1
|
Jie Z, Jing L, Jie C, Zhijie Z, Liwen D, Zhijun H, Jun Z, Linghui Z, Jianping J. Narirutin attenuates LPS-induced neuroinflammatory responses in both microglial cells and wild-type mice. Int Immunopharmacol 2025; 159:114954. [PMID: 40424653 DOI: 10.1016/j.intimp.2025.114954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/12/2025] [Accepted: 05/21/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Microglia-induced neuroinflammation plays a key role in the etiology and progression of neurodegenerative diseases. Narirutin, a flavanone glycoside naturally present in citrus fruits, demonstrates anti-oxidant and anti-inflammatory properties. This study aimed to investigate the effects and underlying mechanisms of narirutin in inhibiting microglia-mediated neuroinflammation. METHODS The neuroprotective and anti-neuroinflammatory properties of narirutin were evaluated using both lipopolysaccharide (LPS)-stimulated BV-2 cells and mouse models. Real-time quantitative PCR, western blot analysis (WB), enzyme-linked immunosorbent assay, immunofluorescence staining, and flow cytometry were performed to assess the effects of narirutin on LPS-induced neuroinflammation. Transcriptomic analysis was conducted to identify narirutin-regulated differentially expressed genes in LPS-activated BV-2 cells. In addition, behavioral assessments comprising the open field test, forced swim test, and tail suspension test were performed to evaluate the impact of narirutin on LPS-induced sickness behavior. Neuroinflammation was assessed using WB and immunohistochemistry. Oxidative stress levels were quantified by measuring superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration. RESULTS Narirutin demonstrated dose-dependent inhibition of LPS-induced pro-inflammatory cytokine production. This anti-inflammatory effect was mediated through suppression of the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Behavioral assessments revealed that narirutin administration significantly ameliorated LPS-induced sickness behaviors in the mouse model. Furthermore, narirutin administration suppressed microglial activation, enhanced superoxide dismutase (SOD) activity, and reduced malondialdehyde (MDA) levels in the brain tissues of treated mice. CONCLUSION Our results demonstrate that narirutin significantly downregulates LPS-induced neuroinflammatory responses both in vitro and in vivo, suggesting its potential as a therapeutic agent for neuroinflammatory disorders.
Collapse
Affiliation(s)
- Zhao Jie
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Lu Jing
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Chen Jie
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China; College of pharmaceutical science, Zhejiang University of Technology
| | - Zhang Zhijie
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Dong Liwen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - He Zhijun
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhang Jun
- Hangzhou Lin'an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, 311300, China
| | - Zeng Linghui
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Jiang Jianping
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China; Hangzhou Lin'an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Cai Y, Wu JC, Huang Y, Yu XF, Liu FH, Chen ZW, Gao DP. Impaired cognitive function and altered dendritic morphology of hippocampal neurons in a mouse model of fetal alcohol spectrum disorder. Behav Brain Res 2025; 490:115633. [PMID: 40345553 DOI: 10.1016/j.bbr.2025.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025]
Abstract
Prenatal ethanol exposure is a leading preventable cause of neurodevelopmental disability, clinically categorized under fetal alcohol spectrum disorders (FASD). This study explores how developmental alcohol exposure affects the dendritic morphology of hippocampal pyramidal neurons, focusing on the actin cytoskeleton's dynamics essential for neuronal structure and synaptic function. Within this context, we hypothesized that developmental alcohol exposure disrupts actin cytoskeleton dynamics, leading to cognitive deficits and dendritic remodeling in the hippocampus. Neonatal mice (C57BL/6 J) were administered ethanol (5.0 g/kg) intraperitoneally from postnatal day 2-8, establishing a third trimester-equivalent alcohol exposure FASD model. At postnatal day 28, cognitive performance was evaluated using novel location recognition (NLR), novel object recognition (NOR), and the Morris water maze (MWM). Golgi staining assessed dendritic morphology in the hippocampal CA1 region, and the ratio of polymerized (F-actin) to globular actin (G-actin) was measured using a biochemical assay. The results revealed that developmental alcohol exposure significantly impaired recognition and spatial memory, as evidenced by decreased performances in the NOR and MWM tests across both sexes. Golgi staining revealed reduced dendritic arborization complexity and spine density in the CA1 region of the hippocampal pyramidal neurons of both male and female juvenile mice. Biochemical analyses further revealed decresed hipocampal F-actin/G-actin ratios and decreased levels of polymerized F-actin in both sexes. These findings underscore the critical role of cytoskeletal integrity in cognitive development and highlight potential targets for therapeutic intervention in FASD.
Collapse
Affiliation(s)
- Yu Cai
- School of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd., Ningbo, Zhejiang 315500, PR China
| | - Jia-Chun Wu
- School of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd., Ningbo, Zhejiang 315500, PR China
| | - Ying Huang
- School of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd., Ningbo, Zhejiang 315500, PR China
| | - Xue-Feng Yu
- School of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd., Ningbo, Zhejiang 315500, PR China
| | - Fu-He Liu
- School of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd., Ningbo, Zhejiang 315500, PR China
| | - Zi-Wei Chen
- School of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd., Ningbo, Zhejiang 315500, PR China
| | - Da-Peng Gao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, 247 Renmin Rd., Ningbo, Zhejiang 315020, PR China.
| |
Collapse
|
3
|
Xie X, Zhang Y, He J. Effects of irisin on ovariectomy-induced depression, anxiety, and bodyweight growth in female mice. Peptides 2025; 184:171349. [PMID: 39818251 DOI: 10.1016/j.peptides.2025.171349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Hormone replacement therapy (HRT) for postmenopausal syndrome (PMS) carries high risks of undesirable side effects. This study explores irisin as a potential alternative to HRT and investigates the underlying mechanisms. Ovariectomized (OVX) female mice was used as an animal model. The experimental mice were divided into sham, OVX, OVX + irisin (1, 3 μg/kg), OVX+ estradiol (0.5 mg/kg), and OVX + irisin + compound C (AMPK inhibitor) groups. Results showed that OVX induced depression, anxiety, and bodyweight growth in female mice. These OVX-induced abnormalities were reversed by irisin treatment, while AMPK inhibitor abolished irisin's function, indicating that irisin's therapeutic effects on OVX mice were achieved by activating AMPK. Moreover, irisin could increase pAMPK levels and ameliorate the overexpression of NF-κB and its downstream factors including inflammatory factors (IL-1β, IL-6, and TNF-α) and neurotoxic mediators (COX-2 and iNOS) in the hippocampus, frontal cortex, and serum of the OVX mice. However, irisin did not affect hypothalamus pAMPK level or food intake. These findings indicate that irisin's therapeutic effects on depression and anxiety may be linked to its inhibition of inflammatory factors and neurotoxic mediators in the serum and brain, occurring through the AMPK/NF-κB pathway. Additionally, irisin's effect of reducing bodyweight may be associated with an increase in serum pAMPK level, rather than a direct impact on food intake. Further mechanistic exploration revealed that the beneficial effects of irisin, including both the attenuation of bodyweight gain and the improvement of neurological deficits, are attributed to the activation of αVβ5 receptors.
