1
|
Shang C, Shi S, Jiang Q, Wang X, Yao X, Li W, Song G, Li Y, Sun Y, Hu J, Zhang C, Zhu Y, Liu Z, Gu C, Liu Y, Shi W, Zhao Z, Li X. Clinical manifestations and pathogenicity of Clade IIb monkeypox virus in rabbits. Emerg Microbes Infect 2025; 14:2465309. [PMID: 39945750 PMCID: PMC11849023 DOI: 10.1080/22221751.2025.2465309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
The 2022 monkeypox outbreak involved rapid global dissemination, prompting research into animal models for the monkeypox virus (MPXV), including non-human primates and mice. However, studies utilizing rabbits as models remain limited. In this study, we established three rabbit models using the current epidemic MPXV strain. Following intravenous MPXV injection, adult rabbits exhibited characteristic clinical manifestations, including widespread rash and fever, with viral replication in the skin, lungs, and testes, resulting in severe pathological damage by 6 days post-infection (dpi). Intradermal injection of MPXV into the dorsal skin of adult rabbits produced red lesions with central necrosis and hemorrhage accompanied by dense inflammatory infiltrates. Abundant viral particles were observed in epidermal cells at 6 dpi. Additionally, a fatal MPXV model was developed in 10-day-old rabbits using intranasal virus administration. These young rabbits exhibited lethargy and diarrhea beginning at 2 dpi, significant weight loss, and a 50% mortality rate by 15 dpi. Viral dissemination was detected in multiple organs, leading to extensive multi-organ damage. This study highlights the utility of rabbit models for MPXV, displaying typical clinical features and pathogenic mechanisms.
Collapse
Affiliation(s)
- Chao Shang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Shaowen Shi
- Hebei Agricultural University, Baoding, People’s Republic of China
| | - Qiwei Jiang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Xiaohan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, People’s Republic of China
| | - Wanzi Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, People’s Republic of China
| | - Gaojie Song
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, People’s Republic of China
| | - Yiquan Li
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yongyang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Jinglei Hu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Cuiling Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yilong Zhu
- Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Zirui Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Chaode Gu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Yan Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Wanyu Shi
- Hebei Agricultural University, Baoding, People’s Republic of China
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Caldrer S, Accordini S, Donini A, Gianesini N, Matucci A, Mori A, Mazzi C, Cordioli M, Tacconelli E, Ronzoni N, Angheben A, Piubelli C, Gobbi F, Castilletti C. Early Diagnosis and Monitoring of Adaptive Immune Response in a Cohort of Mild Mpox Patients During the 2022 Wave. Microorganisms 2025; 13:355. [PMID: 40005722 PMCID: PMC11858686 DOI: 10.3390/microorganisms13020355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
Our study wanted to describe the kinetics of serological and adaptive immune responses in mpox patients. METHODS Fourteen patients with laboratory-confirmed mpox were tested at different time points after the symptom onset. An immunofluorescence assay was performed to evaluate the seroconversion kinetics of specific IgA, IgM, and IgG. Moreover, the characterization of the adaptive immunological profile of T- and B-cells was performed. RESULTS The antibody kinetics revealed the faster and more effective seroconversion of specific IgA than IgM. Moreover, we detected an increase in Active memory B cells and CD8+ cells in the early phases of infection, and a reduction in CD4+ T-cells in the mpox patients with respect to the controls and found the presence of higher levels of Treg cells in the HIV+ patients in the early phase of infection. CONCLUSION Our data highlight the relevance of specific IgA testing early after the symptom onset, suggesting a possible role as a marker in early diagnosis, especially in close contact subjects. Furthermore, the different maturation states of effector cells in HIV+ patients, together with high Treg levels, may lead us to better understand the role of MPXV-HIV co-infection and identify potential cellular markers to monitor the excessive immune activation involved in mpox disease progression.
