1
|
Harding AT, Crossen AJ, Reedy JL, Basham KJ, Hepworth OW, Zhang Y, Shah VS, Harding HB, Surve MV, Simaku P, Kwaku GN, Jensen KN, Otto Y, Ward RA, Thompson GR, Klein BS, Rajagopal J, Sen P, Haber AL, Vyas JM. Single-cell analysis of human airway epithelium identifies cell type-specific responses to Aspergillus and Coccidioides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612147. [PMID: 39314271 PMCID: PMC11418999 DOI: 10.1101/2024.09.09.612147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Respiratory fungal infections pose a significant threat to human health. Animal models do not fully recapitulate human disease, necessitating advanced models to study human-fungal pathogen interactions. In this study, we utilized primary human airway epithelial cells (hAECs) to recapitulate the lung environment in vitro and investigate cellular responses to two diverse, clinically significant fungal pathogens, Aspergillus fumigatus and Coccidioides posadasii. To understand the mechanisms of early pathogenesis for both fungi, we performed single-cell RNA sequencing of infected hAECs. Analysis revealed that both fungi induced cellular stress and cytokine production. However, the cell subtypes affected and specific pathways differed between fungi, with A. fumigatus and C. posadasii triggering protein-folding-related stress in ciliated cells and hypoxia responses in secretory cells, respectively. This study represents one of the first reports of single-cell transcriptional analysis of hAECs infected with either A. fumigatus or C. posadasii, providing a vital dataset to dissect the mechanism of disease and potentially identify targetable pathways.
Collapse
Affiliation(s)
- Alfred T. Harding
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge MA
- Department of Microbiology, Harvard Medical School, Cambridge MA
| | - Arianne J. Crossen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kyle J. Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia W. Hepworth
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yanting Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Viral S. Shah
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Manalee V. Surve
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Patricia Simaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Geneva N. Kwaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kristine Nolling Jensen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yohana Otto
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - George R. Thompson
- Division of Infectious Diseases, and Departments of Internal Medicine and Medical Microbiology and Immunology, University of California-Davis, Sacramento, CA, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jayaraj Rajagopal
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Transplant, Oncology, and Immunocompromised Host Group, Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adam L. Haber
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
2
|
Giorgianni A, Zenone A, Sützl L, Csarman F, Ludwig R. Exploring class III cellobiose dehydrogenase: sequence analysis and optimized recombinant expression. Microb Cell Fact 2024; 23:146. [PMID: 38783303 PMCID: PMC11112829 DOI: 10.1186/s12934-024-02420-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Cellobiose dehydrogenase (CDH) is an extracellular fungal oxidoreductase with multiple functions in plant biomass degradation. Its primary function as an auxiliary enzyme of lytic polysaccharide monooxygenase (LPMO) facilitates the efficient depolymerization of cellulose, hemicelluloses and other carbohydrate-based polymers. The synergistic action of CDH and LPMO that supports biomass-degrading hydrolases holds significant promise to harness renewable resources for the production of biofuels, chemicals, and modified materials in an environmentally sustainable manner. While previous phylogenetic analyses have identified four distinct classes of CDHs, only class I and II have been biochemically characterized so far. RESULTS Following a comprehensive database search aimed at identifying CDH sequences belonging to the so far uncharacterized class III for subsequent expression and biochemical characterization, we have curated an extensive compilation of putative CDH amino acid sequences. A sequence similarity network analysis was used to cluster them into the four distinct CDH classes. A total of 1237 sequences encoding putative class III CDHs were extracted from the network and used for phylogenetic analyses. The obtained phylogenetic tree was used to guide the selection of 11 cdhIII genes for recombinant expression in Komagataella phaffii. A small-scale expression screening procedure identified a promising cdhIII gene originating from the plant pathogen Fusarium solani (FsCDH), which was selected for expression optimization by signal peptide shuffling and subsequent production in a 5-L bioreactor. The purified FsCDH exhibits a UV-Vis spectrum and enzymatic activity similar to other characterized CDH classes. CONCLUSION The successful production and functional characterization of FsCDH proved that class III CDHs are catalytical active enzymes resembling the key properties of class I and class II CDHs. A detailed biochemical characterization based on the established expression and purification strategy can provide new insights into the evolutionary process shaping CDHs and leading to their differentiation into the four distinct classes. The findings have the potential to broaden our understanding of the biocatalytic application of CDH and LPMO for the oxidative depolymerization of polysaccharides.