Collapse
Affiliation(s)
- Xupei Xie
- Department of Quality Management, Shaoxing Second Hospital, Shaoxing 312000, China.
| | - Yanling Zhang
- Department of Nephrology, Shaoxing Second Hospital, Shaoxing, 312000, China
| | - Jianping He
- Department of Quality Management, Shaoxing Second Hospital, Shaoxing 312000, China
| |
Collapse
|
4
|
Farhan M, Faisal M. The Potential Role of Polyphenol Supplementation in Preventing and Managing Depression: A Review of Current Research. Life (Basel) 2024; 14:1342. [PMID: 39459643 PMCID: PMC11509552 DOI: 10.3390/life14101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Depression is a common mental illness that affects 5% of the adult population globally. The most common symptoms of depression are low mood, lack of pleasure from different activities, poor concentration, and reduced energy levels for an extended period, and it affects the emotions, behaviors, and overall well-being of an individual. The complex pathophysiology of depression presents challenges for current therapeutic options involving a biopsychosocial treatment plan. These treatments may have a delayed onset, low remission and response rates, and undesirable side effects. Researchers in nutrition and food science are increasingly addressing depression, which is a significant public health concern due to the association of depression with the increased incidence of cardiovascular diseases and premature mortality. Polyphenols present in our diet may significantly impact the prevention and treatment of depression. The primary mechanisms include reducing inflammation and oxidative stress, regulating monoamine neurotransmitter levels, and modulating the microbiota-gut-brain axis and hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. This review summarizes recent advances in understanding the effects of dietary polyphenols on depression and explores the underlying mechanisms of these effects for the benefit of human health. It also highlights studies that are looking at clinical trials to help future researchers incorporate these substances into functional diets, nutritional supplements, or adjunctive therapy to prevent and treat depression.
Collapse
Affiliation(s)
- Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Mohd Faisal
- St. Michael’s Unit, Department of Psychiatry, Mercy University Hospital, Grenville Place, T12WE28 Cork, Ireland
- Tosnú Mental Health Centre, West Village, Ballincollig, P31N400 Cork, Ireland
| |
Collapse
|
5
|
Alizadeh A, Pourfallah-Taft Y, Khoshnazar M, Safdari A, Komari SV, Zanganeh M, Sami N, Valizadeh M, Faridzadeh A, Alijanzadeh D, Mazhari SA, Khademi R, Kheirandish A, Naziri M. Flavonoids against depression: a comprehensive review of literature. Front Pharmacol 2024; 15:1411168. [PMID: 39478958 PMCID: PMC11521854 DOI: 10.3389/fphar.2024.1411168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
Background Depression is a state of low mood and aversion to activity, which affects a person's thoughts, behavior, motivation, feelings, and sense of wellbeing. Pharmacologic therapies are still the best effective treatment of depression. Still, most antidepressant drugs have low efficacy and delayed onset of therapeutic action, have different side effects, and even exacerbate depression. Such conditions make it possible to look for alternatives. Consequently, we decided to summarize the impact of flavonoids on depression in this review. Methods We searched scientific databases such as SCOPUS, PubMed, and Google Scholar to find relevant studies until July 2022. Results A wide variety of natural components have been shown to alleviate depression, one of which is flavonoids. Due to the growing tendency to use natural antidepressant drugs, scientific studies are increasingly being conducted on flavonoids. This study aims to review the latest scientific researches that indicate the antidepressant potential of flavonoids. Various mechanisms include neurotransmitter system modulation and dopaminergic, noradrenergic, and serotonergic pathways regulation in the central nervous system. Different compounds of flavonoids have antidepressant properties in vivo or in vitro experiments or clinical trials and can be used as alternative and complementary treatments for depression. In general, it was observed that there were no severe side effects. Conclusion Our study proves the antidepressant potential of flavonoids, and considering the limited side effects, they can be used as complementary medicine for depressed patients.
Collapse
Affiliation(s)
- Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Yeganeh Pourfallah-Taft
- Student’s Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khoshnazar
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Aysan Safdari
- Student Research Committee, Faculty of Nursing and Midwifery, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saba Vafadar Komari
- Student Research Committee, Faculty of Nursing and Midwifery, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mehrnaz Zanganeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Nafiseh Sami
- Student Research Committee, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Valizadeh
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Alijanzadeh
- Student’s Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Khademi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Kheirandish
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdyieh Naziri
- Students Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Meng X, Xia Y, Liu M, Ning Y, Li H, Liu L, Liu J. A deep-learning-based threshold-free method for automated analysis of rodent behavior in the forced swim test and tail suspension test. J Neurosci Methods 2024; 409:110212. [PMID: 38960331 DOI: 10.1016/j.jneumeth.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND The forced swim test (FST) and tail suspension test (TST) are widely used to assess depressive-like behaviors in animals. Immobility time is used as an important parameter in both FST and TST. Traditional methods for analyzing FST and TST rely on manually setting the threshold for immobility, which is time-consuming and subjective. NEW METHOD We proposed a threshold-free method for automated analysis of mice in these tests using a Dual-Stream Activity Analysis Network (DSAAN). Specifically, this network extracted spatial information of mice using a limited number of video frames and combined it with temporal information extracted from differential feature maps to determine the mouse's state. To do so, we developed the Mouse FSTST dataset, which consisted of annotated video recordings of FST and TST. RESULTS By using DSAAN methods, we identify immobility states at accuracies of 92.51 % and 88.70 % for the TST and FST, respectively. The predicted immobility time from DSAAN is nicely correlated with a manual score, which indicates the reliability of the proposed method. Importantly, the DSAAN achieved over 80 % accuracy for both FST and TST by utilizing only 94 annotated images, suggesting that even a very limited training dataset can yield good performance in our model. COMPARISON WITH EXISTING METHOD(S) Compared with DBscorer and EthoVision XT, our method exhibits the highest Pearson correlation coefficient with manual annotation results on the Mouse FSTST dataset. CONCLUSIONS We established a powerful tool for analyzing depressive-like behavior independent of threshold, which is capable of freeing users from time-consuming manual analysis.
Collapse
Affiliation(s)
- Xuechun Meng
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Yang Xia
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Mingqing Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Yuxing Ning
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Hongqi Li
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Ling Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, China.
| | - Ji Liu
- School of Information Science and Technology, University of Science and Technology of China, Hefei, China; Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, China; Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China; CAS Key Laboratory of Brain Function and Diseases, Life Science School, University of Science and Technology of China, China.
| |
Collapse
|
7
|
Mahawar S, Rakshit D, Patel I, Gore SK, Sen S, Ranjan OP, Mishra A. Fisetin-loaded chitosan nanoparticles ameliorate pilocarpine-induced temporal lobe epilepsy and associated neurobehavioral alterations in mice: Role of ROS/TNF-α-NLRP3 inflammasomes pathway. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 59:102752. [PMID: 38740358 DOI: 10.1016/j.nano.2024.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Fisetin has displayed potential as an anticonvulsant in preclinical studies yet lacks clinical validation. Challenges like low solubility and rapid metabolism may limit its efficacy. This study explores fisetin-loaded chitosan nanoparticles (NP) to address these issues. Using a murine model of pilocarpine-induced temporal lobe epilepsy, we evaluated the anticonvulsant and neuroprotective effects of fisetin NP. Pilocarpine-induced seizures and associated neurobehavioral deficits were assessed after administering subtherapeutic doses of free fisetin and fisetin NP. Changes in ROS, inflammatory cytokines, and NLRP3/IL-18 expression in different brain regions were estimated. The results demonstrate that the fisetin NP exerts protection against seizures and associated depression-like behavior and memory impairment. Furthermore, biochemical, and histological examinations supported behavioral findings suggesting attenuation of ROS/TNF-α-NLRP3 inflammasome pathway as a neuroprotective mechanism of fisetin NP. These findings highlight the improved pharmacodynamics of fisetin using fisetin NP against epilepsy, suggesting a promising therapeutic approach against epilepsy and associated behavioral deficits.