Collapse
Affiliation(s)
- Sara Caldrer
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Accordini
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Annalisa Donini
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Natasha Gianesini
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Andrea Matucci
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Antonio Mori
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Maddalena Cordioli
- Division of Infectious Diseases, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Niccolò Ronzoni
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Andrea Angheben
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Chiara Piubelli
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Federico Gobbi
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| | - Concetta Castilletti
- IRCCS Sacro Cuore Don Calabria Hospital, Via Don A. Sempreboni, 5, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
3
|
Liu Y, Liu J, Chen Y, Zhang G, Wang Q, Li Y. Integrated Microneedles and Hydrogel Biosensor Platform: Toward a Diagnostic Device for Collection and Dual-Mode Sensing of Monkeypox Virus A29 Protein. Anal Chem 2025; 97:1539-1545. [PMID: 39804107 DOI: 10.1021/acs.analchem.4c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The outbreak of the monkeypox epidemic underscores the importance of developing a rapid and sensitive virus detection technique. Microneedles (MNs) offer minimally invasive sampling capabilities, providing a solution for the development of integrated extraction and diagnostic portable devices. Here, we report an integrated MNs and hydrogel biosensor (IMHB) platform, composed of an electronic device, an MN patch, and a hydrogel patch. The IMHB allowed for specific extraction of monkeypox virus (MPXV) directly from lesional skin and virus detection in both electrochemical and colorimetric modes. A bifunctional signal probe 3,3',5,5'-tetramethylbenzidine (TMB) was loaded in a hydrogel patch, providing measurable signals for dual-mode sensing. Additionally, a control area was designed in this platform to collect blank samples from normal skin, enabling ratio analysis and quality control functions. This dual-mode ratiometric sensing strategy exhibited a wide range of 10-1000 ng/mL for MPXV A29 protein, with detection limits of 0.1632 and 0.3017 ng/mL for electrochemical and colorimetric assay, respectively. The developed IMHB platform provides a novel way for rapid on-site determination of MPXV, demonstrating the potential for quick intervention in the early stages of infectious diseases.
Collapse
Affiliation(s)
- Yujian Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resources for Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832000, China
| | - Yequn Chen
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Guanghui Zhang
- Department of Laboratory Medicine, Shenzhen Hengsheng Hospital, Shenzhen 518102, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
- Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Yingchun Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Naga NG, Nawar EA, Mobarak AA, Faramawy AG, Al-Kordy HMH. Monkeypox: a re-emergent virus with global health implications - a comprehensive review. Trop Dis Travel Med Vaccines 2025; 11:2. [PMID: 39810237 PMCID: PMC11734370 DOI: 10.1186/s40794-024-00237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
Monkeypox virus (MPXV) is an enclosed, double-stranded DNA virus from the Orthopoxvirus genus, which also contains variola, vaccinia, and cowpox. MPXV, which was once confined to West and Central Africa, has recently had a rebound, spreading beyond its original range since 2017. The virus is distinguished by its unique morphology, which includes an oval or brick-shaped structure and a complex lipid and protein makeup. The current multi-country outbreak designated a public health emergency in 2022, has highlighted MPXV's shifting epidemiology and ability to spread rapidly over the globe. 'No one is safe until everyone is safe' is a slogan we often heard during the COVID-19 pandemic, which is now also required for the growing global and regional mpox outbreaks. The epidemic is divided into two clades: Clade I and Clade II, which have distinct pathogenic characteristics. Diagnostic approaches have developed with advances in molecular techniques, yet problems persist in resource-constrained situations. This overview summarizes the virus's history, epidemiology, morphology, and clinical characteristics, offering insights into its recent comeback and current global response efforts.
Collapse
Affiliation(s)
- Nourhan G Naga
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Enas A Nawar
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - A'laa A Mobarak
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Aya G Faramawy
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Hend M H Al-Kordy
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Egypt.