Collapse
Affiliation(s)
- Angela Giorgianni
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Alice Zenone
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Leander Sützl
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| | - Florian Csarman
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria.
| | - Roland Ludwig
- Department of Food Science and Technology, Institute of Food Technology, BOKU University, Muthgasse 18, Vienna, 1190, Austria
| |
Collapse
|
3
|
Lightfoot JD, Adams EM, Kamath MM, Wells BL, Fuller KK. Aspergillus fumigatus Hypoxia Adaptation Is Critical for the Establishment of Fungal Keratitis. Invest Ophthalmol Vis Sci 2024; 65:31. [PMID: 38635243 PMCID: PMC11044834 DOI: 10.1167/iovs.65.4.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose The poor visual outcomes associated with fungal keratitis (FK) underscore a need to identify fungal pathways that can serve as novel antifungal targets. In this report, we investigated whether hypoxia develops in the FK cornea and, by extension, if fungal hypoxia adaptation is essential for virulence in this setting. Methods C57BL/6J mice were inoculated with Aspergillus fumigatus and Fusarium solani var. petroliphilum via topical overlay or intrastromal injection. At various time points post-inoculation (p.i.), animals were injected with pimonidazole for the detection of tissue hypoxia through immunofluorescence imaging. The A. fumigatus srbA gene was deleted through Cas9-mediated homologous recombination and its virulence was assessed in the topical infection model using slit-lamp microscopy and optical coherence tomography (OCT). Results Topical inoculation with A. fumigatus resulted in diffuse pimonidazole staining across the epithelial and endothelial layers within 6 hours. Stromal hypoxia was evident by 48 hours p.i., which corresponded to leukocytic infiltration. Intrastromal inoculation with either A. fumigatus or F. solani similarly led to diffuse staining patterns across all corneal cell layers. The A. fumigatus srbA deletion mutant was unable to grow at oxygen levels below 3% in vitro, and corneas inoculated with the mutant failed to develop signs of corneal opacification, inflammation, or fungal burden. Conclusions These results suggest that fungal antigen rapidly drives the development of corneal hypoxia, thus rendering fungal SrbA or related pathways essential for the establishment of infection. Such pathways may therefore serve as targets for novel antifungal intervention.
Collapse
Affiliation(s)
- Jorge D. Lightfoot
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Emily M. Adams
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Manali M. Kamath
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Becca L. Wells
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Kevin K. Fuller
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
4
|
Hokken MWJ, Coolen JPM, Steenbreker H, Zoll J, Baltussen TJH, Verweij PE, Melchers WJG. The Transcriptome Response to Azole Compounds in Aspergillus fumigatus Shows Differential Gene Expression across Pathways Essential for Azole Resistance and Cell Survival. J Fungi (Basel) 2023; 9:807. [PMID: 37623579 PMCID: PMC10455693 DOI: 10.3390/jof9080807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The opportunistic pathogen Aspergillus fumigatus is found on all continents and thrives in soil and agricultural environments. Its ability to readily adapt to novel environments and to produce billions of spores led to the spread of azole-resistant A. fumigatus across the globe, posing a threat to many immunocompromised patients, including critically ill patients with severe influenza or COVID-19. In our study, we sought to compare the adaptational response to azoles from A. fumigatus isolates that differ in azole susceptibility and genetic background. To gain more insight into how short-term adaptation to stressful azole compounds is managed through gene expression, we conducted an RNA-sequencing study on the response of A. fumigatus to itraconazole and the newest clinically approved azole, isavuconazole. We observed many similarities in ergosterol biosynthesis up-regulation across isolates, with the exception of the pan-azole-resistant isolate, which showed very little differential regulation in comparison to other isolates. Additionally, we found differential regulation of membrane efflux transporters, secondary metabolites, iron metabolism, and various stress response and cell signaling mechanisms.