Collapse
Affiliation(s)
- Sagar Mahawar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Inklisan Patel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Swati Kailas Gore
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Srijita Sen
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India
| | - Om Prakash Ranjan
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India.
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari, Kamrup, Assam 781101, India.
| |
Collapse
|
8
|
Jiang Y, Tang X, Deng P, Jiang C, He Y, Hao D, Yang H. The Neuroprotective Role of Fisetin in Different Neurological Diseases: a Systematic Review. Mol Neurobiol 2023; 60:6383-6394. [PMID: 37453993 DOI: 10.1007/s12035-023-03469-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Neurological diseases place a substantial burden on public health and have a serious impact on the quality of life of patients. Despite the multifaceted pathological process involved in the occurrence and development of these neurological diseases, each disease has its own unique pathological characteristics and underlying molecular mechanisms which trigger their onset. Thus, it is unlikely to achieve effective treatment of neurological diseases by means of a single approach. To this end, we reason that it is pivotal to seek an efficient strategy that implements multitherapeutic targeting and addresses the multifaceted pathological process to overcome the complex issues related to neural dysfunction. In recent years, natural medicinal plant-derived monomers have received extensive attention as new neuroprotective agents for treatment of neurological disorders. Fisetin, a flavonoid, has emerged as a novel potential molecule that enhances neural protection and reverses cognitive abnormalities. The neuroprotective effects of fisetin are attributed to its multifaceted biological activity and multiple therapeutic mechanisms associated with different neurological disorders. In this review article, we summarize recent research progression regarding the pharmacological effects of fisetin in treating several neurological diseases and the potential mechanisms.
Collapse
Affiliation(s)
- Yizhen Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Xiangwen Tang
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Peng Deng
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Chao Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
9
|
Chang PR, Liou JW, Chen PY, Gao WY, Wu CL, Wu MJ, Yen JH. The Neuroprotective Effects of Flavonoid Fisetin against Corticosterone-Induced Cell Death through Modulation of ERK, p38, and PI3K/Akt/FOXO3a-Dependent Pathways in PC12 Cells. Pharmaceutics 2023; 15:2376. [PMID: 37896136 PMCID: PMC10610442 DOI: 10.3390/pharmaceutics15102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The overactive hypothalamic-pituitary-adrenal (HPA) axis is believed to trigger the overproduction of corticosterone, leading to neurotoxicity in the brain. Fisetin is a flavonoid commonly found in fruits and vegetables. It has been suggested to possess various biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study aims to explore the potential neuroprotective properties of fisetin against corticosterone-induced cell death and its underlying molecular mechanism in PC12 cells. Our results indicate that fisetin, at concentrations ranging from 5 to 40 μM, significantly protected PC12 cells against corticosterone-induced cell death. Fisetin effectively reduced the corticosterone-mediated generation of reactive oxygen species (ROS) in PC12 cells. Fisetin treatments also showed potential in inhibiting the corticosterone-induced apoptosis of PC12 cells. Moreover, inhibitors targeting MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK, and phosphatidylinositol 3-kinase (PI3K) were found to significantly block the increase in cell viability induced by fisetin in corticosterone-treated cells. Consistently, fisetin enhanced the phosphorylation levels of ERK, p38, Akt, and c-AMP response element-binding protein (CREB) in PC12 cells. Additionally, it was found that the diminished levels of p-CREB and p-ERK by corticosterone can be restored by fisetin treatment. Furthermore, the investigation of crosstalk between ERK and CREB revealed that p-CREB activation by fisetin occurred through the ERK-independent pathway. Moreover, we demonstrated that fisetin effectively counteracted the corticosterone-induced nuclear accumulation of FOXO3a, an apoptosis-triggering transcription factor, and concurrently promoted FOXO3a phosphorylation and its subsequent cytoplasmic localization through the PI3K/Akt pathway. In conclusion, our findings indicate that fisetin exerts its neuroprotective effect against corticosterone-induced cell death by modulating ERK, p38, and the PI3K/Akt/FOXO3a-dependent pathways in PC12 cells. Fisetin emerges as a promising phytochemical for neuroprotection.
Collapse
Affiliation(s)
- Pei-Rong Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan;
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan 717301, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; (P.-R.C.); (P.-Y.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan;
| |
Collapse
|
10
|
Gopnar VV, Rakshit D, Bandakinda M, Kulhari U, Sahu BD, Mishra A. Fisetin attenuates arsenic and fluoride subacute co-exposure induced neurotoxicity via regulating TNF-α mediated activation of NLRP3 inflammasome. Neurotoxicology 2023:S0161-813X(23)00086-4. [PMID: 37331635 DOI: 10.1016/j.neuro.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Groundwater is considered safe, however, the occurrence of contaminants like arsenic and fluoride has raised a major healthcare concern. Clinical studies suggested that arsenic and fluoride co-exposure induced neurotoxicity, however efforts to explore safe and effective management of such neurotoxicity are limited. Therefore, we investigated the ameliorative effect of Fisetin against arsenic and fluoride subacute co-exposure-induced neurotoxicity, and associated biochemical and molecular changes. Male BALB/c mice Arsenic (NaAsO2: 50mg/L) and fluoride (NaF: 50mg/L) were exposed to drinking water and fisetin (5, 10, and 20mg/kg/day) was administered orally for 28 days. The neurobehavioral changes were recorded in the open field, rotarod, grip strength, tail suspension, forced swim, and novel object recognition test. The co-exposure resulted in anxiety-like behaviour, loss of motor coordination, depression-like behaviour, and loss of novelty-based memory, along with enhanced prooxidant, inflammatory markers and loss of cortical and hippocampal neurons. The treatment with fisetin reversed the co-exposure-induced neurobehavioral deficit along with restoration of redox & inflammatory milieu, and cortical and hippocampal neuronal density. Apart from antioxidants, inhibition of TNF-α/ NLRP3 expression has been suggested as one of the plausible neuroprotective mechanisms of Fisetin in this study.