| |
Collapse
|
5
|
Grajales DB, Kar S. Exploring Monkeypox: prospects for therapeutics through computational-aided drug discovery. Mol Divers 2024; 28:3497-3521. [PMID: 38079063 DOI: 10.1007/s11030-023-10767-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2024]
Abstract
Monkeypox virus (MPXV) has emerged as a significant public health concern due to its potential for human transmission and its severe clinical manifestations. This review synthesizes findings from peer-reviewed articles spanning the last two decades, shedding light on diverse aspects of MPXV research. The exploration commences with an analysis of transmission dynamics, including zoonotic and human-to-human transmission, and potential reservoir hosts. Detailed insights into viral replication mechanisms illuminate its influence on disease progression and pathogenicity. Understanding the genomic and virion structure of MPXV is pivotal for targeted interventions. Genomic characteristics contributing to virulence are examined, alongside recent advancements in virion structure elucidation through cutting-edge imaging techniques. Emphasizing combat strategies, the review lists potential protein targets within the MPXV lifecycle for computer-aided drug design (CADD). The role of protein-ligand interactions and molecular docking simulations in identifying potential drug candidates is highlighted. Despite the absence of approved MPXV medications, the review outlines updates on ongoing small molecules and vaccine development efforts, spanning traditional and innovative platforms. The evolving landscape of computational drug research for MPXV is explored, encompassing advanced algorithms, machine learning, and high-performance computing. In conclusion, this review offers a holistic perspective on MPXV research by integrating insights spanning transmission dynamics to drug design. Equipping researchers with multifaceted understanding underscore the importance of innovative methodologies and interdisciplinary collaborations in addressing MPXV's challenges as research advances.
Collapse
Affiliation(s)
- Daniela Bermeo Grajales
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA.
| |
Collapse
|
6
|
Zhang S, Wang F, Peng Y, Gong X, Fan G, Lin Y, Yang L, Shen L, Niu S, Liu J, Yin Y, Yuan J, Lu H, Liu Y, Yang Y. Evolutionary trajectory and characteristics of Mpox virus in 2023 based on a large-scale genomic surveillance in Shenzhen, China. Nat Commun 2024; 15:7452. [PMID: 39198414 PMCID: PMC11358148 DOI: 10.1038/s41467-024-51737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
The global epidemic of Mpox virus (MPXV) continues, and a local outbreak has occurred in Shenzhen city since June 2023. Herein, the evolutionary trajectory and characteristics of MPXV in 2023 were analyzed using 92 MPXV sequences from the Shenzhen outbreak and the available genomes from GISAID and GenBank databases. Phylogenetic tracing of the 92 MPXVs suggests that MPXVs in Shenzhen may have multiple sources of importation, and two main transmission chains have been established. The combination of phylogenetic relationships, epidemiological features, and mutation characteristics supports the emergence of a new lineage C.1.1. Together with the B.1 lineage diverging from the A.1 lineage, C.1.1 lineage diverging from the C.1 lineage may serve as another significant evolutionary events of MPXV. Moreover, increasing apolipoprotein B mRNA-editing catalytic polypeptide-like 3 (APOBEC3) related mutations, higher rate of missense mutations, and less mutations in the non-coding regions have been shown during MPXV evolution. Host regulation proteins of MPXV have accumulated considerable amino acid mutations since the B.1 lineage, and a lineage-defining APOBEC3-related mutation that disrupts the N2L gene encoding a viral innate immune modulator has been identified in the C.1.1 lineage. In summary, our study provides compelling evidence for the ongoing evolution of MPXV with specific features.
Collapse
Affiliation(s)
- Shengjie Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yun Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Xiaohua Gong
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Guohao Fan
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yuanlong Lin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Liuqing Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Liang Shen
- Department of Central Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Shiyu Niu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jiexiang Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Yue Yin
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
- National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Hongzhou Lu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
- National Clinical Research Center for Infectious Disease, Shenzhen, China.