Collapse
Affiliation(s)
- Margriet W. J. Hokken
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Jordy P. M. Coolen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Hilbert Steenbreker
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
| | - Jan Zoll
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Tim J. H. Baltussen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Paul E. Verweij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| | - Willem J. G. Melchers
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands (T.J.H.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
5
|
Kerkaert JD, Le Mauff F, Wucher BR, Beattie SR, Vesely EM, Sheppard DC, Nadell CD, Cramer RA. An Alanine Aminotransferase Is Required for Biofilm-Specific Resistance of Aspergillus fumigatus to Echinocandin Treatment. mBio 2022; 13:e0293321. [PMID: 35254131 PMCID: PMC9040767 DOI: 10.1128/mbio.02933-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Alanine metabolism has been suggested as an adaptation strategy to oxygen limitation in organisms ranging from plants to mammals. Within the pulmonary infection microenvironment, Aspergillus fumigatus forms biofilms with steep oxygen gradients defined by regions of oxygen limitation. An alanine aminotransferase, AlaA, was observed to function in alanine catabolism and is required for several aspects of A. fumigatus biofilm physiology. Loss of alaA, or its catalytic activity, results in decreased adherence of biofilms through a defect in the maturation of the extracellular matrix polysaccharide galactosaminogalactan (GAG). Additionally, exposure of cell wall polysaccharides is also impacted by loss of alaA, and loss of AlaA catalytic activity confers increased biofilm susceptibility to echinocandin treatment, which is correlated with enhanced fungicidal activity. The increase in echinocandin susceptibility is specific to biofilms, and chemical inhibition of alaA by the alanine aminotransferase inhibitor β-chloro-l-alanine is sufficient to sensitize A. fumigatus biofilms to echinocandin treatment. Finally, loss of alaA increases susceptibility of A. fumigatus to in vivo echinocandin treatment in a murine model of invasive pulmonary aspergillosis. Our results provide insight into the interplay of metabolism, biofilm formation, and antifungal drug resistance in A. fumigatus and describe a mechanism of increasing susceptibility of A. fumigatus biofilms to the echinocandin class of antifungal drugs. IMPORTANCE Aspergillus fumigatus is a ubiquitous filamentous fungus that causes an array of diseases depending on the immune status of an individual, collectively termed aspergillosis. Antifungal therapy for invasive pulmonary aspergillosis (IPA) or chronic pulmonary aspergillosis (CPA) is limited and too often ineffective. This is in part due to A. fumigatus biofilm formation within the infection environment and the resulting emergent properties, particularly increased antifungal resistance. Thus, insights into biofilm formation and mechanisms driving increased antifungal drug resistance are critical for improving existing therapeutic strategies and development of novel antifungals. In this work, we describe an unexpected observation where alanine metabolism, via the alanine aminotransferase AlaA, is required for several aspects of A. fumigatus biofilm physiology, including resistance of A. fumigatus biofilms to the echinocandin class of antifungal drugs. Importantly, we observed that chemical inhibition of alanine aminotransferases is sufficient to increase echinocandin susceptibility and that loss of alaA increases susceptibility to echinocandin treatment in a murine model of IPA. AlaA is the first gene discovered in A. fumigatus that confers resistance to an antifungal drug specifically in a biofilm context.
Collapse
Affiliation(s)
- Joshua D. Kerkaert
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - François Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Benjamin R. Wucher
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Sarah R. Beattie
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Elisa M. Vesely
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Donald C. Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, Quebec, Canada
- McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, Quebec, Canada
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Ortiz SC, Pennington K, Thomson DD, Bertuzzi M. Novel Insights into Aspergillus fumigatus Pathogenesis and Host Response from State-of-the-Art Imaging of Host-Pathogen Interactions during Infection. J Fungi (Basel) 2022; 8:264. [PMID: 35330266 PMCID: PMC8954776 DOI: 10.3390/jof8030264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against Aspergillus species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of A. fumigatus pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Collapse
Affiliation(s)
- Sébastien C. Ortiz
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Katie Pennington
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| | - Darren D. Thomson
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK;
| | - Margherita Bertuzzi
- Manchester Academic Health Science Centre, Core Technology Facility, Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Grafton Street, Manchester M13 9NT, UK; (S.C.O.); (K.P.)
| |
Collapse
|
7
|
Coordinated Regulation of Membrane Homeostasis and Drug Accumulation by Novel Kinase STK-17 in Response to Antifungal Azole Treatment. Microbiol Spectr 2022; 10:e0012722. [PMID: 35196787 PMCID: PMC8865411 DOI: 10.1128/spectrum.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The emergence of antifungal resistance, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, makes fungal infections difficult to treat in clinics and agriculture. When exposed to azoles, fungi can make adaptive responses to alleviate azole toxicity and produce azole tolerance. However, except for azole efflux pumps and ergosterol biosynthesis genes, the role of most azole responsive genes in azole resistance is unknown. In this study, STK-17, whose transcription is upregulated by azoles, was characterized as a novel kinase that is required for azole resistance. Deletion or dysfunction of STK-17 led to azole hypersensitivity in Neurospora crassa and to other ergosterol biosynthesis inhibitors such as amorolfine, terbinafine, and amphotericin B, but not fatty acid and ceramide biosynthesis inhibitors. STK-17 was also required for oxidative stress resistance, but this was not connected to azole resistance. RNA-seq results showed that stk-17 deletion affected the basal expression and the response to ketoconazole of some membrane protein genes, indicating functional association of STK-17 with the membrane. Notably, deletion of stk-17 affected the normal response to azoles of erg genes, including the azole target-encoding gene erg11, and erg2, erg6, and erg24, and led to abnormal accumulation of sterols in the presence of azoles. HPLC-MS/MS analysis revealed increased intracellular azole accumulation in the stk-17 mutant, possibly due to enhanced azole influx and reduced azole efflux that was independent of the major efflux pump CDR4. Importantly, STK-17 was widely distributed and functionally conserved among fungi, thus providing a potential antifungal target. IMPORTANCE Antifungal resistance is increasing worldwide, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, making control of fungal infections more challenging. A lot of effort has been expended in elucidating the mechanism of azole resistance and revealing potential antifungal targets. In this study, by analyzing azole-responsive genes in Neurospora crassa, we discovered STK-17, a novel kinase, that is required for azole resistance in several types of fungi. It has a role in regulating membrane homeostasis, responses to azole by ergosterol biosynthesis genes and azole accumulation, thus, deepening our understanding on the mechanism of azole stress response. Additionally, STK-17 is conserved among fungi and plays important roles in fungal development and stress resistance. Kinase inhibitors are broadly used for treating diseases, and our study pinpoints a potential drug target for antifungal development.