Collapse
Affiliation(s)
- Vitthal V Gopnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Debarati Rakshit
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Mounisha Bandakinda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Uttam Kulhari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Changsari, Kamrup, Assam - 781101, India.
| |
Collapse
|
11
|
Jazvinšćak Jembrek M, Oršolić N, Karlović D, Peitl V. Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. Int J Mol Sci 2023; 24:ijms24086888. [PMID: 37108052 PMCID: PMC10138550 DOI: 10.3390/ijms24086888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| | - Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Dalibor Karlović
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| | - Vjekoslav Peitl
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
- Department of Psychiatry, Sestre Milosrdnice University Hospital Center, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Jiang X, Yan Q, Lao W, Lin Q, Cao H, Chen L, Chen J, Yu X, Liu F. Irisin attenuates ethanol-induced behavioral deficits in mice through activation of Nrf2 and inhibition of NF-κB pathways. Metab Brain Dis 2023; 38:1643-1656. [PMID: 36947333 DOI: 10.1007/s11011-023-01202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
This study aims to investigate the effect of irisin on ethanol-induced behavioral deficits and explore the underlying mechanisms. A mouse model of ethanol addiction/withdrawal was constructed through chronic ethanol administration. Depressive-like behaviors were evaluated by the tail suspension test and forced swimming test, and anxiety-like behaviors were evaluated by the marble-burying test and elevated plus maze test. The expression of Nrf2 was measured by western blotting. Levels of inflammatory mediators (NF-κB, TNF-α, IL-1β and IL-6) and oxidative stress factors (ROS, MDA, GSH and SOD) were detected by ELISA. The ethanol-induced PC12/BV2 cell injury model was used to elucidate whether the effect of irisin on ethanol-induced neurological injury was related to anti-inflammatory and antioxidant mechanisms. Ethanol-induced ethanol preference and emotional deficits were improved by chronic irisin treatment; however, these improvements were partly reversed by cotreatment with the Nrf2 inhibitor ML385. Further results implied that the improvement effect of irisin on behavioral abnormalities may be related to its anti-inflammatory and antioxidant effects. In detail, irisin inhibited ethanol-induced abnormal expression of ROS and MDA and upregulated the expression of GSH and SOD. Meanwhile, irisin treatment inhibited ethanol-induced overexpression of NF-κB, TNF-α, IL-1β and IL-6 in the hippocampus and cerebral cortex. The regulation of oxidative stress factors by irisin was reversed after ML385 treatment. In the in vitro study, overexpression of oxidative stress factors in ethanol-treated PC12 cells was inhibited by irisin treatment; however, the prevention was reversed after the knockdown of Nrf2 siRNA. Moreover, ethanol-induced overexpression of inflammatory mediators in BV2 cells was also inhibited by irisin treatment. Irisin improved depressive and anxiety-like behaviors induced by ethanol addiction/withdrawal in mice, and this protection was greatly associated with the NF-κB-mediated anti-inflammatory signaling pathway and Nrf2-mediated antioxidative stress signaling pathway.
Collapse
Affiliation(s)
- Xi Jiang
- Zhejiang University Mingzhou Hospital, 315000, Ningbo, China
| | - Qizhi Yan
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, China
| | - Wendie Lao
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China
| | - Qian Lin
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Haoran Cao
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China
| | - Lei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China
| | - Jin Chen
- Zhejiang University Mingzhou Hospital, 315000, Ningbo, China
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China.
- Department of Pharmacy, Zhejiang Pharmaceutical College, No.888 Yinxian Avenue East Section, Ningbo, 315000, China.
| | - Fuhe Liu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 315000, Ningbo, China.
- Department of Pharmacy, Zhejiang Pharmaceutical College, No.888 Yinxian Avenue East Section, Ningbo, 315000, China.
| |
Collapse
|
13
|
Rauf A, Abu-Izneid T, Imran M, Hemeg HA, Bashir K, Aljohani ASM, Aljohani MSM, Alhumaydhi FA, Khan IN, Bin Emran T, Gondal TA, Nath N, Ahmad I, Thiruvengadam M. Therapeutic Potential and Molecular Mechanisms of the Multitargeted Flavonoid Fisetin. Curr Top Med Chem 2023; 23:2075-2096. [PMID: 37431899 DOI: 10.2174/1568026623666230710162217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Flavonoids effectively treat cancer, inflammatory disorders (cardiovascular and nervous systems), and oxidative stress. Fisetin, derived from fruits and vegetables, suppresses cancer growth by altering cell cycle parameters that lead to cell death and angiogenesis without affecting healthy cells. Clinical trials are needed in humans to prove the effectiveness of this treatment for a wide range of cancers. According to the results of this study, fisetin can be used to prevent and treat a variety of cancers. Despite early detection and treatment advances, cancer is the leading cause of death worldwide. We must take proactive steps to reduce the risk of cancer. The natural flavonoid fisetin has pharmacological properties that suppress cancer growth. This review focuses on the potential drug use of fisetin, which has been extensively explored for its cancer-fighting ability and other pharmacological activities such as diabetes, COVID-19, obesity, allergy, neurological, and bone disorders. Researchers have focused on the molecular function of fisetin. In this review, we have highlighted the biological activities against chronic disorders, including cancer, metabolic illnesses, and degenerative illnesses, of the dietary components of fisetin.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, KPK, Pakistan
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University of Science and Technology, Al Ain Campus, Abu Dhabi, United Arab Emirates
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Punjab, Pakistan
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Madinah Al-Monawra, 41411, Saudi Arabia
| | - Kashif Bashir
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Mona S M Aljohani
- Pharmaceutical Care Department, King Saud Hospital, Ministry of Health, Unaizah, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ishaq N Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, 25100, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Victoria, 3125, Australia
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Ishtiaque Ahmad
- Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
14
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
15
|
Involvement of oxidative pathways and BDNF in the antidepressant effect of carvedilol in a depression model induced by chronic unpredictable stress. Psychopharmacology (Berl) 2022; 239:297-311. [PMID: 35022822 DOI: 10.1007/s00213-021-05994-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/30/2021] [Indexed: 01/30/2023]
Abstract
RATIONALE Depression is a severe psychiatric disorder with oxidative imbalance and neurotrophic deficits as underlying mechanisms. OBJECTIVES Based on the antioxidant effects of carvedilol (CARV), here, we aimed to evaluate CARV's effects against depression induced by the chronic unpredictable stress (CUS) model. METHODS Female Swiss mice were submitted to the CUS protocol for 21 days. Between days 15 and 22, the animals received CARV (5 or 10 mg/kg) or desvenlafaxine (DVS 10 mg/kg) orally. On the 22nd day, mice were subjected to behavioral tests to evaluate locomotion, depressive-like behavior (tail suspension test), motivation/self-care with the splash test (ST), social interaction, and working memory Y-maze test. The prefrontal cortex (PFC) and hippocampus were dissected to evaluate alterations of oxidative and brain-derived neurotrophic factor (BDNF). RESULTS The CUS model reduced locomotion and increased grooming latency, while it reduced the number of groomings in the ST. Both doses of CARV and DVS reverted these alterations. In addition, DVS and CARV reversed CUS model-induced working memory and social interaction deficits. The CUS model decreased hippocampal reduced glutathione (GSH), while DVS and CARV increased GSH in the PFC (CARV5) and hippocampus (CARV5 and 10). The CUS model increased nitrite and malondialdehyde (MDA) concentrations in both areas. All treatments reversed nitrite alterations, while CARV10 changed MDA levels in PFC and all treatments in the hippocampus. The CUS model reduced BDNF levels. CARV10 increased BDNF in the PFC, while both doses of CARV increased hippocampal levels of this neurotrophin. CONCLUSIONS CARV presents antidepressant-like effects comparable to those observed with DVS. In addition, it has an antioxidant effect and is capable of increasing BDNF brain concentrations. Further studies are needed to elucidate the mechanisms involved in the antidepressant effect of CARV.