| |
Collapse
|
7
|
Wang Y, Li Y, Li M, Wang K, Xiong J, Wang T, Wang Y, Guo Y, Kong L, Li M. A Combined Transcriptomic and Proteomic Analysis of Monkeypox Virus A23 Protein on HEK293T Cells. Int J Mol Sci 2024; 25:8678. [PMID: 39201364 PMCID: PMC11354578 DOI: 10.3390/ijms25168678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Monkeypox virus (MPXV) is a cross-kingdom pathogen infecting both humans and wildlife, which poses a significant health risk to the public. Although MPXV attracts broad attention, there is a lack of adequate studies to elucidate pathogenic mechanisms associated with viral infections. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used to explore the transcriptional and metabolic responses of MPXV A23 protein to HEK293T cells. The protein-protein interactions and signaling pathways were conducted by GO and KEGG analyses. The localization of A23 protein in HEK293T cells was detected by immunofluorescence. A total of 648 differentially expressed genes (DEGs) were identified in cells by RNA-Seq, including 314 upregulated genes and 334 downregulated genes. Additionally, liquid chromatography-tandem mass spectrometry (LC-MS/MS) detected 115 cellular proteins that interact with the A23 proteins. Transcriptomic sequencing analysis revealed that transfection of MPXV A23 protein modulated genes primarily associated with cellular apoptosis and DNA damage repair. Proteomic analysis indicated that this protein primarily interacted with host ribosomal proteins and histones. Following the identification of the nuclear localization sequence RKKR within the A23 protein, a truncated mutant A23ΔRKKR was constructed to investigate the subcellular localization of A23 protein. The wild-type A23 protein exhibits a significantly higher nuclear-to-cytoplasmic ratio, exceeding 1.5, in contrast to the mutant A23ΔRKKR, which has a ratio of approximately 1. Immunofluorescence assays showed that the A23 protein was mainly localized in the nucleus. The integration of transcriptomics and proteomics analysis provides a comprehensive understanding of the interaction between MPXV A23 protein and the host. Our findings highlight the potential role of this enzyme in suppressing host antiviral immune responses and modulating host gene expression.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yihan Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Keyi Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Jiaqi Xiong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yu Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yunli Guo
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| | - Meifeng Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330000, China; (Y.W.); (Y.L.); (M.L.); (K.W.); (J.X.); (T.W.); (Y.W.); (Y.G.)
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Nanchang 330000, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330000, China
| |
Collapse
|
8
|
Araf Y, Nipa JF, Naher S, Maliha ST, Rahman H, Arafat KI, Munif MR, Uddin MJ, Jeba N, Saha S, Zhai J, Hasan SMN, Xue M, Hossain MG, Zheng C. Insights into the Transmission, Host Range, Genomics, Vaccination, and Current Epidemiology of the Monkeypox Virus. Vet Med Int 2024; 2024:8839830. [PMID: 38836166 PMCID: PMC11150048 DOI: 10.1155/2024/8839830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
This review delves into the historical context, current epidemiological landscape, genomics, and pathobiology of monkeypox virus (MPXV). Furthermore, it elucidates the present vaccination status and strategies to curb the spread of monkeypox. Monkeypox, caused by the Orthopoxvirus known as MPXV, is a zoonotic ailment. MPXV can be transmitted from person to person through respiratory droplets during prolonged face-to-face interactions. While many cases of monkeypox are self-limiting, vulnerable groups such as young children, pregnant women, and immunocompromised individuals may experience severe manifestations. Diagnosis predominantly relies on clinical presentations, complemented by laboratory techniques like RT-PCR. Although treatment is often not required, severe cases necessitate antiviral medications like tecovirimat, cidofovir, and brincidofovir. Vaccination, particularly using the smallpox vaccine, has proven instrumental in outbreak control, exhibiting an efficacy of at least 85% against mpox as evidenced by data from Africa. Mitigating transmission requires measures like wearing surgical masks, adequately covering skin lesions, and avoiding handling wild animals.
Collapse
Affiliation(s)
- Yusha Araf
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jannatul Ferdous Nipa
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka 1212, Bangladesh
| | - Sabekun Naher
- Department of Microbiology, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Sumaiya Tasnim Maliha
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Faculty of Life Sciences, Gopalganj, Bangladesh
| | - Kazi Ifthi Arafat
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Faculty of Life Sciences, Gopalganj, Bangladesh
| | - Mohammad Raguib Munif
- Department of Surgery and Obstetrics, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Nurejunnati Jeba
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - S M Nazmul Hasan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan 450001, China
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Chunfu Zheng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Maqbool KU, Akhtar MT, Ayub S, Simran FNU, Malik J, Malik M, Zubair R, Mehmoodi A. Role of vaccination in patients with human monkeypox virus and its cardiovascular manifestations. Ann Med Surg (Lond) 2024; 86:1506-1516. [PMID: 38463133 PMCID: PMC10923390 DOI: 10.1097/ms9.0000000000001674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/20/2023] [Indexed: 03/12/2024] Open
Abstract
Human monkeypox, caused by the monkeypox virus (MPXV), is an emerging infectious disease with the potential for human-to-human transmission and diverse clinical presentations. While generally considered milder than smallpox, it can lead to severe cardiovascular complications. The virus primarily spreads through contact with infected animals or through human-to-human transmission. Cardiovascular involvement in human monkeypox is rare but has been associated with myocarditis, pericarditis, arrhythmias, and even fulminant myocardial infarction. Vaccination plays a crucial role in preventing and controlling monkeypox, but the eradication of smallpox has left global populations vulnerable. This review explores the cardiovascular manifestations of human monkeypox, the role of vaccination in disease prevention, and the importance of continued research and development of effective vaccines to protect against this emerging infectious threat. The global impact of monkeypox outbreaks, particularly on vulnerable populations, further highlights the importance of understanding and addressing this disease.
