMC5464872 DOI: 10.18632/oncotarget.16448] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/09/2017] [Indexed: 12/23/2022] Open
Abstract
To date, hypoxia-inducible factor 1a (HIF-1a) and astrocyte elevated gene-1 (AEG-1) have been involved in the proliferation, migration and morphological changes of vascular smooth muscle cells. However, the potential relationship of HIF-1a-AEG-1 pathway in human aortic smooth muscle cell (HASMC) has not been reported. In the present study, in-vitro assays were utilized to explore the potential impact of HIF-1a-AEG-1 signaling on HASMC phenotype. Here, we found that HIF-1a expression was up-regulated in the media of thoracic aortic dissection tissues as compared with normal aortic tissues, and was associated with increased apoptotic SMCs and decreased AEG-1 expression. Mechanically, hypoxia promoted the expression of HIF-1a by PI3K-AKT pathway in HASMCs; HIF-1a further suppressed the expressions of AEG-1, a-SMA and SM22a, and promoted osteopontin (OPN) expression. Functionally, HIF-1a inhibited the proliferation and migration of HASMCs. However, si-HIF-1a or Akt inhibitor abrogated HIF-1a-mediated related expressions and biological effects above. In conclusion, HIF-1a induces HASMC phenotype switch, and closely related to PI3K/AKT and AEG-1 signaling, which may provide new avenues for the prevention and treatment of aortic dissection diseases.
Collapse
Affiliation(s)
- Kai Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Changcun Fang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Yuwen Shen
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Zhengqin Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Min Zhang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Bingbing Ma
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
48
|
de Lucia C, Murphy T, Thuret S. Emerging Molecular Pathways Governing Dietary Regulation of Neural Stem Cells during Aging. Front Physiol 2017; 8:17. [PMID: 28194114 PMCID: PMC5276856 DOI: 10.3389/fphys.2017.00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022] Open
Abstract
Aging alters cellular and molecular processes, including those of stem cells biology. In particular, changes in neural stem cells (NSCs) are linked to cognitive decline associated with aging. Recently, the systemic environment has been shown to alter both NSCs regulation and age-related cognitive decline. Interestingly, a well-documented and naturally occurring way of altering the composition of the systemic environment is through diet and nutrition. Furthermore, it is well established that the presence of specific nutrients as well as the overall increase or reduction of calorie intake can modulate conserved molecular pathways and respectively reduce or increase lifespan. In this review, we examine these pathways in relation to their function on NSCs and cognitive aging. We highlight the importance of the Sirtuin, mTOR and Insulin/Insulin like growth factor-1 pathways as well as the significant role played by epigenetics in the dietary regulation of NSCs and the need for further research to exploit nutrition as a mode of intervention to regulate NSCs aging.
Collapse
Affiliation(s)
| | | | - Sandrine Thuret
- Neurogenesis and Mental Health Laboratory, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondon, UK
| |
Collapse
|
49
|
Function, Role, and Clinical Application of MicroRNAs in Vascular Aging. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6021394. [PMID: 28097140 PMCID: PMC5209603 DOI: 10.1155/2016/6021394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/07/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
Vascular aging, a specific type of organic aging, is related to age-dependent changes in the vasculature, including atherosclerotic plaques, arterial stiffness, fibrosis, and increased intimal thickening. Vascular aging could influence the threshold, process, and severity of various cardiovascular diseases, thus making it one of the most important risk factors in the high mortality of cardiovascular diseases. As endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are the main cell biological basis of these pathology changes of the vasculature, the structure and function of ECs and VSMCs play a key role in vascular aging. MicroRNAs (miRNAs), small noncoding RNAs, have been shown to regulate the expression of multiple messenger RNAs (mRNAs) posttranscriptionally, contributing to many crucial aspects of cell biology. Recently, miRNAs with functions associated with aging or aging-related diseases have been studied. In this review, we will summarize the reported role of miRNAs in the process of vascular aging with special emphasis on EC and VSMC functions. In addition, the potential application of miRNAs to clinical practice for the diagnosis and treatment of cardiovascular diseases will also be discussed.
Collapse
|