Collapse
|
8
|
The battle for oxygen during bacterial and fungal infections. Trends Microbiol 2022; 30:643-653. [DOI: 10.1016/j.tim.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
|
9
|
Matsuda T. Importance of experimental information (metadata) for archived sequence data: case of specific gene bias due to lag time between sample harvest and RNA protection in RNA sequencing. PeerJ 2021; 9:e11875. [PMID: 34527435 PMCID: PMC8401820 DOI: 10.7717/peerj.11875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Large volumes of high-throughput sequencing data have been submitted to the Sequencing Read Archive (SRA). The lack of experimental metadata associated with the data makes reuse and understanding data quality very difficult. In the case of RNA sequencing (RNA-Seq), which reveals the presence and quantity of RNA in a biological sample at any moment, it is necessary to consider that gene expression responds over a short time interval (several seconds to a few minutes) in many organisms. Therefore, to isolate RNA that accurately reflects the transcriptome at the point of harvest, raw biological samples should be processed by freezing in liquid nitrogen, immersing in RNA stabilization reagent or lysing and homogenizing in RNA lysis buffer containing guanidine thiocyanate as soon as possible. As the number of samples handled simultaneously increases, the time until the RNA is protected can increase. Here, to evaluate the effect of different lag times in RNA protection on RNA-Seq data, we harvested CHO-S cells after 3, 5, 6, and 7 days of cultivation, added RNA lysis buffer in a time course of 15, 30, 45, and 60 min after harvest, and conducted RNA-Seq. These RNA samples showed high RNA integrity number (RIN) values indicating non-degraded RNA, and sequence data from libraries prepared with these RNA samples was of high quality according to FastQC. We observed that, at the same cultivation day, global trends of gene expression were similar across the time course of addition of RNA lysis buffer; however, the expression of some genes was significantly different between the time-course samples of the same cultivation day; most of these differentially expressed genes were related to apoptosis. We conclude that the time lag between sample harvest and RNA protection influences gene expression of specific genes. It is, therefore, necessary to know not only RIN values of RNA and the quality of the sequence data but also how the experiment was performed when acquiring RNA-Seq data from the database.
Collapse
|
10
|
Exploration and characterization of hypoxia-inducible endogenous promoters in Aspergillus niger. Appl Microbiol Biotechnol 2021; 105:5529-5539. [PMID: 34254155 DOI: 10.1007/s00253-021-11417-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/13/2022]
Abstract
Aspergillus niger is widely used for the efficient production of organic acids and enzyme preparations. However, this organism lacks basic genetic elements for dynamic control, especially inducible promoters that can respond to specific environmental signals. Since these are desirable for better adaptation of fermentation to large-scale industrial production, herein, we have identified the two first hypoxia-inducible promoters in A. niger, PsrbB and PfhbA. Their performance under high or low oxygen conditions was monitored using two reporter proteins, green fluorescent protein (EGFP) and β-glucuronidase (GUS). For comparison, basal expression of the general strong promoter PgpdA was lower than PsrbB but higher than PfhbA. However, under hypoxia, both promoters showed higher expression than under hyperoxia, and these values were also higher than those observed for PgpdA. For PsrbB, strength under hypoxia was ~2-3 times higher than under hyperoxia (for PfhbA, 3-9 times higher) and ~2.5-5 times higher than for PgpdA (for PfhbA, 2-3 times higher). Promoter truncation analysis showed that the PsrbB fragment -1024 to -588 bp is the core region that determines hypoxia response. KEY POINTS: The first identification of two hypoxia-inducible promoters in A. niger is a promising tool for modulation of target genes under hypoxia. Two reporter genes revealed a different activity and responsiveness to hypoxia of PfhbA and PsrbB promoters, which is relevant for the development of dynamic metabolic regulation of A. niger fermentation. PsrbB promoter truncation and bioinformatics analysis is the foundation for further research.