Collapse
Affiliation(s)
| | | | - Shayan Ayub
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - FNU Simran
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Maria Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Rafia Zubair
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group
| | - Amin Mehmoodi
- Department of Medicine, Ibn e Seena Hospital, Kabul, Afghanistan
| |
Collapse
|
10
|
Sarra H, Salim B, Hocine A. Modeling the Antiviral Activity of Ginkgo biloba Polyphenols against Variola: In Silico Exploration of Inhibitory Candidates for VarTMPK and HssTMPK Enzymes. Curr Drug Discov Technol 2024; 21:e101023221938. [PMID: 37861017 DOI: 10.2174/0115701638261541230922095853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The aim of this study is to use modeling methods to estimate the antiviral activity of natural molecules extracted from Ginkgo biloba for the treatment of variola which is a zoonotic disease posing a growing threat to human survival. The recent spread of variola in nonendemic countries and the possibility of its use as a bioterrorism weapon have made it a global threat once again. Therefore, the search for new antiviral therapies with reduced side effects is necessary. METHODS In this study, we examined the interactions between polyphenolic compounds from Ginkgo biloba, a plant known for its antiviral activity, and two enzymes involved in variola treatment, VarTMPK and HssTMPK, using molecular docking. RESULTS The obtained docking scores showed that among the 152 selected polyphenolic compounds; many ligands had high inhibitory potential according to the energy affinity. By considering Lipinski's rules, we found that Liquiritin and Olivil molecules are the best candidates to be developed into drugs that inhibit VarTMPK because of their high obtained scores compared to reference ligands, and zero violations of Lipinski's rules. We also found that ginkgolic acids have good affinities with HssTMPK and acceptable physicochemical properties to be developed into drugs administered orally. CONCLUSION Based on the obtained scores and Lipinski's rules, Liquiritin, Olivil, and ginkgolic acids molecules showed interesting results for both studied enzymes, indicating the existence of promising and moderate activity of these polyphenols for the treatment of variola and for possible multi-targeting. Liquiritin has been shown to exhibit anti-inflammatory effects on various inflammation- related diseases such as skin injury, hepatic inflammatory injury, and rheumatoid arthritis. Olivil has been shown to have antioxidant activity. Olivil derivatives have also been studied for their potential use as anticancer agents. Ginkgolic acids have been shown to have antimicrobial and antifungal properties. However, ginkgolic acids are also known to cause allergic reactions in some people. Therefore, future studies should consider these results and explore the potential of these compounds as antiviral agents. Further experimental studies in-vitro and in-vivo are required to validate and scale up these findings.