Collapse
|
16
|
de Mendonça CR, Manhães-de-Castro R, de Santana BJRC, Olegário da Silva L, Toscano AE, Guzmán-Quevedo O, Monteiro Galindo LC. Effects of flavonols on emotional behavior and compounds of the serotonergic system: A preclinical systematic review. Eur J Pharmacol 2021; 916:174697. [PMID: 34954234 DOI: 10.1016/j.ejphar.2021.174697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter that regulates multiple psychophysiological functions. An imbalance of 5-HT in the brain can modulate emotional behavior such as depression and anxiety. Substances, such as flavonols, naturally found in some plants and foods have beneficial effects on psychiatric disorders, have been studied. The aim of this systematic review was to investigate the effects of flavonols on morphological, physiological, and cellular aspects of the serotonergic system as well as on some behaviors modulated by this system. Literature searches were performed in the LILACS, Web of Science, Scopus, PubMed and Sigle via Open Grey databases, from which 1725 studies were found. Using a predefined protocol registered on the CAMARADES website, 18 studies were chosen for qualitative synthesis. Internal validity was assessed using the SYRCLE's risk of bias tool. The Kappa index was also measured to analyze agreement among the reviewers. The results of this systematic review showed that flavonols have been reported to modify physiological aspects of the serotonergic system, increasing levels of serotonin and decreasing levels of its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and promoting antioxidant effects in encephalic regions. Moreover, the results showed that flavonols can also modulate of the serotonergic system, being associated with antidepressant and anxiolytic activities. Additionally, flavonols were found to not have psychostimulant effect; they can, however, reverse damage to locomotor activity.
Collapse
Affiliation(s)
| | - Raul Manhães-de-Castro
- Postgraduate Program in Nutrition, Universidade Federal de Pernambuco, 55670-901, Recife, PE, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Brazil
| | | | - Luana Olegário da Silva
- Postgraduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, 55608-680, Vitória de Santo Antão, PE, Brazil
| | - Ana Elisa Toscano
- Postgraduate Program in Nutrition, Universidade Federal de Pernambuco, 55670-901, Recife, PE, Brazil; Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, 55608-680, Recife, PE, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Brazil
| | - Omar Guzmán-Quevedo
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Universidade Federal de Pernambuco, 55608-680, Recife, PE, Brazil; Laboratory of Neuronutrition and Metabolic Disorders, Instituto Tecnológico Superior de Tacámbaro, 61650, Tacámbaro, Michoacán, Mexico; Centro de Investigación Biomédica de Michoacán, Instituto Mexicano Del Seguro Social, 58341, Morelia, Michoacán, Mexico
| | - Lígia Cristina Monteiro Galindo
- Postgraduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, 55608-680, Vitória de Santo Antão, PE, Brazil; Department of Anatomy, Universidade Federal de Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Brazil.
| |
Collapse
|
17
|
Pannu A, Sharma PC, Thakur VK, Goyal RK. Emerging Role of Flavonoids as the Treatment of Depression. Biomolecules 2021; 11:biom11121825. [PMID: 34944471 PMCID: PMC8698856 DOI: 10.3390/biom11121825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 12/28/2022] Open
Abstract
Depression is one of the most frequently observed psychological disorders, affecting thoughts, feelings, behavior and a sense of well-being in person. As per the WHO, it is projected to be the primitive cause of various other diseases by 2030. Clinically, depression is treated by various types of synthetic medicines that have several limitations such as side-effects, slow-onset action, poor remission and response rates due to complicated pathophysiology involved with depression. Further, clinically, patients cannot be given the treatment unless it affects adversely the job or family. In addition, synthetic drugs are usually single targeted drugs. Unlike synthetic medicaments, there are many plants that have flavonoids and producing action on multiple molecular targets and exhibit anti-depressant action by affecting multiple neuronal transmissions or pathways such as noradrenergic, serotonergic, GABAnergic and dopaminergic; inhibition of monoamine oxidase and tropomyosin receptor kinase B; simultaneous increase in nerve growth and brain-derived neurotrophic factors. Such herbal drugs with flavonoids are likely to be useful in patients with sub-clinical depression. This review is an attempt to analyze pre-clinical studies, structural activity relationship and characteristics of reported isolated flavonoids, which may be considered for clinical trials for the development of therapeutically useful antidepressant.
Collapse
Affiliation(s)
- Arzoo Pannu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
| | - Prabodh Chander Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
- Correspondence: (V.K.T.); (R.K.G.); Tel.: +91-9825719111 (V.K.T.)
| | - Ramesh K. Goyal
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India;
- Correspondence: (V.K.T.); (R.K.G.); Tel.: +91-9825719111 (V.K.T.)
| |
Collapse
|
18
|
PSD-93 up-regulates the synaptic activity of corticotropin-releasing hormone neurons in the paraventricular nucleus in depression. Acta Neuropathol 2021; 142:1045-1064. [PMID: 34536123 DOI: 10.1007/s00401-021-02371-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Since the discovery of ketamine anti-depressant effects in last decade, it has effectively revitalized interest in investigating excitatory synapses hypothesis in the pathogenesis of depression. In the present study, we aimed to reveal the excitatory synaptic regulation of corticotropin-releasing hormone (CRH) neuron in the hypothalamus, which is the driving force in hypothalamic-pituitary-adrenal (HPA) axis regulation. This study constitutes the first observation of an increased density of PSD-93-CRH co-localized neurons in the hypothalamic paraventricular nucleus (PVN) of patients with major depression. PSD-93 overexpression in CRH neurons in the PVN induced depression-like behaviors in mice, accompanied by increased serum corticosterone level. PSD-93 knockdown relieved the depression-like phenotypes in a lipopolysaccharide (LPS)-induced depression model. Electrophysiological data showed that PSD-93 overexpression increased CRH neurons synaptic activity, while PSD-93 knockdown decreased CRH neurons synaptic activity. Furthermore, we found that LPS induced increased the release of glutamate from microglia to CRH neurons resulted in depression-like behaviors using fiber photometry recordings. Together, these results show that PSD-93 is involved in the pathogenesis of depression via increasing the synaptic activity of CRH neurons in the PVN, leading to the hyperactivity of the HPA axis that underlies depression-like behaviors.