Collapse
|
11
|
Chung H, Lee YH. Hypoxia: A Double-Edged Sword During Fungal Pathogenesis? Front Microbiol 2020; 11:1920. [PMID: 32903454 PMCID: PMC7434965 DOI: 10.3389/fmicb.2020.01920] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular oxygen functions as an electron acceptor for aerobic respiration and a substrate for key metabolisms and cellular processes. Most eukaryotes develop direct or indirect oxygen sensors and reprogram transcriptional and translational metabolisms to adapt to altered oxygen availability under varying oxygen concentrations. Human fungal pathogens manipulate transcriptional levels of genes related to virulence as well as oxygen-dependent metabolisms such as ergosterol homeostasis when they are confronted with oxygen limitation (hypoxia) during infection. Oxygen states in plant tissues also vary depending on site, species, and external environment, potentially providing hypoxia to plant pathogens during infection. In this review, knowledge on the regulation of oxygen sensing and adaptive mechanisms in eukaryotes and nascent understanding of hypoxic responses in plant pathogens are summarized and discussed.
Collapse
Affiliation(s)
- Hyunjung Chung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
12
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
13
|
Burgain A, Pic É, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathog 2019; 15:e1007823. [PMID: 31809527 PMCID: PMC6919631 DOI: 10.1371/journal.ppat.1007823] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/18/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Inside the human host, the pathogenic yeast Candida albicans colonizes predominantly oxygen-poor niches such as the gastrointestinal and vaginal tracts, but also oxygen-rich environments such as cutaneous epithelial cells and oral mucosa. This suppleness requires an effective mechanism to reversibly reprogram the primary metabolism in response to oxygen variation. Here, we have uncovered that Snf5, a subunit of SWI/SNF chromatin remodeling complex, is a major transcriptional regulator that links oxygen status to the metabolic capacity of C. albicans. Snf5 and other subunits of SWI/SNF complex were required to activate genes of carbon utilization and other carbohydrates related process specifically under hypoxia. snf5 mutant exhibited an altered metabolome reflecting that SWI/SNF plays an essential role in maintaining metabolic homeostasis and carbon flux in C. albicans under hypoxia. Snf5 was necessary to activate the transcriptional program linked to both commensal and invasive growth. Accordingly, snf5 was unable to maintain its growth in the stomach, the cecum and the colon of mice. snf5 was also avirulent as it was unable to invade Galleria larvae or to cause damage to human enterocytes and murine macrophages. Among candidates of signaling pathways in which Snf5 might operate, phenotypic analysis revealed that mutants of Ras1-cAMP-PKA pathway, as well as mutants of Yak1 and Yck2 kinases exhibited a similar carbon flexibility phenotype as did snf5 under hypoxia. Genetic interaction analysis indicated that the adenylate cyclase Cyr1, a key component of the Ras1-cAMP pathway interacted genetically with Snf5. Our study yielded new insight into the oxygen-sensitive regulatory circuit that control metabolic flexibility, stress, commensalism and virulence in C. albicans. A critical aspect of eukaryotic cell fitness is the ability to sense and adapt to variations in oxygen level in their local environment. Hypoxia leads to a substantial remodeling of cell metabolism and energy homeostasis, and thus, organisms must develop an effective regulatory mechanism to cope with oxygen depletion. Candida albicans is an opportunistic yeast that is the most prevalent human fungal pathogens. This yeast colonizes diverse niches inside the human host with contrasting carbon sources and oxygen concentrations. While hypoxia is the predominant condition that C. albicans encounters inside most of the niches, the impact of this condition on metabolic flexibility, a major determinant of fungal virulence, was completely unexplored. Here, we uncovered that the chromatin remodelling complex SWI/SNF is a master regulator of the circuit that links oxygen status to a broad spectrum of carbon utilization routes. Snf5 was essential for the maintenance of C. albicans as a commensal and also for the expression of its virulence. The oxygen-sensitive regulators identified in this work provide a framework to comprehensively understand the virulence of human fungal pathogens and represent a therapeutic value to fight fungal infections.