Collapse
Affiliation(s)
- Hamdani Sarra
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
| | - Bouchentouf Salim
- Laboratory of Natural and Bioactive Substances (LASNABIO), Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
- Department of Process Engineering, Faculty of Technology, Doctor Tahar Moulay University of Saida, Algeria, Saïda 20000, BP 138 cité EN-NASR, Algeria
| | - Allali Hocine
- Department of Chemistry, Faculty of Sciences, Abou Bekr Belkaïd University, Tlemcen 13000, P.O. Box 119, Algeria
| |
Collapse
|
11
|
Hudu SA, Alshrari AS, Al Qtaitat A, Imran M. VP37 Protein Inhibitors for Mpox Treatment: Highlights on Recent Advances, Patent Literature, and Future Directions. Biomedicines 2023; 11:biomedicines11041106. [PMID: 37189724 DOI: 10.3390/biomedicines11041106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
Monkeypox disease (Mpox) has threatened humankind worldwide since mid-2022. The Mpox virus (MpoxV) is an example of Orthopoxviruses (OPVs), which share similar genomic structures. A few treatments and vaccines are available for Mpox. OPV-specific VP37 protein (VP37P) is a target for developing drugs against Mpox and other OPV-induced infections such as smallpox. This review spotlights the existing and prospective VP37P inhibitors (VP37PIs) for Mpox. The non-patent literature was collected from PubMed, and the patent literature was gathered from free patent databases. Very little work has been carried out on developing VP37PIs. One VP37PI (tecovirimat) has already been approved in Europe to treat Mpox, while another drug, NIOCH-14, is under clinical trial. Developing tecovirimat/NIOCH-14-based combination therapies with clinically used drugs demonstrating activity against Mpox or other OPV infections (mitoxantrone, ofloxacin, enrofloxacin, novobiocin, cidofovir, brincidofovir, idoxuridine, trifluridine, vidarabine, fialuridine, adefovir, imatinib, and rifampicin), immunity boosters (vitamin C, zinc, thymoquinone, quercetin, ginseng, etc.), and vaccines may appear a promising strategy to fight against Mpox and other OPV infections. Drug repurposing is also a good approach for identifying clinically useful VP37PIs. The dearth in the discovery process of VP37PIs makes it an interesting area for further research. The development of the tecovirimat/NIOCH-14-based hybrid molecules with certain chemotherapeutic agents looks fruitful and can be explored to obtain new VP37PI. It would be interesting and challenging to develop an ideal VP37PI concerning its specificity, safety, and efficacy.
Collapse
Affiliation(s)
- Shuaibu A Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ahmed S Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Aiman Al Qtaitat
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Karak 61710, Jordan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
12
|
Human Monkeypox Experience in a Tertiary Level Hospital in Milan, Italy, between May and October 2022: Epidemiological Features and Clinical Characteristics. Viruses 2023; 15:v15030667. [PMID: 36992376 PMCID: PMC10051371 DOI: 10.3390/v15030667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Background: Monkeypox virus (mpxv) started to spread to Europe and North America at the beginning of the current outbreak in May 2022, and the World Health Organization (WHO) declared Human Monkeypox (mpox) as a public health emergency of international concern (PHEIC) in July 2022. The aim of this observational analysis is to describe demographical data, symptoms presentation and clinical course till outcome of individuals diagnosed with mpox, between May and October 2022, at our open-access Sexual Health Clinic in IRCCS San Raffaele Hospital in Milan, Italy. Methods: Among people who accessed our Sexual Health Clinic, we considered, as suspected diagnosis of mpox, individuals with consistent symptoms and epidemiological criteria. Following the physical examination, oropharyngeal, anal, genital and cutaneous swabs, plus plasma, urine and seminal fluid were collected as biological materials to detect mpxv DNA. We also performed a screening for sexually transmitted infections (STIs). Results: Overall, 140 individuals with mpox were included in this study. Median age was 37 (interquartile, IQR 33, 43) years old. Males were 137 (98%) and men who have sex with men (MSM) were 134 (96%). As risk factors, we detected travels abroad in 35 (25%) individuals and close contact with mpox cases in 49 (35%). There were 66 (47%) people living with HIV (PLWH). Most frequent symptoms were fever (59%), lymphadenopathy (57%), cutaneous (77%), genital (42%), anal (34%) and oral (26%) lesions, proctitis (39%), sore throat (22%) and generalized rash (5%). At mpox diagnosis, we also observed N. gonorrhoeae in 18 (13%) cases, syphilis in 14 (10%) and C. trachomatis in 12 (9%). Two (1%) people received a concomitant diagnosis of HIV infection. We attended to 21 (15%) complications, with nine (6%) cases of hospitalization including six (IQR 3,7) median hospital days. Forty-five (32%) patients were treated with non-steroidal anti-inflammatory drugs (NSAIDs), 37 (26%) with antibiotics and eight (6%) with antiviral drugs. Conclusions: Similarly to other international cohorts, sexual transmission was most frequently present, and concomitant STIs were common. Symptoms were heterogenous, self-resolving and responsive to therapy. Hospitalization was necessary in few patients. There is uncertainty about the future development of mpox and further studies (e.g., potential disease reservoirs, other possible means of transmission, predictors of severe disease) are still needed.