Collapse
|
19
|
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol 2021; 910:174492. [PMID: 34516952 DOI: 10.1016/j.ejphar.2021.174492] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders pose a significant health burden and imprint a debilitative impact on the quality of life. Importantly, aging is intricately intertwined with the progression of these disorders, and their prevalence increases with a rise in the aging population worldwide. In recent times, fisetin emerged as one of the potential miracle molecules to address neurobehavioral and cognitive abnormalities. These effects were attributed to its actions on several macromolecules and multiple molecular mechanisms. Fisetin belongs to a class of flavonoids, which is found abundantly in several fruits and vegetables. Fisetin has manifested several health benefits in preclinical models of neurodegenerative diseases such as Alzheimer's disease, Vascular dementia, and Schizophrenia. Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Stroke, Traumatic Brain Injury (TBI), and age-associated changes. This review aimed to evaluate the potential mechanisms and pharmacological effects of fisetin in treating several neurological diseases. This review also provides comprehensive data on up-to-date recent literature and highlights the various mechanistic pathways pertaining to fisetin's neuroprotective role.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Rowan University, Graduate School of Biomedical Sciences, Stratford, New Jersey, USA
| | - Suraj Benerji Teegala
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India
| | - Shanker Kalakotla
- Department of Pharmacognosy & Phyto-Pharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jagadeesh Prasad Pasangulapati
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Treventis Corporation, Department of Pharmacology, Krembil Discovery Tower, 4th Floor, Suite 4KD472, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Venkatesan Perumal
- Irma Lerma Rangel College of Pharmacy, Health Science Centre, Texas A&M University (TAMU), Texas, 77843, USA
| | - Hemanth Kumar Boyina
- Department of Pharmacology, School of Pharmacy, Anurag University (formerly Anurag Group of Institutions), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India.
| |
Collapse
|
20
|
Shen P, Qi H. Cell Models to Evaluate Antioxidant Properties of the Phlorotannins in Brown Seaweed: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1967379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ping Shen
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
21
|
Dal-Pizzol F, de Medeiros GF, Michels M, Mazeraud A, Bozza FA, Ritter C, Sharshar T. What Animal Models Can Tell Us About Long-Term Psychiatric Symptoms in Sepsis Survivors: a Systematic Review. Neurotherapeutics 2021; 18:1393-1413. [PMID: 33410107 PMCID: PMC8423874 DOI: 10.1007/s13311-020-00981-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lower sepsis mortality rates imply that more patients are discharged from the hospital, but sepsis survivors often experience sequelae, such as functional disability, cognitive impairment, and psychiatric morbidity. Nevertheless, the mechanisms underlying these long-term disabilities are not fully understood. Considering the extensive use of animal models in the study of the pathogenesis of neuropsychiatric disorders, it seems adopting this approach to improve our knowledge of postseptic psychiatric symptoms is a logical approach. With the purpose of gathering and summarizing the main findings of studies using animal models of sepsis-induced psychiatric symptoms, we performed a systematic review of the literature on this topic. Thus, 140 references were reviewed, and most of the published studies suggested a time-dependent recovery from behavior alterations, despite the fact that some molecular alterations persist in the brain. This review reveals that animal models can be used to understand the mechanisms that underlie anxiety and depression in animals recovering from sepsis.
Collapse
Affiliation(s)
- Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | | | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Aurélien Mazeraud
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
| | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), 21040-360 Rio de Janeiro, Brazil
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, 75015 Paris, France
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
- Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| |
Collapse
|
22
|
Jiang X, Lin Q, Xu L, Chen Z, Yan Q, Chen L, Yu X. Indoleamine-2,3-Dioxygenase Mediates Emotional Deficits by the Kynurenine/Tryptophan Pathway in the Ethanol Addiction/Withdrawal Mouse Model. Front Cell Neurosci 2020; 14:11. [PMID: 32116558 PMCID: PMC7026684 DOI: 10.3389/fncel.2020.00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Objective Our study was designed to investigate whether the indoleamine-2,3-dioxygenase (IDO)-mediated kynurenine/tryptophan (KYN/TRP) pathway participates in the development of emotional deficits from ethanol addiction/withdrawal mice. Methods The expression of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), was tested by enzyme-linked immunosorbent assay (ELISA). The IDO levels in the hippocampus, cerebral cortex, and amygdala were measured by polymerase chain reaction (PCR) and western blot, and the neurotransmitters were tested by high performance liquid chromatography (HPLC). Emotional deficits of mice were evaluated by behavioral tests. Results Expression levels of inflammatory factors (TNF-α, IL-1β, and IL-6) were increased in mice after 4 weeks of alcohol exposure. As for indoleamine 2,3-dioxygenase (IDO) expression, only the subtype IDO1 was found to increase at both mRNA level and protein level in all the tested brain regions of ethanol addiction/withdrawal mice. In behavioral tests, mice exposed to alcohol showed gradually declined memory function accompanied by anxiety-like and depressive-like behaviors. Meanwhile, increased expression of KYN, decreased expression of 5-HT, and abnormal expression of 3-HK and KA were found in the hippocampus, cerebral cortex, and amygdala of ethanol addiction/withdrawal mice. Interestingly, the IDO1 inhibitor, 1-methyl-L-tryptophan (1-MT), reversed all above alterations induced by ethanol in mice. Conclusion Our results suggested that the TRP/KYN pathway, medicated by IDO1, in the hippocampus, cerebral cortex, and amygdala, plays an important role in the development of emotional deficits caused by ethanol addiction and withdrawal.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China.,Mingzhou Hospital, Zhejiang University, Hangzhou, China
| | - Qian Lin
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, United States
| | - Lexing Xu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Qizhi Yan
- Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Lei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| | - Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, China
| |
Collapse
|
23
|
Yu X, Hu Y, Huang W, Ye N, Yan Q, Ni W, Jiang X. Role of AMPK/SIRT1-SIRT3 signaling pathway in affective disorders in unpredictable chronic mild stress mice. Neuropharmacology 2019; 165:107925. [PMID: 31877320 DOI: 10.1016/j.neuropharm.2019.107925] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To explore the role of 5' adenosine monophosphate-activated protein kinase/sirtuin1-sirtuin3 (AMPK/SIRT1-SIRT3) signaling pathway in behavioral and neuroinflammation/oxidative stress alterations in unpredictable chronic mild stress (UCMS) model mice. METHODS Male ICR mice weighing 20-22 g were used in this study. Behavior performance was evaluated from the 14th day of drug treatment. Expression levels of AMPK, SIRT1, SIRT3, and NF-κBp65 were tested by immuno-blot analysis. Contents of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) were detected by enzyme linked immunosorbent assay (ELISA). Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) expressions were tested by neurochemical and biochemical assays. RESULTS Behavioral disorders and decreases of AMPK, SIRT1 and SIRT3 induced by UCMS were all reversed by AICA Riboside (AICAR) treatment. These effects were correlated with alterations of oxidative stress (ROS, GSH, SOD) and inflammation (pNF-κBp65, TNF-α, IL-1β, IL-6) status. Co-treatment with SIRT3 inhibitor (3-TYP) in addition to AICAR abolished AICAR's effects on behavior and expression level of inflammation/oxidative stress-related factors of mice, without affecting the content of SIRT1. Contrarily, combining use of AICAR and SIRT1 inhibitor (Sirtinol or EX-527) increased SIRT3 level, which led to better alleviation of behavioral disorders, compared with single AICAR treatment. Interestingly, in normal or UCMS mice, up or down regulation of SIRT1 did not affect SIRT3 level. CONCLUSION Provided that AMPK is activated, SIRT1 inhibition could induce the increase of SIRT3, and SIRT3 exerts more beneficial function in alleviation of consequences of chronic stress than SIRT1.