Collapse
Affiliation(s)
- Anaïs Burgain
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Émilie Pic
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Laura Markey
- Program in Molecular Microbiology, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Faiza Tebbji
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Adnane Sellam
- CHU de Québec Research Center (CHUQ), Université Laval, Quebec City, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Big Data Research Centre (BDRC-UL), Université Laval, Faculty of Sciences and Engineering, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
Shekhova E, Ivanova L, Krüger T, Stroe MC, Macheleidt J, Kniemeyer O, Brakhage AA. Redox Proteomic Analysis Reveals Oxidative Modifications of Proteins by Increased Levels of Intracellular Reactive Oxygen Species during Hypoxia Adaptation of Aspergillus fumigatus. Proteomics 2019; 19:e1800339. [PMID: 30632700 DOI: 10.1002/pmic.201800339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Indexed: 12/28/2022]
Abstract
Aspergillus fumigatus faces abrupt changes in oxygen concentrations at the site of infection. An increasing number of studies has demonstrated that elevated production of intracellular reactive oxygen species (ROS) under low oxygen conditions plays a regulatory role in modulating cellular responses for adaptation to hypoxia. To learn more about this process in A. fumigatus, intracellular ROS production during hypoxia has been determined. The results confirm increased amounts of intracellular ROS in A. fumigatus exposed to decreased oxygen levels. Moreover, nuclear accumulation of the major oxidative stress regulator AfYap1 is observed after low oxygen cultivation. For further analysis, iodoTMT labeling of redox-sensitive cysteine residues is applied to identify proteins that are reversibly oxidized. This analysis reveals that proteins with important roles in maintaining redox balance and protein folding, such as the thioredoxin Asp f 29 and the disulfide-isomerase PdiA, undergo substantial thiol modification under hypoxia. The data also show that the mitochondrial respiratory complex IV assembly protein Coa6 is significantly oxidized by hypoxic ROS. Deletion of the corresponding gene results in a complete absence of hypoxic growth, indicating the importance of complex IV during adaptation of A. fumigatus to oxygen-limiting conditions.
Collapse
Affiliation(s)
- Elena Shekhova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Lia Ivanova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
15
|
Hovhannisyan H, Gabaldón T. Transcriptome Sequencing Approaches to Elucidate Host-Microbe Interactions in Opportunistic Human Fungal Pathogens. Curr Top Microbiol Immunol 2019; 422:193-235. [PMID: 30128828 DOI: 10.1007/82_2018_122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infections caused by opportunistic human fungal pathogens are a source of increasing medical concern, due to their growing incidence, the emergence of novel pathogenic species, and the lack of effective diagnostics tools. Fungal pathogens are phylogenetically diverse, and their virulence mechanisms can differ widely across species. Despite extensive efforts, the molecular bases of virulence in pathogenic fungi and their interactions with the human host remain poorly understood for most species. In this context, next-generation sequencing approaches hold the promise of helping to close this knowledge gap. In particular, high-throughput transcriptome sequencing (RNA-Seq) enables monitoring the transcriptional profile of both host and microbes to elucidate their interactions and discover molecular mechanisms of virulence and host defense. Here, we provide an overview of transcriptome sequencing techniques and approaches, and survey their application in studying the interplay between humans and fungal pathogens. Finally, we discuss novel RNA-Seq approaches in studying host-pathogen interactions and their potential role in advancing the clinical diagnostics of fungal infections.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
16
|
Zhao S, Gibbons JG. A population genomic characterization of copy number variation in the opportunistic fungal pathogen Aspergillus fumigatus. PLoS One 2018; 13:e0201611. [PMID: 30071059 PMCID: PMC6072042 DOI: 10.1371/journal.pone.0201611] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Aspergillus fumigatus is a potentially deadly opportunistic fungal pathogen. Molecular studies have shaped our understanding of the genes, proteins, and molecules that contribute to A. fumigatus pathogenicity, but few studies have characterized genome-wide patterns of genetic variation at the population level. Of A. fumigatus genomic studies to-date, most focus mainly on single nucleotide polymorphisms and large structural variants, while overlooking the contribution of copy number variation (CNV). CNV is a class of small structural variation defined as loci that vary in their number of copies between individuals due to duplication, gain, or deletion. CNV can influence phenotype, including fungal virulence. In the present study, we characterized the population genomic patterns of CNV in a diverse collection of 71 A. fumigatus isolates using publicly available sequencing data. We used genome-wide single nucleotide polymorphisms to infer the population structure of these isolates and identified three populations consisting of at least 8 isolates. We then computationally predicted genome-wide CNV profiles for each isolate and conducted analyses at the species-, population-, and individual levels. Our results suggest that CNV contributes to genetic variation in A. fumigatus, with ~10% of the genome being CN variable. Our analysis indicates that CNV is non-randomly distributed across the A. fumigatus genome, and is overrepresented in subtelomeric regions. Analysis of gene ontology categories in genes that overlapped CN variants revealed an enrichment of genes related to transposable element and secondary metabolism functions. We further identified 72 loci containing 33 genes that showed divergent copy number profiles between the three A. fumigatus populations. Many of these genes encode proteins that interact with the cell surface or are involved in pathogenicity. Our results suggest that CNV is an important source of genetic variation that could account for some of the phenotypic differences between A. fumigatus populations and isolates.