Collapse
|
13
|
Levitt CV, Tran QK, Hraky H, Mazer-Amirshahi M, Pourmand A. Emergency department approach to monkeypox. World J Emerg Med 2023; 14:341-348. [PMID: 37908793 PMCID: PMC10613789 DOI: 10.5847/wjem.j.1920-8642.2023.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/10/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Monkeypox (mpox) is a viral infection that is primarily endemic to countries in Africa, but large outbreaks outside of Africa have been historically rare. In June 2022, mpox began to spread across Europe and North America, causing the World Health Organization (WHO) to declare mpox a public health emergency of international concern. This article aims to review clinical presentation, diagnosis, and prevention and treatment strategies on mpox, providing the basic knowledge for prevention and control for emergency providers. METHODS We conducted a review of the literature using PubMed and SCOPUS databases from their beginnings to the end of July 2023. The inclusion criteria were studies on adult patients focusing on emerging infections that described an approach to a public health emergency of international concern, systematic reviews, clinical guidelines, and retrospective studies. Studies that were not published in English were excluded. RESULTS We included 50 studies in this review. The initial symptoms of mpox are non-specific: fever, malaise, myalgias, and sore throat. Rash, a common presentation of mpox, usually occurs 2-4 weeks after the prodrome, but the presence of lymphadenopathy may distinguish mpox from other infections from the Poxviridae family. Life-threatening complications such as pneumonia, sepsis, encephalitis, myocarditis, and death can occur. There are documented co-occurrences of human immunodeficiency virus (HIV) and other sexually transmitted infections that can worsen morbidity. CONCLUSION The initial presentation of mpox is non-specific. The preferred treatment included tecovirimat in patients with severe illness or at high risk of developing severe disease and vaccination with two doses of JYNNEOS. However, careful history and physical examination can raise the clinicians' suspicion and point toward a prompt diagnosis. There are different modalities to prevent and treat mpox infection.
Collapse
Affiliation(s)
- Catherine V. Levitt
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington DC 20037, USA
| | - Quincy K. Tran
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore 21201, USA
- Program in Trauma, The R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore 21201, USA
| | - Hashem Hraky
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington DC 20037, USA
| | - Maryann Mazer-Amirshahi
- Department of Emergency Medicine, MedStar Washington Hospital Center and Georgetown University School of Medicine, Washington DC 20037, USA
| | - Ali Pourmand
- Department of Emergency Medicine, George Washington University School of Medicine and Health Sciences, Washington DC 20037, USA
| |
Collapse
|
14
|
Gujjar P, Chaudhay R, Verma I, Bansal N, Gupta S, Bansal S. Recent Advances in the Prevention and Management of Monkeypox Viral Infection in Humans. Curr Drug Targets 2023; 24:1032-1045. [PMID: 37842888 DOI: 10.2174/0113894501258154231008194028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND There have been several neglected infectious pathogens that have reemerged in the last few decades, including the monkeypox virus, a virus from the orthopoxviral genus that causes monkeypox and is transmitted between animals and humans. The human monkeypox outbreak has spread to several different countries. Because of the outbreak's unusually high case count and lack of connections to endemic nations, there are concerns that the monkeypox transmission pattern may have changed. OBJECTIVE The current study aimed to provide recent advancements in the prevention and management of the monkeypox virus in humans. METHODOLOGY We have highlighted recent advancements in the prevention and management of the monkeypox virus in humans in this work. RESULTS For the treatment and prevention of monkeypox, new medications and vaccinations are being used, and more study is needed to understand the epidemiology, biology, and ecology of the virus in endemic regions and stop future global outbreaks. Vaccines available in the market for the treatment of viruses are JYNEOS and ACAM2000. Some of the antiviral drugs, such as tecovirimat, brincidofovir, cidofovir, trifluridine, and vaccinia immune globulin, are used for the treatment of the monkeypox virus. Some of the vaccines, such as NIOCH-14, Cidofovir, CMX-001, and ST-246, are currently in clinical trials. CONCLUSION We have, herein, covered features of monkeypox viral biology that are important for risk assessment and getting ready for an outbreak of the monkeypox virus, with a focus on recent advances in knowledge of the virus's host range, evolutionary potential, and potential targets for neutralization.
Collapse
Affiliation(s)
- Preeti Gujjar
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Rishabh Chaudhay
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Inderjeet Verma
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|