Collapse
Affiliation(s)
- Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Ying Hu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Wenkai Huang
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Nuo Ye
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Qizhi Yan
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China
| | - Wenjuan Ni
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Xi Jiang
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China; Zhejiang University Mingzhou Hospital, Zhejiang Province, 315000, China.
| |
Collapse
|
24
|
Chang D, Zhao J, Zhang X, Lian H, Du X, Yuan R, Wen Y, Gao L. Effect of ketamine combined with DHA on lipopolysaccharide-induced depression-like behavior in rats. Int Immunopharmacol 2019; 75:105788. [PMID: 31377587 DOI: 10.1016/j.intimp.2019.105788] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 11/19/2022]
Abstract
Depression has become a common mental illness, and studies have shown that neuroinflammation is associated with depression. Ketamine is a rapid antidepressant. In order to obtain better antidepressant effects, it is necessary to explore the efficacy of combination therapy with ketamine and other antidepressants. DHA is an unsaturated fatty acid with excellent application prospects due to its safety and antidepressant effects. This study was designed to investigate the effect of ketamine combined with DHA on lipopolysaccharide-induced depression-like behavior. In behavioral experiments, lipopolysaccharide prolongs the immobility time of the forced swimming and tail suspension tests in rats and reduces the sucrose preference. The combination of ketamine and DHA can reverse these changes and work better than the single application. Nissl staining showed that ketamine combined with DHA can reverse the nerve damage caused by lipopolysaccharide. Cell morphology observation the combination of ketamine and DHA group was more complete than that of LPS group. The combination of ketamine and DHA significantly decreased the levels of IL-1, IL-6 and TNF-ɑin hippocampus and PC12 cells and increased the content of BDNF. Immunofluorescence results showed that ketamine combined with DHA can effectively inhibit PP65 nuclear translocation. Western blot results showed that ketamine combined with DHA can effectively inhibit the expression of NF-KB in hippocampus and PC12 cells, and increase the expression of P-CREB and BDNF. In summary, the combination of ketamine with DHA may be a more effective treatment for depression caused by inflammation and is mediated by inhibition of the inflammatory pathway.
Collapse
Affiliation(s)
- Daiyue Chang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Jinghua Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Xintong Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - HuiMin Lian
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - XueMan Du
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Rui Yuan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Yajing Wen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China
| | - Li Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agriculture University, Harbin 150030, China.
| |
Collapse
|
25
|
Jin Y, Sun LH, Yang W, Cui RJ, Xu SB. The Role of BDNF in the Neuroimmune Axis Regulation of Mood Disorders. Front Neurol 2019; 10:515. [PMID: 31231295 PMCID: PMC6559010 DOI: 10.3389/fneur.2019.00515] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
The neuroimmune system plays a crucial role in the regulation of mood disorders. Moreover, recent studies show that brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is a key regulator in the neuroimmune axis. However, the potential mechanism of BDNF action in the neuroimmune axis' regulation of mood disorders remains unclear. Therefore, in this review, we focus on the recent progress of BDNF in influencing mood disorders, by participating in alterations of the neuroimmune axis. This may provide evidence for future studies in this field.
Collapse
Affiliation(s)
- Yang Jin
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Li Hua Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Song Bai Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Macranthol attenuates lipopolysaccharide-induced depressive-like behaviors by inhibiting neuroinflammation in prefrontal cortex. Physiol Behav 2019; 204:33-40. [DOI: 10.1016/j.physbeh.2019.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/14/2018] [Accepted: 02/08/2019] [Indexed: 11/24/2022]
|
27
|
Jiang X, Wang G, Lin Q, Tang Z, Yan Q, Yu X. Fucoxanthin prevents lipopolysaccharide-induced depressive-like behavior in mice via AMPK- NF-κB pathway. Metab Brain Dis 2019; 34:431-442. [PMID: 30554399 DOI: 10.1007/s11011-018-0368-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/10/2018] [Indexed: 01/22/2023]
Abstract
Fucoxanthin (FX), a natural carotenoid abundant in edible brown seaweeds, has been shown the great anti-oxidant, anti-inflammatory and anti-diabetic effects in vivo and in vitro. The present study was designed to investigate the effects of FX on lipopolysaccharide (LPS)-induced behavioral defects in mice. In depressive behavior tests, the increased immobility time of forced swimming test and tail suspension test by LPS treatment in mice, which were significantly reversed by FX treatment (200 mg/kg, i.g.). In anxiety behavior tests, LPS injection was neither influence the anxiety-related parameters in marble burying test nor that in elevated plus maze test. Interestingly, anxiolytic effects were observed in single FX treated control and LPS-induced mice groups. FX treatment also reversed LPS-induced body weight loss and food intake decreases. Biochemical analysis indicated that FX inhibited LPS-induced overexpression of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α), as well as iNOS and COX-2 in the hippocampus, frontal cortex and hypothalamus, via the modulation of AMPK-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Pharmacy, Institute of toxicology and pharmacology, Zhejiang Pharmaceutical College, Ningbo, 315000, China
- Ningbo Mingzhou Hospital, Ningbo, 315000, China
| | - Guokang Wang
- Department of Pharmacy, Institute of toxicology and pharmacology, Zhejiang Pharmaceutical College, Ningbo, 315000, China
| | - Qian Lin
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Zhihua Tang
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China
| | - Qizhi Yan
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China.
| | - Xuefeng Yu
- Department of Pharmacy, Institute of toxicology and pharmacology, Zhejiang Pharmaceutical College, Ningbo, 315000, China.
| |
Collapse
|
28
|
Choubey P, Kwatra M, Pandey SN, Kumar D, Dwivedi DK, Rajput P, Mishra A, Lahkar M, Jangra A. Ameliorative effect of fisetin against lipopolysaccharide and restraint stress-induced behavioral deficits via modulation of NF-κB and IDO-1. Psychopharmacology (Berl) 2019; 236:741-752. [PMID: 30426184 DOI: 10.1007/s00213-018-5105-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fisetin, a plant active polyphenol, is well known for its antioxidant and free radical scavenging activities. The present study was designed to explore the detailed molecular mechanism underlying its neuroprotective effects. METHODS The young male mice were either administered a single dose of lipopolysaccharide (0.83 mg/kg) or subjected to restraint stress (6 h per day for 28 days) to induce behavioral deficits in different groups. Fisetin (15 mg/kg) was orally administered for the last 14 days of the study. RESULTS Lipopolysaccharide (LPS) as well as restraint stress (RS) exposure caused behavioral alterations (anxiety and depressive-like behavior). Gene expression analysis showed upregulation of nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) and indoleamine 2,3-dioxygenase (IDO)-1 gene expression along with downregulation of Nrf-2 (nuclear factor erythroid 2-related factor 2), HO-1 (heme oxygenase-1), and ChAT (choline acetyltransferase) gene expression level in RS and RS+LPS groups. Fisetin administration significantly ameliorated behavioral and neurochemical deficits in LPS, RS, and RS+LPS groups. CONCLUSION These findings clearly indicated that fisetin administration improved behavioral functions and suppressed the NF-κB and IDO-1 (indoleamine 2,3-dioxygenase) activation along with their antioxidant effect, suggesting fisetin as an intriguing nutraceutical for the management of inflammation-associated neurological disorders.