Collapse
Affiliation(s)
- Shu Zhao
- Biology Department, Clark University, Worcester, Massachusetts, United States of America
| | - John G. Gibbons
- Biology Department, Clark University, Worcester, Massachusetts, United States of America
| |
Collapse
|
17
|
Ben Yaakov D, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus. J Antimicrob Chemother 2018; 72:2263-2272. [PMID: 28475687 DOI: 10.1093/jac/dkx117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Objectives Over the last 30 years, the number of invasive fungal infections among immunosuppressed patients has increased significantly, while the number of effective systemic antifungal drugs remains low. The aim of this study was to identify and characterize antifungal compounds that inhibit fungus-specific metabolic pathways not conserved in humans. Methods We screened a diverse compound library for antifungal activity in the pathogenic mould Aspergillus fumigatus . We determined the in vitro activity of bromoquinol by MIC determination against a panel of fungi, bacteria and cell lines. The mode of action of bromoquinol was determined by screening an Aspergillus nidulans overexpression genomic library for resistance-conferring genes and by RNAseq analysis in A. fumigatus . In vivo efficacy was tested in Galleria mellonella and murine models of A. fumigatus infection. Results Screening of a diverse chemical library identified three compounds interfering with fungal iron utilization. The most potent, bromoquinol, shows potent wide-spectrum antifungal activity that was blocked in the presence of exogenous iron. Mode-of-action analysis revealed that overexpression of the dba secondary metabolite cluster gene dbaD , encoding a metabolite transporter, confers bromoquinol resistance in A. nidulans , possibly by efflux. RNAseq analysis and subsequent experimental validation revealed that bromoquinol induces oxidative stress and apoptosis in A. fumigatus . Bromoquinol significantly reduced mortality rates of G. mellonella infected with A. fumigatus , but was ineffective in a murine model of infection. Conclusions Bromoquinol is a promising antifungal candidate with a unique mode of action. Its activity is potentiated by iron starvation, as occurs during in vivo growth.
Collapse
Affiliation(s)
- Dafna Ben Yaakov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Nathaniel Albert
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
18
|
|
19
|
Rees CA, Stefanuto PH, Beattie SR, Bultman KM, Cramer RA, Hill JE. Sniffing out the hypoxia volatile metabolic signature of Aspergillus fumigatus. J Breath Res 2017; 11:036003. [PMID: 28825403 DOI: 10.1088/1752-7163/aa7b3e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Invasive aspergillosis (IA) is a life-threatening infectious disease caused by fungi from the genus Aspergillus, with an associated mortality as high as 90% in certain populations. IA-associated pulmonary lesions are characteristically depleted in oxygen relative to normal lung tissue, and it has been shown that the most common causal agent of IA, Aspergillus fumigatus, must respond to low-oxygen environments for pathogenesis and disease progression. Previous studies have demonstrated marked alterations to the Aspergillus fumigatus transcriptome in response to low-oxygen environments that induce a 'hypoxia response'. Consequently, we hypothesized that these transcriptomic changes would alter the volatile metabolome and generate a volatile hypoxia signature. In the present study, we analyzed the volatile molecules produced by A. fumigatus in both oxygen replete (normoxia) and depleted (hypoxia) environments via headspace solid-phase micro-extraction coupled to two-dimensional gas chromatography-time-of-flight mass spectrometry. Using the machine learning algorithm random forest, we identified 19 volatile molecules that were discriminatory between the four growth conditions assessed in this study (i.e., early hypoxia (1 h), late hypoxia (8 h), early normoxia (1 h), and late normoxia (8 h)), as well as a set of 19 that were discriminatory between late hypoxia cultures and all other growth conditions in aggregate. Nine molecules were common to both comparisons, while the remaining 20 were specific to only one of two. We assigned putative identifications to 13 molecules, of which six were most highly abundant in late hypoxia cultures. Previously acquired transcriptomic data identified putative biochemical pathways induced in hypoxia conditions that plausibly account for the production of a subset of these molecules, including 2,3-butanedione and 3-hydroxy-2-butanone. These two molecules may represent a novel hypoxia fitness pathway in A. fumigatus, and could be useful in the detection of hypoxia-associated A. fumigatus lesions that develop in established IA infections.
Collapse
Affiliation(s)
- Christiaan A Rees
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
| | | | | | | | | | | |
Collapse
|
20
|
Hagiwara D, Sakamoto K, Abe K, Gomi K. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era. Biosci Biotechnol Biochem 2016; 80:1667-80. [PMID: 27007956 DOI: 10.1080/09168451.2016.1162085] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era."