Collapse
Affiliation(s)
- Priyansha Choubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Mohit Kwatra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Surya Narayan Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Dinesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Durgesh Kumar Dwivedi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Prabha Rajput
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Abhishek Mishra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mangala Lahkar
- Department of Pharmacology, Gauhati Medical College, Guwahati, Assam, India
| | - Ashok Jangra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
- Department of Pharmacology, KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
29
|
Deletion of asparagine endopeptidase reduces anxiety- and depressive-like behaviors and improves abilities of spatial cognition in mice. Brain Res Bull 2018; 142:147-155. [DOI: 10.1016/j.brainresbull.2018.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
|
30
|
Jacob S, Thangarajan S. Fisetin impedes developmental methylmercury neurotoxicity via downregulating apoptotic signalling pathway and upregulating Rho GTPase signalling pathway in hippocampus of F 1 generation rats. Int J Dev Neurosci 2018; 69:88-96. [PMID: 30009881 DOI: 10.1016/j.ijdevneu.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/14/2018] [Accepted: 07/08/2018] [Indexed: 01/14/2023] Open
Abstract
Methyl mercury is a teratogenic and neurodevelopmental toxicant in the environment. MeHg affects several biological pathways critical for brain development. The present study validated the effect of Fisetin on developmental MeHg exposure induced alterations in mitochondrial apoptotic pathway and Rho GTPase mRNA expressions in hippocampus of F1 generation rats. Pregnant Wistar rats were grouped as Group I : administered with vehicle control, Group II: MeHg (1.5 mg/kg b.w), Group III: MeHg + Fisetin (10 mg/kg b.w), Group IV: MeHg + Fisetin (30 mg/kg b.w), Group V: MeHg + Fisetin (50 mg/kg b.w), Group VI: MeHg + Fisetin (70 mg/kg b.w), Group VII: Fisetin (30 mg/kg b.w) alone. Fisetin reduced mercury accumulation in offspring brain. In hippocampus, Fisetin preserved mitochondrial total thiol status, glutathione antioxidant system, mitochondrial metabolic integrity and respiratory chain activity. Fisetin ameliorated apoptotic signals by preventing Cytochrome c release, down regulating ERK 1/2 and Caspase 3 gene expression. Fisetin also upregulated mRNA expressions of RhoA/Rac1/Cdc42 in hippocampus. Predominant effect of Fisetin was to reduce mercury accumulation in offspring brain there by diminishing the toxic effect of MeHg. Hence we showed that, gestational intake of Fisetin (30 mg/kg b.w.) impedes developmental MeHg neurotoxicity by regulating mitochondrial apoptotic and Rho GTPase signalling molecules and by reducing the mercury accumulation in hippocampus of F1 generation rats.
Collapse
Affiliation(s)
- Sherin Jacob
- Dr.ALMPG IBMS, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India
| | - Sumathi Thangarajan
- Dr.ALMPG IBMS, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
31
|
Antidepressant Flavonoids and Their Relationship with Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5762172. [PMID: 29410733 PMCID: PMC5749298 DOI: 10.1155/2017/5762172] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022]
Abstract
Depression is a serious disorder that affects hundreds of millions of people around the world and causes poor quality of life, problem behaviors, and limitations in activities of daily living. Therefore, the search for new therapeutic options is of high interest and growth. Research on the relationship between depression and oxidative stress has shown important biochemical aspects in the development of this disease. Flavonoids are a class of natural products that exhibit several pharmacological properties, including antidepressant-like activity, and affects various physiological and biochemical functions in the body. Studies show the clinical potential of antioxidant flavonoids in treating depressive disorders and strongly suggest that these natural products are interesting prototype compounds in the study of new antidepressant drugs. So, this review will summarize the chemical and pharmacological perspectives related to the discovery of flavonoids with antidepressant activity. The mechanisms of action of these compounds are also discussed, including their actions on oxidative stress relating to depression.
Collapse
|
32
|
Wang Y, Wang B, Lu J, Shi H, Gong S, Wang Y, Hamdy RC, Chua BHL, Yang L, Xu X. Fisetin provides antidepressant effects by activating the tropomyosin receptor kinase B signal pathway in mice. J Neurochem 2017; 143:561-568. [PMID: 28945929 DOI: 10.1111/jnc.14226] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/31/2022]
Abstract
Depression has been associated with a low-grade chronic inflammatory state, suggesting a potential therapeutic role for anti-inflammatory agents. Fisetin is a naturally occurring flavonoid in strawberries that has anti-inflammatory activities, but whether fisetin has antidepressant effects is unknown. In this study, we exposed mice to spatial restraint for 2 weeks with or without treatment with fisetin. Immobility time in the forced swimming and tail suspension test after this restraint increased in the untreated group, but this increase did not occur in the fisetin group. We administered fisetin to Abelson helper integration site-1 (Ahi1) knockout mice, which have depressive phenotypes. We found that fisetin attenuated the depressive phenotype of these Ahi1 knockout mice. We further investigated the potential mechanism of fisetin's antidepressant effects. Because TrkB is a critical signaling pathway in the mechanisms of depression, we examined whether phosphorylated TrkB was involved in the antidepressant effects of fisetin. We found that fisetin increased phosphorylated TrkB level without altering total TrkB; this increase was attenuated by K252a, a specific TrkB inhibitor. Taken together, our results demonstrated that fisetin may have therapeutic potential for treating depression and that this antidepressant effect may be mediated by the activation of the TrkB signaling pathway.
Collapse
Affiliation(s)
- Yamin Wang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Jiaqi Lu
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Siyi Gong
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Yufan Wang
- Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| | - Ronald C Hamdy
- Cecile Cox Quillen Laboratory of Geriatrics, College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Balvin H L Chua
- Cecile Cox Quillen Laboratory of Geriatrics, College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Lingli Yang
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China
| | - Xingshun Xu
- Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, Jiangsu Province, China
| |
Collapse
|
33
|
Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Proanthocyanidin prevents lipopolysaccharide-induced depressive-like behavior in mice via neuroinflammatory pathway. Brain Res Bull 2017; 135:40-46. [DOI: 10.1016/j.brainresbull.2017.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022]
|
35
|
Zheng W, Feng Z, You S, Zhang H, Tao Z, Wang Q, Chen H, Wu Y. Fisetin inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes through activating SIRT1 and attenuates the progression of osteoarthritis in mice. Int Immunopharmacol 2017; 45:135-147. [DOI: 10.1016/j.intimp.2017.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/28/2017] [Accepted: 02/07/2017] [Indexed: 11/16/2022]
|