Collapse
Affiliation(s)
- Daisuke Hagiwara
- a Medical Mycology Research Center , Chiba University , Chiba , Japan
| | | | - Keietsu Abe
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
21
|
Insights into the cellular responses to hypoxia in filamentous fungi. Curr Genet 2015; 61:441-55. [PMID: 25911540 DOI: 10.1007/s00294-015-0487-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 01/06/2023]
Abstract
Most eukaryotes require molecular oxygen for growth. In general, oxygen is the terminal electron acceptor of the respiratory chain and represents an important substrate for the biosynthesis of cellular compounds. However, in their natural environment, such as soil, and also during the infection, filamentous fungi are confronted with low levels of atmospheric oxygen. Transcriptome and proteome studies on the hypoxic response of filamentous fungi revealed significant alteration of the gene expression and protein synthesis upon hypoxia. These analyses discovered not only common but also species-specific responses to hypoxia with regard to NAD(+) regeneration systems and other metabolic pathways. A surprising outcome was that the induction of oxidative and nitrosative stress defenses during oxygen limitation represents a general trait of adaptation to hypoxia in many fungi. The interplay of these different stress responses is poorly understood, but recent studies have shown that adaptation to hypoxia contributes to virulence of pathogenic fungi. In this review, results on metabolic changes of filamentous fungi during adaptation to hypoxia are summarized and discussed.
Collapse
|
22
|
ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog 2014; 10:e1004487. [PMID: 25375670 PMCID: PMC4223079 DOI: 10.1371/journal.ppat.1004487] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
Abstract
The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence. Despite improvements in diagnostics and antifungal drug treatments, mortality rates from invasive mold infections remain high. Defining the fungal adaptation and growth mechanisms at the infection site microenvironment is one research focus that is expected to improve treatment of established invasive fungal infections. The Aspergillus fumigatus transcription factor SrbA is a major regulator of the fungal response to hypoxia found at sites of invasive fungal growth in vivo. In this study, new insights into how SrbA mediates hypoxia adaptation and virulence were revealed through identification of direct transcriptional targets of SrbA under hypoxic conditions. A major novel finding from these studies is the identification of a critical role in fungal hypoxia adaptation and virulence of an SrbA target gene, srbB, which is also in the SREBP family. SrbB plays a major role in regulation of heme biosynthesis and carbohydrate metabolism early in the response to hypoxia. The discovery of SrbA-dependent regulation of srbB gene expression, and the target genes they regulate opens new avenues to understand how SREBPs and their target genes mediate adaptation to the in vivo infection site microenvironment and responses to current antifungal therapies.
Collapse
|
23
|
Blosser SJ, Merriman B, Grahl N, Chung D, Cramer RA. Two C4-sterol methyl oxidases (Erg25) catalyse ergosterol intermediate demethylation and impact environmental stress adaptation in Aspergillus fumigatus. MICROBIOLOGY-SGM 2014; 160:2492-2506. [PMID: 25107308 DOI: 10.1099/mic.0.080440-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The human pathogen Aspergillus fumigatus adapts to stress encountered in the mammalian host as part of its ability to cause disease. The transcription factor SrbA plays a significant role in this process by regulating genes involved in hypoxia and low-iron adaptation, antifungal drug responses and virulence. SrbA is a direct transcriptional regulator of genes encoding key enzymes in the ergosterol biosynthesis pathway, including erg25A and erg25B, and ΔsrbA accumulates C4-methyl sterols, suggesting a loss of Erg25 activity [C4-sterol methyl oxidase (SMO)]. Characterization of the two genes encoding SMOs in Aspergillus fumigatus revealed that both serve as functional C4-demethylases, with Erg25A serving in a primary role, as Δerg25A accumulates more C4-methyl sterol intermediates than Δerg25B. Single deletion of these SMOs revealed alterations in canonical ergosterol biosynthesis, indicating that ergosterol may be produced in an alternative fashion in the absence of SMO activity. A Δerg25A strain displayed moderate susceptibility to hypoxia and the endoplasmic reticulum stress-inducing agent DTT, but was not required for virulence in murine or insect models of invasive aspergillosis. Inducing expression of erg25A partially restored the hypoxia growth defect of ΔsrbA. These findings implicated Aspergillus fumigatus SMOs in the maintenance of canonical ergosterol biosynthesis and indicated an overall involvement in the fungal stress response.
Collapse
Affiliation(s)
- Sara J Blosser
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Brittney Merriman
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Nora Grahl
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Dawoon Chung
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| | - Robert A Cramer
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, USA
| |
Collapse
|